Optimális kvantálás additív zajszűrés esetén

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Optimális kvantálás additív zajszűrés esetén"

Átírás

1 SZTIPÁNOVITS JÁNOS BME Műszer- és Méréstechnika Tanszék Optimális kvantálás additív zajszűrés esetén ETO 62.37S.S4: : Az additív zajszűrés vagy jelátlagolás elterjedten alkalmazott méréstechnikai eljárás periodikusan ismétlődő vagy triggerelhető zajos jelek mérésére. A digitális jelátlagoló berendezések árát és a jel felső határfrekvenciáját alapvetően befolyásolja a bemeneten levő A/D átalakító egység. A következőkben megvizsgáljuk az A/D átalakító paraméterei és az elérhető jel/zaj viszony növekedés közti összefüggést és a paraméterek optimális kiválasztásának feltételeit. y yt i i *; X. Az optimális kvantálás megfogalmazása \H306~SJ\ Analóg jelek digitális csatornán történő továbbításánál, digitális mérés- és adatfeldolgozásnál az idő- és amplitúdókvantálás segítségével úgy redukáljuk az analóg jel információtartalmát, hogy illeszkedjék a véges kapacitású digitális csatorna átviteli tulajdonságaihoz, illetve a digitális adatfeldolgozó rendszer megkívánt adatpontosságához. Az időbeli kvantálást végző mintavételező egység az X analóg forrás kimenőjelét, az x(t) sztochasztikus folyamatot egy {x(f,)} sorozattá alakítja át, amire teljesül, hogy i=» CO 0l 7 ha x(r) sávkorlátozott és T kielégíti a mintavételi tételt. A továbbiakban a mintavételi tétel teljesülésével, illetve a véges mintavételi számból eredő approximációs hibával nem foglalkozunk. Az {x(t,)} sorozat felfogható egy jeltér x vektoraként is. A kvantáló a jeltér folytonos koordinátáihoz (a mintavételi értékekhez) diszkrét értékeket rendel, azaz a jelteret leképzi egy diszkrét jeltérre. Ha az összes mintavételi értéket ugyanazzal az eszközzel kvantáljuk, a nemlineáris leképzést egyértelműen leírhatjuk a kvantálási szintek {x,} és a kimeneti értékek {y,} halmazának megadásával (. ábra). A továbbiakban az {x,} és {(/,} halmazokat tekintjük a kvantáló paramétereinek. Az optimális kvantálás problémája ezek után a következőképpen fogalmazható meg: Legyen s(t) és x(t) két sztochasztikus folyamat, amiket az s és x vektorokkal írunk le. Tekintsük az s(t) folyamatot jelnek, az x(t) folyamatot a mérhető adatnak. A digitális mérő- és adatfeldolgozó berendezéssel vagy a jelből származtatható vektort vagy az Beérkezett: 974. V. 2. jj=0[s] (2) y=f[s]. ábra jellemzőt akarjuk meghatározni, ahol 0[x] egy operátor és F[x] egy funkcionál. Az adatfeldolgozás elvégzésére rendelkezésünkre áll az x vektor, ami valamilyen statisztikai kapcsolatban van s-sel. Az adatfeldolgozás során az U=0'[x] y=v[x] (3) eljárásokkal y és ;/ becslését hozzuk létre, ahol az 0'[x] operátor és F'[x] funkcionál általában nem egyezik meg 0[x] és F[x]-szel. Az 0'[x] és F'[x] meghatározását úgy kell elvégezni, hogy y és y valamilyen értelemben optimális becslések legyenek []. Ha az adatfeldolgozást a kvantált XQ adatvektorokon hajtjuk végre, természetesen: y Q =0'[x Q ]^=0'[x] y Q = F'[x Q ]? íy=f[x]. A kvantáló optimalizálás célja, hogy rögzített N kvantumszám mellett úgy válasszuk meg a kvantáló {x,} és {(/,} paramétereit, hogy az y és y Q vagy y és í/ Q közötti eltérés minimális legyen. Az eltérés, illetve a kvantáló teljesítőképességének mértéke leggyakrabban ahol e h = E{h(g-y Q )} (5) /, = a teljesítőképesség /i(x)-ra vonatkoztatott mértéke h(x) = skalár-vektor súlyfüggvény y~yq=a y hibavektor E{x} = a súlyfüggvénnyel képzett várható érték s szerint, W 79

