Programozási tételek. Dr. Iványi Péter

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Programozási tételek. Dr. Iványi Péter"

Átírás

1 Programozási tételek Dr. Iványi Péter 1

2 Programozási tételek A programozási tételek olyan általános algoritmusok, melyekkel programozás során gyakran találkozunk. Az algoritmusok általában számsorozatokkal, tömbökkel foglalkoznak, legyen tehát T egy N elemű tömb (1..N) 2

3 Összegzés Elmúlt hónap bevásárlásai, pl. 30-szor vásároltunk Mennyit költöttünk? Számológép segítségével Lenullázom a számológépet Következő lépéseket 30-szor végezzük Előveszem a számlát Hozzáadom az összeghez Számológép kijelzi az összeget 3

4 Összegzés, megoldás Változók: i, összeg /* gép nullázása*/ Összeg = 0 /* 30-szor hajtsuk végre */ Ciklus i = 1-től 30-ig /* számla hozzáadás az összeghez */ összeg = összeg + számla(i) /* összeg kijelzése */ Ki: összeg 4

5 Bejövő adatok: Összegzés, adatok Hány adat van? (Számlák száma) Maguk az adatok (Számlán szereplő értékek) Végzendő művelet (számlák összeadása) Kimenő adat összeg 5

6 Összegzés, formálisan Adott egy "N" elemű "T" sorozat. Ezen sorozat elemeinek összegét, szorzatát, unióját stb. kell előállítani. s:= F0 Ciklus i:=1...n s:=f(s,t[i]) Ki: s 6

7 Összegzés, feladatok Egy tömb elemeinek összegzése s:=0 Ciklus i:=1...n s:=s+t[i] Ki: s 7

8 Összegzés, feladatok Számoljuk ki az első N szám összegét s:=0 Ciklus i:=1...n s:=s+i Ki: s 8

9 Összegzés, feladatok Számoljuk ki az első N szám szorzatát s:=1 Ciklus i:=1...n s:=s*i Ki: s 9

10 Összegzés, feladatok Számoljuk ki egy tanuló év végi átlagát, az osztályzatai ismeretében Osztályzatok egy tömbben vannak s:=0 Ciklus i:=1...n s:=s+t[i] atlag:=s/n Ki: atlag 10

11 Számlálás Egy 20 betűs mondatban hány darab e betű van? Kezdetben egy e betű sincs Minden karaktert megnézünk Ha találunk egy e betűt, húzzunk egy vonalat egy lapra 11

12 Számlálás, megoldás Változók: i, db db := 0 Ciklus i := 1-től 20-ig ha mondat[i] == e db := db + 1 Ki: db 12

13 Bemenő adatok Mondat betűinek száma Számlálás, adatok A betűket tartalmazó tömb Műveletek A feltétel, milyen betűket számlálunk Művelet ami a feltételt kielégítő tömb elemekhez 1-et, a többihez 0-át rendel Kimenő adat A darabszám 13

14 Számlálás, formálisan Rendelkezésünkre áll egy N elemű sorozat és egy, a sorozat elemein értelmezett F tulajdonság. Az a feladatunk, hogy az F tulajdonsággal rendelkező elemeket számoljuk meg. db:= 0 Ciklus i:=1...n ha F(T[i]) akkor db = db + 1 Ki: db 14

15 Számlálás, feladatok Megszámolja, hogy a tömbben hány negatív szám van s:=0 Ciklus i:=1..n Ha T[i]<0 akkor s:=s+1 Ki: s 15

16 Számlálás, feladatok A múlt hónapban minden nap vásároltam. Hányszor vásároltam 5000 Ft felett? db:=0 Ciklus i:=1..30 /* 30 nap */ Ha ár[i]>5000 akkor db:=db+1 Ki: db 16

17 Számlálás, feladatok Egy kutyaversenyen kizárják azokat a kutyákat, akik a verseny első fordulójában 20 pont alatt teljesítettek. Hány ilyen kutya volt? db:=0 Ciklus i:=1..n Ha kutya[i]<20 akkor db:=db+1 Ki: db 17

18 Számlálás, feladatok Számoljuk meg, hogy hány B betűvel kezdődő szó van egy szavakból álló listában! db:=0 Ciklus i:=1..n szó = szavak(i) Ha szó[1]== B akkor db:=db+1 Ki: db 18

19 Eldöntés Egy tanuló érdemjegyei alapján szeretnénk eldönteni, hogy kitűnő-e, vagy sem. Kétféle megoldás: 1. Ha a jegyei közt van olyan, ami nem ötös, akkor nem kitűnő. 2. Ha minden jegye ötös, akkor kitűnő. 19

20 Eldöntés 1. Nézzük végig a jegyeket, először az elsőt, majd sorra a többit és ellenőrizzűk, hogy ötös-e. Ha találtunk olyat, ami nem ötös, akkor nem kell megnézni a további jegyeket, mert van nem ötös osztályzat, azaz nem kitűnő 20

21 Eldöntés 1., megoldás van=nem i:=1 /* első jeggyel kezdjük */ Ciklus amíg i <= tantárgy és jegy[i] == 5 i:=i+1 /* végignézzük a jegyeket */ van = (i<=n) ki: van 21

