GEOGEBRA A FELSŐOKTATÁSBAN. Papp-Varga Zsuzsanna ELTE IK Média- és Oktatásinformatika Tanszék. Összefoglaló

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "GEOGEBRA A FELSŐOKTATÁSBAN. Papp-Varga Zsuzsanna ELTE IK Média- és Oktatásinformatika Tanszék. Összefoglaló"

Átírás

1 GEOGEBRA A FELSŐOKTATÁSBAN GEOGEBRA IN HIGHER EDUCATION Papp-Varga Zsuzsanna ELTE IK Média- és Oktatásinformatika Tanszék Összefoglaló A tanár szakos hallgatók képzéséből ma már szinte kihagyhatatlan a különböző oktatóprogramok bemutatása. Különösen igaz ez a matematika területén, ahol rengetek különböző szoftver közül lehet választani. A matematikai segédprogramok továbbá nagy segítséget nyújthatnak azon felsőfokú képzésben résztvevő hallgatók számára is, akiknek különböző matematikai ismereteket kell elsajátítaniuk képzésük során. A GeoGebra egy olyan dinamikus matematikai program, mely egyben egy computer algebrai rendszer és egy dinamikus geometriai is. Nagyszerűsége abban rejlik, hogy minden matematikai objektumnak (pontoknak, egyeneseknek, stb.) megadja mind a geometriai, mind pedig az algebrai reprezentációját. A cikkben bemutatásra kerülnek a GeoGebra felsőfokú matematikaoktatásban is jól alkalmazható funkciói, az oktatási folyamatba való beépítésének és a tanárképzésben való oktatásának kérdései. Kulcsszavak matematika, módszertan, dinamikus matematikai program, dinamikus geometriai rendszer, computer algebrai rendszer Abstract Today in teachers education we can not avoid the presentation of different tutorial programs. This is especially true in mathematics, where we have a lot of choices of different software products. The mathematical utilities may offer great help for students in higher education, who have to acquire different mathematical knowledge in their courses. On one hand GeoGebra is a Dynamic Geometry Software and on the other hand it is a Computer Algebra System, thus we can say GeoGebra is a Dynamic Mathematics Software. Its greatness is hidden in the fact that it provides two representations of each mathematical object (points, lines, etc.) in its algebra and graphics windows. This paper presents the GeoGebra functions which can be applied well in higher mathematics education, the questions of planting them into the educational process and teaching it in mathematics teachers education. Keywords mathematics, methodology, Dynamic Mathematics Software, Dynamic Geometry Software, Computer Algebra System 1

2 1. Matematikai segédprogramok a felsőoktatásban 1.1. Segédprogramok szerepe a tanárképzésben A tanárképzésben mindig is fontos célkitűzés volt, hogy a hallgatók minél több olyan eszközt és módszert ismerjenek meg, amit későbbi munkájuk során alkalmazhatnak. Minél sokoldalúbb egy oktató eszköztára, annál hatékonyabban tudja átadni tudását, könnyebben tudja diákjait motiválni, differenciálni. Ma már jogos elvárás minden pedagógustól, hogy képes legyen különböző IKT eszközök gyakorlatban való alkalmazására is. Ezen eszközök segítségével gyakran az oktató olyan lehetőségeket kap a kezébe, melyek más eszközökkel nem lehetségesek. A tanárok felkészítésének elsődleges helyszíne a felsőoktatás, ahol a diákoknak nem csak a szoftverek használatát kell megtanulniuk, hanem azok alkalmazásának módszertanát is. További fontos feladat az iskolákban jelenleg oktató pedagógusok továbbképzése, felkészítése is. (Fehér, 2004) 1.2. Segédprogramok szerepe a felsőoktatásban folyó matematikaoktatásban A különböző mérnöki, közgazdasági és természettudományi képzésekben a hallgatóknak rövid idő alatt kell magas szintű matematikai ismereteket elsajátítani. A diákok egyre nagyobb százalékának okoz nehézséget a fogalmak, tételek megértése és a feladatmegoldás. Sok intézményben használnak különböző programokat a matematika tárgyak oktatása során, melyek alkalmazásával segítséget tudnak nyújtani a gyengébb és átlagos képességű hallgatóknak, és eszközt tudnak adni a kiemelkedőbb diákok kezébe a kutatásokhoz. A legelterjedtebb szoftverek listája a teljesség igénye nélkül: Maple, Matlab, Mathematica, Derive, Cabri. Az oktatási folyamat több különböző fázisaiban is hatékonyan alkalmazhatók a segédprogramok: új ismeretek tanításakor (probléma felvetéskor, összefüggések, tételek megsejtésekor és bizonyításakor), valamint feladatmegoldáskor, gyakorlati alkalmazások bemutatásakor és egy-egy témakör összefoglalásakor, ismétlésekor. Minden esetben a célok és lehetőségek figyelembe vételével több módszer közül is választhat az oktató: frontális szemléltetés, egyéni, páros vagy kiscsoportos munka, órai vagy otthoni munka Tárgyi és személyi feltételek A segédprogramok használatának elengedhetetlen tárgyi feltétele maga a számítógép, mely alkalmas az adott program futtatására (Kis, 2006). Bizonyos esetekben elegendő egy tanári gép, amelynek képét kivetítve a hallgatók nyomon követhetik az oktató munkáját. Vannak azonban olyan helyzetek is, amelyekben a diákok egyéni vagy kis csoportos munkája a célravezető, ekkor több gépre van szükség. A másik kulcsfontosságú tárgyi feltétel maga a szoftver. Két fontos kérdés merül fel ezzel kapcsolatban: a beszerzés és a telepítés. A fizetős szoftverek esetén problémát okozhat, hogy az oktatási intézményben csak korlátozott példányban érhetőek el (Kis, 2006), valamint, hogy a hallgatók otthoni munka céljából nem juthatnak jogtisztán a programhoz. A telepítéssel kapcsolatban is sok gyakorlati kérdést kell megválaszolni, például milyen operációs rendszereken fut az adott szoftver, milyen beállításokkal érdemes telepíteni. A GeoGebra mivel ingyenesen letölthető, platform független, könnyen telepíthető vagy akár webről is indítható program ezért a felsoroltak nem jelentenek valós akadályt az alkalmazásában. 2