2 HÍRADÁSTECHNIKA XXVI. ÉVF. 3. SZ. Látható, hogy az (5) szerinti optimalizálás nem foglalkozik a kvantáló paramétereinek és az 0'[x] operátornak, illetve F'[x] funkcionálnak együttes optimalizálásával, ami a kvantáló nemlinearitása miatt igen bonyolult lenne. Az optimális kvantálás legjobban kidolgozott területe az y=s és x=s (6) eset, azaz mikor a feladat, a jel optimális kvantálásának elvégzése. Ekkor: e h =E{h(s-s Q )}, (7) A (7) eltérési mérték szerinti optimalizálást végezte el J. 0., Max [2] arra az esetre, mikor a mintavételi értékek függetlenek és azonos valószínűségsűrűségfüggvénnyel rendelkeznek. Ha teljesülnek az y=s es x s+n (8) összefüggések, ahol n valamilyen additív zaj, akkor 0[x] optimalizálása az optimális zajszűrés témakörhöz tartozik []. Abban az esetben, ha tehát y(ti) = s(ti) becslését az {#(/,)} adatoknak csak a t t időpontban felvett értéke alapján végezzük el, az optimális becslést létrehozó kvantáló felfogható egy optimális, zéró memóriájú szűrőnek, aminek {x,}, {y,} paramétereit az (9) módszerekkel [5]. Ha az átlagolást digitális berendezéssel végezzük: i M _ - (4) és a két becslő közötti eltérés függ a kvantáló paramétereitől. Mivel a kvantáló nemlineáris elem, a frekvenciatartománybeli vizsgálatnak nincs értelme, így a továbbiakban statisztikai módszereket használunk. Legyen a kvantáló teljesítőképességének az átlagos négyzetes eltérés: mértéke (5) és optimalizáljuk a kvantáló paramétereit a (5) összefüggés szerint. Rögzítsük a jelek statisztikai tulajdonságait az alábbi módon: Az {i/} = {s í ; + n l } Si = S, adathalmazban az (n,) zajok függetlenek egymástól és az s jeltől, és várható értékük nulla. Mivel a gyakorlatban alkalmazott additív zajszűrőknél, valamennyi mintavételi értéket ugyanaz a kvantáló kvantálja, a mintavételi értékek eloszlását egy közös p s (s) valószínűségsűrűségfüggvénnyel jellemezve a (5) összefüggést egydimenziósra redukálhatjuk: Legyen p s (s) e 2 = E{(s-s Q y} folytonos, ekkor +~ í = J ( s -s Q ) 2 p s (s) ds (6) (7) e^et/ksft)-*^)} (0) átlagos eltérés alapján optimalizáljuk. Ilyen optimalizálási problémával foglalkozott L. I. Bluestein 3] a h{x)=\x\ () súlyfüggvény mellett. 2. Az optimális kvantálás problémája additív zajszűrésnól Vizsgáljuk a (8) összefüggés szerinti esetet, mikor a feladat egy s(t) jel mérése, valamilyen n(t) additív zajjal terhelt x(f) folyamat alapján. A becslés elvégzéséhez rendelkezésünkre álló adathalmaz: A becslést, az K}~{s,- + /j,); í=l,... M \ M _ s = irf 2 xi (2) (3) egyszerű lineáris operációval végezzük el. Az operátor tulajdonságainak vizsgálata történhet frekvenciatartománybeli leírással [4], illetve statisztikai 2. ábra A vizsgált rendszer modellje a fentiek alapján a 2. ábrán látható, ahol x=s+n Aí Vizsgáljuk meg részletesebben a (6) összefüggést, a 2. ábra szerinti modellre alkalmazva: ahol 2=E{ S 2}-2E{s.s Q } + E{s Q y (8) E{*.S Q } = E js-l f y^{s.y} és (9) (20) 80

