6. évfolyam MATEMATIKA

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "6. évfolyam MATEMATIKA"

Átírás

1 évfolyam MATEMATIKA

2

3 Országos kompetenciamérés 213 Feladatok és jellemzőik matematika 6. évfolyam Oktatási Hivatal Köznevelési Mérési Értékelési Osztály Budapest, 214

4

5 6. ÉVFOLYAM A KOMPETENCIAMÉRÉSEKRŐL 213 májusában immár tizedik alkalommal került sor az Országos kompetenciamérésre, amelyen minden 6., 8. és 1. évfolyamos tanuló részt vett, és amelynek célja a diákok szövegértési képességeinek és matematikai eszköztudásának a feltérképezése. A kompetenciamérés eredményeiről minden telephely, iskola és fenntartó jelentést kap, amelynek segítségével elhelyezheti magát az országos képességskálán, és összehasonlíthatja eredményeit a hozzá hasonló telephelyeken, iskolákban és fenntartónál tanuló diákok eredményeivel. Emellett az iskolák egyéni elemzéseket is készíthetnek, ennek segítségével kérdésenként is elemezhetik az eredményeket. Az Országos kompetenciamérés 213 Feladatok és jellemzőik kötetek célja Az a szándékunk, hogy az iskola eredményeit bemutató grafikonok mellett a lehető legteljesebb mértékben megismertessük a tanárokat, intézményvezetőket és oktatáspolitikusokat a mérésben rejlő lehetőségekkel, és az eredmények helyes interpretálásához minél alaposabb segítséget biztosítsunk. E célt szolgálja a kompetenciamérés 27 elején megjelent Tartalmi kerete, 1 valamint az Országos kompetenciamérés 213 fenntartói, iskolai és telephelyi jelentései, amelyek megtekinthetők a illetve a https:// honlapon. A feladatokat bemutató kötetek célja az, hogy megismertessék a tanárokat az egyes feladatok mérési céljaival és statisztikai paramétereivel. A diákok feladatonkénti eredményeit elemezve a tanárok képet kaphatnak arról, hogy diákjaik milyen problémákkal, hiányosságokkal küzdenek, melyek azok a területek, amelyekre nagyobb figyelmet kell fordítaniuk a jövőben, és milyen fejlesztési feladatokkal kell megbirkózniuk. A felada tokat tartalmazó kötetek az országos eredmények bemutatásával mindehhez keretet és viszonyítási pontokat nyújtanak. A kötetből kiderül, hogy mely feladatok okozták a legtöbb gondot a diákoknak, melyek esetében választottak sokan valamilyen tipikusan rossz választ, és melyek nem okoztak problémát a diákok többségének. A kötet felépítése Ez a kötet a 213. évi Országos kompetenciamérés 6. évfolyamos tesztfüzetének matematikafeladatait (itemeit) tartalmazza. Az itemek olyan sorrendben találhatók a kötetben, ahogyan az A) tesztfüzetben szerepeltek. A kötet végén található mellékletben táblázatos formában is feltüntettük az itemek jellemzőit. A kötetben minden egyes itemről a következő információk szerepelnek: A kérdés (item), ahogyan a tesztfüzetben szerepelt. Az item javítókulcsa. A mérési cél: az item besorolása a Tartalmi keretben rögzített csoportosítási szempontok alapján; rövid leírás arról, hogy pontosan milyen műveleteket kell a diáknak elvégeznie az item helyes megválaszolásához. 1 Balázsi Ildikó Felvégi Emese Rábainé Szabó Annamária Szepesi Ildikó: OKM 26 Tartalmi keret. sulinova Kht., Budapest, 26. Köznevelési Mérési Értékelési Osztály 3

6 MATEMATIKA Az item statisztikai jellemzői: 2 az item tesztelméleti paraméterei (a kérdés nehézsége és meredeksége, valamint kétpontos item esetén a lépésnehézségek); feleletválasztásos feladatok tippelési paramétere; az item nehézségi szintje; a lehetséges kódok és az egyes kódokra adott pontszámok; az egyes kódok előfordulási aránya; az item lehetséges kódjainak pontbiszeriális korrelációja; az item százalékos megoldottsága országosan és településtípusonként, valamint az egyes tanulói képességszinteken. Képességszintek a 6. évfolyamos matematikateszt esetében Az adatok elemzésében fontos szerepet játszanak a szakmai és statisztikai szempontok alapján meghatározott képességszintek. Ezek segítségével a tanulókat képességük szerint kategóriákba sorolva képet tudunk adni arról, hogy milyen képességeket tudhatnak magukénak a szintbe tartozók, és mi az, amiben elmaradnak a magasabb szinten található tanulóktól. A képességszintek kialakításának statisztikai hátterét az 1. melléklet mutatja be. Képességszint A képességszint alsó határa A szintet elérő tanulók képességei újszerű és/vagy többszörösen összetett szituációban megjelenő, önálló megoldási stratégiát igénylő, gyakran többlépéses feladatok megoldása összetett problémák vizsgálatából és modellezéséből nyert információk értelmezése, általánosítása és alkalmazása különböző információforrások és reprezentációk összekapcsolása és egymásnak való megfeleltetése fejlett matematikai gondolkodás és érvelés a szimbolikus és formális matematikai műveletek és kapcsolatok magas színvonalú alkalmazásával újszerű problémaszituációk megoldása új megoldási módok és stratégiák megalkotása műveleti lépések, az eredmények és azok értelmezésével kapcsolatos gondolatok pontos megfogalmazása az eredményeknek az eredeti probléma szempontjából való vizsgálata, értelmezése újszerű, komolyabb értelmezést igénylő szövegkörnyezetben megjelenő, önálló stratégiával megoldható többlépéses feladatok megoldása modellalkotás összetett problémaszituációra, a modell alkalmazhatósági feltételeinek meghatározása, majd annak helyes alkalmazása modellekhez kapcsolódó összetett problémák lehetséges megoldási módjainak kiválasztása, összehasonlítása és értékelése a kiválasztott megoldási stratégia és matematikai módszer értékelése, az elvégzett lépések végrehajtása széles körű és jó színvonalú gondolkodási és érvelési képességek, készségek különböző adatmegjelenítések, szimbolikus és formális leírások és probléma megjelenítések nagy biztonsággal való értelmezése és kezelése 2 A statisztikai jellemzők képzési szabályait az 1. melléklet ismerteti. 4 Köznevelési Mérési Értékelési Osztály

7 6. ÉVFOLYAM Képességszint A képességszint alsó határa A szintet elérő tanulók képességei újszerű szituációban megjelenő többlépéses, önálló stratégia kidolgozását igénylő, különböző módon megjelenített összefüggéseket tartalmazó feladatok megoldása problémákhoz egyszerű modell önálló megalkotása, majd annak helyes alkalmazása rugalmas érvelés és reflektálás az elvégzett lépésekre értelmezés és gondolatmenet megalkotása és megfogalmazása összetettebb vagy kevésbé ismerős, újszerű szituációjú, több lépéses feladatok megoldása konkrét problémaszituációkat egyértelműen leíró modellek hatékony alkalmazása, a modellek alkalmazhatósági feltételeinek meghatározása. különböző, akár szimbolikus adatmegjelenítések kiválasztása és egyesítése, azok közvetlen összekapcsolása a valóságos szituációk különböző aspektusaival értelmezés és gondolatmenet röviden leírása ismerős kontextusban megjelenő egy-két lépéses problémák megoldása egyértelműen leírt matematikai eljárások elvégzése, amelyek szekvenciális döntési pontokat is magukban foglalhatnak egyszerű problémamegoldási stratégiák kiválasztása és alkalmazása különböző információforrásokon alapuló adatmegjelenítések értelmezése és alkalmazása, majd ezek alapján érvek megalkotása a legalapvetőbb, közismert matematikai fogalmak és eljárások ismerete a kontextus alapján közvetlenül megérthető problémaszituációk értelmezése egyetlen információforrásból a szükséges információk megszerzése egyszerű vagy szimplán matematikai kontextusban megjelenő, jól körülírt, egylépéses problémák megoldása egyszerű, jól begyakorolt algoritmusok, képletek, eljárások és megoldási technikák alkalmazása egyszerűen érvelés és az eredmények szó szerint értelmezése ismerős, főként matematikai szituációban, gyakran kontextus nélküli helyzetben feltett matematikai kérdések megválaszolása egyértelmű, jól körülírt és minden szükséges információt tartalmazó feladatok megoldása közvetlen utasításokat követve rutinszerű eljárások végrehajtása a feladat kontextusából nyilvánvalóan következő lépések végrehajtása Köznevelési Mérési Értékelési Osztály 5