22 Bemeneti adat: Eldöntés, adatok A tantárgyak száma Jegyek tömbje Egy tulajdonság a döntéshez Kimeneti adat: Egy logikai változó, hogy van-e 22

23 Eldöntés 1., formálisan Adott egy N elemű sorozat és egy, a sorozat elemein értelmezett Ftulajdonság.A feladat annak az eldöntése, hogy létezik-e ilyen (Ftulajdonságú) elem. 23

24 Eldöntés 1., formálisan i:= 1 Ciklus amíg i<=n és nem F(T[i]) i = i + 1 van = (i<=n) ki: van Fontos feltételek sorrendje!! 24

25 Eldöntés 2. Nézzük végig a jegyeket, először az elsőt, majd sorra a többit és ellenőrizzűk, hogy ötös-e. Ha minden elemet megvizsgáltunk akkor kitűnő 25

26 Eldöntés 2., megoldás mind=nem i:=1 /* első jeggyel kezdjük */ Ciklus amíg i <= tantárgy és jegy[i] == 5 i:=i+1 /* végignézzük a jegyeket */ mind = (i>n) ki: mind 26

27 Eldöntés 2., formálisan i:= 1 Ciklus amíg i<=n és nem F(T[i]) i = i + 1 mind = (i>n) ki: mind 27

28 Eldöntés, feladatok A múlt hónapban minden nap megmértük a Duna hőmérsékletét. Döntsük el, hogy a víz hőmérséklete folyamatosan emelkedett-e? i:= 1 Ciklus amíg i<n és ho[i] < ho[i+1] i = i + 1 mind = (i >= N) ki: mind 28

29 Eldöntés, feladatok A múlt héten minden nap vásároltunk. Volt-e olyan nap, hogy pontosan 2000 Ft-t fizettünk? i:= 1 Ciklus amíg i<=n és nem ar[i] == 2000 i = i + 1 van = (i <= N) ki: van 29

30 Kiválasztás Egy osztály matematika dolgozatai közül válasszuk ki az egyik ötös dolgozatot. Nézzük végig a dolgozatokat, először az elsőt, majd sorra a többit, amíg nem találunk ötös dolgozatot Amikor megtaláltunk egy ötöst, akkor ő lesz a kiválasztott. 30

31 Kiválasztás, megoldás i:=1 /* első jeggyel kezdjük */ Ciklus amíg i <= dolgozatok és jegy[i]!= 5 i:=i+1 /* végignézzük a jegyeket */ sorszám = i 31

32 Bemeneti adatok: Kiválasztás, adatok Dolgozatok száma A jegyek tömbje Egy tulajdonság, mely minden dolgozatra alkalmazható FONTOS: van legalább egy 5-ös dolgozat!!! Kimenet A dolgozat sorszáma 32

33 Kiválasztás, formálisan Adott egy N elemű sorozat és egy, a sorozat elemein értelmezett Ftulajdonság. Azt is tudjuk, hogy a sorozatban van legalább egy Ftulajdonságú elem. A feladat ezen elem sorszámának meghatározása. 33

34 Kiválasztás, formálisan Az algoritmus megadja, hogy a tömbben egy bizonyos elem hol (hányadik helyen) van. Csak akkor működik, ha biztosan van ilyen elem i:=1 Ciklus amíg nem F(T[i]) i:=i+1 ki: i 34

35 Kiválasztás, feladatok A múlt hónapban minden nap megmértük a Duna hőmérsékletét. Adjunk meg egy napot amikor a hőmérséklet nem érte el a 20 fokot! i:= 1 Ciklus amíg i<=n és ho[i] >= 20 i = i + 1 sorszam=i ki: sorszam Mi van ha nem volt ilyen nap? 35

36 Keresés Az előzőnél biztonságosabb algoritmus: megadja, hogy van-e olyan elem, és ha igen, hányadik. (többféle kereső algoritmus van) 36

37 Keresés Ismerjük egy üzlet januári napi bevételeit. Adjunk meg egy olyan napot -ha van-, amikor a bevétel több volt, mint 20000Ft. Nézzük végig a bevételeket, először az elsőt, majd sorra a többit, amíg nem találunk 20000Ft-nál nagyobbat. Ha találtunk ilyet, akkor van megoldás, és a megoldás a megtalált bevétel sorszáma különben nincs megoldás 37

38 Keresés, megoldás i:=1 Ciklus amíg i<=n_bevetel és bevetel[i]<=20000 i:=i+1 van=(i<=n_bevetel) Ha van sorszám = i ki: van, sorszám 38

39 Bemeneti adat: Keresés, adatok Bevételek száma A bevételek tömbje Egy tulajdonság a kereséshez Kimenet Van: logikai változó Sorszám: annak az elemnek a száma amit találtunk 39

40 Keresés, formálisan Lineáris keresés (keresés rendezetlen sorozatban) Adott egy N elemű sorozat és egy, a sorozaton értelmezett Ftulajdonság. A feladat : keressünk a sorozatban egy adott Ftulajdonságú elemet. (Nem biztos, hogy a sorozatban van ilyen elem.) 40