3 SZTIPÁNOVITS J.: OPTIMÁLIS KVANTÁLÁS ADDITÍV ZAJSZŰRÉS ESETÉN tehát az átlagolások számától a (8) összefüggésnek Mivel az additív zajszűrők túlnyomórészt egyenletes csák a harmadik tagja függ. Mivel SQ az {y,} diszkrét kvantálót tartalmaznak, további vizsgálatainkat valószínűségi változók összegéből nyert valószínűségi változó, és y,-k egy adott s-nél azonos eloszlásúak egyenletes kvantálóra végezzük el. és függetlenek, a becslő feltételes négyzetes középértéke, ha az átlagolások száma M: 3. Az egyenletes kvantáló optimális paraméterei E{s% s} = E 2 {y\s} + ± [E{if s}-e% s}], (2) így az átlagos négyzetes eltérés M esetén * átlagolásszám e 2M = E{ S z}-2e{ S y} + E{E{ms}}. (22) Ha az átlagolások száma : e 2 =E{(s - y)*} = E{s 2 } - 2E{sy} + Efe 2 }. (23) Ha az átlagolások száma tart a végtelenhez: e 2H = lim e 2M = E{s 2 } -2E{ S y} + E{E%}}. (24) A (2), (22), (23) és (24) összefüggések egybevetéséből megállapítható, hogy tetszőleges M-hez tartozó átlagos négyzetes eltérés meghatározható e 2 segítségével: Legyen az egyenletes kvantáló átviteli karakterisztikája a 3. ábrán látható szokásos A/D átalakító karakterisztika. y ^ H i /c ábra i : f 2 H + M ^ 2 l _ F? 2H)- (25) A kvantálási szintek ÍV kvantumszámnál: Ez az összefüggés igen fontos a továbbiak szempontjából, hiszen azt jelenti, hogy elég az e 2H és e 2 átlagos négyzetes eltéréseket vizsgálnunk. Ha a kvantáló az. ábrán látható átviteli karakterisztikával rendelkezik, az {a:,} és {y,} paraméterekkel a (23) és (24) összefüggésben szereplő tagok: K{s 2 } = j s 2 p s (s) ds X / = l_i+^) 9 - -K i = 2,...N XN+Í + c (27) ahol K = a kvantáló mérési tartományának középértéke, q= a kvantumnagyság +- A) dn} ds és a mérési tartományból felfelé vagy lefelé kieső jeleket az első, illetve az utolsó kvantumba soroljuk. A kimeneti értékek: E{s-y}= s 'P 5 (s)', Íffi- Pn(n s) (26) ( + N \ q + K i=í,... N (28) ds E{y 2 } = j p s (s) í/ 2 J p n («- s) dn E{E 2 {y} = p s (s). x ' X Í+I p 2" í/r J Pn(n s) dn ds tehát minden kvantumhoz (az első és az utolsó kivételével) a középértékét rendelik hozzá. Behelyettesítve a (26) összefüggésekbe az egyenletes kvantáló paramétereit az átlagos négyzetes eltérésekre az alábbi összefüggéseket kapjuk: C 2 N + 2 Hh+«-jg-xj j* Pn(n-s)dn + oo + s~\ ^ \q-k\ j Pn{n- -s) dn + i (-^ -) q ~ K \ j Pn(n s) dnj ds (29) (f-x)? +K 8