8 MATEMATIKA A 6. évfolyamos matematikateszt általános jellemzése A teszt általános jellemzői A felmérés tesztfüzeteit a Tartalmi keretben megfogalmazott szempontok szerint állítottuk össze. A felmérést minden 6., 8. és 1. évfolyamos diák megírta, majd 6. évfolyamon a központi elemzés elkészítéséhez minden intézmény minden tanulójától összegyűjtöttük a kitöltött tesztfüzeteket. Az 1. táblázat azt ismerteti, hogy a tesztfüzetben milyen arányban szerepelnek a tartalmi keretben definiált gondolkodási műveletekhez és tartalmi területekhez tartozó feladatok. A 2. táblázat a teszt értékelése során kapott néhány alapvető jellemzőjét mutatja be (a 2. táblázatban az értékelés során törölt feladatok nem jelennek meg). Gondolkodási műveletek Tartalmi területek Mennyiségek és műveletek Hozzárendelések és összefüggések Alakzatok síkban és térben Események statisztikai jellemzői és valószínűsége Tényismeret és műveletek Modellalkotás, integráció Komplex megoldások és kommunikáció Tartalmi terület összesen Műveletcsoport összesen táblázat: A feladatok megoszlása a gondolkodási műveletek és tartalmi területek szerint a 6. évfolyamos matematikatesztben Az értékelésbe vont itemek száma 56 A központi elemzésbe bevont kitöltött tesztfüzettel rendelkező 8445 tanulók száma Cronbach-alfa,91 Országos átlag (standard hiba) 1488,799 (,511) Országos szórás (standard hiba) 193,832 (,348) 2. táblázat: A 6. évfolyamos matematikateszt néhány jellemzője 6 Köznevelési Mérési Értékelési Osztály

9 A feladatok megoszlása a képességskálán 6. ÉVFOLYAM Az 1. ábra az itemek és a diákok megoszlását mutatja a képességskálán. Az ábrán a feladatok nehézségi szintjeit és a diákok képességszintjeit is feltüntettük. Láthatjuk, hogy a mérésben könnyű és nehéz feladatok egyaránt találhatók, az itemekkel igyekeztünk minél szélesebb tartományban lefedni a képességskálát. Ily módon a kiemelkedően tehetséges és a gyenge diákokat is megbízhatóbban tudjuk elhelyezni a képességskálán. Standardizált képességpont MJ2591 MJ2712 MJ1341 MJ311 MJ3123 MJ881 MJ2991 MI2161 MJ371 MJ1771 MJ121 MJ1951 MJ2231 MJ1381 MJ691 MJ1461 MJ321 MJ322 MJ1631 MJ3821 MJ1331 MJ3881 MJ1751 MJ2371 MJ1551 MJ171 MJ2441 MJ1451 MJ571 MJ3122 MJ321 MJ331 MJ1481 MJ3851 MJ2721 MJ2852 MJ1991 MJ1371 MJ3342 MJ3761 MJ1161 MJ331 MJ3121 MJ161 MJ51 MJ1313 MJ2851 MJ291 MJ531 MJ3962 MJ3481 MJ MI352 MJ2711 MJ MI Adott nehézségű feladatok Adott képességpontot elért diákok száma 1. ábra: Az itemek és diákok megoszlása a képességskálán, 6. évfolyam, matematika Köznevelési Mérési Értékelési Osztály 7

10 MATEMATIKA 8 Köznevelési Mérési Értékelési Osztály

11 6. ÉVFOLYAM A FELADATOK ISMERTETÉSE Köznevelési Mérési Értékelési Osztály 9

12 MATEMATIKA mj531 mj531 Nyitva tartás 62/89. FELADAT: NYITVATARTÁS MJ531 Egy kisváros lakótelepén három üzlet van egymás szomszédságában. A pékség 4.3-tól 8.-ig és 16.3-tól 2.-ig, a vegyesbolt 7.-tól 19.-ig, az állateledelt árusító üzlet 9.-tól 18.-ig tart nyitva. Verának mindhárom boltban kell vásárolnia. Mikor van egyszerre nyitva mind a három üzlet? Satírozd be a helyes válasz betűjelét! A7. és 8. óra között B1. és 12. óra között Nyitva C14. tartás és 16. óra között D16.3 és 18. óra között Mikor van egyszerre nyitva mind a három üzlet? Satírozd be a helyes válasz betűjelét! JAVÍTÓKULCS Helyes válasz: D 1 Köznevelési Mérési Értékelési Osztály

13 6. ÉVFOLYAM A kérdés besorolása Tartalmi terület: Gondolkodási művelet: Kulcsszavak: Hozzárendelések és összefüggések Tényismeret és rutinműveletek Intervallum, metszet A feladat leírása: A feleletválasztós feladatban három időintervallum metszetét kell meghatározni és kiválasztani a megadott lehetőségek közül. A feladat statisztikai paraméterei Becslés Standard hiba (S. H.) Standard meredekség,33,8 Standard nehézség ,6 Nehézségi szint 3 Lehetséges kódok x Pontozás Az egyes kódok előfordulási aránya (%) 4,6,3, -,3 -,6 -,16 -,23 -,2,43 -,3 -, Az egyes kódok pontbiszeriális korrelációi Százalékos megoldottság Településtípus Tanulói % S. H. képességszintek % S. H. Teljes populáció 63,6,16 1. szint alatt 18,9,58 Főváros 69,7,4 1. szint 34,2,44 Megyeszékhely 67,7,34 2. szint 51,8,35 Város 62,7,25 3. szint 68,5,31 Község 58,8,27 4. szint 81,9,27 5. szint 9,6,31 6. szint 95,4,39 7. szint 99,4,44 Köznevelési Mérési Értékelési Osztály 11

14 MATEMATIKA Kerítés 63/9. FELADAT: KERÍTÉS MJ51 A Kovács család hétvégi telket vásárolt, ennek rajzát az ábra mutatja. Körbe akarják keríteni a telket drótkerítéssel, amelyet kerítésoszlopok tartanak. A telek alaprajza Kerítés 5 m Telek 15 m Kapu helye 4 m mj51 Hány darab kerítésoszlopot kell rendelniük, ha 5 méterenként akarnak oszlopot állítani a kerítéshez? Satírozd be a helyes válasz betűjelét! mj51 A22 B24 Kerítés C25 D26 Hány darab kerítésoszlopot kell rendelniük, ha 5 méterenként akarnak oszlopot állítani a kerítéshez? Satírozd be a helyes válasz betűjelét! JAVÍTÓKULCS Helyes válasz: A 12 Köznevelési Mérési Értékelési Osztály

15 6. ÉVFOLYAM A kérdés besorolása Tartalmi terület: Gondolkodási művelet: Kulcsszavak: Mennyiségek és műveletek Tényismeret és rutinműveletek Számítások geometriai alakzatokkal, téglalap kerülete A feladat leírása: Egy oldalaival adott téglalap kerületének meghatározása után egy adott számmal való osztásának eredményét kell kiszámolni. Fel kell ismerni, hogy a sarkokon csak 1 elemmel kell számolni, illetve hogy a kapu mérete hogyan befolyásolja a szükséges elemek számát. A feladat statisztikai paraméterei Becslés Standard hiba (S. H.) Standard meredekség,24,7 Standard nehézség ,5 Nehézségi szint 3 Lehetséges kódok x Pontozás Az egyes kódok előfordulási aránya (%) 4,6,3, -,3 -,6,39 -,13 -,27 -,12 -,2 -, Az egyes kódok pontbiszeriális korrelációi Százalékos megoldottság Településtípus Tanulói % S. H. képességszintek % S. H. Teljes populáció 57,9,16 1. szint alatt 17,2,54 Főváros 62,2,41 1. szint 28,5,48 Megyeszékhely 61,,41 2. szint 46,9,32 Város 57,3,25 3. szint 63,9,32 Község 54,5,28 4. szint 75,1,31 5. szint 81,6,41 6. szint 86,3,7 7. szint 9,8 1,41 Köznevelési Mérési Értékelési Osztály 13

16 MATEMATIKA mj Szörpösüveg 64/91. FELADAT: SZÖRPÖSÜVEG MJ171 Csilla,5 liter málnaszörpöt töltött egy olyan üvegbe, amelybe pontosan 1 liter folyadék fér. A szürke rész jelzi az üvegben lévő folyadékot. Rajzold be vonalzó segítségével, hol lesz a folyadék szintje, ha az üveget megfordítja! 14 Köznevelési Mérési Értékelési Osztály

17 6. ÉVFOLYAM A feladathoz tartozó adatok a következő oldalakon találhatók. Köznevelési Mérési Értékelési Osztály 15