41 Keresés, formálisan i:=1 Ciklus amíg i<=n és nem( F(T[i]) ) i:=i+1 van = (i <= N) Ha van akkor sorszám = i 41

42 Keresés, formálisan Ha összetett a feltétel, akkor cikluson kívűl is számolhatjuk i := 0 felt := hamis Ciklus amíg i<=n és nem( felt ) i:=i+1 felt := F(T[i]) van := felt Ha van akkor sorszám := i 42

43 Keresés, feladatok Adjuk meg, hogy januárban mikor van, ha van, Mária nap! i:=1 Ciklus amíg i<=n és nevnap[i]!= Maria i:=i+1 van = (i <= N) Ha van akkor sorszám = i 43

44 Logaritmikus keresés Adott egy N elemű rendezett T() sorozat és egy keresett eleme (X). A feladat : keressünk a sorozatban az adott X elemet. (Nem biztos, hogy a sorozatban van ilyen elem.) 44

45 Logaritmikus keresés ah := 1 fh := N Ciklus k := (ah + fh)/2 egész része ha A(k) < X, akkor ah := k + 1 ha A(k) > X, akkor fh := k - 1 Ciklus amíg ah > fh vagy A(k)=X VAN := (A(k) == X) Ha VAN akkor SORSZÁM:=k 45

46 Maximum kiválasztás A térképről kiírtunk hegy magasságokat. Válasszuk ki a legmagasabb hegyet! Megjegyzem az első hegy magasságát. Ezt tekintem a legmagasabbnak. A többi hegyet sorra végignézem: Ha valamelyik magasabb, mint az eddigi legmagasabb, akkor az eddigi legmagasabbat elfelejtem, és az újat jegyzem meg. A végén pont a legmagasabb hegyet jegyeztük meg. 46

47 Maximum kiválasztás m := 1 maxert := magassag(m) Ciklus i:=2..n Ha magassag[i] > maxert akkor m:=i maxert:=magassag[i] Ki: m, maxert m: a pillanatnyilag talált legnagyobb elem helyét mutatja 47

48 Maximum kiválasztás, adatok Bemeneti adat Ismerni kell az adatok számát Az adatok a magassag tömbben vannak Kimenő adat A legmagasabb hegy indexe A legmagasabb hegy magassága Gyakorlatban, lehet hogy csak az egyiket határozzuk meg 48

49 Maximum kiválasztás, formálisan Adott egy "N" elemű "T" sorozat és egy, a sorozat elemei közt értelmezett kisebb-nagyobb reláció. A feladat ezen sorozat legnagyobb eleme sorszámának meghatározása. (Néha az elem értékére, az úgynevezett maximumra is szükség lehet). 49

50 Maximum kiválasztás, formálisan m := 1 maxert := T(m) Ciklus i:=2..n Ha T[i] > maxert akkor m:=i maxert:=t[i] Ki: m, maxert m: a pillanatnyilag talált legnagyobb elem helyét mutatja 50

51 Összetett tételek 51

52 Kiválogatás Ez az algoritmus egy tömb bizonyos tulajdonságú elemeit teszi egy másik tömbbe. db változó számolja, hogy a másik tömbbe hány elem került válogassuk ki a negatív számokat. Az eredmény a B tömbben lesz deklarációnál a B tömböt N eleműre kell választani, hacsak nem tudjuk előre, hány negatív szám van T-ben 52

53 Kiválogatás db:=0 Ciklus i:=1..n Ha T[i]<0 akkor db:=db+1 B[db]:=T[i] Ha vége 53

54 Szétválogatás Kiválogatáshoz hasonló, de a nem megfelelő elemeket is tömbbe tesszük Szétválogatás két tömbbe, mindkét tömb mérete azonos dbb:=0 dbc:=0 Ciklus i:=1..n Ha T[i]<0 akkor dbb:=dbb+1, B[dbb]:=T[i] különben dbc:=dbc+1, C[dbc]:=T[i] 54

55 Metszet két tömb (A[1..N] és B [1..M]) azonos elemeinek kiválogatása C tömbbe Az algoritmus lényege: menjünk végik A tömb elemein, és válogassuk ki azokat (kiválogatás), melyek szerepelnek B-ben (eldöntés). Visszavezethető a korábbi feladatokra C maximális elemszáma N és M közül a kisebbik 55

56 Metszet db:=0 Ciklus i:=1..n j:=1 Ciklus amíg j<=m és B[j]<>A[i] j:=j+1 Ha j<=m akkor db:=db+1, C[db]:=A[i] 56

57 Unió A és B tömb összes elemét C tömbbe tenni Tegyük be C-be A összes elemét, majd B-ből azokat, melyek nem szerepelnek A-ban. C elemszáma legfeljebb N+M. 57

58 Unió Ciklus i:=1..n C[i]:=A[i] db:=n Ciklus j:=1..m i:=1 Ciklus amíg i<=n és B[j]<>A[i] i:=i+1 Ha i>n akkor db:=db+1, C[db]:=B[j] 58

59 Sokféle van Rendezés Különböző adatokra Különböző rendezettségre stb 59

60 Rendezés maximum kiválasztással Az elv: kiválasztjuk a tömb legnagyobb elemét, és berakjuk a tömb végére (vagyis kicseréljük az utolsó elemmel) Ezt az eljárást ismételjük a maradék tömbre i változó adja meg, hogy hányadik elem fog a helyére kerülni A Csere(i,m) eljárás kicseréli a tömb i. és m. elemét 60

