Optimális kvantálás additív zajszűrés esetén

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Optimális kvantálás additív zajszűrés esetén"

Átírás

1 SZTIPÁNOVITS JÁNOS BME Műszer- és Méréstechnika Tanszék Optimális kvantálás additív zajszűrés esetén ETO 62.37S.S4: : Az additív zajszűrés vagy jelátlagolás elterjedten alkalmazott méréstechnikai eljárás periodikusan ismétlődő vagy triggerelhető zajos jelek mérésére. A digitális jelátlagoló berendezések árát és a jel felső határfrekvenciáját alapvetően befolyásolja a bemeneten levő A/D átalakító egység. A következőkben megvizsgáljuk az A/D átalakító paraméterei és az elérhető jel/zaj viszony növekedés közti összefüggést és a paraméterek optimális kiválasztásának feltételeit. y yt i i *; X. Az optimális kvantálás megfogalmazása \H306~SJ\ Analóg jelek digitális csatornán történő továbbításánál, digitális mérés- és adatfeldolgozásnál az idő- és amplitúdókvantálás segítségével úgy redukáljuk az analóg jel információtartalmát, hogy illeszkedjék a véges kapacitású digitális csatorna átviteli tulajdonságaihoz, illetve a digitális adatfeldolgozó rendszer megkívánt adatpontosságához. Az időbeli kvantálást végző mintavételező egység az X analóg forrás kimenőjelét, az x(t) sztochasztikus folyamatot egy {x(f,)} sorozattá alakítja át, amire teljesül, hogy i=» CO 0l 7 ha x(r) sávkorlátozott és T kielégíti a mintavételi tételt. A továbbiakban a mintavételi tétel teljesülésével, illetve a véges mintavételi számból eredő approximációs hibával nem foglalkozunk. Az {x(t,)} sorozat felfogható egy jeltér x vektoraként is. A kvantáló a jeltér folytonos koordinátáihoz (a mintavételi értékekhez) diszkrét értékeket rendel, azaz a jelteret leképzi egy diszkrét jeltérre. Ha az összes mintavételi értéket ugyanazzal az eszközzel kvantáljuk, a nemlineáris leképzést egyértelműen leírhatjuk a kvantálási szintek {x,} és a kimeneti értékek {y,} halmazának megadásával (. ábra). A továbbiakban az {x,} és {(/,} halmazokat tekintjük a kvantáló paramétereinek. Az optimális kvantálás problémája ezek után a következőképpen fogalmazható meg: Legyen s(t) és x(t) két sztochasztikus folyamat, amiket az s és x vektorokkal írunk le. Tekintsük az s(t) folyamatot jelnek, az x(t) folyamatot a mérhető adatnak. A digitális mérő- és adatfeldolgozó berendezéssel vagy a jelből származtatható vektort vagy az Beérkezett: 974. V. 2. jj=0[s] (2) y=f[s]. ábra jellemzőt akarjuk meghatározni, ahol 0[x] egy operátor és F[x] egy funkcionál. Az adatfeldolgozás elvégzésére rendelkezésünkre áll az x vektor, ami valamilyen statisztikai kapcsolatban van s-sel. Az adatfeldolgozás során az U=0'[x] y=v[x] (3) eljárásokkal y és ;/ becslését hozzuk létre, ahol az 0'[x] operátor és F'[x] funkcionál általában nem egyezik meg 0[x] és F[x]-szel. Az 0'[x] és F'[x] meghatározását úgy kell elvégezni, hogy y és y valamilyen értelemben optimális becslések legyenek []. Ha az adatfeldolgozást a kvantált XQ adatvektorokon hajtjuk végre, természetesen: y Q =0'[x Q ]^=0'[x] y Q = F'[x Q ]? íy=f[x]. A kvantáló optimalizálás célja, hogy rögzített N kvantumszám mellett úgy válasszuk meg a kvantáló {x,} és {(/,} paramétereit, hogy az y és y Q vagy y és í/ Q közötti eltérés minimális legyen. Az eltérés, illetve a kvantáló teljesítőképességének mértéke leggyakrabban ahol e h = E{h(g-y Q )} (5) /, = a teljesítőképesség /i(x)-ra vonatkoztatott mértéke h(x) = skalár-vektor súlyfüggvény y~yq=a y hibavektor E{x} = a súlyfüggvénnyel képzett várható érték s szerint, W 79