18 MATEMATIKA mj171 JAVÍTÓKULCS Megj.: Rajzold be vonalzó segítségével, hol lesz a folyadék szintje, ha az üveget megfordítja! A kódolás sablon segítségével történik. 1-es kód: A tanuló berajzolt vonala teljes hosszában beleesik a felülről mért mm-es tartományba, vagy a tanuló szövegesen megadja ezt a tartományt. A folyadék helyét nem kell besatíroznia, de ha megtette, akkor a satírozásnak a megfelelő részen kell lennie. 28 mm 32 mm felülről mérve 6-os kód: Tipikusan rossz válasznak tekintjük, ha a tanuló a megadott ábrán lévő vonallal egy magasságban rajzolta be a vonalat (a vonal teljes hosszában beleesik az alulról mért mm-es tartományba) függetlenül attól, hogy besatírozta-e a tanuló a folyadék helyét, akár az alsó, akár a felső részen. Tanulói példaválasz(ok): 32 mm 28 mm alulról mérve 16 Köznevelési Mérési Értékelési Osztály

19 6. ÉVFOLYAM A feladathoz tartozó adatok a következő oldalakon találhatók. Köznevelési Mérési Értékelési Osztály 17

20 MATEMATIKA 5-ös kód: Tipikusan rossz válasznak tekintjük, ha a tanuló az üveg teljes magasságának (8 mm) felénél rajzolta be a vonalat, azaz a vonal teljes hosszában beleesik a felülről/alulról mért mm-es tartományba, függetlenül attól, hogy bejelölte-e a tanuló a folyadék helyét vagy nem, illetve az alsó vagy felső résznél satírozta-e be. Tanulói példaválasz(ok): 38 mm 42 mm felülről mérve -s kód: Más rossz válasz. Tanulói példaválasz(ok): [A tanuló a folyadékszint magasságát helyesen rajzolta be, de a folyadék helyét nem a megfelelő résznél jelölte.] Lásd még: X és 9-es kód. 18 Köznevelési Mérési Értékelési Osztály

21 6. ÉVFOLYAM A kérdés besorolása Tartalmi terület: Gondolkodási művelet: Kulcsszavak: Alakzatok síkban és térben Modellalkotás, integráció Geometriai tulajdonságok ismerete, térfogat szemléltetése A feladat leírása: A nyílt végű feladatban a tanulónak az űrtartalom fogalmát kell értelmeznie, azonos térfogatú folyadék elhelyezkedését kell berajzolnia azonos, de különböző helyzetben lévő mérőedényben. A feladat statisztikai paraméterei Becslés Standard hiba (S. H.) Standard meredekség,24,7 Standard nehézség ,7 Nehézségi szint 5 Lehetséges kódok x Pontozás Az egyes kódok előfordulási aránya (%) ,6,3, -,3 -,6 -,12,34 -,2 -,22 -, Az egyes kódok pontbiszeriális korrelációi Százalékos megoldottság Településtípus Tanulói % S. H. képességszintek % S. H. Teljes populáció 37,1,14 1. szint alatt 11,9,53 Főváros 42,7,42 1. szint 17,8,32 Megyeszékhely 39,5,36 2. szint 25,6,3 Város 35,1,21 3. szint 36,2,28 Község 35,2,33 4. szint 5,,32 5. szint 63,7,49 6. szint 78,3,93 7. szint 89, 1,66 Köznevelési Mérési Értékelési Osztály 19

22 MATEMATIKA Gördülő négyzet 65/92. FELADAT: GÖRDÜLŐ NÉGYZET MJ1451 A következő ábrán az látható, ahogy egy mintás négyzetet átfordítunk egyik oldaláról a másikra: 1. átfordítás 2. átfordítás mj1451 Melyik ábra mutatja helyesen a négyzetet a 15-dik átfordítás után? Satírozd be a helyes ábra betűjelét! A B C D Gördülő négyzet mj1451 Melyik ábra mutatja helyesen a négyzetet a 15-dik átfordítás után? Satírozd be a helyes ábra betűjelét! JAVÍTÓKULCS Helyes válasz: D 2 Köznevelési Mérési Értékelési Osztály

23 6. ÉVFOLYAM A kérdés besorolása Tartalmi terület: Gondolkodási művelet: Kulcsszavak: Mennyiségek és műveletek Modellalkotás, integráció Maradékok vizsgálata, forgatás 9 fokkal, szabálykövetés A feladat leírása: Egy síkbeli alakzat 9 fokkal való forgatásának eredményéit kell vizsgálni, és ezt kell összekapcsolni a megfelelő osztási maradékkal. A feladat statisztikai paraméterei Becslés Standard hiba (S. H.) Standard meredekség,15,6 Standard nehézség ,5 Nehézségi szint 4 Lehetséges kódok x Pontozás 1-1, Az egyes kódok előfordulási aránya (%),3, -,3 -,6 -,1 -,12 -,11,26 -,5 -, Az egyes kódok pontbiszeriális korrelációi Százalékos megoldottság Településtípus Tanulói % S. H. képességszintek % S. H. Teljes populáció 48,3,16 1. szint alatt 21,5,62 Főváros 52,8,43 1. szint 32,6,44 Megyeszékhely 51,3,36 2. szint 4,1,36 Város 47,4,26 3. szint 49,8,34 Község 45,3,27 4. szint 58,7,36 5. szint 67,,51 6. szint 75,7,82 7. szint 82,6 1,87 Köznevelési Mérési Értékelési Osztály 21

24 MATEMATIKA mj Közös költség 66/93. FELADAT: KÖZÖS KÖLTSÉG MJ571 A társasházakban a lakások alapterületével arányosan kell közös költséget fizetni. Petiék lakása 8 m 2 Közös, és havonta költség 896 forint közös költséget fizetnek. A velük egy házban lakó Tamásék lakása 11 m 2. Mennyi közös költséget fizetnek Tamásék havonta? Úgy dolgozz, hogy számításaid nyomon követhetők legyenek! Mennyi közös költséget fizetnek Tamásék havonta? Úgy dolgozz, hogy számításaid nyomon követhetők legyenek! mj571 JAVÍTÓKULCS 2-es kód: Ft-ot A helyes érték látható számítások nélkül is elfogadható. Mértékegység megadása nem szükséges. Számítás: 8 m Ft 11 m 2 x Ft 11 8 = x 896 x = = Tanulói példaválasz(ok): 896 : 8 = = : ,375 = x , Ft 11 m 2 x 11 : 8 = x : 896 x = Összesen Ft-ot fog fizetni. [Összeadta Tomi és Peti közös költségét.] 1-es kód: Részlegesen jó válasznak tekintjük, ha a tanuló a megfelelő mennyiségek arányát helyesen írta fel egyenlet formájában, de azt nem vagy nem jól rendezte, és nem kapta meg a helyes végeredményt. Tanulói példaválasz(ok): 8 m Ft 11 m 2 x Ft 8 : 11 = 896 : x [Az aránypár helyes felírása látható egyenlet formájában.] -s kód: Rossz válasz. Tanulói példaválasz(ok): 8 m Ft 11 m 2 x Ft [A tanuló csak az adatokat gyűjtötte ki.] 8 m Ft 11 m 2 x 1 m 2 = 896 Ft 3 m 2 = = 2688 Ft 11 m 2 = = Ft-ot kell fizetni Ft-tal kell többet fizetni [1 m 2 meghatározása rossz módszerrel.] Lásd még: X és 9-es kód. 22 Köznevelési Mérési Értékelési Osztály

25 6. ÉVFOLYAM A kérdés besorolása Tartalmi terület: Gondolkodási művelet: Kulcsszavak: Hozzárendelések és összefüggések Modellalkotás, integráció Számok, mennyiségek aránya (nem 1-hez viszonyítva), egyenes arányosság A feladat leírása: Az arányos mennyiségek megtalálása után egyenes arányossági kapcsolat alapján kell arányszámítást végeznie a tanulónak. A feladat statisztikai paraméterei Becslés Standard hiba (S. H.) Standard meredekség,37,1 Standard nehézség ,7 Nehézségi szint 4 Lehetséges kódok x Pontozás 1-1,6, Az egyes kódok előfordulási aránya (%) 28,3, -,3 -,6 -,27, -, Az egyes kódok pontbiszeriális korrelációi Százalékos megoldottság Településtípus Tanulói % S. H. képességszintek % S. H. Teljes populáció 49,3,16 1. szint alatt 4,2,29 Főváros 57,6,43 1. szint 14,8,35 Megyeszékhely 56,7,36 2. szint 33,,34 Város 47,8,26 3. szint 53,7,31 Község 41,8,33 4. szint 7,8,29 5. szint 83,8,42 6. szint 93,,56 7. szint 98,9,5 Köznevelési Mérési Értékelési Osztály 23