4 HÍRADÁSTECHNIKA XXVI. ÉVF. 3. SZ. FC 2H- ^ Ps(s)-{s- N Z -j g+jcj J p (n-s) H4W dn- -N q+k ] J p n (n s) dn- ^2^j g + X] J -s) dnj ds. (30) A (29) összefüggésbe behelyettesítve a zajmentes esetnek megfelelő p n (ri) = d(ri) valószínűség-sűrűségfüggvényt (ahol ő(x) a Dirac-operátor): <=2T N-I r = 2 ^ 0-4) 9+K K ) ^ \ ( N+l\ f f f fl-iv^l p s Ii 2 p s ( s ) d s + J [s-yltji-k s (s) ds + + J N-I s- 2~ p s (s) ds (3) a Max-féle egyenletes kvantáló átlagos négyzetes eltérését kapjuk. A (29) és (30) összefüggésekből látszik, hogy E 2 rögzített N kvantumszám mellett, az egyenletes kvantáló q és K paramétereinek függvényei, a paraméterek optimalizálása tehát kétváltozós szélsőérték-keresést jelent. Tételezzük fel, hogy a jel p s (s) és a zaj p n (n) sűrűségfüggvénye a várható értékre szimmetrikus és egy csúcsa van. Igazolható, hogy e 2 abszolút minimuma a K= j sp(s) ds=e{s} (32) helyen található, ami azt a szemléletileg is kézenfekvő tényt jelenti, hogy a legkisebb átlagos négyzetes eltérést a kvantálási tartománynak, a jel várható értékére szimmetrikus elhelyezésével lehet elérni. A (25) összefüggés értelmében viszont az összes átlagolásszámra is teljesülnie kell a (32) feltételnek, tehát szimmetrikus sűrűségfüggvények esetén a kétváltozós szélsőérték-keresés egyváltozósra redukálható. Egy adott N kvantumszám melletti optimális kvantumnagyságot meghatározhatjuk a (29) és (30) összefüggés q szerinti differenciálásából nyert, ^-ra implicit egyenlet megoldásával vagy közvetlenül az átlagos négyzetes eltérésfüggvények paraméterezett vizsgálatával. Mivel a kvantumnagyság és az átlagos négyzetes eltérések közötti összefüggés a szélsőértékhelyének meghatározásain kívül is lényeges eredményeket ad, célszerű az utóbbi módszert választani. A vizsgálat eredményeiből a következő kérdésekre akarunk választ kapni: Egy adott jel/zaj viszonynál milyen kvantumszámú kvantálót érdemes használni ahhoz, hogy egy adott additív zajszűrő berendezéssel maximális jel/zaj viszony javulást tudjunk elérni? Mi az optimális kvantálási tartománybeállítás? Ahhoz, hogy áttekinthető, jól értékelhető eredményeket kapjunk, az 2 átlagos négyzetes eltéréseket egy adott jel/zaj viszonynál (J), a kvantumszám (N) és a kvantumnagyság (q) függvényében határozzuk meg. A közölt példában a zajt Gauss-eloszlásúnak és a jelet egyenletes eloszlásúnak tételezzük fel. (A kiszámítást végző számítógépprogram természetesen más jel és zaj sűrűségfüggvények vizsgálatára is alkalmas). Az adott esetben tehát: Ps(s) = A jel/zaj viszony 2S ha 0 ( 'máshol. Pn(n) = Y2ttGn exp 2o* J- al 3ff2 (33) A cr -re normált t' 2X (N, q'), és e' w (N, q'), felületek egyenlete a (32) feltétel behelyettesítése után: 82

