Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007"

Átírás

1 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007

2 Az Előadások Témái -hálók Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók / Keretrendszerek Játékok modellezése Bizonytalanság kezelése Grafikus modellek Tanuló rendszerek Szimulált kifűtés, Genetikus algoritmusok Neurális hálók Gépi tanulás Nemparametrikus módszerek

3 Adminisztra trívia Előadások honlapja csatol/mestint -hálók Vizsga Szóbeli (60%) + Gyakorlat (40%) (v) Előadás (60%) Laborgyakorlatok: 1 Clean vagy Prolog - dedukciós algoritmus 30% 2 C / C++ / C# / - genetikus algoritmus 10% vagy 3 Matlab - Neurális hálózatok vagy SVM 10%

4 Többrétegű Hálók I -hálók Az információ számok a bemeneti X rétegből a kimeneti Y réteg fele halad. Egy mintára kiszámítjuk a kimeneti értéket, minden neuron értékét kiszámítva. Feltételezzük, hogy minden adat és súly folytonos. X Y MLP NEM Bayes-háló A neurális hálók kapcsolatai kommunikációt, a Bayes-hálók kapcsolatai függőséget jelentenek.

5 Többrétegű Hálók II -hálók x 1 x 2 x 3 Y x 4 W h 1 h 2 h 3 h 4 h 5 MI az információ? V Formálisan : A neuronháló csúcsai az információt feldolgozzák. y ki def = f akt (x be ) Az élek: a csúcsok közötti kapcsolatok. x (i) be def = A fenti lépések ismétlődnek. j w ij x (j) ki definíció szerint x ki R k

6 Többrétegű Hálók II -hálók x 1 x 2 x 3 Y x 4 W h 1 h 2 h 3 h 4 h 5 MI az információ? V Formálisan : A neuronháló csúcsai az információt feldolgozzák. y ki def = f akt (x be ) Az élek: a csúcsok közötti kapcsolatok. x (i) be def = A fenti lépések ismétlődnek. j w ij x (j) ki definíció szerint x ki R k

7 Többrétegű Hálók II -hálók x 1 x 2 x 3 Y x 4 W h 1 h 2 h 3 h 4 h 5 MI az információ? V Formálisan : A neuronháló csúcsai az információt feldolgozzák. y ki def = f akt (x be ) Az élek: a csúcsok közötti kapcsolatok. x (i) be def = A fenti lépések ismétlődnek. j w ij x (j) ki definíció szerint x ki R k

8 Többrétegű Hálók II -hálók x 1 x 2 x 3 Y x 4 W h 1 h 2 h 3 h 4 h 5 MI az információ? V Formálisan : A neuronháló csúcsai az információt feldolgozzák. y ki def = f akt (x be ) Az élek: a csúcsok közötti kapcsolatok. x (i) be def = A fenti lépések ismétlődnek. j w ij x (j) ki definíció szerint x ki R k

9 Többrétegű Hálók III -hálók A bemenő aktivitás: y j = i w ijx i + b j. A perceptron tanulási algoritmushoz hasonlóan: előbb: x i = [x 1,..., x d, 1] T w j = [w 1,..., w d, b] T Univerzális approximáció A következő rendszer: f M (z w, b) = 1 M w m f (z b m ) m=1 f (z b) 0 b 1 2 f (z) = sgn(z) univerzális approximátor, azaz δ > 0 g L 2 (R d ) M, w, b ú.h. g f M (z w, b) L2 δ

10 Többrétegű Hálók IV -hálók Univerzális approximátor: bizonyítás a szint-halmazokon alapszik (lásd Lebesgue integrálás). Vizualizálás: Mintavételezés a MATLAB kód: %Generatorfuggvenyek f = inline( ((x>0)-0.5).*2 ); g = inline( 2./(1+exp(-2*x))-1 ); % komponensek szama mcomp = 10; % fv.-nyek szama nf = 6; % X tengely xx=-10:0.05:10; xd=repmat(xx,[mcomp,1]); % plot init clf; hf = subplot(1,2,1); set(gca,... Position,[ ],... YTick,[], XTick,[]); hold on; box on; ylim([-25,25]); set(gca,... Position,[ ],... YTick,[], XTick,[]); hold on; box on; ylim([-25,25]); w és b értékekből hg = subplot(1,2,2); % megjelenitesi stilus style = { b, r, k, m, c, g }; % F.v.-nyek generalasa for ii=1:nf; % egyutthatok ss=(2*rand(mcomp,1) -1)*6; ww=(2*rand(mcomp,1) -1)*6; bb=(2*rand(mcomp,1) -1)*10; bd=diag(bb)*ones(size(xd)); y_f = sum(diag(ww) * f(diag(ss)*xd + bd) y_g = sum(diag(ww) * g(diag(ss)*xd + bd) % megjelenites plot(hf,xx,y_f,style{ii}, LineWidth,3); plot(hg,xx,y_g,style{ii}, LineWidth,3); end; % nyomtatas print -depsc2 rand_fn.eps

11 Aktivációs függvények Aktivacios fugveny F. Derivaltja Aktivacios fuggveny F. Derivaltja hálók Véletlen függvények a függvényosztályokból:

12 Backpropagation I -hálók Nem bináris függvényt közelít. A bemeneti/kimeneti értékek folytonosak. f NN : R d R Folytonos esetben használható a négyzetes hibafüggvény: E(w NN ) = 1 2 N ( yn f NN (x n ) ) 2 n=1 ahol w NN a neuronháló paraméterei. Differenciálható akt. függvényeknél a gradiens szabály alkalmazható backpropagation szabály.