26 Csőtörés MATEMATIKA Csőtörés Virág úr egy 5 emeletes társasházban lakik, ahol minden emeleten 12 lakás van. A lakások 67/94. FELADAT: CSŐTÖRÉS MJ2851 számozása az 1. emeleten kezdődik az 1-es számmal, és folyamatosan nő emeletről emeletre. Virág Az 1. úr emelet egy 5 emeletes alaprajzát társasházban és az ott lévő lakik, lakások ahol számozását minden emeleten mutatja 12 a következő lakás van. ábra. A lakások számozása az 1. emeleten kezdődik az 1-es számmal, és folyamatosan nő emeletről emeletre. Az 1. emelet alaprajzát és az 8. ott lévő 7. lakások számozását 6. mutatja 5. a következő ábra emelet emelet mj2851 mj Csőtörés Virág úr a 29-es lakásban lakik. Jelöld be Virág úr lakását az alaprajzon, és írd rá, hogy Csőtörés melyik emeleten található! Virág úr a 29-es lakásban lakik. Jelöld be Virág úr lakását az alaprajzon, és írd rá, hogy melyik emeleten található! emelet emelet mj2852 mj Csőtörés A ház vízvezeték-hálózata úgy lett kialakítva, hogy az egymás fölött lévő lakások egy közös Csőtörés függőleges vezetékről kapják a vizet. Ha az egyik lakásban el kell zárni a vizet, akkor az A összes ház vízvezeték-hálózata alatta és fölötte lévő úgy lakás lett is kialakítva, víz nélkül marad. hogy az egymás fölött lévő lakások egy közös függőleges A 29-es lakásban, vezetékről Virág kapják úrnál a vizet. egyik Ha nap az egyik csőtörés lakásban miatt el el kellett zárni zárni a vizet, a vizet. akkor az összes Sorold alatta fel, és hogy fölötte az 5 lévő emeletes lakás társasház is víz nélkül hányas marad. számú lakásaiban nem lesz még víz! A 29-es lakásban, Virág úrnál egyik nap csőtörés miatt el kellett zárni a vizet. Sorold fel, hogy az 5 emeletes társasház hányas számú lakásaiban nem lesz még víz! 24 Köznevelési Mérési Értékelési Osztály

27 6. ÉVFOLYAM A feladathoz tartozó adatok a következő oldalakon találhatók. Köznevelési Mérési Értékelési Osztály 25

28 MATEMATIKA MJ2851 JAVÍTÓKULCS 2-es kód: Jelöld be Virág úr lakását az alaprajzon, és írd rá, hogy melyik emeleten található! Mind az emeletszám meghatározása, mind a lakás helyének bejelölése helyes. A lakás helyének megjelölése bármilyen formában elfogadható (szám, X, satírozás, stb.) 3. emelet 29. Tanulói példaválasz(ok): 3. 1-es kód: A tanuló a kért két adat közül az egyiket helyesen adta meg, a másik adat rossz vagy hiányzik. Tanulói példaválasz(ok): 3. emelet [Csak az emeletszámot adta meg helyesen.] 3. emelet megnevezése helyes, de a lakás helyének megjelölése rossz. [A lakás helyének megadása jó, az emeletszám megadása hiányzik.] -s kód: Rossz válasz. Tanulói példaválasz(ok): 5. Lásd még: X és 9-es kód. Megj.: A 2-es kód 1 pontot ér, az 1-es kód pontot ér. 26 Köznevelési Mérési Értékelési Osztály

29 6. ÉVFOLYAM A kérdés besorolása Tartalmi terület: Gondolkodási művelet: Kulcsszavak: Mennyiségek és műveletek Tényismeret és rutinműveletek Maradékok vizsgálata A feladat leírása: A tanulónak fel kell ismernie, hogy a megadott szabályt követve kell kiszámítania egy szám osztási maradékát. A feladat statisztikai paraméterei Becslés Standard hiba (S. H.) Standard meredekség,39,9 Standard nehézség ,1 Nehézségi szint 2 Lehetséges kódok x Pontozás 1-1,6, Az egyes kódok előfordulási aránya (%) 7,3, -,3 -,6 -,38 -,16 -, Az egyes kódok pontbiszeriális korrelációi Százalékos megoldottság Településtípus Tanulói % S. H. képességszintek % S. H. Teljes populáció 67,5,15 1. szint alatt 6,6,4 Főváros 78,7,34 1. szint 27,,4 Megyeszékhely 75,6,32 2. szint 57,6,42 Város 66,4,21 3. szint 77,6,27 Község 57,3,27 4. szint 88,6,22 5. szint 93,3,24 6. szint 97,,33 7. szint 98,2,59 Köznevelési Mérési Értékelési Osztály 27

30 MATEMATIKA mj /95. FELADAT: CSŐTÖRÉS MJ2852 Csőtörés A ház vízvezeték-hálózata úgy lett kialakítva, hogy az egymás fölött lévő lakások egy közös függőleges vezetékről kapják a vizet. Ha az egyik lakásban el kell zárni a vizet, akkor az összes alatta és fölötte lévő lakás is víz nélkül marad. A 29-es lakásban, Virág úrnál egyik nap csőtörés miatt el kellett zárni a vizet. Sorold fel, hogy az 5 emeletes társasház hányas számú lakásaiban nem lesz még víz! JAVÍTÓKULCS 9 MJ2852 Sorold fel, hogy az 5 emeletes társasház hányas számú lakásaiban nem lesz még víz! Megjegyzés: Kódoláskor csak a 29-estől eltérő számokat kell vizsgálni. 2-es kód: 1-es kód: 6-os kód: Mind a négy érték helyes: 5, 17, 41, 53. Nem tekintjük hibának, ha a 29 is meg van adva. A lakások sorrendjének megadása tetszőleges. Tanulói példaválasz(ok): 5, 17, 29, 41, 53 Részlegesen jó válasznak tekintjük, ha a tanuló emeletenként legfeljebb 1 számot adott meg, a négy várt értékből pontosan 3 helyes, függetlenül attól, hogy folytatta-e az 5. emelet után is a sorozatot; VAGY a tanuló megadta a 4 várt értéket, emeletenként legfeljebb 1 számot adott meg, ÉS az 5. emelet után is folytatja a sorozatot, akár jól akár rosszul. Tanulói példaválasz(ok): 5, 17, 29, 41 [A négy várt helyes érték közül 3 szerepel, 1 hiányzik.] 5, 17, 29, 41, 53, 66, 78 [A négy várt helyes érték melletti továbbiakat is felsorolt, de azokat rosszul.] 5, 17, 29, 41, 52, 64 [A négy várt érték közül 3 helyes, a továbbiak rosszak.] 5, 17, 41, 53, 65, 77 [A négy várt helyes érték melletti továbbiakat is felsorolt.] Tipikus válasznak tekintjük, ha a tanuló pontosan 2 helyes értéket adott meg, és rossz számot nem adott meg. Ha az 5. emelet után is folytatja a sorozatot, az ottani lakások sorszámát nem kell vizsgálni. Tanulói példaválasz(ok): 41, 53 [A tanuló a felette levő két lakás számát adta meg figyelembe véve a társasház emeleteinek számát.] 17, 41 [A közvetlen alatta és közvetlen felette lévő 1-1 lakás számát adta meg.] 5, 17 [Csak az alatta lévőket adta meg] 5, 41 [Egy alatta és egy felette lévő lakás számát adta meg] 41, 53, 65 [A tanuló csak a felette lévő lakások számát adta meg, és nem vette figyelembe a társasház emeleteinek számát.] -s kód: Más rossz válasz. Tanulói példaválasz(ok): 5, 17, 29, 42 [A tanuló a 4 várt érték közül csak kettőt adott meg helyesen, és rosszat is írt.] 17, 41, 52, 65 [A tanuló a négy várt értékből 2-t helyesen adott meg, írt egy rosszat is, és nem vette figyelembe a társasház emeleteinek számát.] Lásd még: X és 9-es kód. 28 Köznevelési Mérési Értékelési Osztály

31 6. ÉVFOLYAM A kérdés besorolása Tartalmi terület: Gondolkodási művelet: Kulcsszavak: Hozzárendelések és összefüggések Modellalkotás, integráció Szabálykövetés, számtani sorozat, hiányzó tagok megadása A feladat leírása: A nyílt végű feladatban a tanulónak fel kell ismernie, hogy a feltételnek megfelelő számok számtani sorozatot alkotnak, amelynek hiányzó tagjait kell felsorolnia. A feladat statisztikai paraméterei Becslés Standard hiba (S. H.) Standard meredekség,23,3 Standard nehézség ,4 1. lépésnehézség lépésnehézség Nehézségi szint 4 Lehetséges kódok x Pontozás ,6, Az egyes kódok előfordulási aránya (%) 5 22,3, -,3 -,6 -,24,6,4 -, Az egyes kódok pontbiszeriális korrelációi Százalékos megoldottság Településtípus Tanulói % S. H. képességszintek % S. H. Teljes populáció 44,6,16 1. szint alatt,5,9 Főváros 58,8,4 1. szint 5,6,21 Megyeszékhely 53,3,37 2. szint 24,2,3 Város 43,,26 3. szint 49,9,31 Község 33,2,25 4. szint 7,4,32 5. szint 82,,39 6. szint 91,6,51 7. szint 96,1,86 Köznevelési Mérési Értékelési Osztály 29