3 A személyi feltételek között elsőként kell megemlíteni az oktató adott szoftverről meglévő ismereteit. Kezdetben sok energia befektetést igényelhet, hogy a program kezelését elsajátítsa a pedagógus. A későbbiekben elképzelhető, hogy plusz munka szükséges, a segédanyagok készítéséhez, publikálásához (Kis, 2006). A befektetett munka minden esetben megtérül, de a GeoGebra esetében a felsoroltak ahogy a későbbiekben olvasható nem jelenteknek megoldhatatlan problémákat. 3

4 2. A GeoGebra program rövid bemutatása A GeoGebra egy dinamikus matematikai program, mely témájában kapcsolódik a geometriához, az algebrához és az analízishez. Használatának elsajátításhoz csak alapfokú számítógép kezelői ismeretek szükségesek. Középiskolai oktatási segédletként készítette 2001/2002-ben Markus Hohenwarter a Salzburgi Egyetemen diplomamunkájának részeként. A matematikaoktatással kapcsolatos doktori tanulmányaiban továbbfejlesztette a programot. A GeoGebrát az elmúlt évek során számos nemzetközi díjjal jutalmazták. Népszerűségét az is mutatja, hogy világszerte több mint 35 nyelvre fordították le, többek között magyarra is. A GeoGebra egyrészt egy dinamikus szerkesztő rendszer. A felhasználó tulajdonképpen egy virtuális szerkesztőkészletet kap a kezébe, aminek segítségével elkészítheti a középiskolai szerkesztések bármelyikét és több magasabb színtű matematikai ismeretet igénylő szerkesztést is. A papíron végzett szerkesztésektől eltérően viszont itt a kiinduló objektumok (pontok, egyenesek, stb.) szabadon mozgathatók, úgy hogy a tőlük függő objektumok velük együtt mozognak. Másrészt egy computer algebrai rendszer, amiben az objektumok algebrai úton adhatók meg (pontok koordinátáikkal, egyenesek egyenleteikkel, függvények képletükkel, stb.). Az objektumokkal különböző számításokat is lehet végezni, például kiszámítható a függvények deriváltja és integrálja, stb. A GeoGebra talán legfontosabb tulajdonsága, hogy egy kifejezés az algebra ablakban megfelel egy objektumnak a geometria ablakban, és viszont. Függetlenül attól, hogy az objektum milyen módon került rögzítésre, mindkét ablakban módosítható és a változás a másik ablakban is látható (Markus Hohenwarter, Judith Preiner, 2007). A GeoGebra egy nagyon jól dokumentált program, nem csak a szoftver érhető el különböző nyelveken, hanem a Help és a program weboldala is ahol számtalan hasznos információ található. A honlapon elérhető Wiki oldalakról rengeteg GeoGebrával készített segédanyag tölthető le, amiket bárki igényei szerint átalakíthat és ingyenesen felhasználhat az oktatásban. A program több olyan funkcióval is rendelkezik, amelyek megkönnyítik a matematikai segédanyagok készítését és publikálását, ilyen például a rajzlap exportálása (képpé vagy PSTricks) és a dinamikus munkalap weblappá exportálása. 3. A GeoGebra alkalmazási lehetőségei a felsőfokú matematikaoktatásban Az alábbiakban azon funkciók, funkció csoportok gyűjteménye olvasható, melyeknek a felsőfokú matematikaoktatásban is van létjogosultsága Analízis Az analízis nagy részterületét jelentő függvénytan oktatásakor, tanulásakor nagy segítséget nyújthat a GeoGebra. 4

5 A program segítségével meghatározhatók polinom függvények gyökei, szélsőértékei és inflexiós pontjai. Tetszőleges bonyolult függvények ábrázolhatók és egy gyökük a Newton vagy a Regula Falsi módszerekkel meghatározható. Az integrálás és a deriválás fogalmának szemléltetésére, számítási feladatok elvégzésére is kitűnő eszköz. Az alkalmazás ki tudja számolni tetszőleges függvény n-edik deriváltját, meg tudja határozni függvények alsó és felső közelítő összegét, valamint határozott és határozatlan integrálját. A deriválás témakörében fontos lehet még, hogy bármely görbén felvehető pont, valamint megszerkeszthető a függvény adott pontbeli érintője és meghatározható annak meredeksége. Az 1. ábrán megtekinthető az előbbiekben felsorolt funkciók egy része. Látható az f (nem polinom) függvény deriváltja és határozatlan integrálja, valamint a derivált fogalmának szemléltetéséhez az m érték, amely a függvényen mozgatható P pontban húzott érintő meredeksége, az integrál fogalmának megértésében pedig segíthet az a, a b és az n - csúszkák segítségével változtatható - paraméterek függvényében dinamikusan változó grafikusan is megjelenő alsó és felső közelítő összegek, valamint határozott integrál. A gyakorlatban érdemes az alábbi példát részekre bontani és több alkalmazás segítségével bemutatni. 1. ábra - Analízis A program segítségével meghatározható tetszőleges függvény adott pont körüli n-edik Taylor polinomja (a TaylorPolinom[f,a,n] paranccsal), amely szintén a felsőfokú matematikai tanulmányok részét képzi egyes intézményekben. 5

6 1.5. Algebra Szinte minden főiskolán, egyetemen az algebrai tárgyak tematikájában szerepel a komplex számok témaköre. Sok hallgatónak okoz nehézséget a komplex számok ábrázolása a különböző műveletek elvégzése. Mivel a GeoGebrában felvehetők vektorok, és azokkal különböző műveletek is végezhetők, ezért könnyedén készíthetők a komplex számok tanításakor, tanulásakor felhasználható segédanyagok. A 2. ábrán a komplex számsíkkal, a komplex szám abszolút értékének és a konjugáltjának fogalmával kapcsolatos egyszerű alkalmazás látható. Az a és b paraméterek állíthatósága miatt - egyszerűsége ellenére is - sokat segíthet az említett fogalmak szemléltetésében és megértésében Geometria 2. ábra - Komplex számok A transzformáció mátrixok témaköre a geometria, az algebra és a grafika tantárgyak tematikájának is részét képezi. Minden esetben sokat segíthet a hallgatónak egy jó ábra, de még többet nyújthat egy dinamikus segédanyag. A 3. ábrán egy olyan példaalkalmazás látható, amelyben szabadon változtathatók a P, a Q és az R pontok koordinátái azok egérrel való mozgatásával - és a transzformáció mátrix együtthatói a bal felső sarokban elhelyezkedő csúszkák segítségével. 6

