Önálló laboratórium beszámoló

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Önálló laboratórium beszámoló"

Átírás

1 Önálló laboratórium beszámoló Gurbán András, BNKRH2 Konzulens: Dr. Horváth Gábor Budapest, május Ismertető Számítógéppel segítet orvosi döntéstámogató rendszer fejlesztése volt a féléves feladatom. A feladat igen összetett, rengeteg aspektusból vizsgálható, Valószínűségi következtető rendszer, röntgenfelvétel elemző és sok egyéb ágazat létezik. Én a röntgenfelvételek elemzésével foglalkoztam a félév során. A rengeteg különböző felvételfajta közül, a laterális mellkas röntgenképekkel dolgoztam, ugyan elsődlegesen a szűrések során a posteror-anterior (hátulsó- elülső) felvételeket használják, azonban a gyanús gócpontok, elváltozások további elemzésére, körbehatárolására szoktak ilyen oldal irányból készült képeket is igénybe venni. A laterális képek nagy előny az előbb említett hagyományosnak tekinthető képekkel ellentétben, hogy a szív által kitakart tüdő részek is többékevésbé kellően jól megfigyelhetővé válnak általa. A feladatom ezeken a laterális felvételeken a tüdő minél pontosabb körül határolás volt. A feladatot csak bonyolítja azon tény, hogy egy páros szervünk és a két a két tüdő egymás mellett helyezkedik el a mellüregben. Ezáltal ha a paciens nem teljesen párhuzamosan áll a sugarakra, akkor a két tüdő nem fogja kitakarni egymást és két körvonal fog

2 megjelenni. De még ha nem is ez a helyzet áll elő, a két tüdőnk akkor se egyforma, se méretben, se terjedelemben, így többszörös élek jelenhetnek meg. A rekeszívnél még posteror-anterior felvételek esetén sem egyértelmű feladat a boltíves alj felismerése, ebben az esetben a nehézségek a két egymást fedő tüdő miatt még inkább megjelennek. Egy 54 darab képből álló laterális felvétel gyűjteményt használtam, amit először is könnyebb kezelhetőség érdekében azonos méretűre vágtam, ez átlagban pár darab kép esetén jelentette azt, hogy a tetejéből pár pixelt le kellett vágni, amik semmilyen releváns információt nem hordoztak amúgy se, majd az összes képet egy irányba tájoltam. Ez azt jelenti, hogy a minták között voltak olyan képek melyek a jobb oldalról és olyan felvételek melyek baloldalról készültek. A baloldali képeket választottam a vizsgálatok alapját képezőnek, így minden képet úgy tükröztem mintha azok a páciens baloldaláról készültek volna. Ezek után pedig mivel váltakozva voltak jelen invertált és normál árnyalatú képek, ezt a heterogenitást is megszűntettem a megfelelő képek szürkeárnyalatának felcserélésével. Ezen három lépes csupán formai követelményeknek való megfelelést tették lehetővé, nem részei a képfeldolgozásnak, csak a programozás technikailag egyszerűbb kezelhetőség érdekében volt szükség rájuk. Ezek után pedig a MATLAB programcsomaggal láttam neki a munkának. A választásom azért ráesett, mert gazdag irodalommal rendelkezik és igen sokrétű műveletvégzést tesz lehetővé. A MATLAB-on belül is főképp az Image Processing Toolbox-ot használtam.

3 Bevezetés Mivel éleket akarok detektálni, ezért kézenfekvőnek ígérkezett gradiens alapú eljárások tanulmányozása. Kezdetben globálisan az egész képen kezdtem el dolgozni, ennek egyik aspektusa volt, hogy az igen hatékony Canny él-detektáló eljárást alkalmaztam. A célom az volt, hogy a kapott él-képen az összefüggő él-szakaszokat vagy él-pontokat összekötöm és Hough transzformáció segítségével a jellegzetes, parametrizálható, a tüdőre illeszkedő görbét keressek. Azonban, mint ahogy az ábránkon is látszik, az eljárás igen függ az adott kép jellegzetességeitől, így igen nehéz megfelelő paramétereket kiszámolni, továbbá jól alkalmazható adaptív módszert nem sikerült találnom.

4 Ha pedig sikerült is olyan paramétereket beállítani, melyek esetén viszonylag jól látszódott a körvonal, akkor főképp a bordák okoztak hasonló éleket, mellyel pedig a görbeillesztés vált volna lehetetlenné: Mivel a kezdeti globális próbálkozások nem jártak sikerrel, ezért tüdőt különböző szakaszokra bontottam és a különböző részek alakjára a helyzetük és környezetük alapján próbáltan következtetni. Kezdetben a tüdő háti részét kezdtem vizsgálni és a félév további részében azzal foglalkoztam:

5 A fenti ábra egy ilyen részletet mutat, a nyilak két borda sorra mutatnak rá. Kellően kontrasztos képeken szabad szemmel viszonylag könnyen meghatározható(ak) a tüdő(k) körvonala(i). Azonban a képek többsége nem ilyen, az alábbi képen már nem ilyen könnyen észrevehetőek a tüdők vonalai, mert a bordákkal közel azonos az intenzitás értékük:

6 Viszont az, amikor a bordák az íveltségük miatt egy vastagabb átmérőt alkotnak, viszonylag könnyen megragadható él-keresés segítségével. A felvételeken, ezeken a pontokon nagyobb intenzitás különbség lép fel a környezethez képest. Mivel anatómia okokból a tüdő ezeknek a bordáknak feszül neki, így ha sikerül a bordák által alkotott ívet meghatározni, az jól fogja követni a tüdő körvonalát a háti részeken. Ha pedig a bordák felületének külső tüdő felé eső pontjait sikerül meghatározni, akkor már igen közel kerülünk a valódi tüdő felületéhez. Az alábbi ábrán a bordák keresztmetszete látható: Alább pedig a röntgenfelvételeken lévő képződmények oka látható:

7 A lenti ábrákon pedig a már említett íveltség látható, a zöld szaggatott vonal a röntgensugár beesését szimbolizálja: Mivel az íveltség miatt vastagabb csontozat kerül a sugár útjába, így a nagyobb elnyelődés miatt kisebb intenzitást okozz a felvételeken, a továbbiakban ezek beazonosítására törekedtem. Ez annyit jelent, hogy nem egy él-vonalat kerestem, ami vagy a bordákat határolja, vagy az egyes keresztmetszeteket fogja körbe, hanem a célom egy olyan bináris kép alkotása volt, melyen lehetőleg egy BLOB legyen (a könnyebb kezelhetőségért), aminek a baloldali határát a bordaívek alkotják. Ezért elég volt olyan módszert kidolgozni, ami meghatároz néhány olyan pontot, ami biztosan a bordaívekhez tartozik és az objektum legszélén helyezkedik el.

8 fel: A legszélsőbb borda íveket kerestem, mert így a lehető legnagyobb tüdő területet deríthetem

9 Elő-feldolgozás A képek feldolgozása 3 fő részre bontható, kezdetben hisztogram kiegyenlítést végeztem, majd egy gradiens alapú elkereső eljárással egy bináris él-képet kaptam. Végül pedig morfológia műveletek segítségével egy útvonalat alakítottam ki a bordák mentén, ahol már lehet vizsgálni, mely pontok tartoznak a tüdő vonalához. A későbbiekben ezekre a pontokra lehet görbét illeszteni vagy interpolálni köztük, ezáltal határozva meg a tüdő háti oldalán a körvonalát. Mind az él-keresésnél, mind a hisztogram kiegyenlítésnél lokálisan hatékony eljárásokat alkalmaztam, mivel az általam keresett képződmények (borda ívek) szintén lokálisan jelennek meg, méretük az egész képhez viszonyítva kicsi. Hisztogram A megfigyelések után célirányosan a bordák íves részét kerestem, első lépésként a hisztogramját vizsgáltam a képeknek, hogy valamilyen jellegzetességet felfedezhessek. Monokromatikus képek hisztogramja egy eloszlás függvény, ami arról ad információt, hogy egy adott intenzitás érték hány pixelen fordul elő. Fontos megemlíteni, hogy a hisztogram változtatása többlet információt nem ad a képhez, csupán egyes részleteket emelhet ki illetve rejthet el. Az alábbi ábra, a könnyebb vizsgálódáshoz egy felvétel hamis színezését mutatja: Már itt is jól látható, hogy a borda ívek intenzitás értéke viszonylag jól elkülöníthető a környező lágyszövetektől és a gerincoszloptól. A hisztogram képekből pedig ki is derül, hogy ez a két

10 elem, a csontok - bordák és a lágyszövet- gerinc ténylegesen igen különböző intenzitás értékeket képviselnek. Így jellegzetesen 2 csúcs jelent meg a képeken: Itt megemlítem, hogy az általam alkalmazott technikák arra a pár képre adtak igen rossz választ, melyek hisztogramképén szignifikánsan nem jelent meg ez a völgy. Ez esetben ez azt jelentette, hogy a csontok és a lágyszövet intenzitás értéke közel azonos volt, de ez csak igen rossz minőségű felvételek esetén fordult elő. A következő ábra egy rossz minőségű felvétel hisztogramját ábrázolja:

11 A felvétel pedig: Szabad szemmel is látható, hogy a bordák szinte egybeolvadnak környezetükkel. Értelemszerűen adódott a lehetősége annak, hogy így az irreleváns intenzitás értékeket levágjam, és egy mérsékeltebb intenzitásra helyezzem az adott pixeleket. Tapasztalati okokból az alsó 10%-ot vágtam le, a magas intenzitás elkerülése végett pedig közelítően a völgy alján, a felső 50% -ot vágtam le. Az alsó 10% -ot a hengeres csontok alkották főképp így azok is bezavartak. A levágott értékeket a 10% -nál illetve 50% -nál lévő intenzitás értékekkel helyettesítettem. Egy kontrasztos képpel a vágás után kapott eredmény: A bordák íve immáron már jobban elválaszthatóak a környezetüktől. Azonban így még mindig nem kellően dominálnak a bordák, ezért egy lokálisan hatékony hisztogram kiegyenlítő algoritmust

12 választottam. [1] A CLAHE az AHE eljárások azon változata, mely lekerülendő a zajok okozta hibákat, limitálja a kontrasztnövelést. Az AHE, a képeket úgynevezett csempékre osztja fel és az egyes csempéknek a többitől függetlenül növeli meg a kontrasztját, majd az ugrások elkerülése végett a csempék határát összemossa. A MATLAB bilineárisan interpolál ez esetben. Azonban az AHE főképp homogén területeken igen komolyan kiemeli a zajokat is, ez pedig zajos röntgenképek esetén nem szerencsés, mert így tévesen bordákat detektálhatnék a háttérben. Ezért én ennek a módszernek egy kontraszt növelési küszöbbel kiegészített változatával dolgoztam (CLAHE), ami kevésbé zajérzékeny ez által. A képeket 36 darab csempére bontottam, így egy csempére több borda is belefért, így téve lehetővé, hogy a bordaívek kontrasztosabbak legyenek. Az alábbi ábra a hisztogramvágással és kiegyenlítéssel kapott végeredményt szemlélteti: Él-detektálás A hisztogramos modifikációk után egy gradiens alapú elkeresés mellett döntöttem, mert a bordák immáron jól elkülönülnek környezetüktől. [2]A választásom a Sobel operátorra esett, mert a Cannyvel ellentétben amit eddig preferáltam a Sobel sokkal lokálisabban dolgozik, a képnek csak igen kis részét figyeli. Ezáltal több hamis élet is detektálhat és érzékenyebb is a zajra ugyan, de mivel én csak néhány pontot keresek, nem pedig összefüggő éleket, így számomra az nem jelent gondot, ha bordákat alkotó éleken belül még jó pár megjelenik. A hisztogramalakítások miatt ugyan is biztos lehetek benne, hogy a legszélsőbb megtalált él-szakaszok a bordákhoz tartoznak, mivel minden más tényezőt kiiktattam. A zajok okozta kis struktúrákat pedig majd a morfológia segítségével eliminálom.