5 SZTIPÁNOVITS J.: OPTIMÁLIS KVANTÁLÁS ADDITÍV ZAJSZŰRÉS ESETÉN.')=> '»g) (iv: = _ 7 íy n 2S'/2jr J l,é 2 -S' «) ' - ' exp- dn' + ÍV J exp \~nr\ dn' + J N-l s' ^ q' exp- ds' (34) ^q)= ^=^mi\ s ~^[[ l ~~r\ J e x d p-l-2j n- («-l- T J í -s' ahol rendre elvégeztük az helyettesítéseket. s S'-- n'=, q = A (34) és (35) összefüggésekkel meghatározott felületek láthatók a 4. ábrán. J=l esetben. Egy realizált additív zajszűrő berendezéssel el- érhető maximális jel/zaj viszony javulást természetesen nemcsak a kvantálásból eredő torzítás korlátozza, hanem a mintavételezési idő, a bemeneti erősítés stb. bizonytalansága is [5]. Jelöljük e 2Hm -mel azt az átlagos négyzetes eltérést, amit egy adott berendezéssel, valamilyen kezdeti jel/zaj viszonyból el lehet érni, ahol e 2fIm nem tartalmazza a kvantálási torzítást. (Az elérhető maximális jel/zaj viszony javulás az additív zajszűrők specifikációjához tartozik, a HP 5480 A típusú jelanalizátornál ez az érték ~60 db [6].) Ha berajzoljuk a 4. ábrába az adott e 2Hm -hez tartozó e' 2H = e 2fím síkot, közvetlenül összehasonlíthatjuk a különböző (N, q') paraméterű kvantálókkal elérhető minimális átlagos négyzetes eltérést (e' 2H ) az adott berendezéssel elérhető átlagos négyzetes eltéréssel (e 2Hm ). Legyen feltételünk a kvantáló paramétereinek kiválasztásánál, hogy 4. ábra \H-30S-SJ4\ azaz a kvantáló ne korlátozza számottevően az elérhető jel/zaj viszony javulás nagyságát. Az e' m ~ = e 2Hm síkból az e' zh (N, q') felülettel kimetszett A tartomány foglalja magában azokat az (N, q') paramétereket, amik mellett a (37) feltétel teljesül. (A választható (N, q') paramétereknek az A tartomány széleitől való távolsága az e 2Hm E^H" különbségtől függ.) Az ábra alapján tehát a következő kérdésekre kapunk választ: Mekkora a ininimális kvantumszám, ami mellett a (37) feltétel teljesülhet? Egy adott kvantumszám mellett milyen határok között változtathatjuk a kvantumnagyságot, azaz milyen érzékeny az átlagos négyzetes eltérés a méréshatár beállítására! A vizsgálat különböző jel/zaj viszonyok és különböző p s (.s) sűrűségfüggvények melletti elvégzésével átfogó képet nyerhetünk az additív zajszűrőkben alkalmazott kvantálók tulajdonságairól. 83

6 HÍRADÁSTECHNIKA XXVI. ÉVF. 3. SZ. I R O D A L O M [] Athanasios Papoulis: Probability Random Variables and Stochastic Processes. New York: McGraw-Hill, 965. [2] Joel Max: Quantizing for Minimum Distortion. IRE Trans. Inform. Theorv, vol. IT 6, March 960, pp [3] L. I. Bluestin: Asymptotically Optimum Quantizers and Optimum Analóg to Digital Gonverters for Continuous Signals. IEEE Trans. Inform. Theory, vol. IT 0, April 964, pp [4] C. R. Trimble: What is Signal Averaging? Hewlett- Packard Journal, April 968, pp [5] J. Bodo: Response Averaging Methods their Effectiveness and Limitations. Proceedings of the 96 Data Acquisition and Processing in Biology and Medicine Rochester Gonference Vol. 2. Pergamon Press. [6] Hewlett-Packard 970 Electronics for Measurement Analysis Computation pp

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés

Részletesebben

Híradástechikai jelfeldolgozás

Híradástechikai jelfeldolgozás Híradástechikai jelfeldolgozás 13. Előadás 015. 04. 4. Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Képrestauráció Képhelyreállítás

Képrestauráció Képhelyreállítás Képrestauráció Képhelyreállítás Képrestauráció - A képrestauráció az a folyamat mellyel a sérült képből eltávolítjuk a degradációt, eredményképpen pedig az eredetihez minél közelebbi képet szeretnénk kapni