7 3. ábra - Transzformációk A geometriai transzformációk közül az inverzió a középiskolákban legfeljebb fakultáción vagy szakkörön kerül említésre, ezzel szemben a felsőfokú matematikaoktatásban több intézményben is része a tananyagnak. A program csak pont inverzét tudja meghatározni, de a mértani hely funkció segítségével meghatározható egy egyenesnek vagy egy körnek is az inverz képe. A 4. ábrán egy olyan alkalmazás látható, amelyben dinamikusan változtatható az inverzió pólusa, az inverzió alapkörének sugara és a transzformált egyenes is. 4. ábra - Inverzió 7

8 4. A GeoGebra oktatásának kérdései a tanárképzésben A program oktatásának a tanárképzésben két fő pillére kell legyen: a program használata és alkalmazásának módszertana. Az ELTE Informatikai Karán az általam oktatót Matematikai segédprogramok című tárgy tematikájának második éve része a GeoGebra. Tapasztalataim alapján a hallgatók pár óra alatt el tudják sajátítani az egyszerűbb segédanyagok készítéséhez szükséges ismereteket. Azok számára, akik már korábban dolgoztak más dinamikus geometria szoftverekkel, még kevesebb energia befektetést igényel a program használatának megtanulása. A GeoGebra alkalmazásának módszertanát főként a program funkcióinak bemutatása közben jól megválasztott példák segítségével valósítottam meg. A hallgatóknak a félév során GeoGebra segítségével kellett az általuk választott középiskolás matematikai témához segédanyagokat készíteni. A beadandó feladat lehetőséget adott számukra, hogy végiggondolják, elemezzék szükség esetén konzultációk segítségével-, hogy az általuk választott témát, hogyan lehet hatékonyabban oktatni GeoGebra segítségével. Az így elkészült munkák közül a jelesre értékeltek interneten is publikálásra kerültek, ezáltal nem csak a hallgatók használhatják fel későbbi munkájuk során, ha a tanári hivatást választják, hanem azon aktív tanárok, akik nyitottak a témában. Munkám során a Digitális taneszközök használata a matematika tantárgy oktatásában című tanfolyam keretein belül lehetőségem volt aktív pedagógusoknak is bemutatni a GeoGebrát. Számtalan előnye miatt Ők is hamar megkedvelték és többen ennek segítségével készítették el vizsgamunkájukat is. A GeoGebra magyarországi középiskolai matematikaoktatásba való beépülésének szükséges feltétele minél több tájékoztató előadás, továbbképzés és mindenki számára könnyen elérhető magyar segédanyagok. 5. Zárszó A cikkben a matematikai segédprogramok felsőfokú képzésben való szerepéről szóló bevezető után a GeoGebra program részletesebb ismertetésére kerül sor. A szoftver rövid bemutatását, azon funkciók példákkal illusztrált listája követi, melyek a felsőfokú matematikaoktatás témaköreivel is kapcsolatosak. Az utolsó fejezet a GeoGebra tanárképzésbe való integrálásának gyakorlati kérdéseit tárgyalja. Ezen cikk fő célja, hogy elősegítse Magyarország bekapcsolódását abba a nemzetközi tanárközösségbe, akik munkájukat hatékonyabbá tudják tenni a GeoGebra segítségével. Irodalomjegyzék [1] Fehér Péter (2004) Az IKT-eszközök iskolai alkalmazásának irányelvei és gyakorlata nemzetközi kitekintésben az IEA SITES kutatásai alapján. Új pedagógiai szemle, 2004/ [2] Kis Piroska (2006) A matematikai programcsomagok alkalmazása, haszna és veszélyei. Informatika a Felsõoktatásban96, Debrecen. [3] Markus Hohenwarter, Judith Preiner (2007) Dynamic Mathematics with GeoGebra. The Journal of Online Mathematics and Its Applications, Volume 7. March Article ID

9 [4] Markus Hohenwarter, Judith Preiner (2008) GeoGebra Help

INTERAKTÍV MATEMATIKA MINDENKINEK GEOGEBRA MÓDRA. Papp-Varga Zsuzsanna ELTE IK, Média- és Oktatásinformatika Tanszék vzsuzsa@elte.

INTERAKTÍV MATEMATIKA MINDENKINEK GEOGEBRA MÓDRA. Papp-Varga Zsuzsanna ELTE IK, Média- és Oktatásinformatika Tanszék vzsuzsa@elte. INTERAKTÍV MATEMATIKA MINDENKINEK GEOGEBRA MÓDRA Papp-Varga Zsuzsanna ELTE IK, Média- és Oktatásinformatika Tanszék vzsuzsa@elte.hu Abstract/Absztrakt A GeoGebra egy olyan világszerte 190 országban ismert,

Részletesebben

A MATEMATIKAI SZOFTVEREK ALKALMAZÁSI KÉSZSÉGÉT, VALAMINT A TÉRSZEMLÉLETET FEJLESZTŐ TANANYAGOK KIDOLGOZÁSA A DEBRECENI EGYETEM MŰSZAKI KARÁN

A MATEMATIKAI SZOFTVEREK ALKALMAZÁSI KÉSZSÉGÉT, VALAMINT A TÉRSZEMLÉLETET FEJLESZTŐ TANANYAGOK KIDOLGOZÁSA A DEBRECENI EGYETEM MŰSZAKI KARÁN A MATEMATIKAI SZOFTVEREK ALKALMAZÁSI KÉSZSÉGÉT, VALAMINT A TÉRSZEMLÉLETET FEJLESZTŐ TANANYAGOK KIDOLGOZÁSA A DEBRECENI EGYETEM MŰSZAKI KARÁN Dr. Kocsis Imre DE Műszaki Kar Dr. Papp Ildikó DE Informatikai

Részletesebben

GeoGebra. A matematikai szabadszoftver tanuláshoz és tanításhoz

GeoGebra. A matematikai szabadszoftver tanuláshoz és tanításhoz A matematikai szabadszoftver tanuláshoz és tanításhoz Papp-Varga Zsuzsanna vzsuzsa@elte.hu ELTE IK Média- és Oktatásinformatika Tanszék Pécs, 2011. május 28. Tartalom A GeoGebra program A GeoGebra oktatásban