13 Backpropagation II -hálók Error back-propagation négyzetes hiba visszaterjesztése Egy adott tanulási halmazhoz és egy w NN neurális hálóhoz rendelt négyzetes hiba E(w NN ) = 1 2 N ( yn f NN (x n ) ) 2 n=1 akkor zéró, ha a neurális háló minden adatot jól közelít. Egy adott w (0) NN hálónál jobban közelítő hálót kapunk ha egy kis lépést végzünk a negatív gradiens irányába.

14 Backpropagation III -hálók Képletesen w (t+1) NN w (t) NN α E(w (t) NN ) w (t) NN w (t) NN α we(w (t) NN ) ahol α tanulási együttható; w E(w (t) NN ) a hiba gradiense (vektorok!). Kérdés: milyen α értékek megfelelőek? Kis lépések hosszú konvergencia. Nagy lépések nem konvergál. E(w) (2)(1) (0) w w

15 Backpropagation IV Differenciálás szabálya: f (g 1 (w i ),..., g k (w i )) = f (g 1,..., g k ) g j w i g g j w i j -hálók Neuronháló függvénye: ( ( ) ) y =, f j h i w ij, i h 1 h 2 w i1 w i2 f j ( i h i w ij ) w in h N wij E() = j fj E() wij f j ( i w ij h i )

16 Backpropagation V (folyt) wij E() = fj E( ) wij f j ( Nn=1 w ij h i ) = h i f j ( Nn=1 w ij h i ) fj E() -hálók A bemeneti érték és a kimeneti hiba szorzódnak. És fj E() = fj E Lánc-deriválás szerint: fj E() = k ( ) ) (..., g k j v jkf j,... v jk gk E()g k () f j () v j1... Az egyéni hibák súlyozottan összeadódnak. v jk

17 Backpropagation VI -hálók (folyt) Tehát: amíg a működésnél a jel előre terjed, a tanulás folyamán a hiba visszafele; a kimeneti réteg felől a háló bemenete felé terjed. Hiba-visszaterjesztés (BP) = azaz az osztópontok összegzővé alakulnak; = azaz az összegző csomópontok meg hiba-elosztóvá.

18 Backpropagation Összefoglaló -hálók A BP algoritmus a gradiens szabály alkalmazása a neuronhálókra; Az alap a négyzetes hiba; Egyszerűen implementálható; Nagyon sok alkalmazás; Hátrányok: Mivel gradiens, lassú nagyon sokáig tarthat a tanulás. Más módszerekkel állítani be a súlyokat: Newton, Konjugált gradiens. E(w) Nincs a becsült mennyiségre konfidencia valószínűségi módszerek szükségesek. (2)(1) (0) w w Rosenbrock

19 Backpropagation Példa I Feladat: keressük a h(x 1, x 2 ) = 100 `x 2 x (1 x1 ) 2 függvény minimumát a gradiens szabály használatával. -hálók 1 h() = 400(x 2 x 2 1 )x 1 + 2(x 1 1) 2 h() = 200(x 2 x 2 1 ) A második egyenlet x 2 = x 1 Behelyettesítve x 1 = 1. Induljunk a ( 1, 1) pontból.

20 Backpropagation Példa II -hálók BP szabály = gradiens általában nagyon lassú. Rosenbrock fv. optimizálás 2 Gradient Descent Scaled Conjugate Gradients Quasi Newton 1.5 Conjugate Gradients

21 M.L.P. Összefoglaló -hálók Neurális hálók fekete-doboz módszerek: 1 minden feladat megoldására potenciálisan alkalmazhatóak; 2 jó eredményekhez (majdnem mindig) kell egy kis igazítás a módszeren; 3 siker függ a tapasztalattól; 5 BackPropagation = gradiens 1 általában nagyon lassú; 2 fejlett módszerek: konjugált gradiens módszerek, quasi-newton, etc. gyorsítanak a konvergencián. 3 lokális optimumok elkerülésére többszálú optimizálás, pl. mintavételezéssel kijelölni a kezdőértékeket. 5 Érdemes tehát tovább tanulni.

22 D.O. I D.O. The organization of behavior -hálók A neurális moduláció alapelvei: Két neuronok közötti kapcsolat erőssége arányos a neuronok pre-, illetve poszt-szinaptikus tevékenységével; Azon neuron csoportok, melyek általában egyszerre tüzelnek, egy egységet alkotnak; (modularitás) A gondolkodás folyamata ezen sejt-csoportok szekvenciális aktivációja;

23 D.O. II -hálók Organization of Behavior: When an axon of cell A is near enough to excite B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A s efficiency, as one of the cells firing B, is increased. Neuroscience synapse szabály (p. 62) w ij = αa i a j Ahol a i, a j neuronok aktivitásai; az összekötő szinapszis erőssége; w ij α tanulási együttható.