2 HÍRADÁSTECHNIKA XXVI. ÉVF. 3. SZ. Látható, hogy az (5) szerinti optimalizálás nem foglalkozik a kvantáló paramétereinek és az 0'[x] operátornak, illetve F'[x] funkcionálnak együttes optimalizálásával, ami a kvantáló nemlinearitása miatt igen bonyolult lenne. Az optimális kvantálás legjobban kidolgozott területe az y=s és x=s (6) eset, azaz mikor a feladat, a jel optimális kvantálásának elvégzése. Ekkor: e h =E{h(s-s Q )}, (7) A (7) eltérési mérték szerinti optimalizálást végezte el J. 0., Max [2] arra az esetre, mikor a mintavételi értékek függetlenek és azonos valószínűségsűrűségfüggvénnyel rendelkeznek. Ha teljesülnek az y=s es x s+n (8) összefüggések, ahol n valamilyen additív zaj, akkor 0[x] optimalizálása az optimális zajszűrés témakörhöz tartozik []. Abban az esetben, ha tehát y(ti) = s(ti) becslését az {#(/,)} adatoknak csak a t t időpontban felvett értéke alapján végezzük el, az optimális becslést létrehozó kvantáló felfogható egy optimális, zéró memóriájú szűrőnek, aminek {x,}, {y,} paramétereit az (9) módszerekkel [5]. Ha az átlagolást digitális berendezéssel végezzük: i M _ - (4) és a két becslő közötti eltérés függ a kvantáló paramétereitől. Mivel a kvantáló nemlineáris elem, a frekvenciatartománybeli vizsgálatnak nincs értelme, így a továbbiakban statisztikai módszereket használunk. Legyen a kvantáló teljesítőképességének az átlagos négyzetes eltérés: mértéke (5) és optimalizáljuk a kvantáló paramétereit a (5) összefüggés szerint. Rögzítsük a jelek statisztikai tulajdonságait az alábbi módon: Az {i/} = {s í ; + n l } Si = S, adathalmazban az (n,) zajok függetlenek egymástól és az s jeltől, és várható értékük nulla. Mivel a gyakorlatban alkalmazott additív zajszűrőknél, valamennyi mintavételi értéket ugyanaz a kvantáló kvantálja, a mintavételi értékek eloszlását egy közös p s (s) valószínűségsűrűségfüggvénnyel jellemezve a (5) összefüggést egydimenziósra redukálhatjuk: Legyen p s (s) e 2 = E{(s-s Q y} folytonos, ekkor +~ í = J ( s -s Q ) 2 p s (s) ds (6) (7) e^et/ksft)-*^)} (0) átlagos eltérés alapján optimalizáljuk. Ilyen optimalizálási problémával foglalkozott L. I. Bluestein 3] a h{x)=\x\ () súlyfüggvény mellett. 2. Az optimális kvantálás problémája additív zajszűrésnól Vizsgáljuk a (8) összefüggés szerinti esetet, mikor a feladat egy s(t) jel mérése, valamilyen n(t) additív zajjal terhelt x(f) folyamat alapján. A becslés elvégzéséhez rendelkezésünkre álló adathalmaz: A becslést, az K}~{s,- + /j,); í=l,... M \ M _ s = irf 2 xi (2) (3) egyszerű lineáris operációval végezzük el. Az operátor tulajdonságainak vizsgálata történhet frekvenciatartománybeli leírással [4], illetve statisztikai 2. ábra A vizsgált rendszer modellje a fentiek alapján a 2. ábrán látható, ahol x=s+n Aí Vizsgáljuk meg részletesebben a (6) összefüggést, a 2. ábra szerinti modellre alkalmazva: ahol 2=E{ S 2}-2E{s.s Q } + E{s Q y (8) E{*.S Q } = E js-l f y^{s.y} és (9) (20) 80