Részletesebben

Bevezető. Mi is az a GeoGebra? Tények

Bevezető. Mi is az a GeoGebra? Tények Bevezető Mi is az a GeoGebra? dinamikus matematikai szoftver könnyen használható csomagolásban az oktatás minden szintjén alkalmazható tanításhoz és tanuláshoz egyaránt egyesíti az interaktív geometriát,

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

A magyar. GeoGebra közösség. Papp-Varga Zsuzsanna November 6. Varga Tamás Módszertani Napok

A magyar. GeoGebra közösség. Papp-Varga Zsuzsanna November 6. Varga Tamás Módszertani Napok A magyar GeoGebra közösség Papp-Varga Zsuzsanna vzsuzsa@elte.hu 2010. November 6. Varga Tamás Módszertani Napok Miről lesz szó? Magyarország a nemzetközi GeoGebra térképen Magyarországi tevékenységek A

Részletesebben

16. modul: ALGEBRAI AZONOSSÁGOK

16. modul: ALGEBRAI AZONOSSÁGOK MATEMATIK A 9. évfolyam 16. modul: ALGEBRAI AZONOSSÁGOK KÉSZÍTETTE: VIDRA GÁBOR, DARABOS NOÉMI ÁGNES Matematika A 9. évfolyam. 16. modul: ALGEBRAI AZONOSSÁGOK Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

1. Katona János publikációs jegyzéke

1. Katona János publikációs jegyzéke 1. Katona János publikációs jegyzéke 1.1. Referált, angol nyelvű, nyomtatott publikációk [1] J.KATONA-E.MOLNÁR: Visibility of the higher-dimensional central projection into the projective sphere Típus:

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. tanulmányokhoz TÁVOKTATÁS 2015/2016-os tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika I. (Analízis) Tanszék: Módszertani

Részletesebben

A dinamikus geometriai rendszerek használatának egy lehetséges területe

A dinamikus geometriai rendszerek használatának egy lehetséges területe Fejezetek a matematika tanításából A dinamikus geometriai rendszerek használatának egy lehetséges területe Készítette: Harsányi Sándor V. matematika-informatika szakos hallgató Porcsalma, 2004. december

Részletesebben

Dinamikus geometriai programok

Dinamikus geometriai programok 2010. szeptember 18. Ebben a vázlatban arról írok, hogyan válhatnak a dinamikus geometriai programok a matematika tanítás hatékony segítőivé. Reform mozgalmak a formális matematika megalapozását az életkjori

Részletesebben

program használata a középiskolai matematika oktatásban

program használata a középiskolai matematika oktatásban Eötvös Loránd Tudományegyetem Informatika Kar Média- és Oktatásinformatika Tanszék A program használata a középiskolai matematika oktatásban Készítette: Horváthné Oroján Gabriella levelező informatika-tanár

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

Dinamikus geometriai programok

Dinamikus geometriai programok 2011. február 19. Eszköz és médium (fotó: http://sliderulemuseum.com) ugyanez egyben: Enter Reform mozgalmak a formális matematika megalapozását az életkjori sajátosságoknak megfelelő tárgyi tevékenységnek

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal-

Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal- Fazekas Gabriella IV. matematika-informatika Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal- Jelen tanulmány a fent megjelölt fogalmak egy lehetséges

Részletesebben

Tanmenet a Matematika 10. tankönyvhöz

Tanmenet a Matematika 10. tankönyvhöz Tanmenet a Matematika 10. tankönyvhöz (111 óra, 148 óra, 185 óra) A tanmenetben olyan órafelosztást adunk, amely alkalmazható mind a középszintû képzés (heti 3 vagy heti 4 óra), mind az emelt szintû képzés

Részletesebben

SZÁMÍTÓGÉPES SZIMULÁCIÓ LEHETŐSÉGEI

SZÁMÍTÓGÉPES SZIMULÁCIÓ LEHETŐSÉGEI Geda Gábor Biró Csaba Tánczos Tamás Eszterházy Károly Főiskola gedag@aries.ektf.hu birocs@aries.ektf.hu kistancos@ektf.hu SZÁMÍTÓGÉPES SZIMULÁCIÓ LEHETŐSÉGEI Absztrakt: Az informatikai eszközök fejlődése

Részletesebben

Matematikai alapok 1 Tantárgyi útmutató

Matematikai alapok 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdaságinformatikus szak nappali tagozat Matematikai alapok 1 Tantárgyi útmutató 2015/16 tanév II. félév 1/5 Tantárgy megnevezése Matematikai alapok 1 Tantárgy jellege/típusa:

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt

Részletesebben

YBL - SGYMMAT2012XA Matematika II.

YBL - SGYMMAT2012XA Matematika II. YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

Alkalmazott matematika és módszerei I Tantárgy kódja

Alkalmazott matematika és módszerei I Tantárgy kódja Tantárgy neve Alkalmazott matematika és módszerei I Tantárgy kódja MTB1901 Meghirdetés féléve Kreditpont 4 Összóraszám (elm+gyak) + Számonkérés módja G Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve

Részletesebben

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.

Részletesebben

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra Matematika tanmenet 10. osztály (heti 3 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 10. Példatárak: Fuksz Éva Riener Ferenc: É rettségi feladatgyűjtemény matematikából

Részletesebben

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen

Részletesebben

A matematikai feladatok és megoldások konvenciói

A matematikai feladatok és megoldások konvenciói A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott

Részletesebben

Gazdasági matematika 1 Tantárgyi útmutató

Gazdasági matematika 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Emberi erőforrások, gazdálkodási és menedzsment, pénzügy és számvitel szakok nappali tagozat Gazdasági matematika 1 Tantárgyi útmutató 2016/17 tanév I. félév 1/5 Tantárgy megnevezése

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

Óravázlat. Tantárgy: Marketing Évfolyam: 11. évfolyam Témakör: Célpiaci marketing Piacszegmentálás Tanár: Szemerédi Orsolya

Óravázlat. Tantárgy: Marketing Évfolyam: 11. évfolyam Témakör: Célpiaci marketing Piacszegmentálás Tanár: Szemerédi Orsolya Óravázlat Tantárgy: Marketing Évfolyam: 11. évfolyam Témakör: Célpiaci marketing Piacszegmentálás Tanár: Szemerédi Orsolya A tananyag rövid bemutatása A piacszegmentálás a középiskolai tananyag része a

Részletesebben

MECHANIZMUSOK KINEMATIKAI VIZSGÁLATA

MECHANIZMUSOK KINEMATIKAI VIZSGÁLATA Multidiszciplináris tudományok 3. kötet (2013) 1. sz. pp. 21-26. MECHANIZMUSOK KINEMATIKAI VIZSGÁLATA Nándoriné Tóth Mária egyetemi docens, ME GÉIK Ábrázoló Geometriai tanszék 3515 Miskolc-Egyetemváros,

Részletesebben

ÖSSZEHASONLÍTÓ GEOMETRIA BEVEZETÉS

ÖSSZEHASONLÍTÓ GEOMETRIA BEVEZETÉS Nagyné Kondor Rita ÖSSZEHASONLÍTÓ GEOMETRIA BEVEZETÉS Az élő, korszerű matematikaoktatás legfontosabb feladata, hogy önálló gondolkozásra, a döntéshelyzetek megismerésére és megoldására nevelje a fiatalokat.