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen

Részletesebben

REGULARIZÁLT INVERZ KARAKTERISZTIKÁKKAL

REGULARIZÁLT INVERZ KARAKTERISZTIKÁKKAL NEMLINEÁRISAN TORZULT OPTIKAI HANGFELVÉTELEK HELYREÁLLÍTÁSA REGULARIZÁLT INVERZ KARAKTERISZTIKÁKKAL Ph.D. értekezés tézisei Bakó Tamás Béla okleveles villamosmérnök Témavezető: dr. Dabóczi Tamás aműszaki

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011.

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011. Gyártástechnológia alapjai Méréstechnika rész Előadások (2.) 2011. 1 Méréstechnika előadás 2. 1. Mérési hibák 2. A hiba rendszáma 3. A mérési bizonytalanság 2 Mérési folyamat A mérési folyamat négy fő

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1 Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 KONF-5_2/1 Ellenállás mérés és adatbeolvasás Rn

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Teremakusztikai méréstechnika

Teremakusztikai méréstechnika Teremakusztikai méréstechnika Tantermek akusztikája Fürjes Andor Tamás 1 Tartalomjegyzék 1. A teremakusztikai mérések célja 2. Teremakusztikai paraméterek 3. Mérési módszerek 4. ISO 3382 szabvány 5. Méréstechnika

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás

Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 2. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-2/1 Ellenállás mérés és adatbeolvasás Rn ismert

Részletesebben

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9.

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis Becslések, határeloszlás tételek Székely Balázs 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis 1 CHT és NSZT 2 Hoeffding-egyenlőtlenség Alkalmazása: Beengedés

Részletesebben

Mintavételezés és AD átalakítók

Mintavételezés és AD átalakítók HORVÁTH ESZTER BUDAPEST MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM JÁRMŰELEMEK ÉS JÁRMŰ-SZERKEZETANALÍZIS TANSZÉK ÉRZÉKELÉS FOLYAMATA Az érzékelés, jelfeldolgozás általános folyamata Mérés Adatfeldolgozás 2/31

Részletesebben

2. témakör. Sztochasztikus, stacionárius és ergodikus jelek leírása idő és frekvenciatartományban

2. témakör. Sztochasztikus, stacionárius és ergodikus jelek leírása idő és frekvenciatartományban 2. témakör Sztochasztikus, stacionárius és ergodikus jelek leírása idő és frekvenciatartományban Bevezetés Egy összetett jel, amely nem feltétlen periodikus, de stabil amplitúdójó és frekvenciájú diszkrét

Részletesebben

2. (b) Hővezetési problémák. Utolsó módosítás: február25. Dr. Márkus Ferenc BME Fizika Tanszék

2. (b) Hővezetési problémák. Utolsó módosítás: február25. Dr. Márkus Ferenc BME Fizika Tanszék 2. (b) Hővezetési problémák Utolsó módosítás: 2013. február25. A változók szétválasztásának módszere (5) 1 Az Y(t)-re vonakozó megoldás: Így: A probléma megoldása n-re összegzés után: A peremfeltételeknek

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

Analóg-digitál átalakítók (A/D konverterek)

Analóg-digitál átalakítók (A/D konverterek) 9. Laboratóriumi gyakorlat Analóg-digitál átalakítók (A/D konverterek) 1. A gyakorlat célja: Bemutatjuk egy sorozatos közelítés elvén működő A/D átalakító tömbvázlatát és elvi kapcsolási rajzát. Tanulmányozzuk

Részletesebben

FÜGGVÉNYEK. A derékszögű koordináta-rendszer

FÜGGVÉNYEK. A derékszögű koordináta-rendszer FÜGGVÉNYEK A derékszögű koordináta-rendszer Az. jelzőszámot az x tengelyről, a 2. jelzőszámot az y tengelyről olvassuk le. Pl.: A(-3;-) B(3;2) O(0;0) II. síknegyed I. síknegyed A (0; 0) koordinátájú pontot

Részletesebben

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

Jel, adat, információ

Jel, adat, információ Kommunikáció Jel, adat, információ Jel: érzékszerveinkkel, műszerekkel felfogható fizikai állapotváltozás (hang, fény, feszültség, stb.) Adat: jelekből (számítástechnikában: számokból) képzett sorozat.

