2. Cím: Nézettségmérés új módszerei avagy Audience measurement Kulcsszavak: IPTV, felhasználói viselkedés, média, ajánlórendszerek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2. Cím: Nézettségmérés új módszerei avagy Audience measurement Kulcsszavak: IPTV, felhasználói viselkedés, média, ajánlórendszerek"

Átírás

1 ImpressTV Zrt. kutatási témák 1. Cím: Média tartalmak automatikus címkézése és adatbővítése Kulcsszavak: adatbányászat, statisztika, metaadat, felhasználói viselkedés, ajánlórendszerek Probléma: A média tartalmak (elsősorban filmek) ajánlására fejlesztett rendszerek esetében azzal szembesülünk, hogy nem minden tartalomra rendelkezünk megfelelő mennyiségű, a filmes tartalmakra vonatkozó metaadattal, illetve azzal, hogy a rendelkezésre álló metaadat minősége erősen ingadozik. Ez a televíziós szolgáltatók (IPTV és kábeltelevíziós szolgáltatók, Over the Top szolgáltatók) számára azért jelent problémát, mert az általuk megvásárolt és on-demand szolgáltatások keretében ajánlott tartalmak esetén fontos az, hogy a felhasználó rendkívül gyorsan megtalálja a neki tetsző tartalmakat, illetve hogy egy tartalom a lehető leggyorsabban ajánlható legyen (item cold start probléma). Feladat: A feladat egy olyan rendszer kialakítása, amely segítségével a felhasználói eseményekből (eventek) vonunk le a tartalmakra vonatkozó következtetéseket, illetve amelynek segítségével képesek leszünk arra, hogy a média tartalmakat automatikusan a rájuk vonatkozó címkékkel (tagekkel) lássuk el, elősegítve ezzel a tartalmak gyorsabb besorolását, a tartalom és metaadat alapú ajánló algoritmusok sebességének növelését, illetve az érthetőbb ajánlás magyarázatokat. Opcionális irány olyan módszerek kidolgozása, melyek külső forrásból további információkat szereznek (metaadat szolgáltatók, wikipedia, műsorok feliratainak feldolgozása, kommentek értelmezése) és beleépítik a meglévő adatok közé. Előfeltétel: programozói tudás, gépi tanulás, statisztikai ismeretek 2. Cím: Nézettségmérés új módszerei avagy Audience measurement Kulcsszavak: IPTV, felhasználói viselkedés, média, ajánlórendszerek Probléma: Annak ellenére, hogy az IPTV szolgáltatók és a kábeltelevíziós szolgáltatók elvben minden Set Top Boxról származó információt képesek loggolni, mérnöki szempontból mind a mai napig rendkívül kezdetleges megoldásokat használnak a szolgáltatók a televíziós tartalomfogyasztás pontos mérésére. A probléma sok esetben annyi, hogy a szolgáltatók hiába képesek 20 másodpercenként információt gyűjteni a felhasználói szokásokról, nem tudják az összegyűjtött nagy mennyiségű adatot kezelni. Feladat: A feladat főbb megoldandó kérdései a következők: hogyan tudjuk a nézettséget értelmezni (mi az, amit mérnünk kell, és mely adatok a fontosak) és vizualizálni (mit és hogyan tudunk megjeleníteni, illetve értelmezni), illetve hogyan nyerjük ki azt a preferenciát, hogy a felhasználó egy adott csatornát néz vagy pedig egy az adott csatorna programján belül egy adott tartalom (item) érdekli, valamint a szerkesztők milyen hatékonyan pozícionálják a műsorujságot az egyes csatornákon. A feladatot a hallgatók akár egyénileg, akár több hallgató csoportosan is választhatja, a feladat pedig több féléven át is folytatható. Előfeltétel: programozói tudás, statisztikai és adatvizualizációs eszközök, klaszterezési módszerek ismerete 1

2 3. Kereszt domén (cross domain) ajánlások Kulcsszavak: ajánlórendszerek, felhasználói viselkedés, IPTV Probléma: A Netflixhez hasonló videós tartalomszolgáltatók elterjedésével együtt jelentős probléma az európai IPTV és kábeltelevíziós szolgáltatók számára az, hogy az on-demand tartalomfogyasztás (VOD fogyasztás, PayTV fogyasztás) alacsony, a felhasználók az esetek 90%-ában elő televíziós tartalmakat fogyasztanak. Az üzleti cél tehát az, hogy a felhasználó számára releváns fizetős tartalmakat ajánljunk, ehhez azonban olyan ajánló algoritmusok kifejlesztésére van szükség, amelyek képesek arra, hogy az élő adásokon megismert felhasználói / tartalomfogyasztási szokások alapján on-demand (VOD vagy PayTV) tartalmakat ajánljanak. Feladat: A megoldandó ajánlási probléma az, hogy nem minden élő tartalomfogyasztási eseménynek (eventnek) van reális tartalma a számunkra, illetve nem minden felhasználónak van on-demand kölcsönzési eseménye, emiatt a lineáris tartalomfogyasztásból ki kell emelni azokat a faktorokat, amelyekből következtethetünk a VOD fogyasztásra (pl: míg az esti blockbuster film megnézése relevás ebből a szempontból, az esti hírek már kevésbé). A cél tehát az, hogy meg kell találni a két domain közötti összefüggést. A feladat első lépése az, hogy meg kell vizsgálni, hogy a tudományos világban más területeken milyen kutatások vannak hasonló cross-domain ajánlásokra, és a más tudományterületeken levő módszereket kell adaptálni a televíziós világra. A feladat megoldásához igény esetén az ImpressTV Zrt. a saját fejlesztésű adatbányászati keretrendszerét biztosítja, amihez Java programozói ismeret szükséges. A feladatot a hallgatók akár egyénileg, akár több hallgató csoportosan is választhatja, a feladat pedig több féléven át is folytatható. Előfeltétel: gépi tanulási és programozási ismeretek, illetve az ajánlórendszerben alkalmazott algoritmusok 4. Hibrid filtering média tartalmakra Kulcsszavak: adatbányászat, statisztika, felhasználói viselkedés, metaadatok, ajánlórendszerek Probléma: Az ajánlórendszerek fejlesztése során egyre inkább látszik az, hogy szükség van metaadat alapú rendszerek (Content-based filtering) és a felhasználói viselkedés alapú rendszerek (collaborative filtering) egyesítésére. Az általunk fejlesztett, a világ egyik legnagyobb tube oldalán, a Dailymotion.com-on futó ajánlórendszernél például azzal a problémával kerültünk szembe, hogy egy videóhoz sok címke (tag) tartozik, de ténylegesen csak a címkék kis része releváns. A hibrid szűrés egyik előnye pontosan az lenne, hogy a fogyasztási szokások elemzésével következtethetnénk arra, hogy mely tagek relevánsak, és melyek nem. Másik előnye a két megközelítés előnyének ötvözése (pl: újonnan bevezetett tartalmak ajánlása a meglévő fogyasztási szokások alapján) Feladat: A feladat során a hallgató egy modellt építene arra vonatkozóan hogy melyik metaadat releváns, és melyik nem. A feladat során első lépésben a kollaboratív szűréssel elősegítjük a metaadat szignifikancia feltárását, második lépésben pedig kombinálnánk a két eltérő algoritmus családot és kialakítanánk egy olyan rendszer prototípusát, amely az ajánlás generálás során a már ismert tartalmakra felhasználói viselkedést elemző algoritmusokat használ, az új tartalmakra pedig metaadat alapú szűrést. A feladat megoldásához igény esetén az ImpressTV Zrt. a saját fejlesztésű adatbányászati keretrendszerét biztosítja, amihez Java programozói ismeret szükséges. A feladatot a hallgatók akár egyénileg, akár több hallgató csoportosan is választhatja, a feladat pedig több féléven át is folytatható. Előfeltétel: programozás (Java), kollaborative és tartalom alapú szűrés, ajánlórendszer algoritmusok ismerete 2