3 SZTIPÁNOVITS J.: OPTIMÁLIS KVANTÁLÁS ADDITÍV ZAJSZŰRÉS ESETÉN tehát az átlagolások számától a (8) összefüggésnek Mivel az additív zajszűrők túlnyomórészt egyenletes csák a harmadik tagja függ. Mivel SQ az {y,} diszkrét kvantálót tartalmaznak, további vizsgálatainkat valószínűségi változók összegéből nyert valószínűségi változó, és y,-k egy adott s-nél azonos eloszlásúak egyenletes kvantálóra végezzük el. és függetlenek, a becslő feltételes négyzetes középértéke, ha az átlagolások száma M: 3. Az egyenletes kvantáló optimális paraméterei E{s% s} = E 2 {y\s} + ± [E{if s}-e% s}], (2) így az átlagos négyzetes eltérés M esetén * átlagolásszám e 2M = E{ S z}-2e{ S y} + E{E{ms}}. (22) Ha az átlagolások száma : e 2 =E{(s - y)*} = E{s 2 } - 2E{sy} + Efe 2 }. (23) Ha az átlagolások száma tart a végtelenhez: e 2H = lim e 2M = E{s 2 } -2E{ S y} + E{E%}}. (24) A (2), (22), (23) és (24) összefüggések egybevetéséből megállapítható, hogy tetszőleges M-hez tartozó átlagos négyzetes eltérés meghatározható e 2 segítségével: Legyen az egyenletes kvantáló átviteli karakterisztikája a 3. ábrán látható szokásos A/D átalakító karakterisztika. y ^ H i /c ábra i : f 2 H + M ^ 2 l _ F? 2H)- (25) A kvantálási szintek ÍV kvantumszámnál: Ez az összefüggés igen fontos a továbbiak szempontjából, hiszen azt jelenti, hogy elég az e 2H és e 2 átlagos négyzetes eltéréseket vizsgálnunk. Ha a kvantáló az. ábrán látható átviteli karakterisztikával rendelkezik, az {a:,} és {y,} paraméterekkel a (23) és (24) összefüggésben szereplő tagok: K{s 2 } = j s 2 p s (s) ds X / = l_i+^) 9 - -K i = 2,...N XN+Í + c (27) ahol K = a kvantáló mérési tartományának középértéke, q= a kvantumnagyság +- A) dn} ds és a mérési tartományból felfelé vagy lefelé kieső jeleket az első, illetve az utolsó kvantumba soroljuk. A kimeneti értékek: E{s-y}= s 'P 5 (s)', Íffi- Pn(n s) (26) ( + N \ q + K i=í,... N (28) ds E{y 2 } = j p s (s) í/ 2 J p n («- s) dn E{E 2 {y} = p s (s). x ' X Í+I p 2" í/r J Pn(n s) dn ds tehát minden kvantumhoz (az első és az utolsó kivételével) a középértékét rendelik hozzá. Behelyettesítve a (26) összefüggésekbe az egyenletes kvantáló paramétereit az átlagos négyzetes eltérésekre az alábbi összefüggéseket kapjuk: C 2 N + 2 Hh+«-jg-xj j* Pn(n-s)dn + oo + s~\ ^ \q-k\ j Pn{n- -s) dn + i (-^ -) q ~ K \ j Pn(n s) dnj ds (29) (f-x)? +K 8