61 Rendezés maximum kiválasztással Ciklus i:=n..2 m:=1 Ciklus j:=2..i Ha T[j]>T[m] akkor m:=j Csere(i,m) 61

62 Buborékos rendezés Végigmegy a tömbön, és ha szomszédos elemeknél rossz a sorrend, megcseréli őket. Ez a csere, mint egy buborék, végighalad a tömbön, és a legnagyobb elemet biztosan a tömb végére teszi. i változó ismét azt jelzi, hányadik elem kerül a helyére. 62

63 Buborékos rendezés Ciklus i:=n..2 Ciklus j:=1..i-1 Ha T[J]>T[J+1] akkor Csere(j,j+1) 63

Bánsághi Anna 2014 Bánsághi Anna 1 of 68

Bánsághi Anna 2014 Bánsághi Anna 1 of 68 IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Programozás I. 3. előadás Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember

Részletesebben

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs Programozás I. 3. előadás Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember

Részletesebben

ELEMI PROGRAMOZÁSI TÉTELEK

ELEMI PROGRAMOZÁSI TÉTELEK ELEMI PROGRAMOZÁSI TÉTELEK 1. FELADATMEGOLDÁS PROGRAMOZÁSI TÉTELEKKEL 1.1 A programozási tétel fogalma A programozási tételek típusalgoritmusok, amelyek alkalmazásával garantáltan helyes megoldást adhatunk

Részletesebben

Algoritmizálás, adatmodellezés tanítása 1. előadás

Algoritmizálás, adatmodellezés tanítása 1. előadás Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási

Részletesebben

Algoritmizálás, adatmodellezés tanítása 2. előadás

Algoritmizálás, adatmodellezés tanítása 2. előadás Algoritmizálás, adatmodellezés tanítása 2. előadás Programozási tételek Mi az, hogy programozási tétel? Típusfeladat általános megoldása. Sorozat érték Sorozat sorozat Sorozat sorozatok Sorozatok sorozat

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

Összetett programozási tételek

Összetett programozási tételek Összetett programozási tételek 3. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 19. Sergyán (OE NIK) AAO 03 2011. szeptember

Részletesebben

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések) Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),

Részletesebben

Bevezetés a programozásba I.

Bevezetés a programozásba I. Bevezetés a programozásba I. 3. gyakorlat Tömbök, programozási tételek Surányi Márton PPKE-ITK 2010.09.21. ZH! PlanG-ból papír alapú zárthelyit írunk el reláthatólag október 5-én! Tömbök Tömbök Eddig egy-egy

Részletesebben

Objektum Orientált Programozás VII.

Objektum Orientált Programozás VII. Objektum Orientált Programozás VII. Összetett programozási tételek Programozási tételek összeépítése Feladatok ÓE-NIK, 2011 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk

Részletesebben

AAO 3. Csink László 2007

AAO 3. Csink László 2007 AAO 3 Csink László 2007 Algoritmus fogalma - ismétlés Az algoritmus egy eljárás (jóldefiniált utasítások véges halmaza), amelyet valamely feladat megoldására készítünk. A feladat egy adott kezdeti állapotból

Részletesebben

Rendezések. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar október 24.

Rendezések. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar október 24. Rendezések 8. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. október 24. Sergyán (OE NIK) AAO 08 2011. október 24. 1 / 1 Felhasznált irodalom

Részletesebben

Programozási tételek. Jegyzet. Összeállította: Faludi Anita 2012.

Programozási tételek. Jegyzet. Összeállította: Faludi Anita 2012. Programozási tételek Jegyzet Összeállította: Faludi Anita 2012. Tartalomjegyzék Bevezetés... 3 Programozási tételek... 4 I. Elemi programozási tételek... 4 1. Sorozatszámítás (összegzés)... 4 2. Eldöntés...

Részletesebben

Bevezetés a programozásba I 4. gyakorlat. PLanG: Szekvenciális fájlkezelés. Szekvenciális fájlkezelés Fájlok használata

Bevezetés a programozásba I 4. gyakorlat. PLanG: Szekvenciális fájlkezelés. Szekvenciális fájlkezelés Fájlok használata Pázmány Péter Katolikus Egyetem Információs Technológiai Kar Bevezetés a programozásba I 4. gyakorlat PLanG: 2011.10.04. Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Fájlok

Részletesebben

Közismereti informatika I. 4. előadás

Közismereti informatika I. 4. előadás Közismereti informatika I. 4. előadás Rendezések Bemenet: N: Egész, X: Tömb(1..N: Egész) Kimenet: X: Tömb(1..N: Egész) Előfeltétel: Utófeltétel: Rendezett(X) és X=permutáció(X ) Az eredmény a bemenet egy

Részletesebben

Programozás I. Metódusok C#-ban Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu

Programozás I. Metódusok C#-ban Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Programozás I. 3. előadás Tömbök a C#-ban Metódusok C#-ban Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia

Részletesebben

Bevezetés a programozásba

Bevezetés a programozásba Bevezetés a programozásba 1. Előadás Bevezetés, kifejezések http://digitus.itk.ppke.hu/~flugi/ Egyre precízebb A programozás természete Hozzál krumplit! Hozzál egy kiló krumplit! Hozzál egy kiló krumplit

Részletesebben

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I.