3 5. Ajánlási stratégiák, avagy «the Winner Takes it all» Kulcsszavak: felhasználói viselkedés, metaadatok, ajánlórendszerek Probléma: Az ajánlórendszerek televíziós szolgáltatóknál történő telepítése során többször szembesülünk azzal a problémával, hogy a felhasználónak többféle tartalomfogyasztási preferenciája van: pld az esetek 75%-ában komédiákat néz, 25%-ban pedig horrorfilmeket. A collaborative filtering algoritmusok esetén jellemző megfigyelés a The Winner Takes it all jelenség, mely szerint a user alapú modellezés során a legjellemzőbb preferencia érvényesül. Emiatt az ajánlások egysíkúvá válhatnak (elsősorban a mátrix faktorizációs módszereknél). Feladat: A feladat tehát az, hogy úgy ajánljuk az egyes videós és televíziós tartalmakat, hogy azok egyrészt illeszkedjenek a felhasználói preferenciákhoz, másrészt lehessen jól külön vehető preferenciákat kialakítani, illetve az ajánlási listában a preferenciák elosztását megfelelően kialakítani. Másik feladat annak a problémának a megoldása, hogyan lehet olyan ajánló algoritmust kialakítani, amely megfelelően diverz ajánlásokat szolgáltat, ugyanakkor megmarad az ajánlások pontossága is. A feladat megoldásához igény esetén az ImpressTV Zrt. a saját fejlesztésű adatbányászati keretrendszerét biztosítja, amihez Java programozói ismeret szükséges. A feladat több féléven át is folytatható. Előfeltétel: programozás (Java), algoritmuselmélet, statisztika 6. Tartalomajánló algoritmusok inkrementális tanulása Kulcsszavak: ajánlórendszer modellek, gépi tanulás Probléma: Az ajánlórendszerek ipari alkalmazásánál jelentős probléma a felhasználói és tartalom modellek frissen tartása és adaptív modellezése. Ennek az egyik legelterjedtebb megközelítése a teljes modellbázis időszakos újratanítása (pl: teljes mátrix faktorizációs algoritmus futtatása az összes felhasználóra és termékre), azonban ebben az esetben a tanítási idő (függően az ügyfél domain méretétől) nagyon hosszú is lehet. A megoldandó probléma ilyenkor az, hogy lehet megoldani a modellek frissitését anélkül hogy teljesen ujratanitsuk a modellt. Feladat: A feladat annak vizsgálata, hogyan lehet ezt mérni, és milyen tanítási stratégiát kell alkalmazni: pl Δt-ben érkező információt milyen matematikai formulával építsuk be a meglévő modellekbe, hogy az az elméleti modellhez konvergáljon. A feladat része emellett a meglevő, az adatbányászatban már ismeri algoritmusok(ials Implicit Alternating Least Squares, SGD Stochastic Gradient Descent vagy szomszéd módszer) kipróbálása, illetve annak kutatása, hogy az általunk preferált rendszerekhez van-e inkrementális módszer. A feladat több féléven át is folytatható: az első félév során a cél irodalmazás alapján a preferált módszer kiválasztása, második félében a kiválasztott módszerek implementálása. A feladathoz az ImpressTV Zrt. a saját fejlesztésű adatbányászati keretrendszerét biztosítja. Előfeltétel: programozói tudás (Java), analízis, gépi tanulás 3

4 7. Magas rendelkezésre állású, elosztott rendszerű taralomajánló módszerek Kulcsszavak: elosztott rendszerek, ajánlórendszer modellek, gépi tanulás Probléma: A big data elterjedésével egyre komolyabb probléma az, hogy egy adott felhasználónak egyre nagyobb halmazból kell ajánlanunk. A probléma minden esetben az, hogyan lehet predikciós időben elosztottá tenni az egyes kiértékeléseket úgy, hogy a szolgáltatási szerződésben (SLA-ban) meghatározott időn belül ( millisecumdum) választ adjunk. A megoldás érdekében elengedhetetlen az, hogy bizonyos számításokat párhuzamosítsunk. Feladat: A feladat a rendelkezésre álló elosztott rendszerek feltérképezése, illetve a feladatra leginkább alkalmas elosztott rendszer (pld Hadoop alváltozatai) felmérése és kiválasztása, majd következő félében a kiválasztott rendszer alapszintű implementálása. Meg kell találni azt a rendszert, amely a leginkább alkalmas az általunk használt ajánló algoritmusok futtatására, illetve ezen algoritmusok párhuzamosítására. A feladatot a hallgatók akár egyénileg, akár több hallgató csoportosan is választhatja, a feladat pedig több féléven át is folytatható. Előfeltétel: programozási tapasztalat, elosztott rendeszerek ismerete 8. Tartalomajánló algoritmusok elosztott rendszerű tanítása Kulcsszavak: elosztott rendszerek, adatbázisok, ajánlórendszer modellek, gépi tanulás Probléma: A big data elterjedésével egyre komolyabb probléma az, hogy az adatokon futatott gépi tanulás egy szerveren mind memória kapacítási korlátok miatt, mind a futási idő szignifikáns növekedése miatt az ajánlórendszer szolgáltatóknak egyre nehezebben kivitelezhető. Fontos szempont, hogy az algoritmusok tanulási ideje egy korláton belül maradjon ezzel fenntartva a modellfrissítés megfelelő gyakoriságát, illetve hogy a rendszertelepítések során rendelkezésre álló időben (change window) el tudják végezni mind a beállítási műveleteket, mind a gépi tanulás és élesítés folyamatát. A megoldás a standard modell építési módszerek (pl: mátrix faktorizáció, szomszéd módszerek) párhuzamosítása, illetve az elosztott környezet implementálása. Feladat: A feladat első lépése az ajánlórendszerek területén alkalmazott adatbányászati algoritmusok megismerése, illetve irodalomkutatás, hogy milyen párhuzamosított megodások születtek ezen módszerekre, opcionálisan a meglévő módszerek továbbfejlesztése. Következő lépés a rendelkezésre álló elosztott rendszerek feltérképezése (adatbázis, ill processzek futtatása), illetve a feladatra leginkább alkalmas megoldások felmérése és kiválasztása. A feladat több féléven át is folytatható: az első félév során a cél irodalmazás alapján a preferált módszer kiválasztása, második félében a kiválasztott módszerek implementálása. A feladatot a hallgatók akár egyénileg, akár több hallgató csoportosan is választhatja, a feladat pedig több féléven át is folytatható. Előfeltétel: programozási tapasztalat, elosztott rendszerek és adatbázisok ismerete Az ImpressTV-ről Az ImpressTV öt kontinensen jelen lévő, ajánlórendszer-szolgáltatást nyújtó vállalat, amely a Netflix Prize fináléjába jutott, magyar Gravity R&D Zrt. televíziós portfóliójának felvásárlásával jött létre 2014-ben. A céget brit, telekommunikációs területen tapasztalt befektetők vezetik, budapesti technológiai központjában pedig összeszokott, magyar fejlesztői csapat tevékenykedik. A vállalat főbb szolgáltatásai: személyre szabott ajánlások nyújtása, hirdetések targetálása, adatelemzés, prediktív elemzés és felhasználói adatbázissal kapcsolatos mérések, jellemzően nemzetközi telekommunikációs vállalatok és egyéb tartalomszolgáltatók számára. 4