4 HÍRADÁSTECHNIKA XXVI. ÉVF. 3. SZ. FC 2H- ^ Ps(s)-{s- N Z -j g+jcj J p (n-s) H4W dn- -N q+k ] J p n (n s) dn- ^2^j g + X] J -s) dnj ds. (30) A (29) összefüggésbe behelyettesítve a zajmentes esetnek megfelelő p n (ri) = d(ri) valószínűség-sűrűségfüggvényt (ahol ő(x) a Dirac-operátor): <=2T N-I r = 2 ^ 0-4) 9+K K ) ^ \ ( N+l\ f f f fl-iv^l p s Ii 2 p s ( s ) d s + J [s-yltji-k s (s) ds + + J N-I s- 2~ p s (s) ds (3) a Max-féle egyenletes kvantáló átlagos négyzetes eltérését kapjuk. A (29) és (30) összefüggésekből látszik, hogy E 2 rögzített N kvantumszám mellett, az egyenletes kvantáló q és K paramétereinek függvényei, a paraméterek optimalizálása tehát kétváltozós szélsőérték-keresést jelent. Tételezzük fel, hogy a jel p s (s) és a zaj p n (n) sűrűségfüggvénye a várható értékre szimmetrikus és egy csúcsa van. Igazolható, hogy e 2 abszolút minimuma a K= j sp(s) ds=e{s} (32) helyen található, ami azt a szemléletileg is kézenfekvő tényt jelenti, hogy a legkisebb átlagos négyzetes eltérést a kvantálási tartománynak, a jel várható értékére szimmetrikus elhelyezésével lehet elérni. A (25) összefüggés értelmében viszont az összes átlagolásszámra is teljesülnie kell a (32) feltételnek, tehát szimmetrikus sűrűségfüggvények esetén a kétváltozós szélsőérték-keresés egyváltozósra redukálható. Egy adott N kvantumszám melletti optimális kvantumnagyságot meghatározhatjuk a (29) és (30) összefüggés q szerinti differenciálásából nyert, ^-ra implicit egyenlet megoldásával vagy közvetlenül az átlagos négyzetes eltérésfüggvények paraméterezett vizsgálatával. Mivel a kvantumnagyság és az átlagos négyzetes eltérések közötti összefüggés a szélsőértékhelyének meghatározásain kívül is lényeges eredményeket ad, célszerű az utóbbi módszert választani. A vizsgálat eredményeiből a következő kérdésekre akarunk választ kapni: Egy adott jel/zaj viszonynál milyen kvantumszámú kvantálót érdemes használni ahhoz, hogy egy adott additív zajszűrő berendezéssel maximális jel/zaj viszony javulást tudjunk elérni? Mi az optimális kvantálási tartománybeállítás? Ahhoz, hogy áttekinthető, jól értékelhető eredményeket kapjunk, az 2 átlagos négyzetes eltéréseket egy adott jel/zaj viszonynál (J), a kvantumszám (N) és a kvantumnagyság (q) függvényében határozzuk meg. A közölt példában a zajt Gauss-eloszlásúnak és a jelet egyenletes eloszlásúnak tételezzük fel. (A kiszámítást végző számítógépprogram természetesen más jel és zaj sűrűségfüggvények vizsgálatára is alkalmas). Az adott esetben tehát: Ps(s) = A jel/zaj viszony 2S ha 0 ( 'máshol. Pn(n) = Y2ttGn exp 2o* J- al 3ff2 (33) A cr -re normált t' 2X (N, q'), és e' w (N, q'), felületek egyenlete a (32) feltétel behelyettesítése után: 82

5 SZTIPÁNOVITS J.: OPTIMÁLIS KVANTÁLÁS ADDITÍV ZAJSZŰRÉS ESETÉN.')=> '»g) (iv: = _ 7 íy n 2S'/2jr J l,é 2 -S' «) ' - ' exp- dn' + ÍV J exp \~nr\ dn' + J N-l s' ^ q' exp- ds' (34) ^q)= ^=^mi\ s ~^[[ l ~~r\ J e x d p-l-2j n- («-l- T J í -s' ahol rendre elvégeztük az helyettesítéseket. s S'-- n'=, q = A (34) és (35) összefüggésekkel meghatározott felületek láthatók a 4. ábrán. J=l esetben. Egy realizált additív zajszűrő berendezéssel el- érhető maximális jel/zaj viszony javulást természetesen nemcsak a kvantálásból eredő torzítás korlátozza, hanem a mintavételezési idő, a bemeneti erősítés stb. bizonytalansága is [5]. Jelöljük e 2Hm -mel azt az átlagos négyzetes eltérést, amit egy adott berendezéssel, valamilyen kezdeti jel/zaj viszonyból el lehet érni, ahol e 2fIm nem tartalmazza a kvantálási torzítást. (Az elérhető maximális jel/zaj viszony javulás az additív zajszűrők specifikációjához tartozik, a HP 5480 A típusú jelanalizátornál ez az érték ~60 db [6].) Ha berajzoljuk a 4. ábrába az adott e 2Hm -hez tartozó e' 2H = e 2fím síkot, közvetlenül összehasonlíthatjuk a különböző (N, q') paraméterű kvantálókkal elérhető minimális átlagos négyzetes eltérést (e' 2H ) az adott berendezéssel elérhető átlagos négyzetes eltéréssel (e 2Hm ). Legyen feltételünk a kvantáló paramétereinek kiválasztásánál, hogy 4. ábra \H-30S-SJ4\ azaz a kvantáló ne korlátozza számottevően az elérhető jel/zaj viszony javulás nagyságát. Az e' m ~ = e 2Hm síkból az e' zh (N, q') felülettel kimetszett A tartomány foglalja magában azokat az (N, q') paramétereket, amik mellett a (37) feltétel teljesül. (A választható (N, q') paramétereknek az A tartomány széleitől való távolsága az e 2Hm E^H" különbségtől függ.) Az ábra alapján tehát a következő kérdésekre kapunk választ: Mekkora a ininimális kvantumszám, ami mellett a (37) feltétel teljesülhet? Egy adott kvantumszám mellett milyen határok között változtathatjuk a kvantumnagyságot, azaz milyen érzékeny az átlagos négyzetes eltérés a méréshatár beállítására! A vizsgálat különböző jel/zaj viszonyok és különböző p s (.s) sűrűségfüggvények melletti elvégzésével átfogó képet nyerhetünk az additív zajszűrőkben alkalmazott kvantálók tulajdonságairól. 83