24 Önszervező Hálók I -hálók Cél: Haykin: Neural Networks A comprehensive foundation, IEEE press, 1994 Struktúrák felfedezése az adatokban; Felügyelet nélküli működés önszervezés. Tanulái szabályok: lokális szabályok, melyek sok neuronra alkalmazva egy globális függvényt határoznak meg. Alapja (Turing 1952): Global order can arise from local interactions.

25 Önszervező Hálók II -hálók Önszervező rendszerek alapelvei (von der Marlsburg): A szinapszisok önmegerősítőek A pre-, illetve posztszinaptikus neuronok egyidejű aktivációja erősíti a szinapszist (lásd ). A szinapszisok versengenek az erőforrásokért A legerősebb szinapszis biztos, hogy túléli. Ez a többi rovására történik (winner-takes-all). A szinapszisok változásai koordináltak Egy szinapszis nem kódol robusztusan, ezért egy régió neuronjai majdnem azonos bemenet kimenet kapcsolatot kódolnak.

26 Önszervező Hálók III -hálók X Önszervező tanulás Struktúra-felismerés A vizuális rendszer önszervező: fejlődésének elején csak a felismerésre való képesség van jelen; a működés során egyes kép-csoportok klaszterek együttesen lesznek ábrázolva; A származtatott fogalmak ábrázolása a hierarchia egy felsőbb szintjén történik. Y Példa: neurális rendszer pixelcsoportokat keres. némely pixelcsoport gyakori; ezen csoportok rözgülnek a rendszerben. a felső szinten a rendszer címkézést végez.

27 -féle tanulás I -hálók tanulás - auto-asszociatív rendszerek A rendszer bemenete egy minta - nincs kimeneti jel. A kimeneten vagy: az eredeti mintát; vagy egy csoportosítást, sűrített ábrázolást szeretnénk visszakapni. csoportosításkor a kimeneti neuronok versengenek: ^y j = x i w ij i { 1 l = k y l = 0 l k ahol k = argmax ^y j j

28 -féle tanulás II y l = { 1 l = k 0 l k ahol k = argmax ^y j j Végleges kimeneti érték az argmin művelet után. Versengés a bemeneti mintákért. -hálók y 1 y 2 y 3 y 4 y 5 W x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 Feltételezve egy kezdő W véletlen súlyvektort, a v minta bemutatása után csak a w4 súlyok változnak a kompetitív tanulás során. v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9

29 -féle tanulás II y l = { 1 l = k 0 l k ahol k = argmax ^y j j Végleges kimeneti érték az argmin művelet után. Versengés a bemeneti mintákért. -hálók y 1 y 2 y 3 y 4 y 5 W x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 Feltételezve egy kezdő W véletlen súlyvektort, a v minta bemutatása után csak a w4 súlyok változnak a kompetitív tanulás során. v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9

30 -féle tanulás III w ij = αx i y j minden y k neuron attraktorként működik. receptív mezők alakulnak ki Y Y 2 1 -hálók α 0 tanulási mód, pl. Y 4 Y 3 Y 5 α t = K t X 2 az asszociatív háló konvergál (lásd). X 1 ami nincs: kapcsolatok a kimeneti neuronok között: Kohonen-hálók

31 Kohonen hálók I -hálók Teuvo Kohonen Since the 1960 s, introduced several new concepts to neural computing: theories of distributed associative memory and optimal associative mappings, the self-organizing feature maps (SOMs), the learning vector quantization (LVQ),... the Adaptive-Subspace SOM (ASSOM) in which invariant-feature filters emerge... A new SOM architecture WEBSOM has been developed in his laboratory for exploratory textual data mining. Wikipedia link

32 Kohonen hálók II -hálók Jellemzők: kétrétegű háló, egy bemeneti és egy kimeneti réteggel; kompetitív háló: csak egy neuron lesz aktív; (mint előbb) (mint előbb) a kimeneti rétegen topológia van értelmezve (ÚJ)

33 Kohonen hálók Topológia Topológia szomszédságot jelent -hálók segít a tanulásban: a szomszédok is tanulnak kevésbé... értelmezhető eredmény: a szomszédok aktivitása is n 14 n 13 n 24 n 23 n 34 n 33 n 44 n 43 aktivitása alapján pontosabb n n 22 n 32 n 42 rekonstrukció a kimeneti n ij neuronok megcímkézhetőek: n 11 n 21 n 31 n 41 Kohonen:... fonéma annotáció

34 Kohonen hálók Tanulás I -hálók Az algoritmus iteratív: 1 minták egyenként; a t-edik időpontban legyen x t 2 kiszámtítjuk a kimeneti neuronok aktivitását: y j = i w ij x i (t) = W x(t) 3 megkeressük a nyertes kimeneti neuront: k def = argmax j y j 4 Az összes szomszédos neuron súlyát módosítjuk: w ij (t + 1) = w ij (t) + α η(j, k)x i (t) Normáljuk a súlyokat wj wj / wj 5 GOTO 1