5 Az ImpressTV ügyfelei között tudhatja többek közt a Magyar Telekomot, az Ivi.ru-t, Oroszország vezető video streaming szolgáltatóját, valamint a CenturyLink-et, az USA egyik legnagyobb telekommunikációs vállalatát is. Az ImpressTV 21 algoritmus optimális kombinációját használja a lehető legpontosabb, valós idejű ajánlások megtalálásához. A metaadatok felhasználása mellett a cég élen jár az ajánlások fogyasztói viselkedés és fogyasztási körülmények (eszköz, hely, idő, stb.) alapján történő kialakításában. Az ImpressTV a végfelhasználót helyezi a működése középpontjába: a legfontosabb cél nem a filmes tartalmak katalogizálása, hanem a tévénézők ízlésének mélyebb megismerése és kiszolgálása. 5

Gépi tanulás a gyakorlatban. Bevezetés

Gépi tanulás a gyakorlatban. Bevezetés Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis

Részletesebben

1 2 3 4 5 Meta adat: bármilyen adat, ami a tartalomhoz kapcsolódik. Pl. filmek esetén a rendező, a főszereplő, a műfaj. Tranzakciós adat: felhasználó és az elemek közötti interakció során keletkező adat.

Részletesebben

The nontrivial extraction of implicit, previously unknown, and potentially useful information from data.

The nontrivial extraction of implicit, previously unknown, and potentially useful information from data. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Adatelemzés intelligens módszerekkel Hullám Gábor Adatelemzés hagyományos megközelítésben I. Megválaszolandó

Részletesebben

Beszerzési és elosztási logisztika. Előadó: Telek Péter egy. adj. 2008/09. tanév I. félév GT5SZV

Beszerzési és elosztási logisztika. Előadó: Telek Péter egy. adj. 2008/09. tanév I. félév GT5SZV Beszerzési és elosztási logisztika Előadó: Telek Péter egy. adj. 2008/09. tanév I. félév GT5SZV 3. Előadás A beszerzési logisztikai folyamat Design tervezés Szükséglet meghatározás Termelés tervezés Beszerzés

Részletesebben

Perszonalizált tartalomajánló szolgáltatás IPTV és OTT rendszerek számára

Perszonalizált tartalomajánló szolgáltatás IPTV és OTT rendszerek számára MEDIANET 2015 Perszonalizált tartalomajánló szolgáltatás IPTV és OTT rendszerek számára ZIBRICZKY DÁVID ImpressTV david.zibriczky@impresstv.com Kulcsszavak: ajánlórendszer, IPTV, OTT, adatbányászat, gépi

Részletesebben

BARANGOLÁS AZ E-KÖNYVEK BIRODALMÁBAN Milyen legyen az elektonikus könyv?

BARANGOLÁS AZ E-KÖNYVEK BIRODALMÁBAN Milyen legyen az elektonikus könyv? BARANGOLÁS AZ E-KÖNYVEK BIRODALMÁBAN Milyen legyen az elektonikus könyv? Készítették: Névery Tibor és Széll Ildikó PPKE I. évf. kiadói szerkesztő hallgatók, közösen 1 BEVEZETŐ Az elektronikus könyv valamilyen

Részletesebben

RapidAnalytics Enterprise Edition bevezetés a Telenor Magyarországnál. Szakács Balázs - Telenor Magyarország Szücs Imre United Consult

RapidAnalytics Enterprise Edition bevezetés a Telenor Magyarországnál. Szakács Balázs - Telenor Magyarország Szücs Imre United Consult RapidAnalytics Enterprise Edition bevezetés a Telenor Magyarországnál Szakács Balázs - Telenor Magyarország Szücs Imre United Consult Miről lesz szó? Telenor bemutatása Eszközválasztás háttere Igények

Részletesebben

Dr. habil. Maróti György

Dr. habil. Maróti György infokommunikációs technológiák III.8. MÓDSZER KIDOLGOZÁSA ALGORITMUSOK ÁTÜLTETÉSÉRE KIS SZÁMÍTÁSI TELJESÍTMÉNYŰ ESZKÖZÖKBŐL ÁLLÓ NÉPES HETEROGÉN INFRASTRUKTÚRA Dr. habil. Maróti György maroti@dcs.uni-pannon.hu

Részletesebben

Tudományos célú videoportál

Tudományos célú videoportál Tudományos célú videoportál Kovács András NIIF Intézet Videoportál workshop 2009. október 27. Tartalom Bevezető Nemzetközi példák Előzmények Projekt részletek Célok Funkcionalitás, alkalmazások

Részletesebben

Webanalitika a mindennapokban

Webanalitika a mindennapokban Webanalitika a mindennapokban NEEK konferencia 2015.02.19. www.gemius.hu Rólunk A Gemius világszerte Piaci igények széleskörű ismerete Nemzetközi háttér, folyamatos fejlesztés Innovatív üzleti megoldások

Részletesebben

Tartalom. Jó hogy jön Jucika, maga biztosan emlékszik még, hányadik oldalon van a Leszállás ködben.

Tartalom. Jó hogy jön Jucika, maga biztosan emlékszik még, hányadik oldalon van a Leszállás ködben. Tartalom Jó hogy jön Jucika, maga biztosan emlékszik még, hányadik oldalon van a Leszállás ködben. Előszó 1. Az adatbányászatról általában 19 1.1. Miért adatbányászat? 21 1.2. Technológia a rejtett információk

Részletesebben

Magic xpi 4.0 vadonatúj Architektúrája Gigaspaces alapokon

Magic xpi 4.0 vadonatúj Architektúrája Gigaspaces alapokon Magic xpi 4.0 vadonatúj Architektúrája Gigaspaces alapokon Mi az IMDG? Nem memóriában futó relációs adatbázis NoSQL hagyományos relációs adatbázis Más fajta adat tárolás Az összes adat RAM-ban van, osztott

Részletesebben

Tudásalapú információ integráció

Tudásalapú információ integráció Tudásalapú információ integráció (A Szemantikus Web megközelítés és a másik irány) Tanszéki értekezlet, 2008. május 14. 1 Miért van szükségünk ilyesmire? WWW: (Alkalmazások) Keresés a weben (pl. összehasonlítás

Részletesebben

Hatékony műszaki megoldások lineáris és lekérhető médiaszolgáltatások esetén Ajánlástervezet ismertetése

Hatékony műszaki megoldások lineáris és lekérhető médiaszolgáltatások esetén Ajánlástervezet ismertetése Hatékony műszaki megoldások lineáris és lekérhető médiaszolgáltatások esetén Ajánlástervezet ismertetése Tarcsai Zoltán Szabályozási szakértő Nemzeti Média- és Hírközlési Hatóság Infomédia szabályozási

Részletesebben

TV MÉG MINDIG CSÚCSFORMÁBAN

TV MÉG MINDIG CSÚCSFORMÁBAN TV MÉG MINDIG CSÚCSFORMÁBAN BIG PICTURE (MEME) Vörös Csilla 2014. November 12. TARTALOM Változások kora - Helyzetkép Időeltolásos tévénézés TV+ Kitekintés Jövőkép 2 VÁLTOZÁSOK KORA HELYZETKÉP 2014. OKTÓBER:

Részletesebben

Üzleti modellen alapuló webes tudásprezentáció

Üzleti modellen alapuló webes tudásprezentáció Üzleti modellen alapuló webes tudásprezentáció Pataki Máté, Micsik András Bevezetés Számos projekt küzd azzal a problémával, hogy a projekt menete során felhalmozott nagy mennyiségű, hasznos információ,