32 MATEMATIKA Zenekar 69/96. FELADAT: ZENEKAR MJ3481 Tünde egy szimfonikus zenekarban csellózik. A következő táblázat a zenekar összetételét mutatja. Hangszertípusok Fő Vonós hangszerek 2 Fúvós hangszerek 16 Ütőhangszerek 7 Egyéb (pl. zongora) 2 mj3481 A következő diagramok közül melyik NEM ábrázolja helyesen a zenekar összetételét? Satírozd be az ábra betűjelét! A B Vonós hangszerek Fúvós hangszerek Ütőhangszerek Egyéb (pl. zongora) Vonós Fúvós Ütő Egyéb (pl. zongora) Hangszertípusok C D Vonós hangszerek Fő Fúvós hangszerek Ütőhangszerek Zenekar % 2% 4% 6% 8% 1% Egyéb (pl. zongora) mj3481 Vonós hangszerek Ütőhangszerek Fúvós hangszerek Egyéb (pl. zongora) A következő diagramok közül melyik NEM ábrázolja helyesen a zenekar összetételét? Satírozd be az ábra betűjelét! JAVÍTÓKULCS Helyes válasz: D 3 Köznevelési Mérési Értékelési Osztály

33 6. ÉVFOLYAM A kérdés besorolása Tartalmi terület: Gondolkodási művelet: Kulcsszavak: Események statisztikai jellemzői és valószínűsége Komplex megoldások és kommunikáció Statisztikai adatábrázolás, adatok megfeleltetése (különböző formában (táblázat, diagram) megadott statisztikai adatok megjelenítése, megfeleltetése A feladat leírása: A tanulónak egy táblázat adatai és négy különböző diagramtípus adatai egymásnak való megfeleltetését kell vizsgálnia, és a megadottak közül ki kell választania azt, amely NEM helyesen ábrázolja a táblázatban szereplő adatokat. A feladat statisztikai paraméterei Becslés Standard hiba (S. H.) Standard meredekség,21,8 Standard nehézség ,9 Nehézségi szint 2 Lehetséges kódok x Pontozás 1-1, Az egyes kódok előfordulási aránya (%),3, -,3 -,6 -,11 -,16 -,11,32 -,14 -, Az egyes kódok pontbiszeriális korrelációi Százalékos megoldottság Településtípus Tanulói % S. H. képességszintek % S. H. Teljes populáció 66,3,16 1. szint alatt 27,2,65 Főváros 71,2,4 1. szint 46,7,45 Megyeszékhely 69,8,34 2. szint 6,,38 Város 65,2,25 3. szint 69,5,31 Község 62,9,31 4. szint 77,9,29 5. szint 85,8,37 6. szint 92,,62 7. szint 94,6 1,12 Köznevelési Mérési Értékelési Osztály 31

Országos kompetenciamérés 2013 Feladatok és jellemzőik. matematika 10. évfolyam

Országos kompetenciamérés 2013 Feladatok és jellemzőik. matematika 10. évfolyam 213 Országos kompetenciamérés 213 Feladatok és jellemzőik matematika 1. évfolyam Oktatási Hivatal Budapest, 214 1. ÉVFOLYAM A KOMPETENCIAMÉRÉSEKRŐL 213 májusában immár tizedik alkalommal került sor az

Részletesebben

Javítókulcs M a t e m a t i k a

Javítókulcs M a t e m a t i k a 6. évfolyam Javítókulcs M a t e m a t i k a Tanulói példaválaszokkal bővített változat Országos kompetenciamérés 2013 ÁLTALÁNOS TUDNIVALÓK Ön a 2013-as Országos kompetenciamérés matematikafeladatainak

Részletesebben

Javítókulcs M a t e m a t i k a

Javítókulcs M a t e m a t i k a 6. évfolyam Javítókulcs M a t e m a t i k a Országos kompetenciamérés 2013 ÁLTALÁNOS TUDNIVALÓK Ön a 2013-as Országos kompetenciamérés matematikafeladatainak Javítókulcsát tartja a kezében. A Javítókulcs

Részletesebben

6. évfolyam MATEMATIKA

6. évfolyam MATEMATIKA 211 6. évfolyam MATEMATIKA Országos kompetenciamérés 211 Feladatok és jellemzőik matematika 6. évfolyam Oktatási Hivatal Közoktatási Mérési Értékelési Osztály Budapest, 212 6. ÉVFOLYAM A KOMPETENCIAMÉRÉSEKRŐL

Részletesebben

6. évfolyam MATEMATIKA

6. évfolyam MATEMATIKA 212 6. évfolyam MATEMATIKA Országos kompetenciamérés 212 Feladatok és jellemzőik matematika 6. évfolyam Oktatási Hivatal Közoktatási Mérési Értékelési Osztály Budapest, 213 6. ÉVFOLYAM A kompetenciamérésekről

Részletesebben

Javítókulcs M a t e m a t i k a

Javítókulcs M a t e m a t i k a 8. évfolyam Javítókulcs M a t e m a t i k a Tanulói példaválaszokkal bővített változat Országos kompetenciamérés 2013 ÁLTALÁNOS TUDNIVALÓK Ön a 2013-as Országos kompetenciamérés matematikafeladatainak

Részletesebben

Országos kompetenciamérés 2012 Feladatok és jellemzőik. matematika 10. évfolyam

Országos kompetenciamérés 2012 Feladatok és jellemzőik. matematika 10. évfolyam 212 Országos kompetenciamérés 212 Feladatok és jellemzőik matematika 1. évfolyam Oktatási Hivatal Budapest, 213 1. ÉVFOLYAM A kompetenciamérésekről 212 májusában immár kilencedik alkalommal került sor

Részletesebben

Országos kompetenciamérés 2007 Feladatok és jellemzőik. matematika 10. évfolyam

Országos kompetenciamérés 2007 Feladatok és jellemzőik. matematika 10. évfolyam 2007 Országos kompetenciamérés 2007 Feladatok és jellemzőik matematika 10. évfolyam Oktatási Hivatal Budapest, 2008 10. ÉVFOLYAM A KOMPETENCIAMÉRÉSEKRŐL 2007 májusában immár ötödik alkalommal került

Részletesebben

6. évfolyam MATEMATIKA

6. évfolyam MATEMATIKA 215 6. évfolyam MATEMATIKA Szerzők Lak Ágnes Rozina, Palincsár Ildikó, Szabó Lívia Dóra, Szepesi Ildikó, Szipőcsné Krolopp Judit Országos kompetenciamérés 215 Feladatok és jellemzőik matematika 6. évfolyam

Részletesebben

Országos kompetenciamérés 2010 Feladatok és jellemzőik. matematika 8. évfolyam

Országos kompetenciamérés 2010 Feladatok és jellemzőik. matematika 8. évfolyam 21 Országos kompetenciamérés 21 Feladatok és jellemzőik matematika 8. évfolyam Oktatási Hivatal Budapest, 211 8. ÉVFOLYAM A kompetenciamérésekről 21 májusában immár nyolcadik alkalommal került sor az

Részletesebben

6. évfolyam MATEMATIKA

6. évfolyam MATEMATIKA 28 6. évfolyam MATEMATIKA Országos kompetenciamérés 28 Feladatok és jellemzőik matematika 6. évfolyam Oktatási Hivatal Budapest, 29 6. ÉVFOLYAM A kompetenciamérésekről 28 májusában immár hatodik alkalommal

Részletesebben

6. évfolyam MATEMATIKA

6. évfolyam MATEMATIKA 214 6. évfolyam MATEMATIKA Szerzők Lak Ágnes Rozina, Palincsár Ildikó, Szabó Lívia Dóra, Szepesi Ildikó, Szipőcsné Krolopp Judit Országos kompetenciamérés 214 Feladatok és jellemzőik matematika 6. évfolyam

Részletesebben

10. Javítókulcs M a t e m a t i k a. Országos kompetenciamérés. évfolyam

10. Javítókulcs M a t e m a t i k a. Országos kompetenciamérés. évfolyam 10. évfolyam Javítókulcs M a t e m a t i k a Országos kompetenciamérés 2013 ÁLTALÁNOS TUDNIVALÓK Ön a 2013-as Országos kompetenciamérés matematikafeladatainak Javítókulcsát tartja a kezében. A Javítókulcs

Részletesebben

Az Országos kompetenciamérés (OKM) tartalmi kerete. a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján

Az Országos kompetenciamérés (OKM) tartalmi kerete. a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján Az Országos kompetenciamérés (OKM) tartalmi kerete a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján Az OKM tartalmi keret Célja: definiálja azokat a tényezőket és szempontrendszereket, amelyek

Részletesebben

6. évfolyam MATEMATIKA

6. évfolyam MATEMATIKA 29 6. évfolyam MATEMATIKA Országos kompetenciamérés 29 Feladatok és jellemzőik matematika 6. évfolyam Oktatási Hivatal Közoktatási Mérési Értékelési Osztály Budapest, 21 6. ÉVFOLYAM A KOMPETENCIAMÉRÉSEKRŐL

Részletesebben

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont 2012. január 28. 8. évfolyam TMat1 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat1 A javítókulcsban feltüntetett válaszokra a megadott

Részletesebben

Országos kompetenciamérés 2008 Feladatok és jellemzőik. matematika 10. évfolyam

Országos kompetenciamérés 2008 Feladatok és jellemzőik. matematika 10. évfolyam 28 Országos kompetenciamérés 28 Feladatok és jellemzőik matematika 1. évfolyam Oktatási Hivatal Budapest, 29 1. ÉVFOLYAM A kompetenciamérésekről 28 májusában immár hatodik alkalommal került sor az Országos

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 00. május-június MATEMATIKA KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ Vizsgafejlesztő Központ Kedves Kolléga! Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján végezze, a következők figyelembevételével.

Részletesebben

Az Országos kompetenciamérés

Az Országos kompetenciamérés Az Országos kompetenciamérés Az OKM 2006 FIT-jelentés szoftver Balázsi Ildikó Értékelési Központ Visszajelzés Visszajelzés az iskoláknak és fenntartóiknak saját eredményeikről és az országos eredményekről

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

Kilencedikes kompetencia alapú bemeneti mérés matematikából 2008 őszén

Kilencedikes kompetencia alapú bemeneti mérés matematikából 2008 őszén Kilencedikes kompetencia alapú bemeneti mérés matematikából 2008 őszén Póta Mária 2009. 0 1 i e π 1 A matematikai eszköztudás kompetencia alapú mérése Méréssorozat első fázisa, melynek a hozzáadott értéket

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 061 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 063 ÉRETTSÉGI VIZSGA 006. február. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

Országos kompetenciamérés 2010 Feladatok és jellemzőik. matematika 10. évfolyam

Országos kompetenciamérés 2010 Feladatok és jellemzőik. matematika 10. évfolyam 21 Országos kompetenciamérés 21 Feladatok és jellemzőik matematika 1. évfolyam Oktatási Hivatal Budapest, 211 1. ÉVFOLYAM A kompetenciamérésekről 21 májusában immár nyolcadik alkalommal került sor az

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0511 ÉRETTSÉGI VIZSGA 005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Országos kompetenciamérés 2009 Feladatok és jellemzőik. matematika 10. évfolyam

Országos kompetenciamérés 2009 Feladatok és jellemzőik. matematika 10. évfolyam 29 Országos kompetenciamérés 29 Feladatok és jellemzőik matematika 1. évfolyam Oktatási Hivatal Budapest, 21 1. ÉVFOLYAM A KOMPETENCIAMÉRÉSEKRŐL 29 májusában immár hatodik alkalommal került sor az Országos

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0513 ÉRETTSÉGI VIZSGA 005. május 8. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Változások az Országos kompetenciamérés skáláiban

Változások az Országos kompetenciamérés skáláiban Változások az Országos kompetenciamérés skáláiban A skála módosításának okai A kompetenciamérések bevezetésénél is megfogalmazott, ám akkor adatvédelmi szempontok miatt nem megvalósítható igény volt, hogy

Részletesebben

FIT-jelentés :: 2013. Derkovits Gyula Általános Iskola 9700 Szombathely, Bem J u. 7. OM azonosító: 036611 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2013. Derkovits Gyula Általános Iskola 9700 Szombathely, Bem J u. 7. OM azonosító: 036611 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2013 8. évfolyam :: Általános iskola Derkovits Gyula Általános Iskola 9700 Szombathely, Bem J u. 7. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 8. évfolyamon

Részletesebben

FIT-jelentés :: 2013. Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: 2013. Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2013 8. évfolyam :: Általános iskola Bulgárföldi Általános és Magyar - Angol Két Tanítási Nyelvű Iskola 3534 Miskolc, Fazola H u. 2. Létszámadatok A telephely létszámadatai az általános

Részletesebben

MATEMATIKA a 8. évfolyamosok számára. Mat2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA a 8. évfolyamosok számára. Mat2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ 8. évfolyam Mat2 Javítási-értékelési útmutató MTEMTI a 8. évfolyamosok számára Mat2 JVÍTÁSI-ÉRTÉELÉSI ÚTMUTTÓ javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. pontszámok részekre bontása

Részletesebben

Intézményi jelentés. 8. évfolyam

Intézményi jelentés. 8. évfolyam FIT-jelentés :: 2011 Alternatív Közgazdasági Gimnázium, Szakképző Iskola és Pedagógiai Szakmai Szolgáltató Intézet 1035 Budapest, Raktár u. 1. Létszámadatok A telephelyek kódtáblázata A 001 - Alternatív

Részletesebben

1 pont Bármely formában elfogadható pl.:, avagy. 24 4

1 pont Bármely formában elfogadható pl.:, avagy. 24 4 2012. február 2. 8. évfolyam TMat2 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat2 A javítókulcsban feltüntetett válaszokra a megadott

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 2. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 2. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

Országos kompetenciamérés eredményei Kiskulcsosi Általános Iskola 035857 Telephelyi jelentés 6. 8. évfolyam szövegértés

Országos kompetenciamérés eredményei Kiskulcsosi Általános Iskola 035857 Telephelyi jelentés 6. 8. évfolyam szövegértés Országos kompetenciamérés eredményei Kiskulcsosi Általános Iskola 035857 Telephelyi jelentés 6. 8. évfolyam szövegértés Karcag, 2011. április 4. Horváthné Pandur Tünde munkaközösség vezető Kiskulcsosi

Részletesebben

FIT-jelentés :: 2011. Rózsakerti Általános Iskola 1223 Budapest, Rákóczi u. 16. OM azonosító: 035200 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Rózsakerti Általános Iskola 1223 Budapest, Rákóczi u. 16. OM azonosító: 035200 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 8. évfolyam :: Általános iskola Rózsakerti Általános Iskola 1223 Budapest, Rákóczi u. 16. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 8. évfolyamon

Részletesebben

FIT-jelentés :: 2011. Cecei Általános Iskola 7013 Cece, Árpád u. 3. OM azonosító: 038726 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Cecei Általános Iskola 7013 Cece, Árpád u. 3. OM azonosító: 038726 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 8. évfolyam :: Általános iskola Cecei Általános Iskola 7013 Cece, Árpád u. 3. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 8. évfolyamon Tanulók száma

Részletesebben

FIT-jelentés :: 2010. Gárdonyi Géza Általános Iskola 2030 Érd, Gárdonyi Géza u. 1/b. OM azonosító: 037320 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2010. Gárdonyi Géza Általános Iskola 2030 Érd, Gárdonyi Géza u. 1/b. OM azonosító: 037320 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2010 8. évfolyam :: Általános iskola Gárdonyi Géza Általános Iskola 2030 Érd, Gárdonyi Géza u. 1/b. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a

Részletesebben

Nagyvázsonyi Kinizsi Pál Német Nemzetiségi Nyelvoktató Általános Iskola K O M P E T E N C I A M É R É S 2013

Nagyvázsonyi Kinizsi Pál Német Nemzetiségi Nyelvoktató Általános Iskola K O M P E T E N C I A M É R É S 2013 Nagyvázsonyi Kinizsi Pál Német Nemzetiségi Nyelvoktató Általános Iskola K O M P E T E N C I A M É R É S 2013 Kompetenciamérés célja: Hatékony eszköz az intézményi önértékelés elősegítéséhez visszajelzés,

Részletesebben

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ 8. évfolyam Mat1 Javítási-értékelési útmutató MTEMTI a 8. évfolyamosok számára Mat1 JVÍTÁSI-ÉRTÉEÉSI ÚTMUTTÓ 201. január 18. javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. pontszámok

Részletesebben

FIT-jelentés :: 2011. Pázmány Péter Utcai Óvoda és Általános Iskola 7634 Pécs, Pázmány Péter u. 27. OM azonosító: 027246 Telephely kódja: 005