13 Azért, hogy minél több pontját megtalálhassam a bordáknak 3 3 as Sobel ablakkal dolgoztam: A Gx a függőleges, a Gy pedig a vízszintes élek keresését végzi, majd a kettő összegéből állt elő az élkép. Ez után ezen a képen küszöbölést végeztem, hogy bináris képet kapjak: A bordák dominanciája megfigyelhető és a kis zaj ellenére is érvényesül. Egyelőre van egy él-szakaszokat és él-pontokat tartalmazó bináris kép. A következő lépésben ezeknek az elemeknek a morfológiai összemosásával a halmaz szélein körvonalakat gyártok. Mivel az

14 előbbiekben mondottak miatt a halmaz szélén lévő pontok a bordák pontjai illetve a későbbiek során könnyen kompenzálható zaj pontjai a kapott vonal a bordák mentén fog haladni az eredeti képen. Morfológia A morfológia, a matematikai morfológián alapul. A képi objektumokat halmazok reprezentálják. Mint a neve is tanúsítja (alaktan), a képeken lévő alakzatok felismerését teszi lehetővé. A feladat megoldása során két alapvető műveletet használtam, dilatációt és eróziót. Mindkét művelet egy ú.n. strukturáló elemet igényel. Ez szintén egy bináris képként fogható fel, melynek kisebbnek kell lennie, mint a kép és az általunk keresett alakzathoz kell hasonlatosnak lennie, hogy minél jobban kiemelje. Rombusz alakú strukturáló elemet választottam, hogy kiemelje a bordák okozta kitüremkedéseket. A dilatáció hatására a határvonalak összemosódnak és kissé megnő a halmaz területe. Az összemosódás a bordahajlatok okozta legszélsőbb szekcióig történt meg. Ez után a lyukak betömése következik, hogy könnyen kezelhető BLOB alakuljon ki. Azonban a dilatáció hatására a határvonalak kitolódtak, ezért a dilatáció duális műveletét, az eróziót hívtam segítségül, ami csökkenti az objektum méretét. Azonos strukturáló elemet alkalmaztam, így végső soron egy morfológiai zárást hajtottam végre. Utolsó lépésként, egy előre meghatározott számnál kevesebb pixelből álló képződményeket törlöm:

15 Majd az elő-feldolgozás zárásaként, a bináris képből ki kell vonni az erodáltját, hogy a hátfelöli részen egy vékony csatorna alakuljon ki: Minél nagyobb ez a csatorna, annál nagyobb a szabadságot kapunk abban, hogy ellenőrizzük, valóban helyesen detektáltuk-e a bordák keresztmetszetét.

16 Görbeillesztés A kapott csatornáknak a morfológia csontvázával dolgoztam a továbbiakban: Ezen csontváz mentén egy ablakkal végig lehet iterálni és így már célirányosan lehet olyan algoritmusokat alkalmazni, melyeket lokális voltuk miatt a teljes képre nem lehetett volna. ez úgy tűnhet mintha így nem lett volna haszna az elő-feldolgozásnak, azonban most már nem a teljes képen kell vizsgálódni, hanem csak bizonyos részein, amikről tudni lehet, hogy a valódi tüdőkörvonal igen kis környezetében van. Sokkal durvább közelítésekkel is lehet élni az ablakokban. Azzal a feltevéssel éltem, hogy a viszonylag nagy homogenitású területeken lévő pontokat eldobom, mivel ott nincsen szignifikáns intenzitásváltozás, vagyis nincs él. A homogenitás megragadására matematikai statisztikát alkalmaztam. Első lépésként a zajszűrés és kilógó minták elmosására az intenzitás értékeket kevesebb értékre újra kvantáltam. Jelen esetben 20-ra és a csontokat jelentő alacsonyabb intenzitásokon viszonylag finoman, hogy valamennyire megőrizhessem a bordák és más csontos képződmények között a különbséget. Ezek után minden egyes ablakban az intenzitás értékek móduszát megkerestem és ha ez az intenzitás az összes intenzitás legalább 70% -át tette ki, akkor eldobtam a csontváznak azt a pontját, ami köré az adott ablakot szerkesztettem. Végül, hogy a pontok szórását csökkentsem egy ablakkal végig iterálva (20 20 pixel) átlagolom a pontokat.

17 Egy kép esetében a kapott pontok és a kvantált kép: Az előállt pontokra ezek után tetszőleges görbét lehet illeszteni, ennek fajtájának és paramétereinek meghatározása, még későbbi vizsgálatok tárgya lesz.