Részletesebben

MTA Cloud Use cases MTA Cloud workshop. Hernáth Szabolcs MTA WIGNER FK

MTA Cloud Use cases MTA Cloud workshop. Hernáth Szabolcs MTA WIGNER FK MTA Cloud Use cases MTA Cloud workshop Hernáth Szabolcs MTA WIGNER FK IT felhasználás dimenziói Felhasználók száma / jellege Kapacitás mérete / jellege Számítási feladat / szoftverkörnyezet Adatok mérete

Részletesebben

FIGYELEMFELKELTŐ HIRDETÉS BANNERES KAMPÁNY TÖBB REKLÁMHÁLÓZATBAN

FIGYELEMFELKELTŐ HIRDETÉS BANNERES KAMPÁNY TÖBB REKLÁMHÁLÓZATBAN FIGYELEMFELKELTŐ HIRDETÉS BANNERES KAMPÁNY TÖBB REKLÁMHÁLÓZATBAN A sikeres kampányok tervezésében az internet a médiamix mára már kihagyhatatlan elemévé vált. A jóváhagyott költésgvetések tervezéséhez

Részletesebben

Big Data az adattárházban

Big Data az adattárházban Big Data az adattárházban A párbaj folytatódik? Néhány fontos Big Data projekt Cég Téma Adat Újfajta Mennyiség Saját adat? Típus Google Influenza Google I big I Előjelzés előjelzés Farecast Xoom Chicagoi

Részletesebben

Tévénézési trendek Magyarországon és innovatív megoldások

Tévénézési trendek Magyarországon és innovatív megoldások Tévénézési trendek Magyarországon és innovatív megoldások Nielsen Ügyfélkonferencia 2011. május 11. Előadó: Vörös Csilla Copyright 2011The Nielsen Company Tartalom Eszközellátottság és -használat Növekvő

Részletesebben

Enabling and Capitalising of Urban Technologies

Enabling and Capitalising of Urban Technologies PILOT TEVÉKENYSÉG Pilot tevékenység neve Laborok megvalósítása a Pinkafeld Campuson Projektirányító / Projekt partner Burgenland GmbH Főiskola Motiváció és Célok / Célcsoport A legjelentősebb villamos

Részletesebben

TÉVÉNÉZÉS AZ INTERNETEN 2015

TÉVÉNÉZÉS AZ INTERNETEN 2015 TÉVÉNÉZÉS AZ INTERNETEN 2015 NIELSEN KÖZÖNSÉGMÉRÉS 2015. AUGUSZTUS 6. INTERNETES ESZKÖZELLÁTOTTSÁG TV+ Survey 2015, TV-s 4+ személyek Van a háztartásban INTERNET 74% ASZTALI SZÁMÍTÓGÉP LAPTOP OKOSTELEFON*

Részletesebben

Ön a megfelelő mennyiségű és minőségű információk alapján hozza meg döntéseit? Stratis Kft. / Autonomy üzleti reggeli / 2014.10.16.

Ön a megfelelő mennyiségű és minőségű információk alapján hozza meg döntéseit? Stratis Kft. / Autonomy üzleti reggeli / 2014.10.16. Ön a megfelelő mennyiségű és minőségű információk alapján hozza meg döntéseit? Stratis Kft. / Autonomy üzleti reggeli / 2014.10.16. Tracsek Ferenc igazgató Alapvető változások kora Az IT iparágban alapvető

Részletesebben

Témaválasztás, kutatási kérdések, kutatásmódszertan

Témaválasztás, kutatási kérdések, kutatásmódszertan Témaválasztás, kutatási kérdések, kutatásmódszertan Dr. Dernóczy-Polyák Adrienn PhD egyetemi adjunktus, MMT dernoczy@sze.hu A projekt címe: Széchenyi István Egyetem minőségi kutatói utánpótlás nevelésének

Részletesebben

SSADM Dokumentáció Adatbázis Alapú Rendszerek

SSADM Dokumentáció Adatbázis Alapú Rendszerek SSADM Dokumentáció Adatbázis Alapú Rendszerek Videó-megosztó oldal Szeged, 2012. 1. Csapattagok Sipos Norbert (SINRABT.SZE) Szűcs Dávid (SZDQACT.SZE) Várkonyi Zoltán (VAZSACT.SZE) 1.1. A projekt bemutatása

Részletesebben

PIAC_ Nemzetközi Határozatkereső rendszer fejlesztése. Szakmai fórum február 29.

PIAC_ Nemzetközi Határozatkereső rendszer fejlesztése. Szakmai fórum február 29. PIAC_13-1-2013-0117 Nemzetközi Határozatkereső rendszer fejlesztése Szakmai fórum 2016. február 29. A LEXPERT Nemzetközi Határozatkereső projekt célja Egy olyan új alkalmazás létrehozása, amely - naprakészen

Részletesebben

AZ ÚJGENERÁCIÓS TANKÖNYVEK FEJLESZTÉSE

AZ ÚJGENERÁCIÓS TANKÖNYVEK FEJLESZTÉSE AZ ÚJGENERÁCIÓS TANKÖNYVEK FEJLESZTÉSE A projekt célja Tanulásra és alkotásra ösztönző tanításitanulási környezet kialakítása A tanítás és tanulás hatékonyságát elősegítő módszertani újdonságok beépítése

Részletesebben

Méréselmélet MI BSc 1

Méréselmélet MI BSc 1 Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok

Részletesebben

Innovatív trendek a BI területén

Innovatív trendek a BI területén Innovatív trendek a BI területén 1 Technológiai trendek 3 BI-TREK kutatás Felmérés az üzleti intelligencia hazai alkalmazási trendjeiről Milyen BI szoftvereket használnak a hazai vállalatok? Milyen üzleti

Részletesebben

Felhasználói Segédlet. A Set Top Box beállítása, a távirányító használata, TV nézés

Felhasználói Segédlet. A Set Top Box beállítása, a távirányító használata, TV nézés Felhasználói Segédlet A Set Top Box beállítása, a távirányító használata, TV nézés v2 Set Top Box A Set Top Box az alábbi csatlakozókkal rendelkezik: USB LAN HDMI SPDIF AV (PAL) Tápegység Távirányító A

Részletesebben

A NÉZŐI VÁLASZTÁS SZABADSÁGA. Vörös Csilla március 19.

A NÉZŐI VÁLASZTÁS SZABADSÁGA. Vörös Csilla március 19. A NÉZŐI VÁLASZTÁS SZABADSÁGA Vörös Csilla 2014. március 19. Copyright 2013 The Nielsen Company. Confidential and proprietary. VÁLASZTÁSI LEHETŐSÉGEK CSATORNA VÉTELI MÓD INFOKOMMUNIKÁCIÓS ESZKÖZ ÉS HASZNÁLATA

Részletesebben

Kollektív tanulás milliós hálózatokban. Jelasity Márk

Kollektív tanulás milliós hálózatokban. Jelasity Márk Kollektív tanulás milliós hálózatokban Jelasity Márk 2 3 Motiváció Okostelefon platform robbanásszerű terjedése és Szenzorok és gazdag kontextus jelenléte, ami Kollaboratív adatbányászati alkalmazások

Részletesebben

Mire jók az ajánlórendszerek? Tikk Domonkos

Mire jók az ajánlórendszerek? Tikk Domonkos Mire jók az ajánlórendszerek? Tikk Domonkos 10 February 2009 MI FÁN TEREM AZ AJÁNLÓRENDSZER? Speciális információszűrők, amelyek felhasználói és termékprofilokat építenek tanuló algoritmusok segítésével.