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I. Keresés Rendezés Feladat Keresés Rendezés Feladat Tartalom Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Részletesebben

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán Keresés Rendezés Feladat Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán 2016. november 7. Farkas B., Fiala

Részletesebben

A 2011/2012 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában

A 2011/2012 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában Oktatási Hivatal A 2011/2012 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása INFORMATIKÁBÓL II. (programozás) kategóriában Kérjük a tisztelt tanár kollégákat, hogy a

Részletesebben

Programozási tételek feladatok

Programozási tételek feladatok 2016/11/22 03:56 1/6 Programozási tételek feladatok < Programozási feladatok Programozási tételek feladatok Szerző: Sallai ndrás Copyright Sallai ndrás, 2011 Licenc: NU Free Documentation License 1.3 Web:

Részletesebben

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat 9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek Sorozatszámítás tétele Például az X tömbben kövek súlyát tároljuk. Ha ki kellene számolni az összsúlyt, akkor az S = f(s, X(i)) helyére S = S + X(i) kell írni. Az f0 tartalmazza

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Rendezések TÁMOP-4.2.3.-12/1/KONV-2012-0018 Az alapfeladat egy N elemű sorozat nagyság szerinti sorba rendezése. A sorozat elemei

Részletesebben

Programozás alapjai 9. előadás. Wagner György Általános Informatikai Tanszék

Programozás alapjai 9. előadás. Wagner György Általános Informatikai Tanszék 9. előadás Wagner György Általános Informatikai Tanszék Leszámoló rendezés Elve: a rendezett listában a j-ik kulcs pontosan j-1 kulcsnál lesz nagyobb. (Ezért ha egy kulcsról tudjuk, hogy 27 másiknál nagyobb,

Részletesebben

Programozási alapismeretek 11. előadás

Programozási alapismeretek 11. előadás Programozási alapismeretek 11. előadás Tartalom Rendezési feladat specifikáció Egyszerű cserés rendezés Minimum-kiválasztásos rendezés Buborékos rendezés Javított buborékos rendezés Beillesztéses rendezés

Részletesebben

Programozás I. házi feladat

Programozás I. házi feladat Programozás I. házi feladat 2013. 6. hét, 1. rész A feladatsor 4 feladatot tartalmaz, amelyeket egy közös forráskódban kell megvalósítani. Annak érdekében, hogy a tesztelő egymástól függetlenül tudja tesztelni

Részletesebben

Programozási tételek. PPT 2007/2008 tavasz.

Programozási tételek. PPT 2007/2008 tavasz. Programozási tételek szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Strukturált programozás paradigma Alapvető programozási tételek Összetett programozási tételek Programozási

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Elemi programozási tételek 2 TÁMOP-4.2.3.-12/1/KONV-2012-0018 Feladataink egy jelentős csoportjában egyetlen bemenő sorozat alapján

Részletesebben

Rekurzív algoritmusok

Rekurzív algoritmusok Rekurzív algoritmusok 11. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. november 14. Sergyán (OE NIK) AAO 11 2011. november 14. 1 / 32 Rekurzív

Részletesebben

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Próbaérettségi feladatsor_a NÉV: osztály Elért pont: Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a

Részletesebben

Adatszerkezetek II. 6. előadás

Adatszerkezetek II. 6. előadás Adatszerkezetek II. 6. előadás Feladat: Egy kábelhálózat különböző csatornáin N filmet játszanak. Ismerjük mindegyik film kezdési és végidejét. Egyszerre csak 1 filmet tudunk nézni. Add meg, hogy maximum

Részletesebben

PROGRAMOZÁSI NYELVEK (GYAKORLAT)

PROGRAMOZÁSI NYELVEK (GYAKORLAT) PROGRAMOZÁSI NYELVEK (GYAKORLAT) A következő részben olyan szabványos algoritmusokkal fogunk foglalkozni, amelyek segítségével a későbbiekben sok hétköznapi problémát meg tudunk majd oldani. MUNKAHELYZET-

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek Sorozatszámítás Eljárás Sorozatszámítás(N, X, S) R R 0 Ciklus i 1-től N-ig R R művelet A[i] A : számokat tartalmazó tömb N : A tömb elemszáma R : Művelet eredménye Eldöntés

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Mohó stratégia 1. TÁMOP-4.2.3.-12/1/KONV Többféle feladat megoldási stratégia létezik. Közülük az egyik legegyszerűbb a mohó stratégia,

Részletesebben

Szövegek C++ -ban, a string osztály

Szövegek C++ -ban, a string osztály Szövegek C++ -ban, a string osztály A string osztály a Szabványos C++ könyvtár (Standard Template Library) része és bár az objektum-orientált programozásról, az osztályokról, csak később esik szó, a string

Részletesebben

Programozás alapjai (ANSI C)