18 Az alábbi felvételre egy exponenciális görbét illesztettem:

19 A következő ábra pedig egy másik röntgenfelvételt mutat, ahol a kontroll pontokat is feltűntettem: A tüdő körvonalától kissé balra tolódva találja meg a körvonalat az algoritmus egyelőre, mivel új pontokat nem vesz fel, csak a körvonalhoz legközelebbi pontokat tartja meg (a kellően heterogén területeken lévőket). A továbbiakban az eljárás fontos kiegészítéseként meg kell jelennie annak, hogy a nagy heterogenitású területen is dobja el a morfológia csontváz pontjait, de az intenzitásváltozásokhoz helyezzen újabbakat, amik így a tüdő pontjai lesznek. Összegzés A munka még messze nincs befejezve, a félév során a kezdeti lépéseket tettem meg. Az eljárás során számos paramétert tapasztalati úton állítottam be a hisztogramvágás, kvantálási szintek, vagy binarizálási küszöb, továbbá az alkalmazott, beépített eljárások is rengetek szabadon állítható paraméterrel rendelkeznek, melyek hangolásával érdemes és kell is a továbbiakban foglalkozni. Mindenesetre a teljes adatbázisra megnézve a módszert, többségében kielégítő eredményt ad a bordát alkotó pontok megtalálásában, így érdemesnek tartom tovább dolgozni rajta. Természetesen a jóságát csak akkor tudom majd kielégítően tesztelni, ha rendelkezésre áll egy olyan sablon készlet ezekre a laterális képekre, melyek a tüdő szakszerűen bejelölt körvonalát tartalmazzák. Eddig csupán szubjektíven tudtam megítélni. Az eredményül előálló csatornán végig haladás közben a tüdő megtalálására, a heterogenitást kíséreltem megragadni, magától értetődően más módszerekkel is lehet kísérletezni. A feladat izgalmasabb részét ezen eljárás kidolgozása jelenti, mely végső soron a

20 tüdő körvonalainak pontjai adja a kezünkbe, amire már a görbe illesztés nem ígérkezik bonyolult lépésnek. A görbékkel kapcsolatban újabb parametrizálási lehetőség nyílik meg előttünk. Ezen értékek hangolása akár történhet már ismert görbék segítségével, valamilyen tanulási eljárással (neuron hálózat, SVM, ). Irodalom jegyzék [1] Adaptive histogram Equalization and Its Variations S. Pizer, E. Amburn, J. Austin, R. Cromarte, A. Geselowitz, T. Greer, B. Romeny, J. Zimmerman, K. Zuiderveld [2]

Grafikonok automatikus elemzése

Grafikonok automatikus elemzése Grafikonok automatikus elemzése MIT BSc önálló laboratórium konzulens: Orosz György 2016.05.18. A feladat elsődleges célkitűzései o eszközök adatlapján található grafikonok feldolgozása, digitalizálása

Részletesebben

Önálló labor beszámoló Képek szegmentálása textúra analízis segítségével. MAJF21 Eisenberger András május 22. Konzulens: Dr.

Önálló labor beszámoló Képek szegmentálása textúra analízis segítségével. MAJF21 Eisenberger András május 22. Konzulens: Dr. Önálló labor beszámoló Képek szegmentálása textúra analízis segítségével 2011. május 22. Konzulens: Dr. Pataki Béla Tartalomjegyzék 1. Bevezetés 2 2. Források 2 3. Kiértékelő szoftver 3 4. A képek feldolgozása

Részletesebben

Sergyán Szabolcs szeptember 21.

Sergyán Szabolcs szeptember 21. Éldetektálás Sergyán Szabolcs Budapesti Műszaki Főiskola Neumann János Informatikai Kar 2009. szeptember 21. Sergyán Sz. (BMF NIK) Éldetektálás 2009. szeptember 21. 1 / 28 Mit nevezünk élnek? Intuitív

Részletesebben

3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Szűrés képtérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE http://www.inf.u-szeged.hu/~kato/teaching/ 2 Kép transzformációk típusai Kép értékkészletének radiometriai információ

Részletesebben

Képfeldolgozáson alapuló orvosi diagnosztikai eljárások kidolgozása

Képfeldolgozáson alapuló orvosi diagnosztikai eljárások kidolgozása Önálló laboratórium beszámoló Képfeldolgozáson alapuló orvosi diagnosztikai eljárások kidolgozása Készítette: Forró Márton Miklós Konzulens: Horváth Gábor 2012-13 2. félév Bevezetés A félév során a cél

Részletesebben

Képfeldolgozás jól párhuzamosítható

Képfeldolgozás jól párhuzamosítható Képfeldolgozás jól párhuzamosítható B. Wilkinson, M. Allen: Parallel Programming, Pearson Education Prentice Hall, 2nd ed., 2005. könyv 12. fejezete alapján Vázlat A képfeldolgozás olyan alkalmazási terület,

Részletesebben

Képszegmentáló eljárások. Orvosi képdiagnosztika 2018 ősz

Képszegmentáló eljárások. Orvosi képdiagnosztika 2018 ősz Képszegmentáló eljárások Orvosi képdiagnosztika 2018 ősz Képszegmentálás Anatómiai részek elkülönítés: pl. csontok, szív, erek, szürkefehér állomány, stb Vizsgálandó terület körbehatárolása: pl. tüdőterület

Részletesebben

Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20.

Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20. Pontműveletek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. február 20. Sergyán (OE NIK) Pontműveletek 2012. február 20. 1 / 40 Felhasznált irodalom

Részletesebben

Képfeldolgozás Szegmentálás Osztályozás Képfelismerés Térbeli rekonstrukció

Képfeldolgozás Szegmentálás Osztályozás Képfelismerés Térbeli rekonstrukció Mesterséges látás Miről lesz szó? objektumok Bevezetés objektumok A mesterséges látás jelenlegi, technikai eszközökön alapuló világunkban gyakorlatilag azonos a számítógépes képfeldolgozással. Számítógépes

Részletesebben

KÉPFELDOLGOZÁS. 10. gyakorlat: Morfológiai műveletek, alakjellemzők

KÉPFELDOLGOZÁS. 10. gyakorlat: Morfológiai műveletek, alakjellemzők KÉPFELDOLGOZÁS 10. gyakorlat: Morfológiai műveletek, alakjellemzők Min-max szűrők MATLAB-ban SE = strel(alak, paraméter(ek)); szerkesztőelem generálása strel( square, w): négyzet alakú, w méretű strel(

Részletesebben

Láthatósági kérdések

Láthatósági kérdések Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben

Képfeldolgozás jól párhuzamosítható

Képfeldolgozás jól párhuzamosítható Képeldolgozás jól párhuzamosítható B. Wilkinson, M. Allen: Parallel Programming, Pearson Education Prentice Hall, nd ed., 005. könyv. ejezete alapján Vázlat A képeldolgozás olyan alkalmazási terület, amely

Részletesebben

Rendszámfelismerő rendszerek

Rendszámfelismerő rendszerek Problémamegoldó szeminárium Témavezető: Pataki Péter ARH Zrt. ELTE-TTK 2013 Tartalomjegyzék 1 Bevezetés 2 Út a megoldás felé 3 Felmerült problémák 4 Alkalmazott matematika 5 További lehetőségek Motiváció

Részletesebben

Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.

Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y. Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

1/8. Iskolai jelentés. 10.évfolyam matematika

1/8. Iskolai jelentés. 10.évfolyam matematika 1/8 2009 Iskolai jelentés 10.évfolyam matematika 2/8 Matematikai kompetenciaterület A fejlesztés célja A kidolgozásra kerülő programcsomagok az alább felsorolt készségek, képességek közül a számlálás,

Részletesebben

Morfológia. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia Intézet

Morfológia. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia Intézet Morfológia Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia Intézet 2013. szeptember 15. Sergyán (OE NIK) Morfológia 2013. szeptember

Részletesebben

Morfológia. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia Intézet

Morfológia. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia Intézet Morfológia Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia Intézet 2012. október 9. Sergyán (OE NIK) Morfológia 2012. október 9. 1 /

Részletesebben

Adaptív dinamikus szegmentálás idősorok indexeléséhez

Adaptív dinamikus szegmentálás idősorok indexeléséhez Adaptív dinamikus szegmentálás idősorok indexeléséhez IPM-08irAREAE kurzus cikkfeldolgozás Balassi Márton 1 Englert Péter 1 Tömösy Péter 1 1 Eötvös Loránd Tudományegyetem Informatikai Kar 2013. november

Részletesebben

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat

Részletesebben

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal

Részletesebben

10. Alakzatok és minták detektálása

10. Alakzatok és minták detektálása 0. Alakzatok és mnták detektálása Kató Zoltán Képfeldolgozás és Számítógépes Grafka tanszék SZTE http://www.nf.u-szeged.hu/~kato/teachng/ 2 Hough transzformácó Éldetektálás során csak élpontok halmazát

Részletesebben

Panorámakép készítése

Panorámakép készítése Panorámakép készítése Képregisztráció, 2009. Hantos Norbert Blaskovics Viktor Összefoglalás Panoráma (image stitching, planar mosaicing): átfedő képek összeillesztése Lépések: Előfeldolgozás (pl. intenzitáskorrekciók)

Részletesebben

6. Éldetektálás. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

6. Éldetektálás. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 6. Éldetektálás Kató Zoltán Képeldolgozás és Számítógépes Graika tanszék SZTE (http://www.in.u-szeged.hu/~kato/teaching/) 2 Élek A képen ott található él, ahol a kép-üggvény hirtelen változik. A kép egy

Részletesebben

Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika

Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika Képfeldolgozó eljárások áttekintés Orvosi képdiagnosztika Tartalomjegyzék Képmanipulációs eljárások Képjavítás (kontraszt módosítás, intenzitásviszonyok módosításahisztogram módosítás, zajszűrés) Képelemzés

Részletesebben

Diszkréten mintavételezett függvények

Diszkréten mintavételezett függvények Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott

Részletesebben

Cohen-Sutherland vágóalgoritmus

Cohen-Sutherland vágóalgoritmus Vágási algoritmusok Alapprobléma Van egy alakzatunk (szakaszokból felépítve) és van egy "ablakunk" (lehet a monitor, vagy egy téglalap alakú tartomány, vagy ennél szabálytalanabb poligon által határolt

Részletesebben

2. Pont operációk. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

2. Pont operációk. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2. Pont operációk Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Kép transzformációk típusai Kép értékkészletének (radiometriai információ)

Részletesebben

Kettőnél több csoport vizsgálata. Makara B. Gábor

Kettőnél több csoport vizsgálata. Makara B. Gábor Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10

Részletesebben

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez Feladatok a MATEMATIKA standardleírás 2. szintjéhez A feladat sorszáma: 1. Standardszint: 2. Gondolkodási és megismerési módszerek Halmazok Képes különböző elemek közös tulajdonságainak felismerésére.