Részletesebben

Copyright 2012, Oracle and/or its affiliates. All rights reserved.

Copyright 2012, Oracle and/or its affiliates. All rights reserved. 1 Oracle Felhő Alkalmazások: Gyorsabb eredmények alacsonyabb kockázattal Biber Attila Igazgató Alkalmazások Divízió 2 M I L L I Á RD 4 1 PERC MINDEN 5 PERCBŐL 5 6 Ember használ mobilt 7 FELHŐ SZOLGÁLTATÁS

Részletesebben

Teljesen elosztott adatbányászat alprojekt

Teljesen elosztott adatbányászat alprojekt Teljesen elosztott adatbányászat alprojekt Hegedűs István, Ormándi Róbert, Jelasity Márk Big Data jelenség Big Data jelenség Exponenciális növekedés a(z): okos eszközök használatában, és a szenzor- és

Részletesebben

A Java EE 5 plattform

A Java EE 5 plattform A Java EE 5 platform Ficsor Lajos Általános Informatikai Tanszék Miskolci Egyetem Utolsó módosítás: 2007. 11. 13. A Java EE 5 platform A Java EE 5 plattform A J2EE 1.4 után következő verzió. Alapvető továbbfejlesztési

Részletesebben

Multimédia anyagok szerkesztése kurzus hatékonyságnövelése web alapú projekt módszer alkalmazásával

Multimédia anyagok szerkesztése kurzus hatékonyságnövelése web alapú projekt módszer alkalmazásával Multimédia anyagok szerkesztése kurzus hatékonyságnövelése web alapú projekt módszer alkalmazásával Béres Ilona Heller Farkas Főiskola Turcsányi-Szabó Márta ELTE-IK Média és Oktatásinformatika Tanszék

Részletesebben

Hely- és kontextusfüggő alkalmazások fejlesztését támogató keretrendszer mobil környezetben

Hely- és kontextusfüggő alkalmazások fejlesztését támogató keretrendszer mobil környezetben Department of Distributed Systems Hely- és kontextusfüggő alkalmazások fejlesztését támogató keretrendszer mobil környezetben MTA SZTAKI Elosztott Rendszerek Osztály - Mátételki Péter matetelki@sztaki.hu

Részletesebben

Változások előtt hol áll a banki (adat)elemzés? Nándorfi György

Változások előtt hol áll a banki (adat)elemzés? Nándorfi György Változások előtt hol áll a banki (adat)elemzés? Nándorfi György Budapest Bank 1987-ben jött létre az egyik legelső hazai kereskedelmi bankként A 8 hazai nagybank egyike Tulajdonosi háttér: 1995-től 2015-ig

Részletesebben

Fekete Csaba Csongor Üzleti intelligencia vezető Citibank ZRt.

Fekete Csaba Csongor Üzleti intelligencia vezető Citibank ZRt. Fekete Csaba Csongor Üzleti intelligencia vezető Citibank ZRt. Tartalom BI mérföld kövek Kezdeti architektúra és kontextus Lokális Adattárház Kialakítása CRM Evolúció Üzleti Intelligencia kiaknázó eszközök

Részletesebben

III.6. MAP REDUCE ELVŰ ELOSZTOTT FELDOLGOZÁSI ALGORITMUSOK ÉS TESZTKÖRNYEZET KIDOLGOZÁSA ADATBÁNYÁSZATI FELADATOK VÉGREHAJTÁSÁHOZ

III.6. MAP REDUCE ELVŰ ELOSZTOTT FELDOLGOZÁSI ALGORITMUSOK ÉS TESZTKÖRNYEZET KIDOLGOZÁSA ADATBÁNYÁSZATI FELADATOK VÉGREHAJTÁSÁHOZ infokommunikációs technológiák III.6. MAP REDUCE ELVŰ ELOSZTOTT FELDOLGOZÁSI ALGORITMUSOK ÉS TESZTKÖRNYEZET KIDOLGOZÁSA ADATBÁNYÁSZATI FELADATOK VÉGREHAJTÁSÁHOZ KECSKEMÉTI ANNA KUN JEROMOS KÜRT Zrt. KUTATÁSI

Részletesebben

Gyors sikerek adatbányászati módszerekkel

Gyors sikerek adatbányászati módszerekkel Gyors sikerek adatbányászati módszerekkel Kezdő adatbányászati workshop Petrócziné Huczman Zsuzsanna 2015.10.13. Bemutatkozás BME, műszaki informatika szak, adatbányászati szakirány Citibank Data Explorer

Részletesebben

Adaptív menetrendezés ADP algoritmus alkalmazásával

Adaptív menetrendezés ADP algoritmus alkalmazásával Adaptív menetrendezés ADP algoritmus alkalmazásával Alcím III. Mechwart András Ifjúsági Találkozó Mátraháza, 2013. szeptember 10. Divényi Dániel Villamos Energetika Tanszék Villamos Művek és Környezet

Részletesebben

A SEPA megvalósítását támogató szabályozói háttér

A SEPA megvalósítását támogató szabályozói háttér A SEPA megvalósítását támogató szabályozói háttér dr. Kotulyák Éva jogtanácsos MKB Bank Zrt. MSE Jogi Munkacsoport 2013. május 09. TÉMAKÖRÖK 1. Aktuális szabályozás módszer és tartalom 2. Aktuális gyakorlati

Részletesebben

TERC V.I.P. hardverkulcs regisztráció

TERC V.I.P. hardverkulcs regisztráció TERC V.I.P. hardverkulcs regisztráció 2014. második félévétől kezdődően a TERC V.I.P. költségvetés-készítő program hardverkulcsát regisztrálniuk kell a felhasználóknak azon a számítógépen, melyeken futtatni

Részletesebben

PLATFORMOK, KÉPERNYŐK ÉS NÉZŐK

PLATFORMOK, KÉPERNYŐK ÉS NÉZŐK PLATFORMOK, KÉPERNYŐK ÉS NÉZŐK HTE 2013 Vörös Csilla 2013. október 4. TARTALOM Digitális Mérés Technológiája Analóg Földi Lekapcsolás és Mérés Platformváltók Platformok és Nézettség Képernyő Tények Kitekintés

Részletesebben

TPM egy kicsit másképp Szollár Lajos, TPM Koordinátor

TPM egy kicsit másképp Szollár Lajos, TPM Koordinátor TPM egy kicsit másképp Szollár Lajos, TPM Koordinátor 2013.06.18 A TPM A TPM a Total Productive Maintenance kifejezés rövidítése, azaz a teljes, a gyártásba integrált karbantartást jelenti. A TPM egy állandó

Részletesebben

OPEN SPACE FÓRUM TÉMA JEGYZET

OPEN SPACE FÓRUM TÉMA JEGYZET OPEN SPACE FÓRUM TÉMA JEGYZET Téma neve/címe: Integrált ügyfélszolgálat kialakítása Téma gazdája: Lakatos András Jegyzetkészítő: Lakatos András További résztvevők: Csiba András Kovács István Lackó Péter

Részletesebben

ANALÍZIS TANSZÉK Szakdolgozati téma. Piezoelektromos mechanikai redszer rezgését leíró parciális

ANALÍZIS TANSZÉK Szakdolgozati téma. Piezoelektromos mechanikai redszer rezgését leíró parciális Piezoelektromos mechanikai redszer rezgését leíró parciális di erenciálegyenlet el½oállítása és megoldása Témavezet½o: Dr. Kovács Béla Rugalmas és pizoelektromos rétegekb½ol álló összetett mechanikai rendszer

Részletesebben

VÁLTOZÓ VIDEÓ VILÁG: MILYEN KÉPERNYŐN NÉZNEK? ELŐADÓ: VÖRÖS CSILLA. Digitalia szeptember 10.