35 Kohonen hálók Tanulás II -hálók Szavakban: a nyertes neuron aktivizálódik ; A nyertes neuront és szomszédait közelebb hozzuk a bemenethez; Mindegyik neuron specializálódik a mintákra: arra lesz a legnagyobb a kimenete;

36 Kohonen hálók Tanulás II -hálók Szavakban: a nyertes neuron aktivizálódik ; A nyertes neuront és szomszédait közelebb hozzuk a bemenethez; Mindegyik neuron specializálódik a mintákra: arra lesz a legnagyobb a kimenete; x t

37 Kohonen hálók Tanulás II -hálók Szavakban: a nyertes neuron aktivizálódik ; A nyertes neuront és szomszédait közelebb hozzuk a bemenethez; Mindegyik neuron specializálódik a mintákra: arra lesz a legnagyobb a kimenete; x t

38 Kohonen hálók Tanulás III x t -hálók Eredmény: a neuronok elhelyezkedését a bemeneti minták sűrűség függvénye határozza meg több neuron kerül a sűrűbb régiókba.

39 Kohonen hálók Tanulás III x t -hálók Eredmény: a neuronok elhelyezkedését a bemeneti minták sűrűség függvénye határozza meg több neuron kerül a sűrűbb régiókba.

40 Önszervező rendszerek Összefoglaló Az adatokhoz nincs kimeneti érték rendelve; A rendszer általában az adatok egy csoportosítását valósítja meg; -hálók Ez implicit módon a bemeneti adatok terének a felosztását jelenti; Zajszűrés/Sűrítés: a teljes bemeneti adatok helyett a hozzá tartozó osztály kódját küldjük.

41 Példa Térképészgép -hálók Walter Bischof, Jun Zhou (U. Alberta) és Terry Caelli (Australian N.U) a kartográfiát (részben) automatizáló programmal álltak elő. A program embertől tanulja, miként fedezzen fel és azonosítson légi felvételeken korábban nem szereplő vagy megváltozott elemeket: utakat, vasutakat, épületeket. Ágens portál Walter Bischof projektek Működése: Egyre többet tud meg okosabb lesz. Kellő mennyiségű gyakorlás után az operátor rábízza a munkát. Bayes-féle következtetést használ: korábbi mérések alapján végez új becsléseket. A legjobbakból állapítja meg az adott országút soron következő pontjait, és ezt mindaddig folytatja, amíg az új elemek pozíciója megfelel az elvárásoknak.

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 288/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók

Részletesebben

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I. : Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 20/2011 Az Előadások Témái 226/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/6 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 46/6 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók

Részletesebben

Intelligens Rendszerek Elmélete

Intelligens Rendszerek Elmélete Intelligens Rendszerek Elmélete Dr. Kutor László : Mesterséges neurális hálózatok felügyelt tanítása hiba visszateresztő Back error Propagation algoritmussal Versengéses tanulás http://mobil.nik.bmf.hu/tantargyak/ire.html

Részletesebben

Neurális hálózatok bemutató

Neurális hálózatok bemutató Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái : mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók

Részletesebben

Hibadetektáló rendszer légtechnikai berendezések számára

Hibadetektáló rendszer légtechnikai berendezések számára Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő

Részletesebben

Az idegrendszeri memória modelljei

Az idegrendszeri memória modelljei Az idegrendszeri memória modelljei A memória típusai Rövidtávú Working memory - az aktuális feladat Vizuális, auditórikus,... Prefrontális cortex, szenzorikus területek Kapacitás: 7 +-2 minta Hosszútávú

Részletesebben

Teljesen elosztott adatbányászat alprojekt

Teljesen elosztott adatbányászat alprojekt Teljesen elosztott adatbányászat alprojekt Hegedűs István, Ormándi Róbert, Jelasity Márk Big Data jelenség Big Data jelenség Exponenciális növekedés a(z): okos eszközök használatában, és a szenzor- és

Részletesebben

Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok

Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok Zrínyi Miklós Gimnázium Művészet és tudomány napja Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok 10/9/2009 Dr. Viharos Zsolt János Elsősorban volt Zrínyis diák Tudományos főmunkatárs

Részletesebben

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,

Részletesebben

NEURÁLIS HÁLÓZATOK 1. eloadás 1

NEURÁLIS HÁLÓZATOK 1. eloadás 1 NEURÁLIS HÁLÓZATOKH 1. eloadás 1 Biológiai elozmények nyek: az agy Az agy az idegrendszerunk egyik legfontosabb része: - képes adatokat tárolni, - gyorsan és hatékonyan mukodik, - nagy a megbízhatósága,

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 146/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák

Részletesebben

Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában

Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában Budapesti Műszaki és Gazdaságtudományi Egyetem Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában Cselkó Richárd 2009. október. 15. Az előadás fő témái Soft Computing technikák alakalmazásának