Programozás alapjai (ANSI C) Programozás alapjai (ANSI C) 1. Előadás vázlat A számítógép és programozása Dr. Baksáné dr. Varga Erika adjunktus Miskolci Egyetem, Informatikai Intézet Általános Informatikai Intézeti Tanszék www.iit.uni-miskolc.hu

Részletesebben

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;... Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (

Részletesebben

RENDEZÉSEK, TOVÁBBI PROGRAMOZÁSI TÉTELEK

RENDEZÉSEK, TOVÁBBI PROGRAMOZÁSI TÉTELEK RENDEZÉSEK, TOVÁBBI PROGRAMOZÁSI TÉTELEK 1. EGY SOROZATHOZ EGY SOROZATOT RENDELŐ TÉTELEK 1.1 Rendezések 1.1.1 Kitűzés Adott egy sorozat, és a sorozat elemein értelmezett egy < reláció. Rendezzük a sorozat

Részletesebben

1. Jelölje meg az összes igaz állítást a következők közül!

1. Jelölje meg az összes igaz állítást a következők közül! 1. Jelölje meg az összes igaz állítást a következők közül! a) A while ciklusban a feltétel teljesülése esetén végrehajtódik a ciklusmag. b) A do while ciklusban a ciklusmag után egy kilépési feltétel van.

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

ALGORITMUSOK ÉS PROBLÉMAOSZTÁLYOK (1. előadás)

ALGORITMUSOK ÉS PROBLÉMAOSZTÁLYOK (1. előadás) ALGORITMUSOK ÉS PROBLÉMAOSZTÁLYOK (1. előadás) Programozási feladatok megoldásának lépései 1, a feladatok meghatározása -egyértelmű, rövid, tömör, pontos 2, a feladat algoritmusának elkészítése jól definiált

Részletesebben

Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs

Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs Programozás I. 1. előadás: Algoritmusok alapjai Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember 7. Sergyán

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Összetett programozási tételek 2 TÁMOP-4.2.3.-12/1/KONV Feladataink egy jelentős csoportjában több bemenő sorozat alapján egy sorozatot

Részletesebben

Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez

Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez Pásztor Attila Algoritmizálás és programozás tankönyv az emeltszintű érettségihez 8. ELEMI ALGORITMUSOK II...88 8.1. MÁSOLÁS...88 8.2. KIVÁLOGATÁS...89 8.3. SZÉTVÁLOGATÁS...91 8.4. METSZET (KÖZÖS RÉSZ)...93

Részletesebben

Haladó rendezések. PPT 2007/2008 tavasz.

Haladó rendezések. PPT 2007/2008 tavasz. Haladó rendezések szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Alapvető összehasonlító rendezések Shell rendezés Kupacrendezés Leszámláló rendezés Radix rendezés Edényrendezés

Részletesebben

Tartalom. Programozási alapismeretek. 11. előadás

Tartalom. Programozási alapismeretek. 11. előadás Tartalom Programozási alapismeretek 11. előadás Rendezési feladat specifikáció Egyszerű cserés Minimum-kiválasztásos Buborékos Javított buborékos Beillesztéses Javított beillesztéses Szétosztó Számlálva

Részletesebben

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I. 1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon

Részletesebben

Web-programozó Web-programozó

Web-programozó Web-programozó Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Visszalépéses maximumkiválasztás TÁMOP-4.2.3.-12/1/KONV 1. Munkásfelvétel: N állás N jelentkező Egy vállalkozás N különböző állásra

Részletesebben

1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb

1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb 1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb #include main() { int a, b; printf( "a=" ); scanf( "%d", &a ); printf( "b=" ); scanf( "%d", &b ); if( a< b ) { inttmp = a; a =

Részletesebben

MATEMATIKAI FÜGGVÉNYEK

MATEMATIKAI FÜGGVÉNYEK MATEMATIKAI FÜGGVÉNYEK ABS Egy szám abszolút értékét adja eredményül. =ABS(32) eredménye 32, =ABS(-32) eredménye ugyancsak 32 DARABTELI Összeszámolja egy tartományban a megadott feltételeknek eleget tevő

Részletesebben

Sorozat érték típusú programozási tételek

Sorozat érték típusú programozási tételek Sorozat érték típusú programozási tételek A soron következő specifikációk és algoritmusok mind olyan típusfeladatokhoz kötődnek, amik igazán sűrűn előfordulhatnak a gyakorlatban. Meg kell keresni valamit,

Részletesebben

Kereső függvények és használatuk a Microsoft Excel programban. dr. Nyári Tibor

Kereső függvények és használatuk a Microsoft Excel programban. dr. Nyári Tibor Kereső függvények és használatuk a Microsoft Excel programban dr. Nyári Tibor FKERES, VKERES melyik táblában kell keresni az értéket a tábla azon oszlopának táblán belüli sorszáma, amelyből az eredményt

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30.

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. 15. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. Edényrendezés Tegyük fel, hogy tudjuk, hogy a bemenő elemek (A[1..n] elemei) egy m elemű U halmazból kerülnek ki, pl. " A[i]-re

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 063 ÉRETTSÉGI VIZSGA 006. február. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c

Részletesebben

Bevezetés a programozásba. 5. Előadás: Tömbök

Bevezetés a programozásba. 5. Előadás: Tömbök Bevezetés a programozásba 5. Előadás: Tömbök ISMÉTLÉS Specifikáció Előfeltétel: milyen körülmények között követelünk helyes működést Utófeltétel: mit várunk a kimenettől, mi az összefüggés a kimenet és

Részletesebben

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1] Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.