6 HÍRADÁSTECHNIKA XXVI. ÉVF. 3. SZ. I R O D A L O M [] Athanasios Papoulis: Probability Random Variables and Stochastic Processes. New York: McGraw-Hill, 965. [2] Joel Max: Quantizing for Minimum Distortion. IRE Trans. Inform. Theorv, vol. IT 6, March 960, pp [3] L. I. Bluestin: Asymptotically Optimum Quantizers and Optimum Analóg to Digital Gonverters for Continuous Signals. IEEE Trans. Inform. Theory, vol. IT 0, April 964, pp [4] C. R. Trimble: What is Signal Averaging? Hewlett- Packard Journal, April 968, pp [5] J. Bodo: Response Averaging Methods their Effectiveness and Limitations. Proceedings of the 96 Data Acquisition and Processing in Biology and Medicine Rochester Gonference Vol. 2. Pergamon Press. [6] Hewlett-Packard 970 Electronics for Measurement Analysis Computation pp

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Képrestauráció Képhelyreállítás

Képrestauráció Képhelyreállítás Képrestauráció Képhelyreállítás Képrestauráció - A képrestauráció az a folyamat mellyel a sérült képből eltávolítjuk a degradációt, eredményképpen pedig az eredetihez minél közelebbi képet szeretnénk kapni

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

REGULARIZÁLT INVERZ KARAKTERISZTIKÁKKAL

REGULARIZÁLT INVERZ KARAKTERISZTIKÁKKAL NEMLINEÁRISAN TORZULT OPTIKAI HANGFELVÉTELEK HELYREÁLLÍTÁSA REGULARIZÁLT INVERZ KARAKTERISZTIKÁKKAL Ph.D. értekezés tézisei Bakó Tamás Béla okleveles villamosmérnök Témavezető: dr. Dabóczi Tamás aműszaki

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1 Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 KONF-5_2/1 Ellenállás mérés és adatbeolvasás Rn

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Analóg-digitál átalakítók (A/D konverterek)

Analóg-digitál átalakítók (A/D konverterek) 9. Laboratóriumi gyakorlat Analóg-digitál átalakítók (A/D konverterek) 1. A gyakorlat célja: Bemutatjuk egy sorozatos közelítés elvén működő A/D átalakító tömbvázlatát és elvi kapcsolási rajzát. Tanulmányozzuk

Részletesebben

Teremakusztikai méréstechnika

Teremakusztikai méréstechnika Teremakusztikai méréstechnika Tantermek akusztikája Fürjes Andor Tamás 1 Tartalomjegyzék 1. A teremakusztikai mérések célja 2. Teremakusztikai paraméterek 3. Mérési módszerek 4. ISO 3382 szabvány 5. Méréstechnika

Részletesebben

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9.

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis Becslések, határeloszlás tételek Székely Balázs 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis 1 CHT és NSZT 2 Hoeffding-egyenlőtlenség Alkalmazása: Beengedés

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Jel, adat, információ

Jel, adat, információ Kommunikáció Jel, adat, információ Jel: érzékszerveinkkel, műszerekkel felfogható fizikai állapotváltozás (hang, fény, feszültség, stb.) Adat: jelekből (számítástechnikában: számokból) képzett sorozat.

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

2. Elméleti összefoglaló

2. Elméleti összefoglaló 2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges

Részletesebben

Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító)

Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító) Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító) 1. A D/A átalakító erısítési hibája és beállása Mérje meg a D/A átalakító erısítési hibáját! A hibát százalékban adja

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002.

Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002. INFORMÁCIÓELMÉLET Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2002. i TARTALOMJEGYZÉK. Bevezetés 2. Az információmennyiség 6 3. Az I-divergencia 3 3. Információ és bizonytalanság

Részletesebben

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 15%.