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók

Részletesebben

Kovács Ernő 1, Füvesi Viktor 2

Kovács Ernő 1, Füvesi Viktor 2 Kovács Ernő 1, Füvesi Viktor 2 1 Miskolci Egyetem, Elektrotechnikai - Elektronikai Tanszék 2 Miskolci Egyetem, Alkalmazott Földtudományi Kutatóintézet 1 HU-3515 Miskolc-Egyetemváros 2 HU-3515 Miskolc-Egyetemváros,

Részletesebben

Neurális hálózatok MATLAB programcsomagban

Neurális hálózatok MATLAB programcsomagban Debreceni Egyetem Informatikai Kar Neurális hálózatok MATLAB programcsomagban Témavezető: Dr. Fazekas István Egyetemi tanár Készítette: Horváth József Programtervező informatikus Debrecen 2011 1 Tartalomjegyzék

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Gépi tanulás a gyakorlatban. Bevezetés

Gépi tanulás a gyakorlatban. Bevezetés Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis

Részletesebben

SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával

SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával SAT probléma kielégíthetőségének vizsgálata masszív parallel mesterséges neurális hálózat alkalmazásával Tajti Tibor, Bíró Csaba, Kusper Gábor {gkusper, birocs, tajti}@aries.ektf.hu Eszterházy Károly Főiskola

Részletesebben

A MESTERSÉGES NEURONHÁLÓZATOK BEVEZETÉSE AZ OKTATÁSBA A GAMF-ON

A MESTERSÉGES NEURONHÁLÓZATOK BEVEZETÉSE AZ OKTATÁSBA A GAMF-ON A MESTERSÉGES NEURONHÁLÓZATOK BEVEZETÉSE AZ OKTATÁSBA A GAMF-ON Pintér István, pinter@gandalf.gamf.hu Nagy Zoltán Gépipari és Automatizálási Mûszaki Fõiskola, Informatika Tanszék Gépipari és Automatizálási

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Modellkiválasztás és struktúrák tanulása

Modellkiválasztás és struktúrák tanulása Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális

Részletesebben

The nontrivial extraction of implicit, previously unknown, and potentially useful information from data.

The nontrivial extraction of implicit, previously unknown, and potentially useful information from data. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Adatelemzés intelligens módszerekkel Hullám Gábor Adatelemzés hagyományos megközelítésben I. Megválaszolandó

Részletesebben

KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM

KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM Kernel módszerek idősor előrejelzés Mérési útmutató Készítette: Engedy István (engedy@mit.bme.hu) Méréstechnika és Információs Rendszerek Tanszék Budapesti Műszaki

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 169/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák

Részletesebben

CARE. Biztonságos. otthonok idős embereknek CARE. Biztonságos otthonok idős embereknek 2010-09-02. Dr. Vajda Ferenc Egyetemi docens

CARE. Biztonságos. otthonok idős embereknek CARE. Biztonságos otthonok idős embereknek 2010-09-02. Dr. Vajda Ferenc Egyetemi docens CARE Biztonságos CARE Biztonságos otthonok idős embereknek otthonok idős embereknek 2010-09-02 Dr. Vajda Ferenc Egyetemi docens 3D Érzékelés és Mobilrobotika kutatócsoport Budapesti Műszaki és Gazdaságtudományi

Részletesebben

Megerősítéses tanulás 7. előadás

Megerősítéses tanulás 7. előadás Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/33 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 110/33 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus

Részletesebben

Debreceni Egyetem Informatikai Kar. Fazekas István. Neurális hálózatok

Debreceni Egyetem Informatikai Kar. Fazekas István. Neurális hálózatok Debreceni Egyetem Informatikai Kar Fazekas István Neurális hálózatok Debrecen, 2013 Szerző: Dr. Fazekas István egyetemi tanár Bíráló: Dr. Karácsony Zsolt egyetemi docens A tananyag a TÁMOP-4.1.2.A/1-11/1-2011-0103

Részletesebben

Gépi tanulás a Rapidminer programmal. Stubendek Attila

Gépi tanulás a Rapidminer programmal. Stubendek Attila Gépi tanulás a Rapidminer programmal Stubendek Attila Rapidminer letöltése Google: download rapidminer Rendszer kiválasztása (iskolai gépeken Other Systems java) Kicsomagolás lib/rapidminer.jar elindítása

Részletesebben

Mesterséges Intelligencia I.

Mesterséges Intelligencia I. Mesterséges Intelligencia I. 10. elıadás (2008. november 10.) Készítette: Romhányi Anita (ROANAAT.SZE) - 1 - Statisztikai tanulás (Megfigyelések alapján történı bizonytalan következetésnek tekintjük a

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

Számítógéppel irányított rendszerek elmélete. A rendszer- és irányításelmélet legfontosabb részterületei. Hangos Katalin. Budapest

Számítógéppel irányított rendszerek elmélete. A rendszer- és irányításelmélet legfontosabb részterületei. Hangos Katalin. Budapest CCS-10 p. 1/1 Számítógéppel irányított rendszerek elmélete A rendszer- és irányításelmélet legfontosabb részterületei Hangos Katalin Villamosmérnöki és Információs Rendszerek Tanszék Folyamatirányítási

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

Tisztelt Hallgatók! Jó tanulást kívánok, üdvözlettel: Kutor László

Tisztelt Hallgatók! Jó tanulást kívánok, üdvözlettel: Kutor László Tisztelt Hallgatók! Az alábbi anyaga arra ó, hogy lehessen tudni, mi tartozik egy-egy kérdéshez. Ami itt olvasható, az a éghegy csúcsa. Ha alapos tudást akarnak, a éghegy alát önállóan kell hozzá gyűteniük.