Részletesebben

Szimuláció RICHARD M. KARP és AVI WIGDERSON. (Készítette: Domoszlai László)

Szimuláció RICHARD M. KARP és AVI WIGDERSON. (Készítette: Domoszlai László) Szimuláció RICHARD M. KARP és AVI WIGDERSON A Fast Parallel Algorithm for the Maximal Independent Set Problem című cikke alapján (Készítette: Domoszlai László) 1. Bevezetés A következőkben megadott algoritmus

Részletesebben

1. óra Digitális képfeldolgozás

1. óra Digitális képfeldolgozás 1. óra Digitális képfeldolgozás Képkorrekció A hisztogram A hisztogram a képünk intenzitás-eloszlását ábrázolja. Ebben a koordinátarendszerben a vízszintes tengelyen vesszük fel a teljes szürkeskálát úgy,

Részletesebben

Képrekonstrukció 3. előadás

Képrekonstrukció 3. előadás Képrekonstrukció 3. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Computed Tomography (CT) Elv: Röntgen-sugarak áthatolása 3D objektum 3D térfogati kép Mérések

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

A keveredési réteg magasságának detektálása visszaszóródási idősorok alapján

A keveredési réteg magasságának detektálása visszaszóródási idősorok alapján ORSZÁGOS METEOROLÓGIAI SZOLGÁLAT A keveredési réteg magasságának detektálása visszaszóródási idősorok alapján Timár Ágnes Alapítva: 1870 A planetáris határréteg (PHR) Mechanikus és termikus turbulencia

Részletesebben

Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008

Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008 Képfeldolgozás 1. el adás. A képfeldolgozás m veletei Mechatronikai mérnök szak BME, 2008 1 / 61 Alapfogalmak transzformációk Deníció Deníció Geometriai korrekciókra akkor van szükség, ha a képr l valódi

Részletesebben

Loványi István vizsgakérdései kidolgozva (béta)

Loványi István vizsgakérdései kidolgozva (béta) Loványi István vizsgakérdései kidolgozva (béta) 1. Morfológiai képfeldolgozás elmélete 1. Alapvető halmazműveletek, tulajdonságaik Műveletek: egyesítés (unió) metszet negált összetett műveletek... Tulajdonságok:

Részletesebben

Pollák Tamás Konzulens: Dr. Horváth Gábor

Pollák Tamás Konzulens: Dr. Horváth Gábor Önálló laboratórium dokumentáció Képfeldolgozás orvosi alkalmazásai CT képfeldolgozás Pollák Tamás Konzulens: Dr. Horváth Gábor A feladat A CT felvételeket a betegről segédeszközként használjuk a pácienseken

Részletesebben

GPU Lab. 14. fejezet. OpenCL textúra használat. Grafikus Processzorok Tudományos Célú Programozása. Berényi Dániel Nagy-Egri Máté Ferenc

GPU Lab. 14. fejezet. OpenCL textúra használat. Grafikus Processzorok Tudományos Célú Programozása. Berényi Dániel Nagy-Egri Máté Ferenc 14. fejezet OpenCL textúra használat Grafikus Processzorok Tudományos Célú Programozása Textúrák A textúrák 1, 2, vagy 3D-s tömbök kifejezetten szín információk tárolására Főbb különbségek a bufferekhez

Részletesebben

41. ábra A NaCl rács elemi cellája

41. ábra A NaCl rács elemi cellája 41. ábra A NaCl rács elemi cellája Mindkét rácsra jellemző, hogy egy tetszés szerint kiválasztott pozitív vagy negatív töltésű iont ellentétes töltésű ionok vesznek körül. Különbség a közvetlen szomszédok

Részletesebben

Hálózati folyamok. A használt fogalmak definiálása

Hálózati folyamok. A használt fogalmak definiálása Hálózati folyamok Hálózat A használt fogalmak definiálása Ez összesen 4 dologból áll: - Egy irányított G gráf - Ennek egy kitüntetett pontja, amit forrásnak hívunk és s-sel jelölünk - A gráf még egy kitüntetett

Részletesebben

Ujjszámlálás Matlab segítségével

Ujjszámlálás Matlab segítségével Ujjszámlálás Matlab segítségével Griechisch Erika, Juhász Miklós és Földi Antal 2008. november Tartalomjegyzék 1. Bevezetés 1 2. Vizsgált módszerek 1 3. Az algoritmus 1 4. Megvalósítás 2 4.1. Szegmentálás,

Részletesebben

Teljesen elosztott adatbányászat pletyka algoritmusokkal. Jelasity Márk Ormándi Róbert, Hegedűs István

Teljesen elosztott adatbányászat pletyka algoritmusokkal. Jelasity Márk Ormándi Róbert, Hegedűs István Teljesen elosztott adatbányászat pletyka algoritmusokkal Jelasity Márk Ormándi Róbert, Hegedűs István Motiváció Nagyméretű hálózatos elosztott alkalmazások az Interneten egyre fontosabbak Fájlcserélő rendszerek

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

Prímszámok statisztikai analízise

Prímszámok statisztikai analízise Prímszámok statisztikai analízise Puszta Adrián 28. április 18. Kivonat Munkám során a prímszámok és a páros prímek eloszlását, illetve különbségét vizsgáltam, majd ebből következtettem a véletlenszerű

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Bizonyítvány nyomtatása hibamentesen

Bizonyítvány nyomtatása hibamentesen Bizonyítvány nyomtatása hibamentesen A korábbi gyakorlat A nyomtatásra kerülő bizonyítványokat, pontosabban a lap egy pontját megmértük, a margót ehhez igazítottuk. Hibalehetőségek: - mérés / mérő személy

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

Síkbarajzolható gráfok, duális gráf

Síkbarajzolható gráfok, duális gráf Síkbarajzolható gráfok, duális gráf Papp László BME November 8, 2018 Gráfok lerajzolása Definíció: Egy G gráf diagramján a gráf olyan lerajzolását értjük ahol a csúcsok különböző síkbeli pontok, illetve

Részletesebben

Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.

Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák

Részletesebben

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2

Részletesebben

A médiatechnológia alapjai

A médiatechnológia alapjai A médiatechnológia alapjai Úgy döntöttem, hogy a Szirányi oktatta előadások számonkérhetőnek tűnő lényegét kiemelem, az alapján, amit a ZH-ról mondott: rövid kérdések. A rész és az egész: összefüggések

Részletesebben

Ferde kúp ellipszis metszete

Ferde kúp ellipszis metszete Ferde kúp ellipszis metszete A ferde kúp az első képsíkon lévő vezérkörével és az M csúcsponttal van megadva. Ha a kúpból ellipszist szeretnénk metszeni, akkor a metsző síknak minden alkotót végesben kell

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

DIGITÁLIS KÉPANALÍZIS KÉSZÍTETTE: KISS ALEXANDRA ELÉRHETŐSÉG:

DIGITÁLIS KÉPANALÍZIS KÉSZÍTETTE: KISS ALEXANDRA ELÉRHETŐSÉG: DIGITÁLIS KÉPANALÍZIS KÉSZÍTETTE: KISS ALEXANDRA ELÉRHETŐSÉG: kisszandi@mailbox.unideb.hu ImageJ (Fiji) Nyílt forrás kódú, java alapú képelemző szoftver https://fiji.sc/ Számos képformátumhoz megfelelő

Részletesebben

Automatikus gamma korrekció

Automatikus gamma korrekció Automatikus gamma korrekció Kovács György 1, Fazekas Attila 1 University of Debrecen Faculty of Informatics gykovacs@inf.unideb.hu fazekas.attila@inf.unideb.hu Absztrakt. Számos kontraszt javító algoritmus

Részletesebben

Statisztikai becslés

Statisztikai becslés Kabos: Statisztika II. Becslés 1.1 Statisztikai becslés Freedman, D. - Pisani, R. - Purves, R.: Statisztika. Typotex, 2005. Reimann J. - Tóth J.: Valószínűségszámítás és matematikai statisztika. Tankönyvkiadó,

Részletesebben

Számítógépes Grafika SZIE YMÉK

Számítógépes Grafika SZIE YMÉK Számítógépes Grafika SZIE YMÉK Analóg - digitális Analóg: a jel értelmezési tartománya (idő), és az értékkészletes is folytonos (pl. hang, fény) Diszkrét idejű: az értelmezési tartomány diszkrét (pl. a

Részletesebben

Fraktálok. Löwy Dániel Hints Miklós

Fraktálok. Löwy Dániel Hints Miklós alkalmazott erjedéses folyamat sajátságait. Továbbá nemcsak az alkoholnak az emberi szervezetre gyakorolt hatását tudjuk megfigyelni (például a szomszéd dülöngélését és kurjongatását), hanem az alkoholnak

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés

Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Kép mátrix. Feladat: Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 2/35

Kép mátrix. Feladat: Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 2/35 Grafika I. Kép mátrix Feladat: Egy N*M-es raszterképet nagyítsunk a két-szeresére pontsokszorozással: minden régi pont helyébe 2*2 azonos színű pontot rajzolunk a nagyított képen. Pap Gáborné-Zsakó László:

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

ACM Snake. Orvosi képdiagnosztika 11. előadás első fele

ACM Snake. Orvosi képdiagnosztika 11. előadás első fele ACM Snake Orvosi képdiagnosztika 11. előadás első fele ACM Snake (ismétlés) A szegmentáló kontúr egy paraméteres görbe: x Zs s X s, Y s,, s A szegmentáció energia funkcionál minimalizálása: E x Eint x

Részletesebben

Ragasztócsík ellenőrző kamerás rendszer

Ragasztócsík ellenőrző kamerás rendszer Ragasztócsík ellenőrző kamerás rendszer / Esettanulmány egy új fejlesztésű, flexibilis, felhasználóbarát betanítási rendszerről./ A papírdobozok gyártása során elengedhetetlen, hogy a ragasztás jó minőségű

Részletesebben

Képszűrés II. Digitális képelemzés alapvető algoritmusai. Laplace-operátor és approximációja. Laplace-szűrő és átlagolás. Csetverikov Dmitrij

Képszűrés II. Digitális képelemzés alapvető algoritmusai. Laplace-operátor és approximációja. Laplace-szűrő és átlagolás. Csetverikov Dmitrij Képszűrés II Digitális képelemzés alapvető algoritmusai Csetverikov Dmitrij Eötvös Lóránd Egyetem, Budapest csetverikov@sztaki.hu http://vision.sztaki.hu Informatikai Kar 1 Laplace-szűrő 2 Gauss- és Laplace-képpiramis

Részletesebben

Matematikai geodéziai számítások 10.

Matematikai geodéziai számítások 10. Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László

Részletesebben

Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika 9. ea ősz

Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika 9. ea ősz Képfeldolgozó eljárások áttekintés Orvosi képdiagnosztika 9. ea. 2015 ősz Tartalomjegyzék Képmanipulációs eljárások Képjavítás (kontraszt módosítás, intenzitásviszonyok módosításahisztogram módosítás,

Részletesebben

Ö ná llo láboráto rium beszá molo

Ö ná llo láboráto rium beszá molo Ö ná llo láboráto rium beszá molo Képfeldolgozás orvosi alkalmazásai Vetítés CT felvételekből Kárász András Konzulens: Dr. Horváth Gábor Bevezetés Napjainkban a városi életmód következtében (szállópor,

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk

Részletesebben

Tartalomjegyzék. Tartalomjegyzék... 3 Előszó... 9

Tartalomjegyzék. Tartalomjegyzék... 3 Előszó... 9 ... 3 Előszó... 9 I. Rész: Evolúciós számítások technikái, módszerei...11 1. Bevezetés... 13 1.1 Evolúciós számítások... 13 1.2 Evolúciós algoritmus alapfogalmak... 14 1.3 EC alkalmazásokról általában...