Részletesebben

5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS MATEMATIK A 9. évfolyam 5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

GEOMATECH @ Velünk játék a tanulás

GEOMATECH @ Velünk játék a tanulás GEOMATECH @ Velünk játék a tanulás A KÉPZÉS RÖVID ISMERTETÉSE A GEOMATECH matematikai és természettudományos feladattár és képzés-támogatási portál olyan korszerű, digitális, a Nemzeti alaptantervhez illeszkedő

Részletesebben

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió. YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

Digitális kompetenciák fejlesztése a pedagógus-továbbképzésben

Digitális kompetenciák fejlesztése a pedagógus-továbbképzésben Digitális kompetenciák fejlesztése a pedagógus-továbbképzésben Könczöl Tamás igazgató elearning Igazgatóság Sulinet etanulás Módszertani és Kompetencia Központ Educatio KHT. IKT - Információs és Kommunikációs

Részletesebben

Acta Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) PARTÍCIÓK PÁRATLAN SZÁMOKKAL. Orosz Gyuláné (Eger, Hungary)

Acta Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) PARTÍCIÓK PÁRATLAN SZÁMOKKAL. Orosz Gyuláné (Eger, Hungary) Acta Acad. Paed. Agriensis, Sectio Mathematicae 9 (00) 07 4 PARTÍCIÓK PÁRATLAN SZÁMOKKAL Orosz Gyuláné (Eger, Hungary) Kiss Péter professzor emlékére Abstract. In this article, we characterize the odd-summing

Részletesebben

INTERAKTÍV MATEMATIKA MINDENKINEK

INTERAKTÍV MATEMATIKA MINDENKINEK GEOGEBRA INTERAKTÍV MATEMATIKA MINDENKINEK Papp-Varga Zuszanna A GeoGebra program rövid bemutatása A GeoGebra egy olyan dinamikus matematikai program, melyet készítője, Markus Hohenwarter, eredetileg középiskolai

Részletesebben

Koós Dorián 9.B INFORMATIKA

Koós Dorián 9.B INFORMATIKA 9.B INFORMATIKA Számítástechnika rövid története. Az elektronikus számítógép kifejlesztése. A Neumann-elv. Információ és adat. A jel. A jelek fajtái (analóg- és digitális jel). Jelhalmazok adatmennyisége.

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

Trigonometrikus függvények és transzformációik MATEMATIKA 11. évfolyam középszint

Trigonometrikus függvények és transzformációik MATEMATIKA 11. évfolyam középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Trigonometrikus függvények és transzformációik MATEMATIKA 11. évfolyam középszint Készítette:

Részletesebben

SZOFTVEREK A SORBANÁLLÁSI ELMÉLET OKTATÁSÁBAN

SZOFTVEREK A SORBANÁLLÁSI ELMÉLET OKTATÁSÁBAN SZOFTVEREK A SORBANÁLLÁSI ELMÉLET OKTATÁSÁBAN Almási Béla, almasi@math.klte.hu Sztrik János, jsztrik@math.klte.hu KLTE Matematikai és Informatikai Intézet Abstract This paper gives a short review on software

Részletesebben

SZÁMÍTÓGÉPES VIZUALIZÁCIÓ A MATEMATIKA TANÍTÁSÁBAN: ESZKÖZÖK, FEJLESZTÉSEK, TAPASZTALATOK

SZÁMÍTÓGÉPES VIZUALIZÁCIÓ A MATEMATIKA TANÍTÁSÁBAN: ESZKÖZÖK, FEJLESZTÉSEK, TAPASZTALATOK SZÁMÍTÓGÉPES VIZUALIZÁCIÓ A MATEMATIKA TANÍTÁSÁBAN: ESZKÖZÖK, FEJLESZTÉSEK, TAPASZTALATOK Karsai János, karsai@silver.szote.u-szeged.hu, Forczek Erzsébet, forczek@dmi.szote.u-szeged.hu, Nyári Tibor, nyari@dmi.szote.u-szeged.hu

Részletesebben

TANMENET. Matematika

TANMENET. Matematika Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 9. B tagozat Összeállította:

Részletesebben

SZAKIRÁNYOK A MISKOLCI EGYETEM MÛSZAKI INFORMATIKAI SZAKÁN

SZAKIRÁNYOK A MISKOLCI EGYETEM MÛSZAKI INFORMATIKAI SZAKÁN SZAKIRÁNYOK A MISKOLCI EGYETEM MÛSZAKI INFORMATIKAI SZAKÁN Dr. Vadász Dénes, vadasz@iit.uni-miskolc.hu Miskolci Egyetem, Informatikai Intézet, Általános Informatikai Tanszék Abstract Our recently established

Részletesebben

1. Analízis gépi kollokviumi tételsor BCO-2 oktatógépre I. OOK. Nyíregyháza, 1979.

1. Analízis gépi kollokviumi tételsor BCO-2 oktatógépre I. OOK. Nyíregyháza, 1979. Dr. Czeglédy István PhD publikációs jegyzéke 1. Analízis gépi kollokviumi tételsor BCO-2 oktatógépre I. OOK. Nyíregyháza, 1979. 2. Analízis gépi kollokviumi tételsor BCO-2 oktatógépre II. OOK. Nyíregyháza,