Részletesebben

A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere

A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű optimálásának általános és robosztus módszere A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere Kaposvári Egyetem, Informatika Tanszék I. Kaposvári Gazdaságtudományi Konferencia

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

"A tízezer mérföldes utazás is egyetlen lépéssel kezdődik."

A tízezer mérföldes utazás is egyetlen lépéssel kezdődik. "A tízezert mérföldes utazás is egyetlen lépéssel kezdődik dik." A BINB INSYS Előadók: Kornafeld Ádám SYS PROJEKT Ádám MTA SZTAKI kadam@sztaki.hu Kovács Attila ELTE IK attila@compalg.inf.elte.hu Társszerzők:

Részletesebben

AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA

AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA Kovács Ernő 1, Füvesi Viktor 2 1 Egyetemi docens, PhD; 2 tudományos segédmunkatárs 1 Eletrotechnikai és Elektronikai Tanszék, Miskolci Egyetem

Részletesebben

Információ megjelenítés Alapok

Információ megjelenítés Alapok Információ megjelenítés Alapok Szavak és képek Duális kódolás elmélete (Paivio) Szerkezetek Vizuális Vizuális Rendszer Képi információ Imagens Nem-verbális válasz Szóbeli Halló Rendszer Információ beszédből

Részletesebben

Fogalom értelmezések I.

Fogalom értelmezések I. Fogalom értelmezések I. Intelligencia értelmezések Köznapi értelmezése: értelem, ész, felfogó képesség, értelmesség, műveltség Boring szerint: amit az intelligencia teszt mér Wechsler szerint: Az intelligencia

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 9. előadás: Paraméteres iterációk, relaxációs módszerek Lócsi Levente ELTE IK Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció

Részletesebben

Integrált gyártórendszerek. Ágens technológia - ágens rendszer létrehozása Gyakorlat

Integrált gyártórendszerek. Ágens technológia - ágens rendszer létrehozása Gyakorlat IGYR p. 1/17 Integrált gyártórendszerek Ágens technológia - ágens rendszer létrehozása Gyakorlat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu IGYR

Részletesebben

Multimédia anyagok szerkesztése kurzus hatékonyságnövelése web alapú projekt módszer alkalmazásával

Multimédia anyagok szerkesztése kurzus hatékonyságnövelése web alapú projekt módszer alkalmazásával Multimédia anyagok szerkesztése kurzus hatékonyságnövelése web alapú projekt módszer alkalmazásával Béres Ilona Heller Farkas Főiskola Turcsányi-Szabó Márta ELTE-IK Média és Oktatásinformatika Tanszék

Részletesebben

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával

Részletesebben

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus

Részletesebben

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA

BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA BESZÉDTUDOMÁNY Az emberi kommunikáció egyik leggyakrabban használt eszköze a nyelv. A nyelv hangzó változta, a beszéd a nyelvi kommunikáció

Részletesebben

Haszongépj. Németh. Huba. és s Fejlesztési Budapest. Kutatási. Knorr-Bremse. 2004. November 17. Knorr-Bremse 19.11.

Haszongépj. Németh. Huba. és s Fejlesztési Budapest. Kutatási. Knorr-Bremse. 2004. November 17. Knorr-Bremse 19.11. Haszongépj pjármű fékrendszer intelligens vezérl rlése Németh Huba Knorr-Bremse Kutatási és s Fejlesztési si Központ, Budapest 2004. November 17. Knorr-Bremse 19.11.2004 Huba Németh 1 Tartalom Motiváció

Részletesebben

2. Elméleti összefoglaló

2. Elméleti összefoglaló 2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges

Részletesebben

Kibernetika korábbi vizsga zárthelyi dolgozatokból válogatott tesztkérdések Figyelem! Az alábbi tesztek csak mintául szolgálnak a tesztkérdések megoldásához, azaz a bemagolásuk nem jelenti a tananyag elsajátítását

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

Egy csodálatos elme modellje

Egy csodálatos elme modellje Egy csodálatos elme modellje A beteg és az egészséges agy információfeldolgozási struktúrái Bányai Mihály1, Vaibhav Diwadkar2, Érdi Péter1 1 RMKI, Biofizikai osztály 2 Wayne State University, Detroit,

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 063 ÉRETTSÉGI VIZSGA 006. február. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Gráfkeresések A globális munkaterületén a startcsúcsból kiinduló már feltárt utak találhatók (ez az ún. kereső gráf), külön megjelölve az utak azon

Gráfkeresések A globális munkaterületén a startcsúcsból kiinduló már feltárt utak találhatók (ez az ún. kereső gráf), külön megjelölve az utak azon ÖSSZEFOGLALÁS Az MI az intelligens gondolkodás számítógépes reprodukálása szempontjából hasznos elveket, módszereket, technikákat kutatja, fejleszti, rendszerezi. Miről ismerhető fel az MI? Megoldandó

Részletesebben

SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR RENDSZERELEMZÉS I.

SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR RENDSZERELEMZÉS I. SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR RENDSZERELEMZÉS I. Minden jog fenntartva, beleértve a sokszorosítás és a mű bővített, vagy rövidített változatának kiadási jogát is. A Szerző előzetes írásbeli

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Kalman-féle rendszer definíció 2006.09.09. 1

Kalman-féle rendszer definíció 2006.09.09. 1 Kalman-féle rendszer definíció 2006.09.09. 1 Kálmán Rudolf Rudolf Emil Kalman was born in Budapest, Hungary, on May 19, 1930. He received the bachelor's degree (S.B.) and the master's degree (S.M.) in

Részletesebben

Az alállomási kezelést támogató szakértői funkciók

Az alállomási kezelést támogató szakértői funkciók Az alállomási kezelést támogató szakértői funkciók dr. Kovács Attila Szakértői rendszerek Emberi szakértő kompetenciájával, tudásával rendelkező rendszer Jellemzői: Számítási műveletek helyett logikai

Részletesebben

Adatelemzés és adatbányászat MSc

Adatelemzés és adatbányászat MSc Adatelemzés és adatbányászat MSc 12. téma Klaszterezési módszerek Klaszterezés célja Adott az objektumok, tulajdonságaik együttese. Az objektumok között hasonlóságot és különbözőséget fedezhetünk fel.

Részletesebben

A forrás pontos megnevezésének elmulasztása valamennyi hivatkozásban szerzői jogsértés (plágium).

A forrás pontos megnevezésének elmulasztása valamennyi hivatkozásban szerzői jogsértés (plágium). A szakirodalmi idézések és hivatkozások rendszere és megadásuk szabályai A bibliográfia legfontosabb szabályai Fogalma: Bibliográfiai hivatkozáson azoknak a pontos és kellően részletezett adatoknak az

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére

Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére Bányai Mihály! MTA Wigner FK! Computational Systems Neuroscience Lab!! KOKI-VIK szeminárium! 2014. február 11. Struktúra és funkció

Részletesebben

Mesterséges Intelligencia Elektronikus Almanach. Konzorciumi partnerek

Mesterséges Intelligencia Elektronikus Almanach. Konzorciumi partnerek Mesterséges Intelligencia Elektronikus Almanach Konzorciumi partnerek 1 Konzorcium Budpesti Mőszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek

Részletesebben

Számítógépes programok alkalmazása az analízisben

Számítógépes programok alkalmazása az analízisben Eötvös Loránd Tudományegyetem Természettudományi Kar Számítógépes programok alkalmazása az analízisben Szakdolgozat Csillagvári Dániel Matematika BSc, elemző szakirány Témavezető: Gémes Margit Analízis

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület

Részletesebben

A 9001:2015 a kockázatközpontú megközelítést követi

A 9001:2015 a kockázatközpontú megközelítést követi A 9001:2015 a kockázatközpontú megközelítést követi Tartalom n Kockázat vs. megelőzés n A kockázat fogalma n Hol található a kockázat az új szabványban? n Kritikus megjegyzések n Körlevél n Megvalósítás

Részletesebben

Intelligens Rendszerek Elmélete

Intelligens Rendszerek Elmélete Intellgens Rendszerek Elmélete Dr. Kutor László A mesterséges neuráls hálózatok alapfogalma és meghatározó eleme http://mobl.nk.bmf.hu/tantargyak/re.html Logn név: re jelszó: IRE07 IRE 7/1 Neuráls hálózatok

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. tanulmányokhoz TÁVOKTATÁS 2015/2016-os tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika I. (Analízis) Tanszék: Módszertani

Részletesebben

Állandó tartós halhatatlan, könnyő átvinni reprodukálni,(oktatni a szakértıi rendszerhasználatát kell)

Állandó tartós halhatatlan, könnyő átvinni reprodukálni,(oktatni a szakértıi rendszerhasználatát kell) 90. Mi az MI program, tudásalapú rendszer, szakértıi rendszer és kapcsolatuk? MI program Olyan programok, amik a beérkezı információkat valamilyen logikus módszerrel képesek feldolgozni, még akkor is,

Részletesebben

Szoftverminőségbiztosítás

Szoftverminőségbiztosítás NGB_IN003_1 SZE 2014-15/2 (8) Szoftverminőségbiztosítás Szoftvertesztelési folyamat (folyt.) Szoftvertesztelési ráfordítások (Perry 1995) Tesztelésre fordítódik a projekt költségvetés 24%-a a projekt menedzsment

Részletesebben

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

Egyenáramú szervomotor modellezése

Egyenáramú szervomotor modellezése Egyenáramú szervomotor modellezése. A gyakorlat élja: Az egyenáramú szervomotor mködését leíró modell meghatározása. A modell valdálása számításokkal és szotverejlesztéssel katalógsadatok alapján.. Elmélet

Részletesebben

Készítette: Trosztel Mátyás Konzulens: Hajós Gergely

Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Monte Carlo Markov Chain MCMC során egy megfelelően konstruált Markov-lánc segítségével mintákat generálunk. Ezek eloszlása követi a céleloszlást. A

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

8. Pontmegfeleltetések

8. Pontmegfeleltetések 8. Pontmegfeleltetések Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Példa: panoráma kép készítés 1. Jellemzőpontok detektálása mindkét

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

A MIDAS_HU eredményeinek elemzése, továbbfejlesztési javaslatok HORVÁTH GYULA 2015. MÁJUS 28.