FIT-jelentés :: 2011. Pázmány Péter Utcai Óvoda és Általános Iskola 7634 Pécs, Pázmány Péter u. 27. OM azonosító: 027246 Telephely kódja: 005 FIT-jelentés :: 2011 8. évfolyam :: Általános iskola Pázmány Péter Utcai Óvoda és Általános Iskola 7634 Pécs, Pázmány Péter u. 27. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM Matematika középszint Javítási-értékelési útmutató 063 MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ ÉRETTSÉGI VIZSGA 006. február. OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

FIT-jelentés :: 2012. Szent Imre Katolikus Általános Iskola 6792 Zsombó, Móra Ferenc utca 8. OM azonosító: 201629 Telephely kódja: 001

FIT-jelentés :: 2012. Szent Imre Katolikus Általános Iskola 6792 Zsombó, Móra Ferenc utca 8. OM azonosító: 201629 Telephely kódja: 001 FIT-jelentés :: 2012 8. évfolyam :: Általános iskola Szent Imre Katolikus Általános Iskola 6792 Zsombó, Móra Ferenc utca 8. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a

Részletesebben

FIT-jelentés :: 2011. Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. OM azonosító: 029264 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. OM azonosító: 029264 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 8. évfolyam :: 6 évfolyamos gimnázium Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. Létszámadatok A telephely létszámadatai a 6 évfolyamos gimnáziumi képzéstípusban a 8. évfolyamon

Részletesebben

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben

Részletesebben

FIT-jelentés :: 2012. Óbudai Szent Péter és Pál Szalézi Általános Iskola és Óvoda 1036 Budapest, Fényes Adolf u. 10. OM azonosító: 034858

FIT-jelentés :: 2012. Óbudai Szent Péter és Pál Szalézi Általános Iskola és Óvoda 1036 Budapest, Fényes Adolf u. 10. OM azonosító: 034858 FIT-jelentés :: 2012 Óbudai Szent Péter és Pál Szalézi Általános Iskola és Óvoda 1036 Budapest, Fényes Adolf u. 10. Létszámadatok A telephelyek kódtáblázata A 002 - Óbudai Szent Péter és Pál Szalézi Általános

Részletesebben

FIT-jelentés :: 2012. Hétvezér Általános Iskola 8000 Székesfehérvár, Hétvezér tér 1. OM azonosító: 030062. Intézményi jelentés. 8.

FIT-jelentés :: 2012. Hétvezér Általános Iskola 8000 Székesfehérvár, Hétvezér tér 1. OM azonosító: 030062. Intézményi jelentés. 8. FIT-jelentés :: 2012 Hétvezér Általános Iskola 8000 Székesfehérvár, Hétvezér tér 1. Létszámadatok A telephelyek kódtáblázata A 001 - Hétvezér Általános Iskola (általános iskola) (8000 Székesfehérvár, Hétvezér

Részletesebben

Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium

Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium 26 Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 1. évfolyam gimnázium matematika Előállítás ideje: 27.3.. 12:2:16

Részletesebben

FIT-jelentés :: 2012. Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. OM azonosító: 029264 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2012. Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. OM azonosító: 029264 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2012 10. évfolyam :: 4 évfolyamos gimnázium Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban a 10. évfolyamon

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT II. 135 perc A feladatok megoldására 135 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II/B

Részletesebben

FIT-jelentés :: 2010. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola

FIT-jelentés :: 2010. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola FIT-jelentés :: 2010 10. évfolyam :: Szakközépiskola Szegedi Ipari, Szolgáltató Szakképző és Általános Iskola Déri Miksa Tagintézménye 6724 Szeged, Kálvária tér 7. Figyelem! A 2010. évi Országos kompetenciaméréstől

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0711 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba A kompetencia alapú matematika oktatás tanmenete a 9. osztályban Készítette Maitz Csaba Szerkesztési feladatok 1. Síkgeometriai alapfogalmak 2. Egyszerűbb rajzok, szerkesztések körző, vonalzó használata

Részletesebben

FIT-jelentés :: 2013. Karinthy Frigyes Gimnázium 1183 Budapest, Thököly u. 7. OM azonosító: 035252 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2013. Karinthy Frigyes Gimnázium 1183 Budapest, Thököly u. 7. OM azonosító: 035252 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2013 10. évfolyam :: 4 évfolyamos gimnázium Karinthy Frigyes Gimnázium 1183 Budapest, Thököly u. 7. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban a 10.

Részletesebben

Móricz Zsigmond Általános Iskola és Óvoda

Móricz Zsigmond Általános Iskola és Óvoda 27 Móricz Zsigmond Általános Iskola és Óvoda Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 8. évfolyam matematika Előállítás ideje: 28.6.23. 1:39: 1 Az Önök telephelyének átlageredménye

Részletesebben

Kispesti Deák Ferenc Gimnázium

Kispesti Deák Ferenc Gimnázium 27 Kispesti Deák Ferenc Gimnázium Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 1. évfolyam gimnázium szövegértés Előállítás ideje: 28.3.3. 1:4:4 1 Az Önök telephelyének átlageredménye

Részletesebben

Javítókulcs MATEMATIKA

Javítókulcs MATEMATIKA 8. évfolyam Javítókulcs MATEMATIKA Országos kompetenciamérés 2015 Oktatási Hivatal ÁLTALÁNOS TUDNIVALÓK Ön a 2015-ös Országos kompetenciamérés matematikafeladatainak Javítókulcsát tartja a kezében. A Javítókulcs

Részletesebben

I. AZ ORSZÁGOS KOMPETENCIAMÉRÉSRŐL

I. AZ ORSZÁGOS KOMPETENCIAMÉRÉSRŐL AZ ORSZÁGOS KOMPETENCIAMÉRÉSRŐL, AZ ERDEI FERENC KERESKEDELMI ÉS KÖZGAZDASÁGI SZAKKÖZÉPISKOLA, A MAKÓI OKTATÁSI KÖZPONT, SZAKKÉPZŐ ISKOLA ÉS KOLLÉGIUM TAGINTÉZMÉNYE EREDMÉNYEIRŐL I. AZ ORSZÁGOS KOMPETENCIAMÉRÉSRŐL

Részletesebben

Szerzők Balkányi Péter, Lak Ágnes Rozina, Gyapay Judit, Rábainé Szabó Annamária, Szabó Lívia Dóra

Szerzők Balkányi Péter, Lak Ágnes Rozina, Gyapay Judit, Rábainé Szabó Annamária, Szabó Lívia Dóra 214 Szerzők Balkányi Péter, Lak Ágnes Rozina, Gyapay Judit, Rábainé Szabó Annamária, Szabó Lívia Dóra Országos kompetenciamérés 214 Feladatok és jellemzőik szövegértés 8. évfolyam Oktatási Hivatal Budapest,

Részletesebben

Intézményi jelentés. 8. évfolyam

Intézményi jelentés. 8. évfolyam FIT-jelentés :: 2010 Lenkey János Általános Iskola 3300 Eger, Markhot Ferenc u. 6. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika területén új, évfolyamfüggetlen

Részletesebben

Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium

Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium 26 Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 8. évfolyam matematika Előállítás ideje: 27.3.5. 12:21:25 182

Részletesebben

Karinthy Frigyes Gimnázium

Karinthy Frigyes Gimnázium 27 Karinthy Frigyes Gimnázium Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 1. évfolyam gimnázium szövegértés 1 Az Önök telephelyének átlageredménye szövegértésből a többi

Részletesebben

FIT-jelentés :: 2014. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola

FIT-jelentés :: 2014. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola FIT-jelentés :: 2014 10. évfolyam :: Szakközépiskola Puskás Tivadar Távközlési Technikum Infokommunikációs Szakközépiskola 1097 Budapest, Gyáli út 22. Létszámadatok A telephely létszámadatai a szakközépiskolai

Részletesebben

Széchenyi István Gimnázium

Széchenyi István Gimnázium 27 Széchenyi István Gimnázium Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 8. évfolyam matematika Előállítás ideje: 28.1.4. 19:34:1 1 Az Önök telephelyének átlageredménye

Részletesebben

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához

Részletesebben

\'Agy\' Tanoda Két Tanítási Nyelvű Általános Iskola

\'Agy\' Tanoda Két Tanítási Nyelvű Általános Iskola 27 \'Agy\' Tanoda Két Tanítási Nyelvű Általános Iskola Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 8. évfolyam szövegértés Előállítás ideje: 28..23. 1:38:34 1 Az Önök telephelyének

Részletesebben

FIT-jelentés :: 2012. Montenuovo Nándor Szakközépiskola, Szakiskola és Kollégium 7754 Bóly, Rákóczi u. 2/a OM azonosító: 027445 Telephely kódja: 001

FIT-jelentés :: 2012. Montenuovo Nándor Szakközépiskola, Szakiskola és Kollégium 7754 Bóly, Rákóczi u. 2/a OM azonosító: 027445 Telephely kódja: 001 FIT-jelentés :: 2012 10. évfolyam :: Szakiskola Montenuovo Nándor Szakközépiskola, Szakiskola és Kollégium 7754 Bóly, Rákóczi u. 2/a Létszámadatok A telephely létszámadatai a szakiskolai képzéstípusban