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

Irányításelmélet és technika II.

Irányításelmélet és technika II. Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november

Részletesebben

KUTATÁSI JELENTÉS. Multilaterációs radarrendszer kutatása. Szüllő Ádám

KUTATÁSI JELENTÉS. Multilaterációs radarrendszer kutatása. Szüllő Ádám KUTATÁSI JELENTÉS Multilaterációs radarrendszer kutatása Szüllő Ádám 212 Bevezetés A Mikrohullámú Távérzékelés Laboratórium jelenlegi K+F tevékenységei közül ezen jelentés a multilaterációs radarrendszerek

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

Analóg digitális átalakítók ELEKTRONIKA_2

Analóg digitális átalakítók ELEKTRONIKA_2 Analóg digitális átalakítók ELEKTRONIKA_2 TEMATIKA Analóg vs. Digital Analóg/Digital átalakítás Mintavételezés Kvantálás Kódolás A/D átalakítók csoportosítása A közvetlen átalakítás A szukcesszív approximációs

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

12. előadás - Markov-láncok I.

12. előadás - Markov-láncok I. 12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító)

Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító) Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító) 1. A D/A átalakító erısítési hibája és beállása Mérje meg a D/A átalakító erısítési hibáját! A hibát százalékban adja

Részletesebben

A brachistochron probléma megoldása

A brachistochron probléma megoldása A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e

Részletesebben

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 15%.

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 15%. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

2. Elméleti összefoglaló

2. Elméleti összefoglaló 2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

Zárt mágneskörű induktív átalakítók

Zárt mágneskörű induktív átalakítók árt mágneskörű induktív átalakítók zárt mágneskörű átalakítók felépítésükből következően kis elmozdulások mérésére használhatók megfelelő érzékenységgel. zárt mágneskörű induktív átalakítók mágnesköre

Részletesebben

Elektronika Előadás. Digitális-analóg és analóg-digitális átalakítók

Elektronika Előadás. Digitális-analóg és analóg-digitális átalakítók Elektronika 2 9. Előadás Digitális-analóg és analóg-digitális átalakítók Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök, Műszaki

Részletesebben

Hangtechnika. Médiatechnológus asszisztens

Hangtechnika. Médiatechnológus asszisztens Vázlat 3. Előadás - alapjai Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék Ismétlés Vázlat I.rész: Ismétlés II.rész: A digitális Jelfeldolgozás

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét

Részletesebben

Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002.

Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002. INFORMÁCIÓELMÉLET Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2002. i TARTALOMJEGYZÉK. Bevezetés 2. Az információmennyiség 6 3. Az I-divergencia 3 3. Információ és bizonytalanság

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

1. ábra. Repülő eszköz matematikai modellje ( fekete doboz )

1. ábra. Repülő eszköz matematikai modellje ( fekete doboz ) Wührl Tibor DIGITÁLIS SZABÁLYZÓ KÖRÖK NEMLINEARITÁSI PROBLÉMÁI FIXPONTOS SZÁMÁBRÁZOLÁS ESETÉN RENDSZERMODELL A pilóta nélküli repülő eszközök szabályzó körének tervezése során első lépésben a repülő eszköz

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell A mérés A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell törekedni, minél közelebb kerülni a mérés során a valós mennyiség megismeréséhez. Mérési

Részletesebben

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés)

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés) Operációkutatás NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Wien-hidas oszcillátor mérése (I. szint)