A MIDAS_HU eredményeinek elemzése, továbbfejlesztési javaslatok HORVÁTH GYULA 2015. MÁJUS 28. A MIDAS_HU eredményeinek elemzése, továbbfejlesztési javaslatok HORVÁTH GYULA 2015. MÁJUS 28. 1 A projekt céljai Az Unió ajánlatkérése és az ONYF pályázata a következő célokat tűzte ki: Preparation of

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

Kinek szól a könyv? A könyv témája A könyv felépítése Mire van szükség a könyv használatához? A könyvben használt jelölések. 1. Mi a programozás?

Kinek szól a könyv? A könyv témája A könyv felépítése Mire van szükség a könyv használatához? A könyvben használt jelölések. 1. Mi a programozás? Bevezetés Kinek szól a könyv? A könyv témája A könyv felépítése Mire van szükség a könyv használatához? A könyvben használt jelölések Forráskód Hibajegyzék p2p.wrox.com xiii xiii xiv xiv xvi xvii xviii

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/364

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/364 1/364 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 1 Tudnivalók Bevezető Fejlődés Könyvészet Eredmények 2/364 Bevezető: mi a mesterséges intelligencia...

Részletesebben

Költségbecslési módszerek a szerszámgyártásban. Tartalom. CEE-Product Groups. Költségbecslés. A költségbecslés szerepe. Dr.

Költségbecslési módszerek a szerszámgyártásban. Tartalom. CEE-Product Groups. Költségbecslés. A költségbecslés szerepe. Dr. Gépgyártástechnológia Tsz Költségbecslési módszerek a szerszámgyártásban Szerszámgyártók Magyarországi Szövetsége 2003. december 11. 1 2 CEE-Product Groups Tartalom 1. Költségbecslési módszerek 2. MoldCoster

Részletesebben

APB mini PLC és SH-300 univerzális kijelző Általános használati útmutató

APB mini PLC és SH-300 univerzális kijelző Általános használati útmutató APB mini PLC és SH-300 univerzális kijelző Általános használati útmutató Fizikai összeköttetési lehetőségek: RS232 APB-232 RS485 A APB-EXPMC B SH-300 program beállítások: Kiválasztjuk a megfelelő PLC-t.

Részletesebben

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30.

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. 15. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. Edényrendezés Tegyük fel, hogy tudjuk, hogy a bemenő elemek (A[1..n] elemei) egy m elemű U halmazból kerülnek ki, pl. " A[i]-re

Részletesebben

HÁLÓZATOK AZ ISKOLÁBAN NETWORKS IN SCHOOL CLASSES

HÁLÓZATOK AZ ISKOLÁBAN NETWORKS IN SCHOOL CLASSES HÁLÓZATOK AZ ISKOLÁBAN NETWORKS IN SCHOOL CLASSES Cseh Gyopárka Báthory István Elméleti Líceum ÖSSZEFOGLALÁS Az osztályokban kialakuló klaszterképződést (csoportosulást) vizsgáltuk és annak a lehetőségét,

Részletesebben

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27. Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

A fordítóprogramok szerkezete. Kódoptimalizálás. A kódoptimalizálás célja. A szintézis menete valójában. Kódoptimalizálási lépések osztályozása

A fordítóprogramok szerkezete. Kódoptimalizálás. A kódoptimalizálás célja. A szintézis menete valójában. Kódoptimalizálási lépések osztályozása A fordítóprogramok szerkezete Forrásprogram Forrás-kezelő (source handler) Kódoptimalizálás Fordítóprogramok előadás (A,C,T szakirány) Lexikális elemző (scanner) Szintaktikus elemző (parser) Szemantikus

Részletesebben

A szoftver tesztelés alapjai

A szoftver tesztelés alapjai Szoftverellenőrzési technikák A szoftver tesztelés alapjai Micskei Zoltán, Majzik István http://www.inf.mit.bme.hu/ 1 Hol tartunk a félévi anyagban? Követelményspecifikáció ellenőrzése Ellenőrzések a tervezési

Részletesebben

Analóg-digitál átalakítók (A/D konverterek)

Analóg-digitál átalakítók (A/D konverterek) 9. Laboratóriumi gyakorlat Analóg-digitál átalakítók (A/D konverterek) 1. A gyakorlat célja: Bemutatjuk egy sorozatos közelítés elvén működő A/D átalakító tömbvázlatát és elvi kapcsolási rajzát. Tanulmányozzuk

Részletesebben