VÁLTOZÓ VIDEÓ VILÁG: MILYEN KÉPERNYŐN NÉZNEK? ELŐADÓ: VÖRÖS CSILLA. Digitalia szeptember 10. VÁLTOZÓ VIDEÓ VILÁG: MILYEN KÉPERNYŐN NÉZNEK? ELŐADÓ: VÖRÖS CSILLA Digitalia 2013. szeptember 10. TARTALOM TV tények (eszközök, nézési idő, nézést növelő faktorok) Multiplatform (eszközök, külföldi adatok,

Részletesebben

SZTE Eötvös Loránd Kollégium. 2. Móra György: Információkinyerés természetes nyelvű szövegekből

SZTE Eötvös Loránd Kollégium. 2. Móra György: Információkinyerés természetes nyelvű szövegekből 2010/2011 tavaszi félév SZTE Eötvös Loránd Kollégium 1. Dombi József: Fuzzy elmélet és alkalmazásai 2011. március 3. 19:00 2. Móra György: Információkinyerés természetes nyelvű szövegekből 2011. március

Részletesebben

KÖVETKEZŐ GENERÁCIÓS NAGYVÁLLALATI TARTALOMKEZELŐ MEGOLDÁSOK Stratis Kft. / Autonomy üzleti reggeli / 2014.10.16. Mezei Ferenc üzletág-igazgató

KÖVETKEZŐ GENERÁCIÓS NAGYVÁLLALATI TARTALOMKEZELŐ MEGOLDÁSOK Stratis Kft. / Autonomy üzleti reggeli / 2014.10.16. Mezei Ferenc üzletág-igazgató KÖVETKEZŐ GENERÁCIÓS NAGYVÁLLALATI TARTALOMKEZELŐ MEGOLDÁSOK Stratis Kft. / Autonomy üzleti reggeli / 2014.10.16. Mezei Ferenc üzletág-igazgató Hasonló, mégis más Ez se rossz amíg ezt ki nem próbáltad!

Részletesebben

Önkiszolgáló BI Az üzleti proaktivítás eszköze. Budapest,

Önkiszolgáló BI Az üzleti proaktivítás eszköze. Budapest, Önkiszolgáló BI Az üzleti proaktivítás eszköze Budapest, 2016.10.27 Tartalom 1. Kihívások Való Világ 2. Hogyan segít az Önkiszolgáló BI? confidential 10/26/2016 2 Riportokkal szembeni igények alakulása

Részletesebben

Adatbányászat és Perszonalizáció architektúra

Adatbányászat és Perszonalizáció architektúra Adatbányászat és Perszonalizáció architektúra Oracle9i Teljes e-üzleti intelligencia infrastruktúra Oracle9i Database Integrált üzleti intelligencia szerver Data Warehouse ETL OLAP Data Mining M e t a

Részletesebben

Output menedzsment felmérés. Tartalomjegyzék

Output menedzsment felmérés. Tartalomjegyzék Összefoglaló Output menedzsment felmérés 2009.11.12. Alerant Zrt. Tartalomjegyzék 1. A kutatásról... 3 2. A célcsoport meghatározása... 3 2.1 Célszervezetek... 3 2.2 Célszemélyek... 3 3. Eredmények...

Részletesebben

Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz)

Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz) Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz) A házi feladatokkal kapcsolatos követelményekről Kapcsolódó határidők: választás: 6. oktatási hét csütörtöki

Részletesebben

Multimédia mintarendszerek a Sulinet + hálózatban

Multimédia mintarendszerek a Sulinet + hálózatban Multimédia mintarendszerek a Sulinet + hálózatban 2014. január 9. Sulinet + nyílt nap Budapest Ilyés Gábor osztályvezető Multimédia szolgáltatások NIIF Intézet NIIF Kollaborációs infrastruktúra Több mint

Részletesebben

Alternatív zártláncú tartalomtovábbítás értékesítőhelyek számára

Alternatív zártláncú tartalomtovábbítás értékesítőhelyek számára Alternatív zártláncú tartalomtovábbítás értékesítőhelyek számára António Felizardo Hungaro DigiTel Kft. 2015. okt. 8. Igény Kapacitás - Adatforgalom Alkalmazások Felhasználó Hálózat Egyik a másikat gerjeszti,

Részletesebben

TÉVÉNÉZÉS AZ INTERNETEN

TÉVÉNÉZÉS AZ INTERNETEN TÉVÉNÉZÉS AZ INTERNETEN 2014. MÁJUS NIELSEN KÖZÖNSÉGMÉRÉS 2014. OKTÓBER 9. A MAGYAR NÉPESSÉG MEGOSZLÁSA ÉS ESZKÖZELLÁTOTTSÁGA 9,4 M Összes személy Van a háztartásban A tévés háztartásban élő 4 éven felüli

Részletesebben

SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.

SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb. SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.hu Mesterséges intelligencia oktatás a DE Informatikai

Részletesebben

Az MTA Cloud a tudományos alkalmazások támogatására. Kacsuk Péter MTA SZTAKI

Az MTA Cloud a tudományos alkalmazások támogatására. Kacsuk Péter MTA SZTAKI Az MTA Cloud a tudományos alkalmazások támogatására Kacsuk Péter MTA SZTAKI Kacsuk.Peter@sztaki.mta.hu Tudományos alkalmazások és skálázhatóság Kétféle skálázhatóság: o Vertikális: dinamikusan változik

Részletesebben

Palaczk Péter A marketing folyamatok adattárház alapú támogatása

Palaczk Péter A marketing folyamatok adattárház alapú támogatása Palaczk Péter A marketing folyamatok adattárház alapú támogatása A hatékony marketingtámogatás alapjai Infrastrukturális feltételek Működő vállalati adattárház Megbízható ügyféladatok Beüzemelt adatbányászati

Részletesebben

MOBILITÁS VÁLLALATI KÖRNYEZETBEN MEGOLDÁS KONCEPCIÓ

MOBILITÁS VÁLLALATI KÖRNYEZETBEN MEGOLDÁS KONCEPCIÓ MOBILITÁS VÁLLALATI KÖRNYEZETBEN MEGOLDÁS KONCEPCIÓ 1 Mobil eszközök növekedési trendje 2 A mobil eszközök előnyei Támogatják a mobilitást, könnyű velük utazni, terepen munkát végezni Széles applikáció

Részletesebben

4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Matematika A 9. szakiskolai évfolyam 4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS MATEMATIKA A 9. szakiskolai évfolyam 4. modul: EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Tanári útmutató

Részletesebben

30 MB INFORMATIKAI PROJEKTELLENŐR

30 MB INFORMATIKAI PROJEKTELLENŐR INFORMATIKAI PROJEKTELLENŐR 30 MB DOMBORA SÁNDOR BEVEZETÉS (INFORMATIKA, INFORMATIAKI FÜGGŐSÉG, INFORMATIKAI PROJEKTEK, MÉRNÖKI ÉS INFORMATIKAI FELADATOK TALÁKOZÁSA, TECHNOLÓGIÁK) 2016. 09. 17. MMK- Informatikai

Részletesebben

Vállalati információs rendszerek I, MIN5B6IN, 5 kredit, K. 4. A meghirdetés ideje (mintatanterv szerint vagy keresztfélében):

Vállalati információs rendszerek I, MIN5B6IN, 5 kredit, K. 4. A meghirdetés ideje (mintatanterv szerint vagy keresztfélében): Követelményrendszer 1. Tantárgynév, kód, kredit, választhatóság: Vállalati információs rendszerek I, MIN5B6IN, 5 kredit, K 2. Felelős tanszék: Informatika Szakcsoport 3. Szak, szakirány, tagozat: Műszaki

Részletesebben

Big Data technológiai megoldások fejlesztése közvetlen mezőgazdasági tevékenységekhez

Big Data technológiai megoldások fejlesztése közvetlen mezőgazdasági tevékenységekhez Big Data technológiai megoldások fejlesztése közvetlen mezőgazdasági tevékenységekhez Szármes Péter doktorandusz hallgató Széchenyi István Egyetem, MMTDI Dr. Élő Gábor egyetemi docens, Széchenyi István

Részletesebben

Feladataink, kötelességeink, önkéntes és szabadidős tevékenységeink elvégzése, a közösségi életformák gyakorlása döntések sorozatából tevődik össze.