Részletesebben

Webprogramozás szakkör

Webprogramozás szakkör Webprogramozás szakkör Előadás 5 (2012.04.09) Programozás alapok Eddig amit láttunk: Programozás lépései o Feladat leírása (specifikáció) o Algoritmizálás, tervezés (folyamatábra, pszeudokód) o Programozás

Részletesebben

Tömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása

Tömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása Tömbök kezelése Példa: Vonalkód ellenőrzőjegyének kiszámítása A számokkal jellemzett adatok, pl. személyi szám, adószám, taj-szám, vonalkód, bankszámlaszám esetében az elírásból származó hibát ún. ellenőrző

Részletesebben

Programozás I. zárthelyi dolgozat

Programozás I. zárthelyi dolgozat Programozás I. zárthelyi dolgozat 2013. november 11. 2-es szint: Laptopot szeretnénk vásárolni, ezért írunk egy programot, amelynek megadjuk a lehetséges laptopok adatait. A laptopok árát, memória méretét

Részletesebben

Adatbáziskezelés alapjai. jegyzet

Adatbáziskezelés alapjai. jegyzet Juhász Adrienn Adatbáziskezelés alapja 1 Adatbáziskezelés alapjai jegyzet Készítette: Juhász Adrienn Juhász Adrienn Adatbáziskezelés alapja 2 Fogalmak: Adatbázis: logikailag összefüggı információ vagy

Részletesebben

Matematika (alsó tagozat)

Matematika (alsó tagozat) Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

3. OSZTÁLY A TANANYAG ELRENDEZÉSE

3. OSZTÁLY A TANANYAG ELRENDEZÉSE Jelölések: 3. OSZTÁLY A TANANYAG ELRENDEZÉSE Piros főtéma Citromsárga segítő, eszköz Narancssárga előkészítő Kék önálló melléktéma Hét Gondolkodási és megismerési módszerek Problémamegoldások, modellek

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Tartalomjegyzék Algoritmusok - pszeudókód... 1 42

Tartalomjegyzék Algoritmusok - pszeudókód... 1 42 Tartalomjegyzék Algoritmusok - pszeudókód... 1 42 Abszolút érték...1 Hányados ismételt kivonással...1 Legnagyobb közös osztó... 1 2 Páros számok szűrése...2 Palindrom számok...2 Orosz szorzás...3 Minimum

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM Matematika középszint Javítási-értékelési útmutató 063 MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ ÉRETTSÉGI VIZSGA 006. február. OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Matematika tanmenet 2. osztály részére

Matematika tanmenet 2. osztály részére 2. osztály részére 2014-2015. Izsáki Táncsics Mihály Általános Iskola és Alapfokú Művészeti Iskola Készítette: Molnárné Tóth Ibolya Témakörök 1. Témakör: Év eleji ismétlés /1-24. óra/..3-5. oldal 2. Témakör:

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Elemi programozási tételek 1 TÁMOP-4.2.3.-12/1/KONV-2012-0018 Feladataink egy jelentős csoportjában egyetlen bemenő sorozat alapján

Részletesebben

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y. Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

2. Készítsen awk szkriptet, amely kiírja az aktuális könyvtár összes alkönyvtárának nevét, amely februári keltezésű (bármely év).

2. Készítsen awk szkriptet, amely kiírja az aktuális könyvtár összes alkönyvtárának nevét, amely februári keltezésű (bármely év). 1. fejezet AWK 1.1. Szűrési feladatok 1. Készítsen awk szkriptet, ami kiírja egy állomány leghosszabb szavát. 2. Készítsen awk szkriptet, amely kiírja az aktuális könyvtár összes alkönyvtárának nevét,

Részletesebben

Függvények. Programozás alapjai C nyelv 7. gyakorlat. LNKO függvény. Függvények(2) LNKO függvény (2) LNKO függvény (3)

Függvények. Programozás alapjai C nyelv 7. gyakorlat. LNKO függvény. Függvények(2) LNKO függvény (2) LNKO függvény (3) Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Függvények C program egymás mellé rendelt függvényekből áll. A függvény (alprogram) jó absztrakciós eszköz a programok

Részletesebben

Algoritmusok. Hogyan csináljam?

Algoritmusok. Hogyan csináljam? Algoritmusok Hogyan csináljam? 1 Az algoritmus fogalma Algoritmusnak olyan pontos előírást nevezünk, amely megmondja, hogy bizonyos feladat megoldásakor milyen műveleteket milyen meghatározott sorrendben

Részletesebben

C programozási nyelv Pointerek, tömbök, pointer aritmetika

C programozási nyelv Pointerek, tömbök, pointer aritmetika C programozási nyelv Pointerek, tömbök, pointer aritmetika Dr. Schuster György 2011. június 16. C programozási nyelv Pointerek, tömbök, pointer aritmetika 2011. június 16. 1 / 15 Pointerek (mutatók) Pointerek

Részletesebben

OKTV 2005/2006 döntő forduló

OKTV 2005/2006 döntő forduló Informatika I. (alkalmazói) kategória feladatai OKTV 2005/2006 döntő forduló Kedves Versenyző! A megoldások értékelésénél csak a programok futási eredményeit vesszük tekintetbe. Ezért igen fontos a specifikáció

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Ismerkedj a 100 tulajdonságaival! I.) Állítsd elő a 100-at a,, b, 3, c, 4, d, 5 négyzetszám összegeként!