Részletesebben

A DINAMIKUS GEOMETRIAI RENDSZEREK ÉS AZ ÁBRÁZOLÓ GEOMETRIA

A DINAMIKUS GEOMETRIAI RENDSZEREK ÉS AZ ÁBRÁZOLÓ GEOMETRIA A DINAMIKUS GEOMETRIAI RENDSZEREK ÉS AZ ÁBRÁZOLÓ GEOMETRIA NAGYNÉ KONDOR Rita Debreceni Egyetem, Műszaki Kar Műszaki Alaptárgyi Tanszék 4028 Debrecen, Ótemető u. 2 4. rita@mk.unideb.hu KIVONAT A GeoGebra

Részletesebben

Matematika emelt szint a 11-12.évfolyam számára

Matematika emelt szint a 11-12.évfolyam számára Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka

Részletesebben

Egy feladat megoldása Geogebra segítségével

Egy feladat megoldása Geogebra segítségével Egy feladat megoldása Geogebra segítségével A következőkben a Geogebra dinamikus geometriai szerkesztőprogram egy felhasználási lehetőségéről lesz szó, mindez bemutatva egy feladat megoldása során. A Geogebra

Részletesebben

ACTA CAROLUS ROBERTUS

ACTA CAROLUS ROBERTUS ACTA CAROLUS ROBERTUS Károly Róbert Főiskola tudományos közleményei Alapítva: 2011 3 (1) ACTA CAROLUS ROBERTUS 3 (1) Módszertan szekció FELZÁRKÓZTATÓ KURZUS A GAZDASÁGI MATEMATIKA OKTATÁSBAN KOLLÁR JUDIT

Részletesebben

Összeállította Horváth László egyetemi tanár

Összeállította Horváth László egyetemi tanár Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Intelligens Mérnöki Rendszerek Szakirány a Mérnök informatikus alapszakon Összeállította Horváth László Budapest, 2011

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete

Részletesebben

KÜLSÕ CÉGEK TÁMOGATÁSÁVAL MEGVALÓSÍTOTT, 4GL ÉS CASE ESZKÖZÖKRE ALAPOZOTT KÉPZÉS A SZÉCHENYI ISTVÁN FÕISKOLÁN

KÜLSÕ CÉGEK TÁMOGATÁSÁVAL MEGVALÓSÍTOTT, 4GL ÉS CASE ESZKÖZÖKRE ALAPOZOTT KÉPZÉS A SZÉCHENYI ISTVÁN FÕISKOLÁN KÜLSÕ CÉGEK TÁMOGATÁSÁVAL MEGVALÓSÍTOTT, 4GL ÉS CASE ESZKÖZÖKRE ALAPOZOTT KÉPZÉS A SZÉCHENYI ISTVÁN FÕISKOLÁN dr. Kovács János, kovacsj@rs1.szif.hu Hartványi Tamás, hartvany@rs1.szif.hu Széchenyi István

Részletesebben

Leonardo da Vinci Projekt sz. SK/06/B/F/PP-177436 Időtartam: 2006-2008. Európai Virtuális Matematikai Laboratórium

Leonardo da Vinci Projekt sz. SK/06/B/F/PP-177436 Időtartam: 2006-2008. Európai Virtuális Matematikai Laboratórium Leonardo da Vinci Projekt sz. SK/06/B/F/PP-177436 Időtartam: 2006-2008 Európai Virtuális Matematikai Laboratórium Szerzői jog Az EVLM minden ebben a dokumentumban található információval kapcsolatban ragaszkodik

Részletesebben

Térinformatika amit tudni kell Márkus Béla

Térinformatika amit tudni kell Márkus Béla Térinformatika amit tudni kell Márkus Béla V. EURÓPAI FÖLDMÉRŐK ÉS GEOINFORMATIKUSOK NAPJA - 2016. március 17. Térinformatika amit tudni kell? Mit? Az előadás célja, támogatást adni e kérdés megválaszolásához.

Részletesebben

A logaritmusfüggvény definíciója, grafikonja, jellemzői MATEMATIKA 11. évfolyam középszint

A logaritmusfüggvény definíciója, grafikonja, jellemzői MATEMATIKA 11. évfolyam középszint TÁMOP-..4-08/2-2009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben A logaritmusfüggvény definíciója, grafikonja, jellemzői MATEMATIKA. évfolyam középszint

Részletesebben

Matematika az építészetben

Matematika az építészetben Matematika az építészetben Molnár-Sáska Katalin Főisk.docens YMÉK Bevezetés - Történeti áttekintés - A geometria helye a főiskolai képzésben - Újraindítás és körülményei Részletes tanmenet Megjegyzések:

Részletesebben

Feuerbach kör tanítása dinamikus programok segítségével

Feuerbach kör tanítása dinamikus programok segítségével Feuerbach kör tanítása dinamikus programok segítségével Buzogány Ágota IV. Matematika-Angol Fejezetek a matematika tanításából Kovács Zoltán 2004-12-10 2 A Feuerbach körnek többféle elnevezése is van,

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

NÉHÁNY MEGJEGYZÉS A BURKOLÓFELÜLETEK VIZSGÁLATÁHOZ

NÉHÁNY MEGJEGYZÉS A BURKOLÓFELÜLETEK VIZSGÁLATÁHOZ Miskolci Egyetem, Multidiszciplináris tudományok, 1. kötet (2011) 1. szám, pp. 87-94. NÉHÁNY MEGJEGYZÉS A BURKOLÓFELÜLETEK VIZSGÁLATÁHOZ Nándoriné Tóth Mária egyetemi docens Miskolci Egyetem, Gépészmérnöki

Részletesebben

GEOMATECH @ Sikerélmény a tanulásban

GEOMATECH @ Sikerélmény a tanulásban GEOMATECH @ Sikerélmény a tanulásban A KÉPZÉS RÖVID ISMERTETÉSE A GEOMATECH matematikai és természettudományos feladattár és képzés-támogatási portál olyan korszerű, digitális, a Nemzeti alaptantervhez

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

11. modul: LINEÁRIS FÜGGVÉNYEK

11. modul: LINEÁRIS FÜGGVÉNYEK MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

A PROGRAMOZÁSI TECHNOLÓGIA TANTÁRGY OKTATÁSA A GÁBOR DÉNES FŐISKOLÁN

A PROGRAMOZÁSI TECHNOLÓGIA TANTÁRGY OKTATÁSA A GÁBOR DÉNES FŐISKOLÁN A PROGRAMOZÁSI TECHNOLÓGIA TANTÁRGY OKTATÁSA A GÁBOR DÉNES FŐISKOLÁN THE TEACHING OF TECHNOLOGY OF PROGRAMMING IN DENNIS GABOR COLLEGE Kaczur Sándor 1 Összefoglaló: A Gábor Dénes Főiskola mérnök-informatikus