Wien-hidas oszcillátor mérése (I. szint) Wien-hidas oszcillátor mérése () A Wien-hidas oszcillátor az egyik leggyakrabban alkalmazott szinuszos rezgéskeltő áramkör, melyet egyszerűen kivitelezhető hangolhatóságának, kedvező amplitúdó- és frekvenciastabilitásának

Részletesebben

Mérési struktúrák

Mérési struktúrák Mérési struktúrák 2007.02.19. 1 Mérési struktúrák A mérés művelete: a mérendő jellemző és a szimbólum halmaz közötti leképezés megvalósítása jel- és rendszerelméleti aspektus mérési folyamat: a leképezést

Részletesebben

Orvosi Fizika és Statisztika

Orvosi Fizika és Statisztika Orvosi Fizika és Statisztika Szegedi Tudományegyetem Általános Orvostudományi Kar Természettudományi és Informatikai Kar Orvosi Fizikai és Orvosi Informatikai Intézet www.szote.u-szeged.hu/dmi Orvosi fizika

Részletesebben

1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió

1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió Mérés és adatgyűjtés - Kérdések 2.0 verzió Megjegyzés: ezek a kérdések a felkészülést szolgálják, nem ezek lesznek a vizsgán. Ha valaki a felkészülése alapján önállóan válaszolni tud ezekre a kérdésekre,

Részletesebben

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása

Részletesebben

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás

Részletesebben

Parciális dierenciálegyenletek

Parciális dierenciálegyenletek Parciális dierenciálegyenletek 2009. május 25. A félév lezárásaként néhány alap-deníciót és alap-példát szeretnék adni a Parciális Dierenciálegynletek (PDE) témaköréb l. Épp csak egy kis izelít t. Az alapfeladatok

Részletesebben

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik

Részletesebben

A/D és D/A konverterek vezérlése számítógéppel

A/D és D/A konverterek vezérlése számítógéppel 11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses

Részletesebben

Informatikai eszközök fizikai alapjai Lovász Béla

Informatikai eszközök fizikai alapjai Lovász Béla Informatikai eszközök fizikai alapjai Lovász Béla Kódolás Moduláció Morzekód Mágneses tárolás merevlemezeken Modulációs eljárások típusai Kódolás A kód megállapodás szerinti jelek vagy szimbólumok rendszere,

Részletesebben

1. Gauss-eloszlás, természetes szórás

1. Gauss-eloszlás, természetes szórás 1. Gauss-eloszlás, természetes szórás A Gauss-eloszlásnak megfelelő függvény: amely egy σ szélességű, µ középpontú, 1-re normált (azaz a teljes görbe alatti terület 1) görbét ír le. A természetben a centrális

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Mintavételezés és jel-rekonstrukció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010.

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI 1 A digitális áramkörökre is érvényesek a villamosságtanból ismert Ohm törvény és a Kirchhoff törvények, de az elemzés és a tervezés rendszerint nem ezekre épül.

Részletesebben

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1 Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados

Részletesebben

Tartalom. Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák

Tartalom. Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák Tartalom Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák 215 1 Tervezési célok Szabályozó tervezés célja Stabilitás biztosítása

Részletesebben

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I Kalibrálás és mérési bizonytalanság Drégelyi-Kiss Ágota I. 120. dregelyi.agota@bgk.uni-obuda.hu Kalibrálás Azoknak a mőveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható

Részletesebben

Elektromechanikai rendszerek szimulációja

Elektromechanikai rendszerek szimulációja Kandó Polytechnic of Technology Institute of Informatics Kóré László Elektromechanikai rendszerek szimulációja I Budapest 1997 Tartalom 1.MINTAPÉLDÁK...2 1.1 IDEÁLIS EGYENÁRAMÚ MOTOR FESZÜLTSÉG-SZÖGSEBESSÉG

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr. Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati

Részletesebben