Részletesebben

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból

Részletesebben

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA 1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.

Részletesebben

Programozási módszertan. Mohó algoritmusok

Programozási módszertan. Mohó algoritmusok PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

Gyakorló feladatok ZH-ra

Gyakorló feladatok ZH-ra Algoritmuselmélet Schlotter Ildi 2011. április 6. ildi@cs.bme.hu Gyakorló feladatok ZH-ra Nagyságrendek 1. Egy algoritmusról tudjuk, hogy a lépésszáma O(n 2 ). Lehetséges-e, hogy (a) minden páros n-re

Részletesebben

Programozási alapismeretek 3. előadás

Programozási alapismeretek 3. előadás Programozási alapismeretek 3. előadás Tartalom Ciklusok specifikáció+ algoritmika +kódolás Egy bevezető példa a tömbhöz A tömb Elágazás helyett tömb Konstans tömbök 2/42 Ciklusok Feladat: Határozzuk meg

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a tömb általánosításaként

Részletesebben

Programozás I. gyakorlat

Programozás I. gyakorlat Programozás I. gyakorlat 2. gyakorlat Kifejezések, vezérlési szerkezetek, struktúrák Kifejezések Mit ír ki az alábbi program? #include int main() { int a = 20, b = 40; printf("%d\n", a > b);

Részletesebben

Bevezetés a programozásba I.

Bevezetés a programozásba I. Elágazás Bevezetés a programozásba I. 2. gyakorlat, tömbök Surányi Márton PPKE-ITK 2010.09.14. Elágazás Elágazás Eddigi programjaink egyszer ek voltak, egy beolvasás (BE: a), esetleg valami m velet (a

Részletesebben

Legkönnyebb és legnehezebb Rendezési algoritmusok

Legkönnyebb és legnehezebb Rendezési algoritmusok 7. foglalkozás Legkönnyebb és legnehezebb Rendezési algoritmusok Tartalom A számítógépeket gyakran használják arra, hogy listákat valamiféle rendbe rakjanak, például neveket ábécé szerint, találkozókat

Részletesebben

INFORMATIKAI ALAPISMERETEK

INFORMATIKAI ALAPISMERETEK Informatikai alapismeretek középszint 0811 ÉRETTSÉGI VIZSGA 2008. május 26. INFORMATIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

INFORMATIKAI ALAPISMERETEK

INFORMATIKAI ALAPISMERETEK Informatikai alapismeretek középszint 0521 É RETTSÉGI VIZSGA 2005. október 24. INFORMATIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM I. rész

Részletesebben

Algoritmusok és adatszerkezetek 2.

Algoritmusok és adatszerkezetek 2. Algoritmusok és adatszerkezetek 2. Varga Balázs gyakorlata alapján Készítette: Nagy Krisztián 1. gyakorlat Nyílt címzéses hash-elés A nyílt címzésű hash táblákban a láncolással ellentétben egy indexen

Részletesebben

Logikai szita (tartalmazás és kizárás elve)

Logikai szita (tartalmazás és kizárás elve) Logikai szita (tartalmazás és kizárás elve) Kombinatorika 5. előadás SZTE Bolyai Intézet Szeged, 2016. március 1. 5. ea. Logikai szita két halmazra 1/4 Középiskolás feladat. Egy 30 fős osztályban a matematikát

Részletesebben

Shannon és Huffman kód konstrukció tetszőleges. véges test felett

Shannon és Huffman kód konstrukció tetszőleges. véges test felett 1 Shannon és Huffman kód konstrukció tetszőleges véges test felett Mire is jók ezek a kódolások? A szabványos karakterkódolások (pl. UTF-8, ISO-8859 ) általában 8 biten tárolnak egy-egy karaktert. Ha tudjuk,

Részletesebben

Számláló rendezés. Példa

Számláló rendezés. Példa Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással való összehasonlítása alapján működik leírja egy bináris döntési fa. Az algoritmus által a

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

Egyszerű programok készítése... 56 Kifejezések... 57 Bitszintű műveletek... 57 Relációs műveletek... 58

Egyszerű programok készítése... 56 Kifejezések... 57 Bitszintű műveletek... 57 Relációs műveletek... 58 Tartalomjegyzék Algoritmusok - pszeudókód... 1 Abszolút érték... 1 Hányados ismételt kivonással... 1 Legnagyobb közös osztó... 1 Páros számok szűrése... 2 Palindrom számok... 2 Orosz szorzás... 3 Minimum

Részletesebben

A 2012/2013 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában

A 2012/2013 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában Oktatási Hivatal A 2012/2013 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása INFORMATIKÁBÓL II. (programozás) kategóriában Kérjük a tisztelt tanár kollégákat, hogy a

Részletesebben