Részletesebben

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Az osztályozóvizsgák követelményrendszere MATEMATIKA Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom

Részletesebben

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Hódiné Szél Margit Szegedi Tudományegyetem Mezőgazdasági Kar Összefoglalás: A XXI. században az informatika

Részletesebben

Felhasználási útmutató a. Dr. Hibbey oktatószoftver-családhoz

Felhasználási útmutató a. Dr. Hibbey oktatószoftver-családhoz Felhasználási útmutató a Dr. Hibbey oktatószoftver-családhoz Digitális matematikai feladatgyűjtemény 5-8. osztály Tatabánya, 2011. július 30. 2 Tartalom Bevezetés Futtatási környezet Telepítés A tantárgyi

Részletesebben

HEFOP/2005/ Felkészítés a kompetencia alapú. HEFOP/2006/2.1.5B Halmozottan hátrányos helyzetű tanulók integrált nevelése

HEFOP/2005/ Felkészítés a kompetencia alapú. HEFOP/2006/2.1.5B Halmozottan hátrányos helyzetű tanulók integrált nevelése HEFOP/2005/3.1.3. Felkészítés a kompetencia alapú oktatásra HEFOP/2006/2.1.5B Halmozottan hátrányos helyzetű tanulók integrált nevelése Felkészítés a kompetencia alapú oktatásra HEFOP-3.1.3 A program megvalósítása

Részletesebben

Matematika. Specializáció. 11 12. évfolyam

Matematika. Specializáció. 11 12. évfolyam Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes

Részletesebben

Bár a szoftverleltárt elsősorban magamnak készítettem, de ha már itt van, miért is ne használhatná más is.

Bár a szoftverleltárt elsősorban magamnak készítettem, de ha már itt van, miért is ne használhatná más is. SZOFTVERLELTÁR FREE Amennyiben önnek vállalkozása van, akkor pontosan tudnia kell, hogy milyen programok és alkalmazások vannak telepítve cége, vállalkozása számítógépeire, és ezekhez milyen engedélyeik,

Részletesebben

IKT-val támogatott tanórák, ismeretszerzés hatékony tervezése tematikus linkgyűjtemény segítségével

IKT-val támogatott tanórák, ismeretszerzés hatékony tervezése tematikus linkgyűjtemény segítségével IKT-val támogatott tanórák, ismeretszerzés hatékony tervezése tematikus linkgyűjtemény segítségével Jó gyakorlatunk célja módszertani képzés, szakmai konzultáció illetve bemutató órák keretében megmutatni

Részletesebben

Moodle haszna lat hallgato knak 1

Moodle haszna lat hallgato knak 1 Moodle haszna lat hallgato knak 1 Ez a segédlet a BME-MVT 2 által gondozott Innovatív vállalkozások indítása és működtetése tantárgy Moodle oktatási környezetének hallgatói használatához készült. A következőkben

Részletesebben

A Szent Gellért Katolikus Általános Iskola, Gimnázium és Kollégium felvételi tájékoztatója

A Szent Gellért Katolikus Általános Iskola, Gimnázium és Kollégium felvételi tájékoztatója A Szent Gellért Katolikus Általános Iskola, Gimnázium és Kollégium felvételi tájékoztatója Az iskola neve: Szent Gellért Katolikus Általános Iskola, Gimnázium és Kollégium Az iskola OM-azonosítója: 028300

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület

Részletesebben

AZ ELSŐÉVES HALLGATÓK INFORMATIKA TANULÁSI SZOKÁSAINAK VIZSGÁLATA ADATBÁNYÁSZATI ESZKÖZÖKKEL A BUDAPESTI MŰSZAKI FŐISKOLÁN

AZ ELSŐÉVES HALLGATÓK INFORMATIKA TANULÁSI SZOKÁSAINAK VIZSGÁLATA ADATBÁNYÁSZATI ESZKÖZÖKKEL A BUDAPESTI MŰSZAKI FŐISKOLÁN Informatika a felsőoktatásban Debrecen,. augusztus 7-9. AZ ELSŐÉVES HALLGATÓK INFORMATIKA TANULÁSI SZOKÁSAINAK VIZSGÁLATA ADATBÁNYÁSZATI ESZKÖZÖKKEL A BUDAPESTI MŰSZAKI FŐISKOLÁN THE ANALYSING OF THE COMPUTER

Részletesebben

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Hódiné Szél Margit SZTE MGK 1 A XXI. században az informatika rohamos terjedése miatt elengedhetetlen, hogy

Részletesebben

Lineáris Algebra GEMAN 203-B. A három dimenziós tér vektorai, egyenesei, síkjai

Lineáris Algebra GEMAN 203-B. A három dimenziós tér vektorai, egyenesei, síkjai Matematika előadás elméleti kérdéseinél kérdezhető képletek Lineáris Algebra GEMAN 203-B A három dimenziós tér vektorai, egyenesei, síkjai a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b

Részletesebben

SZÁMÍTÓGÉPES MÉRÉSEK AZ AUDACITY PROGRAMMAL EXPERIMENTS USING THE AUDACITY PROGRAM

SZÁMÍTÓGÉPES MÉRÉSEK AZ AUDACITY PROGRAMMAL EXPERIMENTS USING THE AUDACITY PROGRAM SZÁMÍTÓGÉPES MÉRÉSEK AZ AUDACITY PROGRAMMAL EXPERIMENTS USING THE AUDACITY PROGRAM Tóthné Juhász Tünde Karinthy Frigyes Gimnázium, Budapest az ELTE Fizika Tanítása doktori program hallgatója ÖSSZEFOGLALÁS

Részletesebben

Etikus internet és szoftverhasználat Óravázlat Készült: Tusorné Fekete Éva óravázlatának alapján

Etikus internet és szoftverhasználat Óravázlat Készült: Tusorné Fekete Éva óravázlatának alapján A) Adatok Iskolatípus: általános iskola / felső tagozat Korosztály: 14 év Tantárgy: informatika Téma: etikus internet és szoftverhasználat Szellemitulajdon-védelmi téma: szerzői jog Etikus internet és