Feladataink, kötelességeink, önkéntes és szabadidős tevékenységeink elvégzése, a közösségi életformák gyakorlása döntések sorozatából tevődik össze. INFORMATIKA Az informatika tantárgy ismeretkörei, fejlesztési területei hozzájárulnak ahhoz, hogy a tanuló az információs társadalom aktív tagjává válhasson. Az informatikai eszközök használata olyan eszköztudást

Részletesebben

Az Invitel Távközlési Zrt.

Az Invitel Távközlési Zrt. Az Invitel Távközlési Zrt. által egyéni előfizetők számára nyújtott elektronikus hírközlési és médiaszolgáltatások Általános Szerződési Feltételei 1. számú melléklete Szolgáltatások leírása Hatályba lépés

Részletesebben

Mérés és modellezés Méréstechnika VM, GM, MM 1

Mérés és modellezés Méréstechnika VM, GM, MM 1 Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni

Részletesebben

CÍM. Hybrid Broadcast Broadband TV

CÍM. Hybrid Broadcast Broadband TV CÍM Hybrid Broadcast Broadband TV Bevezetés Az IPTV piacot a mai napig zárt rendszerű egyedi fejlesztésű rendszerek uralják. Az új szabványosítási folyamatnak ( Connected TV, HbbTV ) eredményeképpen ez

Részletesebben

Pentaho 4: Mindennapi BI egyszerűen. Fekszi Csaba Ügyvezető 2011. október 6.

Pentaho 4: Mindennapi BI egyszerűen. Fekszi Csaba Ügyvezető 2011. október 6. Pentaho 4: Mindennapi BI egyszerűen Fekszi Csaba Ügyvezető 2011. október 6. 1 2 3 4 5 Bevezetés Pentaho-ról röviden - áttekintő Mindennapi BI egyszerűen a Pentaho 4 újdonságai Pentaho összefoglaló Alkalmazás

Részletesebben

Vizuális adatelemzés - Gyakorlat. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

Vizuális adatelemzés - Gyakorlat. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Vizuális adatelemzés - Gyakorlat Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Adatelemzés szerepe a rendszermodellezésben Lényeges paraméterek meghatározása

Részletesebben

Mérés és modellezés 1

Mérés és modellezés 1 Mérés és modellezés 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni kell

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület

Részletesebben

Videóportálok a felsőoktatásban

Videóportálok a felsőoktatásban Kovács András NIIF Intézet NetworkShop 2009, Szeged 2009. április 15. Mire jó egy Nemzeti videóportál? Információs Infrastruktúra Fejlesztési Intézet Multimédia repozitórium-ok: Felsőoktatás-kutatás:

Részletesebben

TV mindenhol. Vantsa László Magyarországért, Csehországért és Szlovákiáért felelős kereskedelmi és terjesztési igazgató Discovery Networks CEEMEA

TV mindenhol. Vantsa László Magyarországért, Csehországért és Szlovákiáért felelős kereskedelmi és terjesztési igazgató Discovery Networks CEEMEA TV mindenhol Vantsa László Magyarországért, Csehországért és Szlovákiáért felelős kereskedelmi és terjesztési igazgató Discovery Networks CEEMEA A DISCOVERY NETWORKS KÜLDETÉSÜNK A KÍVÁNCSISÁG KIELÉGÍTÉSE

Részletesebben

Elektronikus oktatástámogató rendszer bevezetésének tapasztalatai. Jókai Erika Vig Zoltán

Elektronikus oktatástámogató rendszer bevezetésének tapasztalatai. Jókai Erika Vig Zoltán Elektronikus oktatástámogató rendszer bevezetésének tapasztalatai Jókai Erika Vig Zoltán Előadásvázlat Előkészítési, tervezési szakasz Bevezetési szakasz Kutatási területek Moodle Eredményeink Terveink

Részletesebben

Ionogram releváns területeinek meghatározása és elemzésének automatikus megvalósítása

Ionogram releváns területeinek meghatározása és elemzésének automatikus megvalósítása Ionogram releváns területeinek meghatározása és elemzésének automatikus megvalósítása Előadó: Pieler Gergely, MSc hallgató, Nyugat-magyarországi Egyetem Konzulens: Bencsik Gergely, PhD hallgató, Nyugat-magyarországi

Részletesebben

INFORMATIKAI RENDSZEREK SZEREPE A SPORTANALITIKÁBAN

INFORMATIKAI RENDSZEREK SZEREPE A SPORTANALITIKÁBAN INFORMATIKAI RENDSZEREK SZEREPE A SPORTANALITIKÁBAN Schmidt Judit, Molnár Attila DinamIT Informatika Kft. KIK VAGYUNK MI? A DinamIT Informatika Kft. egy Balatonfüreden működő K+F cég. Mivel foglalkozunk?

Részletesebben

A VPP szabályozó központ működési modellje, és fejlődési irányai. Örményi Viktor 2015. május 6.

A VPP szabályozó központ működési modellje, és fejlődési irányai. Örményi Viktor 2015. május 6. A VPP szabályozó központ működési modellje, és fejlődési irányai Örményi Viktor 2015. május 6. Előzmények A Virtuális Erőművek kialakulásának körülményei 2008-2011. között a villamos energia piaci árai

Részletesebben

Tisztelettel köszöntöm a RITEK Zrt. Regionális Információtechnológiai Központ bemutatóján. www.ritek.hu

Tisztelettel köszöntöm a RITEK Zrt. Regionális Információtechnológiai Központ bemutatóján. www.ritek.hu Tisztelettel köszöntöm a RITEK Zrt. Regionális Információtechnológiai Központ bemutatóján. www.ritek.hu BEVEZETŐ az ASP-szolgáltatásról Az ASP-szolgáltatás (Application Service Providing) előnyei A megrendelő

Részletesebben

Vajda Éva. Bevezetés a keresőmarketingbe

Vajda Éva. Bevezetés a keresőmarketingbe Vajda Éva Bevezetés a keresőmarketingbe Alapfogalmak Fizetett hivatkozások - hirdetés Organikus találatok - ki kell "érdemelni" jó honlappal Organikus vs fizetett hivatkozás Organikus - keresőoptimalizálás

Részletesebben

Cafeteria szolgáltatások

Cafeteria szolgáltatások Cafeteria szolgáltatások Teljes körű cafeteria rendszer építés, tanácsadás. Nyilvántartó rendszer A Quick.Cafe elsősorban a munkavállalók cafeteria választásának megkön nyítését szolgáló szoftver. Interneten,