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 15%. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

A/D és D/A konverterek vezérlése számítógéppel

A/D és D/A konverterek vezérlése számítógéppel 11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

Hangtechnika. Médiatechnológus asszisztens

Hangtechnika. Médiatechnológus asszisztens Vázlat 3. Előadás - alapjai Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék Ismétlés Vázlat I.rész: Ismétlés II.rész: A digitális Jelfeldolgozás

Részletesebben

Elektromechanikai rendszerek szimulációja

Elektromechanikai rendszerek szimulációja Kandó Polytechnic of Technology Institute of Informatics Kóré László Elektromechanikai rendszerek szimulációja I Budapest 1997 Tartalom 1.MINTAPÉLDÁK...2 1.1 IDEÁLIS EGYENÁRAMÚ MOTOR FESZÜLTSÉG-SZÖGSEBESSÉG

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás

Részletesebben

Wien-hidas oszcillátor mérése (I. szint)

Wien-hidas oszcillátor mérése (I. szint) Wien-hidas oszcillátor mérése () A Wien-hidas oszcillátor az egyik leggyakrabban alkalmazott szinuszos rezgéskeltő áramkör, melyet egyszerűen kivitelezhető hangolhatóságának, kedvező amplitúdó- és frekvenciastabilitásának

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

Proporcionális hmérsékletszabályozás

Proporcionális hmérsékletszabályozás Proporcionális hmérséletszabályozás 1. A gyaorlat célja Az implzsszélesség modlált jele szoftverrel történ generálása. Hmérsélet szabályozás implementálása P szabályozóval. 2. Elméleti bevezet 2.1 A proporcionális

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

Érettségi feladatok: Függvények 1/9

Érettségi feladatok: Függvények 1/9 Érettségi feladatok: Függvények 1/9 2003. Próba 1. Állapítsa meg a valós számok halmazán értelmezett x x 2-2x - 8 függvény zérushelyeit! 2004. Próba 3. Határozza meg a valós számok halmazán értelmezett

Részletesebben

1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió

1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió Mérés és adatgyűjtés - Kérdések 2.0 verzió Megjegyzés: ezek a kérdések a felkészülést szolgálják, nem ezek lesznek a vizsgán. Ha valaki a felkészülése alapján önállóan válaszolni tud ezekre a kérdésekre,

Részletesebben

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 15%.

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 15%. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

3.18. DIGITÁLIS JELFELDOLGOZÁS

3.18. DIGITÁLIS JELFELDOLGOZÁS 3.18. DIGITÁLIS JELFELDOLGOZÁS Az analóg jelfeldolgozás során egy fizikai mennyiséget (pl. a hangfeldolgozás kapcsán a levegő nyomásváltozásait) azzal analóg (hasonló, arányos) elektromos feszültséggé

Részletesebben

Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium

Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium 4.. Két- és háromállású szabályozók. A két- és háromállású szabályozók nem-olytonos kimenettel

Részletesebben

Mérési jegyzőkönyv a 5. mérés A/D és D/A átalakító vizsgálata című laboratóriumi gyakorlatról

Mérési jegyzőkönyv a 5. mérés A/D és D/A átalakító vizsgálata című laboratóriumi gyakorlatról Mérési jegyzőkönyv a 5. mérés A/D és D/A átalakító vizsgálata című laboratóriumi gyakorlatról A mérés helyszíne: A mérés időpontja: A mérést végezték: A mérést vezető oktató neve: A jegyzőkönyvet tartalmazó

Részletesebben

TESZT A LELKE AZ FTTX / XPON HÁLÓZATNAK IS

TESZT A LELKE AZ FTTX / XPON HÁLÓZATNAK IS TESZT A LELKE AZ FTTX / XPON HÁLÓZATNAK IS Kolozs Csaba EQUICOM Méréstechnikai Kft. Ügyvezető / Szolgáltatói hálózatok www.equicom.hu, kolozs.csaba@equicom.hu GPON/FTTx topológia Sávszélességek és szolgáltatások

Részletesebben

Informatika Rendszerek Alapjai

Informatika Rendszerek Alapjai Informatika Rendszerek Alapjai Dr. Kutor László Jelek típusai Átalakítás analóg és digitális rendszerek között http://uni-obuda.hu/users/kutor/ IRA 2014 2014. ősz IRA3/1 Analóg jelek digitális feldolgozhatóságának