Részletesebben

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005 2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus

Részletesebben

Önéletrajz. Személyi adatok. Foglalkozási terület. Szakmai tapasztalat. Vezetéknév(ek) / Utónév(ek) Balogh Zoltán

Önéletrajz. Személyi adatok. Foglalkozási terület. Szakmai tapasztalat. Vezetéknév(ek) / Utónév(ek) Balogh Zoltán Önéletrajz Személyi adatok Vezetéknév(ek) / Utónév(ek) Balogh Zoltán Cím(ek) Mikecz Kálmán utca 19/b, 4400 Nyíregyháza (Magyarország) Mobil +36 30 205 7047 E-mail(ek) bazoli@freemail.hu Állampolgárság

Részletesebben

Tankönyvkiadók konferenciája Fizika

Tankönyvkiadók konferenciája Fizika Tankönyvkiadók konferenciája Fizika Általános iskola, felső tagozat Dr. Koreczné Kazinczi Ilona vezető szerkesztő 2014. 08. 21. Szombathely Magyar nyelv FELSŐ TAGOZAT Matematika Magyar nyelv Kalandozások

Részletesebben

Virtuális tanulási környezet minőségvizsgálata web-bányászati módszerekkel

Virtuális tanulási környezet minőségvizsgálata web-bányászati módszerekkel Budapesti Műszaki és Gazdaságtudományi Egyetem Ergonómia és Pszichológia Tanszék Web-bányászati technikák alkalmazása webhelyek minőségvizsgálatára 2007. június 15. Virtuális tanulási környezet minőségvizsgálata

Részletesebben

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria

Részletesebben

HELYI TANTERV / INFORMATIKA

HELYI TANTERV / INFORMATIKA Célok és kompetenciák Alap és legfontosabb cél INFORMATIKA TANTERV A GIMNÁZIUM 9. ÉVFOLYAMAI SZÁMÁRA A tanuló képes legyen a modern információs társadalom előnyeit kihasználni, veszélyeit kikerülni. Legyen

Részletesebben

GEOMATECH @ Élményszerű természettudomány

GEOMATECH @ Élményszerű természettudomány GEOMATECH @ Élményszerű természettudomány A KÉPZÉS RÖVID ISMERTETÉSE A GEOMATECH matematikai és természettudományos feladattár és képzés-támogatási portál olyan korszerű, digitális, a Nemzeti alaptantervhez

Részletesebben

Termék modell. Definíció:

Termék modell. Definíció: Definíció: Termék modell Összetett, többfunkciós, integrált modell (számítógépes reprezentáció) amely leír egy műszaki objektumot annak különböző életfázis szakaszaiban: tervezés, gyártás, szerelés, szervízelés,

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

MATEMATIKA - STATISZTIKA TANSZÉK

MATEMATIKA - STATISZTIKA TANSZÉK MATEMATIKA - STATISZTIKA TANSZÉK 1. A Kodolányi János Főiskolán végzett kutatások Tananyagfejlesztés A kutatási téma címe, rövid leírása Várható eredmények vagy célok; részeredmények Kutatás kezdete és

Részletesebben

Horváth Hajnalka Ubuntu az oktatásban LOK 2010

Horváth Hajnalka Ubuntu az oktatásban LOK 2010 Horváth Hajnalka Ubuntu az oktatásban LOK 2010 Mi az Ubuntu Ingyenes, felhasználóbarát operációs rendszer GNU/Linux disztribúció Szabad szoftverek gyűjteménye Nagy hazai szabad szoftveres közösség áll

Részletesebben

Az Open Source lehetősége a szegedi geoinformatika képzésben

Az Open Source lehetősége a szegedi geoinformatika képzésben Az Open Source lehetősége a szegedi geoinformatika képzésben Fehér Zsolt Zoltán Madarász Anett Olasz Angéla Szabó Péter 2009. január 29. A tanulmány célja Bemutatni, hogy a szegedi geoinformatikus képzésben

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Digitális írástudás kompetenciák: IT alpismeretek

Digitális írástudás kompetenciák: IT alpismeretek Digitális írástudás kompetenciák: IT alpismeretek PL-5107 A továbbképzés célja: A program az alapvető számítógépes fogalmakban való jártasságot és a számítógépek alkalmazási területeinek ismeretét nyújtja

Részletesebben

A magyar. GeoGebra közösség. Papp-Varga Zsuzsanna vzsuzsa@elte.hu 2011. május 21. Nemzetközi GeoGebra Konferencia és Workshop

A magyar. GeoGebra közösség. Papp-Varga Zsuzsanna vzsuzsa@elte.hu 2011. május 21. Nemzetközi GeoGebra Konferencia és Workshop A magyar GeoGebra közösség Papp-Varga Zsuzsanna vzsuzsa@elte.hu 2011. május 21. Nemzetközi GeoGebra Konferencia és Workshop Miről lesz szó? Magyarország a nemzetközi GeoGebra térképen Magyarországi tevékenységek

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt. Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:

Részletesebben

INFORMATIKA OKTATÁS A KLTE-N 1

INFORMATIKA OKTATÁS A KLTE-N 1 INFORMATIKA OKTATÁS A KLTE-N 1 Juhász István, pici@math.klte.hu KLTE, Matematikai és Informatikai Intézet, Információ Technológia Tanszék Abstract The Institute of Mathematics and Informatics of Kossuth

Részletesebben

13. modul: MÁSODFOKÚ FÜGGVÉNYEK

13. modul: MÁSODFOKÚ FÜGGVÉNYEK MATEMATIK A 9. évfolyam 13. modul: MÁSODFOKÚ FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 13. modul: MÁSODFOKÚ FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

Bevezetés A harmadik szoftverkrízis korát éljük! Szoftverkrízisek: 1. nincs elég olcsó: hardver, szoftver, programozó 2. nincs elég olcsó: szoftver, p

Bevezetés A harmadik szoftverkrízis korát éljük! Szoftverkrízisek: 1. nincs elég olcsó: hardver, szoftver, programozó 2. nincs elég olcsó: szoftver, p A MeMOOC online informatikai egyetem és a szoftverkrízis Dr. Kusper Gábor, EKE Dr. Nehéz Károly, ME Dr. Hornyák Olivér, ME Bevezetés A harmadik szoftverkrízis korát éljük! Szoftverkrízisek: 1. nincs elég

Részletesebben