Részletesebben

Éldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea

Éldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea Éldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea Geometrikus deformálható modellek Görbe evolúció Level set módszer A görbe evolúció parametrizálástól független mindössze geometriai

Részletesebben

Térinformatikai algoritmusok Elemi algoritmusok

Térinformatikai algoritmusok Elemi algoritmusok Cserép Máté Analóg programozásnak nevezzük azt, amikor egy feladat megoldásához egy már ismert és megoldott feladat megoldását használjuk fel. Általában nem pontosan ugyanazt a feladatot oldottuk meg korábban,

Részletesebben

Képfeldolgozás haladóknak Lovag Tamás Novák Gábor 2011

Képfeldolgozás haladóknak Lovag Tamás Novák Gábor 2011 Dokumentáció Küszöbölés A küszöbölés során végighaladunk a képen és minden egyes képpont intenzitásáról eldöntjük, hogy teljesül-e rá az a küszöbölési feltétel. A teljes képre vonatkozó küszöbölés esetében

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév első (iskolai) forduló Haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév első (iskolai) forduló Haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 016/017-es tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. A k valós paraméter értékétől függően

Részletesebben

Visszalépéses keresés

Visszalépéses keresés Visszalépéses keresés Backtracking előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Alapvető működése Továbbfejlesztési

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

Hibadetektáló rendszer légtechnikai berendezések számára

Hibadetektáló rendszer légtechnikai berendezések számára Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő

Részletesebben

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8. Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás

Részletesebben

Speciális szükségletű felhasználók navigációjának vizsgálata különböző multimédiás alkalmazásokban

Speciális szükségletű felhasználók navigációjának vizsgálata különböző multimédiás alkalmazásokban Speciális szükségletű felhasználók navigációjának vizsgálata különböző multimédiás alkalmazásokban MÁTRAI RITA1, KOSZTYÁN ZSOLT TIBOR2, SIKNÉ DR. LÁNYI CECÍLIA3 1,3 Veszprémi Egyetem, Képfeldolgozás és

Részletesebben

IV. Felkészítő feladatsor

IV. Felkészítő feladatsor IV. Felkészítő feladatsor 1. Az A halmaz elemei a (-7)-nél nagyobb, de 4-nél kisebb egész számok. B a nemnegatív egész számok halmaza. Elemeinek felsorolásával adja meg az A \ B halmazt! I. 2. Adott a

Részletesebben

Statisztikai módszerek a skálafüggetlen hálózatok

Statisztikai módszerek a skálafüggetlen hálózatok Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti

Részletesebben

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. : Eseményalgebra Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

MATLAB Image Processing Toolbox

MATLAB Image Processing Toolbox Budapesti Műszaki Főiskola Neumann János Informatikai Kar 2007. november 12. Kép átméretezése imresize(a,m,method) Az A képet m-szeresére méretezi át. method értéke lehet: nearest (alapértelmezett) bilinear

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Tanulási cél Szorzatfüggvényekre vonatkozó integrálási technikák megismerése és különböző típusokra való alkalmazása. 5), akkor

Tanulási cél Szorzatfüggvényekre vonatkozó integrálási technikák megismerése és különböző típusokra való alkalmazása. 5), akkor Integrálszámítás Integrálási szabályok Tanulási cél Szorzatfüggvényekre vonatkozó integrálási technikák megismerése és különböző típusokra való alkalmazása Motivációs feladat Valószínűség-számításnál találkozhatunk

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A

Részletesebben

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7) Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz

Részletesebben

Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel. Az objektumok áthaladnak a többi objektumon

Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel. Az objektumok áthaladnak a többi objektumon Bevezetés Ütközés detektálás Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel Az objektumok áthaladnak a többi objektumon A valósághű megjelenítés része Nem tisztán

Részletesebben

Prediktív modellezés a Zsámbéki-medencében Padányi-Gulyás Gergely

Prediktív modellezés a Zsámbéki-medencében Padányi-Gulyás Gergely Prediktív modellezés a Zsámbéki-medencében Padányi-Gulyás Gergely Térinformatikai szoftverismeret I-II. BME Építőmérnöki Kar Általános- és Felsőgeodézia Tanszék Térinformatikus szakmérnök 2009/2010. tavaszi

Részletesebben

Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika 9. ea ősz

Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika 9. ea ősz Képfeldolgozó eljárások áttekintés Orvosi képdiagnosztika 9. ea. 2015 ősz Tartalomjegyzék Képmanipulációs eljárások Képjavítás (kontraszt módosítás, intenzitásviszonyok módosításahisztogram módosítás,

Részletesebben

KÖZELÍTŐ INFERENCIA II.

KÖZELÍTŐ INFERENCIA II. STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.

Részletesebben

Térinformatikai algoritmusok Elemi algoritmusok

Térinformatikai algoritmusok Elemi algoritmusok Cserép Máté 2016. szeptember 14. Analóg programozásnak nevezzük azt, amikor egy feladat megoldásához egy már ismert és megoldott feladat megoldását használjuk fel. Általában nem pontosan ugyanazt a feladatot

Részletesebben

5. feladatsor megoldása

5. feladatsor megoldása megoldása I. rész ( ) = 1. x x, azaz C) a helyes válasz, mivel a négyzetgyökvonás eredménye csak nemnegatív szám lehet.. A húrnégyszögek tétele szerint bármely húrnégyszög szemközti szögeinek összege 180.

Részletesebben