Részletesebben

Átlageredmények a 2011. évi Országos Kompetenciamérésen. matematikából és szövegértésből

Átlageredmények a 2011. évi Országos Kompetenciamérésen. matematikából és szövegértésből Átlageredmények a 2011. évi Országos Kompetenciamérésen Általános iskola 8. osztály matematikából és szövegértésből Matematika Szövegértés Iskolánkban Ált. iskolákban Budapesti ált. iskolákban Iskolánkban

Részletesebben

FIT-jelentés :: 2011. Intézményi jelentés. Összefoglalás

FIT-jelentés :: 2011. Intézményi jelentés. Összefoglalás FIT-jelentés :: 2011 Összefoglalás Német Nemzetiségi Gimnázium és Kollégium, Deutsches Nationalitätengymnasium und Schülerwohnheim 1203 Budapest, Serény u. 1. Összefoglalás Az intézmény létszámadatai Tanulók

Részletesebben

FIT-jelentés :: 2011. Kispesti Deák Ferenc Gimnázium 1192 Budapest, Gutenberg krt. 6. OM azonosító: 035253 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Kispesti Deák Ferenc Gimnázium 1192 Budapest, Gutenberg krt. 6. OM azonosító: 035253 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 10. évfolyam :: 4 évfolyamos gimnázium Kispesti Deák Ferenc Gimnázium 1192 Budapest, Gutenberg krt. 6. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban

Részletesebben

FIT-jelentés :: 2011 Telephelyi jelentés 10. évfolyam :: Szakközépiskola Közgazdasági Szakközépiskola

FIT-jelentés :: 2011 Telephelyi jelentés 10. évfolyam :: Szakközépiskola Közgazdasági Szakközépiskola FIT-jelentés :: 2011 10. évfolyam :: Szakközépiskola Közgazdasági Szakközépiskola 4200 Hajdúszoboszló, Gönczy P. u. 17. Létszámadatok A telephely létszámadatai a szakközépiskolai képzéstípusban a 10. évfolyamon

Részletesebben

FIT-jelentés :: 2012. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola

FIT-jelentés :: 2012. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola FIT-jelentés :: 2012 10. évfolyam :: Szakközépiskola Sághy Mihály Szakképző Iskola, Középiskola és Kollégium, a Csongrádi Oktatási Központ, Gimnázium, Szakképző Iskola és Kollégium Tagintézménye 6640 Csongrád,

Részletesebben

Iskolai jelentés. 10. évfolyam szövegértés

Iskolai jelentés. 10. évfolyam szövegértés 2008 Iskolai jelentés 10. évfolyam szövegértés Az elmúlt évhez hasonlóan 2008-ban iskolánk is részt vett az országos kompetenciamérésben, diákjaink matematika és szövegértés teszteket, illetve egy tanulói

Részletesebben

FIT-jelentés :: 2010. Tátra Téri Általános Iskola 1204 Budapest, Tátra tér 1. OM azonosító: 035165 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2010. Tátra Téri Általános Iskola 1204 Budapest, Tátra tér 1. OM azonosító: 035165 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2010 6. évfolyam :: Általános iskola Tátra Téri Általános Iskola 1204 Budapest, Tátra tér 1. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 É RETTSÉGI VIZSGA 005. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint ÉRETTSÉGI VIZSGA 2005. november 5. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint, jól követhetően

Részletesebben

Kompetencia 2012. 6.osztály MATEMATIKA. Az intézmények átlageredményeinek összehasonlítása

Kompetencia 2012. 6.osztály MATEMATIKA. Az intézmények átlageredményeinek összehasonlítása Kompetencia 2012 6.osztály MATEMATIKA Átlageredmények Az intézmények átlageredményeinek összehasonlítása - a grafikonon a különböző iskolák átlag eredményei követhetők nyomon standardizált képességponthoz

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

Szent Imre Katolikus Általános Iskola és Óvoda

Szent Imre Katolikus Általános Iskola és Óvoda 27 Szent Imre Katolikus Általános Iskola és Óvoda Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 8. évfolyam szövegértés Előállítás ideje: 28.3.22. 15:59:14 1 Az Önök telephelyének

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

FIT-jelentés :: 2008. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola

FIT-jelentés :: 2008. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola FIT-jelentés :: 2008 10. évfolyam :: Szakközépiskola Xántus János Idegenforgalmi Gyakorló Középiskola és Szakképző Iskola 1055 Budapest, Markó u. 18-20. Matematika Országos kompetenciamérés 1 1 Átlageredmények

Részletesebben

Hétvezér Általános Iskola

Hétvezér Általános Iskola 27 Hétvezér Általános Iskola Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 8. évfolyam matematika Előállítás ideje: 28..19. 1:9:8 1 Az Önök telephelyének átlageredménye matematikából

Részletesebben

FIT-jelentés :: 2010. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2010. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2010 6. évfolyam :: Általános iskola """Magyar-kút"" ÁMK Etyek, Német Nemzetiségi Általános Iskolája, Nemzetiségi Alapfokú Művészetoktatási Intézménye, Könyvtár-közművelődés" 2091 Etyek,

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet

Részletesebben

Leövey Klára Gimnázium

Leövey Klára Gimnázium 4 Leövey Klára Gimnázium 196 Budapest, Vendel u. 1. Az Önök iskolájára vontakozó egyedi adatok táblázatokban és grafikonokon 8. osztály matematika 1 196 Budapest, Vendel u. 1. Standardizált átlagos képességek

Részletesebben

Szerzők Balkányi Péter, Lak Ágnes Rozina, Gyapay Judit, Rábainé Szabó Annamária, Szabó Lívia Dóra

Szerzők Balkányi Péter, Lak Ágnes Rozina, Gyapay Judit, Rábainé Szabó Annamária, Szabó Lívia Dóra 214 Szerzők Balkányi Péter, Lak Ágnes Rozina, Gyapay Judit, Rábainé Szabó Annamária, Szabó Lívia Dóra Országos kompetenciamérés 214 Feladatok és jellemzőik szövegértés 6. évfolyam Oktatási Hivatal Budapest,

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

FIT - jelentés 2011. Kompetenciamérés a SIOK Vak Bottyán János Általános Iskolában

FIT - jelentés 2011. Kompetenciamérés a SIOK Vak Bottyán János Általános Iskolában FIT - jelentés 2011. Kompetenciamérés a SIOK Vak Bottyán János Általános Iskolában 1. Létszámadatok: A 2011-es kompetenciamérésben, a 6.évfolyamosok közül 64, míg a nyolcadik évfolyamosok közül 76 tanuló

Részletesebben

Telephelyi jelentés. Mészöly Géza Általános Iskola Tagiskola 8171 Balatonvilágos, József Attila utca 119. OM azonosító: 037158 Telephely kódja: 002

Telephelyi jelentés. Mészöly Géza Általános Iskola Tagiskola 8171 Balatonvilágos, József Attila utca 119. OM azonosító: 037158 Telephely kódja: 002 FIT-jelentés :: 2010 6. évfolyam :: Általános iskola Mészöly Géza Általános Iskola Tagiskola 8171 Balatonvilágos, József Attila utca 119. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a

Részletesebben

FIT-jelentés :: 2010. Pallavicini Sándor Iskola 6762 Sándorfalva, Alkotmány krt. 15-17. OM azonosító: 200909 Telephely kódja: 011. Telephelyi jelentés

FIT-jelentés :: 2010. Pallavicini Sándor Iskola 6762 Sándorfalva, Alkotmány krt. 15-17. OM azonosító: 200909 Telephely kódja: 011. Telephelyi jelentés FIT-jelentés :: 2010 6. évfolyam :: Általános iskola Pallavicini Sándor Iskola 6762 Sándorfalva, Alkotmány krt. 15-17. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve

Részletesebben

Zoltánfy István Általános Iskola

Zoltánfy István Általános Iskola 4 Zoltánfy István Általános Iskola Az Önök iskolájára vontakozó egyedi adatok táblázatokban és grafikonokon 8. osztály matematika 1 Standardizált átlagos képességek matematikából Az Önök iskolájának átlagos

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0801 ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

A 2014.évi kompetenciamérés eredményei a Létavértesi Irinyi János Általános Iskolában

A 2014.évi kompetenciamérés eredményei a Létavértesi Irinyi János Általános Iskolában A 2014.évi kompetenciamérés eredményei a Létavértesi Irinyi János Általános Iskolában Összeállította: Szentmiklósi Miklós mérés-értékelés munkaközösség vezető Vályiné Pápai Viola igazgató A mérésre 2014.

Részletesebben