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

A mintavételezéses mérések alapjai

A mintavételezéses mérések alapjai A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel

Részletesebben

Feszültségérzékelők a méréstechnikában

Feszültségérzékelők a méréstechnikában 5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem 1. A Huffman-kód prefix és forráskiterjesztéssel optimálissá tehető, ezért nem szükséges hozzá a forrás valószínűség-eloszlásának ismerete. 2. Lehet-e tökéletes kriptorendszert készíteni? Miért? a. Lehet,

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

A médiatechnológia alapjai

A médiatechnológia alapjai A médiatechnológia alapjai Úgy döntöttem, hogy a Szirányi oktatta előadások számonkérhetőnek tűnő lényegét kiemelem, az alapján, amit a ZH-ról mondott: rövid kérdések. A rész és az egész: összefüggések

Részletesebben

1. ábra A Wien-hidas mérőpanel kapcsolási rajza

1. ábra A Wien-hidas mérőpanel kapcsolási rajza Ismeretellenőrző kérdések A mérések megkezdése előtt kérem, gondolja végig a következő kérdéseket, feladatokat! Szükség esetén elevenítse fel ismereteit az ide vonatkozó elméleti tananyag segítségével!

Részletesebben

ELEMI PROGRAMOZÁSI TÉTELEK

ELEMI PROGRAMOZÁSI TÉTELEK ELEMI PROGRAMOZÁSI TÉTELEK 1. FELADATMEGOLDÁS PROGRAMOZÁSI TÉTELEKKEL 1.1 A programozási tétel fogalma A programozási tételek típusalgoritmusok, amelyek alkalmazásával garantáltan helyes megoldást adhatunk

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

Marcsa Dániel. M.Sc. szakos mechatronikus hallgató. Konzulens: Dr. Kuczmann Miklós, Ph.D. egyetemi docens. Elektromágneses Terek Laboratórium

Marcsa Dániel. M.Sc. szakos mechatronikus hallgató. Konzulens: Dr. Kuczmann Miklós, Ph.D. egyetemi docens. Elektromágneses Terek Laboratórium Mágneses csapágy szimulációja végeselem-módszerrel Írta: Marcsa Dániel M.Sc. szakos mechatronikus hallgató Konzulens: Dr. Kuczmann Miklós, Ph.D. egyetemi docens Elektromágneses Terek Laboratórium Távközlési

Részletesebben

Néhány fontosabb folytonosidejű jel

Néhány fontosabb folytonosidejű jel Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Digitális adatátvitel analóg csatornán

Digitális adatátvitel analóg csatornán Digitális adatátvitel analóg csatornán A digitális modulácó feladata a digitálisan tárolt adatok nagy távolságú átvitele. Az adatátviteli csatorna a valóságban létez csavart érpár, koax, rádió csatorna,

Részletesebben

11. Orthogonal Frequency Division Multiplexing ( OFDM)

11. Orthogonal Frequency Division Multiplexing ( OFDM) 11. Orthogonal Frequency Division Multiplexing ( OFDM) Az OFDM (Orthogonal Frequency Division Multiplexing ) az egyik legszélesebb körben alkalmazott eljárás. Ez az eljárás az alapja a leggyakrabban alkalmazott

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

ű ú ü ü ü ü ü ü Á ü ú ü Á Á Á É Ö Ö Ö Á É É ü Á ú ű ú Í Á Í Á ű ü ű ü Ö ű ű É ú ű ú Á Á ű ü ú ű ú ü ú ú Ó ü ű ü ü Í ü Í Í Í Ó ú ú ú ú ú ú ü ú Í Ó ű ú ű Á Á ü ü ú É Í Ü ű ü ü Á ü ú Í É ú Ó Ö ú Ó Ó Ó Í ú

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

Csak felvételi vizsga: csak záróvizsga: közös vizsga: Villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar. 2015. január 5.

Csak felvételi vizsga: csak záróvizsga: közös vizsga: Villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar. 2015. január 5. Név, felvételi azonosító, Neptun-kód: VI pont(45) : Csak felvételi vizsga: csak záróvizsga: közös vizsga: Közös alapképzéses záróvizsga mesterképzés felvételi vizsga Villamosmérnöki szak BME Villamosmérnöki

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt.

Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt. Digitális mérőműszerek Digitális jelek mérése Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt. MIRŐL LESZ SZÓ? Mit mérjünk? Hogyan jelentkezik a minőségromlás digitális jel esetében?

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 5. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 5. óra Verzió: 1.1 Utolsó frissítés: 2011. április 12. 1/20 Tartalom I 1 Demók 2 Digitális multiméterek

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Digitális mérőműszerek

Digitális mérőműszerek KTE Szakmai nap, Tihany Digitális mérőműszerek Digitális jelek mérése Kaltenecker Zsolt KT-Electronic MIRŐL LESZ SZÓ? Mit mérjünk? Hogyan jelentkezik a minőségromlás digitális TV jel esetében? Milyen paraméterekkel

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

OKOSTELE. 0 Ft. szükséges. KÉPE. 0 Ft. 80 cm. 0 Ft. kezdőrész

OKOSTELE. 0 Ft. szükséges. KÉPE. 0 Ft. 80 cm. 0 Ft. kezdőrész 7 : 7 Ú f f f 7 ) ( : 7 f f ö ö f fö f f f ( : 7 7 ) f - 8 - - - 8 ) ( í f - - f -f f f ) ( : f - - f f f f í f f f ö f ö f - ú ö f - - f f: f ö ) f ( f ö f í - - f : ö ö - f f ú f ) 7 ( : ) 7 ( : Í Í

Részletesebben

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:

Részletesebben

LECROY OSZCILLOSZKÓP ALKALMAZÁSI LEHETŐSÉGEIRŐL I. ON THE APPLICATIONS OF THE OSCILLOSCOPE OF LECROY I. Bevezetés. Az oszcilloszkóp főbb jellemzői

LECROY OSZCILLOSZKÓP ALKALMAZÁSI LEHETŐSÉGEIRŐL I. ON THE APPLICATIONS OF THE OSCILLOSCOPE OF LECROY I. Bevezetés. Az oszcilloszkóp főbb jellemzői DR. ZSIGMOND GYULA FODOR LÁSZLÓ LECROY OSZCILLOSZKÓP ALKALMAZÁSI LEHETŐSÉGEIRŐL I. ONT THE APPLICATIONS OF THE OSCILLOSCOPE OF LECROY I. A cikk ismerteti egy LeCroy oszcilloszkóp néhány lehetséges alkalmazását

Részletesebben

1. Lineáris differenciaegyenletek

1. Lineáris differenciaegyenletek Lineáris differenciaegyenletek Tekintsük az alábbi egyenletet: f(n) af(n ) + bf(n + ), (K < n < N) f(k) d, f(n) d Keressük a megoldást f(n) α n alakban Így kajuk a következőket: α n aα n + bα n+ α a +

Részletesebben

MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június

MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június MIKROÖKONÓMIA I Készült a TÁMOP-412-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24 OKTATÁSI MINISZTÉRIUM M/D/13 Dolgozók gimnáziuma Dolgozók szakközépiskolája Szakmunkások szakközépiskolája intenzív tagozat) 003. május ) Határozza meg a következő egyenlet racionális gyökét! 1 3 4 + 5

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

MÉRŐERŐSÍTŐK EREDŐ FESZÜLTSÉGERŐSÍTÉSE

MÉRŐERŐSÍTŐK EREDŐ FESZÜLTSÉGERŐSÍTÉSE MÉŐEŐSÍTŐK MÉŐEŐSÍTŐK EEDŐ FESZÜLTSÉGEŐSÍTÉSE mérőerősítők nagy bemeneti impedanciájú, szimmetrikus bemenetű, változtatható erősítésű egységek, melyek szimmetrikus, kisértékű (általában egyen-) feszültségek

Részletesebben

Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc

Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc Karátson, János Horváth, Róbert Izsák, Ferenc numerikus módszerei számítógépes írta Karátson, János, Horváth, Róbert, és Izsák, Ferenc Publication date 2013 Szerzői jog 2013 Karátson János, Horváth Róbert,

Részletesebben

^ e-j-kt.h ( í U) + A 0

^ e-j-kt.h ( í U) + A 0 Vezetékes optikai átvitel rendszerparaméterei közti összefüggések* ÁRIK TIVADAR Távközlési Kutató Intézet. Bevezetés Napjaink egyik izgalmas és még megválaszolatlan kérdése a fénynek információhordozóként

Részletesebben