Részletesebben

Beszédfelismerés alapú megoldások. AITIA International Zrt. Fegyó Tibor

Beszédfelismerés alapú megoldások. AITIA International Zrt. Fegyó Tibor Beszédfelismerés alapú megoldások AITIA International Zrt. Fegyó Tibor fegyo@aitia.hu www.aitia.hu AITIA Magyar tulajdonú vállalkozás Célunk: kutatás-fejlesztési eredményeink integrálása személyre szabott

Részletesebben

Szövegbányászati rendszer fejlesztése a Magyar Elektronikus Könyvtár számára

Szövegbányászati rendszer fejlesztése a Magyar Elektronikus Könyvtár számára Szövegbányászati rendszer fejlesztése a Magyar Elektronikus Könyvtár számára Vázsonyi Miklós VÁZSONYI Informatikai és Tanácsadó Kft. BME Információ- és Tudásmenedzsment Tanszék 1/23 Tartalom A MEK jelenlegi

Részletesebben

MICROSOFT DYNAMICS NAV RENDSZER SAAS MODELLBEN

MICROSOFT DYNAMICS NAV RENDSZER SAAS MODELLBEN Az ERP bevezetések 30%-a amiatt hiúsul meg, mert a bevezetést tervező vállalat nem tudja előteremteni az igényeinek megfelelő ERP rendszer bevezetéséhez szükséges erőforrást, vagy úgy gondolja, hogy az

Részletesebben

User journey. Utazz velünk a jövőbe! Németh Iván Ads Interactive Media Group

User journey. Utazz velünk a jövőbe! Németh Iván Ads Interactive Media Group User journey Utazz velünk a jövőbe! Németh Iván Ads Interactive Media Group Manapság Sokat hallunk olyan kifejezéseket, online környezetben, mint Programatic buying Real-time bidding Behavioral targeting

Részletesebben

ENELFA záró konferencia 2014. január. 21. századi oktatási trendek, e-learning - Cesim OnService pilot tréningek

ENELFA záró konferencia 2014. január. 21. századi oktatási trendek, e-learning - Cesim OnService pilot tréningek ENELFA záró konferencia 2014. január 21. századi oktatási trendek, e-learning - Cesim OnService pilot tréningek Children must be taught how to think, not what to think. Margaret Mead A jelenlegi felsőoktatási

Részletesebben

Van-e ingyen-ebéd? Avagy mire elég a nyílt forráskodú Pentaho? Fekszi Csaba Ügyvezető 2012. október 4.

Van-e ingyen-ebéd? Avagy mire elég a nyílt forráskodú Pentaho? Fekszi Csaba Ügyvezető 2012. október 4. Van-e ingyen-ebéd? Avagy mire elég a nyílt forráskodú Pentaho? Fekszi Csaba Ügyvezető 2012. október 4. Omnit Solutions 2007 óta a piacon BI & adattárház tanácsadás 20 fős csapat Oracle, IBM és Pentaho

Részletesebben

Hőmennyiségmérők elektronikus leolvasásának

Hőmennyiségmérők elektronikus leolvasásának Hőmennyiségmérők elektronikus leolvasásának egy működő referenciája Az elmúlt időszakban a Kamstrup több mint 2 millió hőmennyiségmérőt telepített szerte a világban. A telepített mérők mérési adatainak

Részletesebben

Programozási módszertan. Mohó algoritmusok

Programozási módszertan. Mohó algoritmusok PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás

Részletesebben

ELEMZŐ KAPACITÁS FEJLESZTÉSE, MÓDSZERTANI FEJLESZTÉS MEGVALÓSÍTÁSA

ELEMZŐ KAPACITÁS FEJLESZTÉSE, MÓDSZERTANI FEJLESZTÉS MEGVALÓSÍTÁSA TÁMOP-2.4.8-12/1-2012-0001 A munkahelyi egészség és biztonság fejlesztése, a munkaügyi ellenőrzés fejlesztése ELEMZŐ KAPACITÁS FEJLESZTÉSE, MÓDSZERTANI FEJLESZTÉS MEGVALÓSÍTÁSA Előadó: Szentesi Fekete

Részletesebben

Történet John Little (1970) (Management Science cikk)

Történet John Little (1970) (Management Science cikk) Információ menedzsment Szendrői Etelka Rendszer- és Szoftvertechnológia Tanszék szendroi@witch.pmmf.hu Vezetői információs rendszerek Döntéstámogató rendszerek (Decision Support Systems) Döntések információn

Részletesebben

Adatelemzés SAS Enterprise Guide használatával. Soltész Gábor solteszgabee[at]gmail.com

Adatelemzés SAS Enterprise Guide használatával. Soltész Gábor solteszgabee[at]gmail.com Adatelemzés SAS Enterprise Guide használatával Soltész Gábor solteszgabee[at]gmail.com Tartalom SAS Enterprise Guide bemutatása Kezelőfelület Adatbeolvasás Szűrés, rendezés Új változó létrehozása Elemzések

Részletesebben

I. A felfedési kockázat mérése és a mikroadatokhoz való hozzáférés jövője II. Paraadatok használata a rugalmas (responsive) mintavétel során

I. A felfedési kockázat mérése és a mikroadatokhoz való hozzáférés jövője II. Paraadatok használata a rugalmas (responsive) mintavétel során Magyar Statisztikai Társaság Gazdaságstatisztikai és Nemzetközi Statisztikai Szakosztálya Magyar résztvevők az ISI (58.) dublini konferenciájáról I. A felfedési kockázat mérése és a mikroadatokhoz való

Részletesebben

Projekt beszámoló. NEWSIT News basedearlywarning System forintradaytrading: Hír alapú Korai Figyelmeztető Rendszer Napon belüli Kereskedéshez

Projekt beszámoló. NEWSIT News basedearlywarning System forintradaytrading: Hír alapú Korai Figyelmeztető Rendszer Napon belüli Kereskedéshez Projekt beszámoló Projekt azonosítója: Projektgazda neve: Projekt címe: DAOP-1.3.1-12-2012-0080 Pénzügyi Innovációs Iroda Kft. NEWSIT News basedearlywarning System forintradaytrading: Hír alapú Korai Figyelmeztető

Részletesebben

Érdekességek és trendek a társkeresésben l.

Érdekességek és trendek a társkeresésben l. Érdekességek és trendek a társkeresésben l. Az elmúlt évek során a 30 év alatti társkeresők aránya a Randivonalon 45%-ról 30% alá csökkent, azaz napjainkra elmondható, hogy a társkeresők kétharmada 30

Részletesebben

Az Invitel Távközlési Zrt. tájékoztatása a lakossági akciók lezárásáról

Az Invitel Távközlési Zrt. tájékoztatása a lakossági akciók lezárásáról Az Invitel Távközlési Zrt. tájékoztatása a lakossági akciók lezárásáról 2016. május 1. Definíciók Új előfizetőnek minősül az az ügyfél, aki az akcióban érintett szolgáltatásra vonatkozó előfizetői szerződés

Részletesebben

EGYÜTTMŰKÖDŐ ÉS VERSENGŐ ERŐFORRÁSOK SZERVEZÉSÉT TÁMOGATÓ ÁGENS RENDSZER KIDOLGOZÁSA

EGYÜTTMŰKÖDŐ ÉS VERSENGŐ ERŐFORRÁSOK SZERVEZÉSÉT TÁMOGATÓ ÁGENS RENDSZER KIDOLGOZÁSA infokommunikációs technológiák EGYÜTTMŰKÖDŐ ÉS VERSENGŐ ERŐFORRÁSOK SZERVEZÉSÉT TÁMOGATÓ ÁGENS RENDSZER KIDOLGOZÁSA Témavezető: Tarczali Tünde Témavezetői beszámoló 2015. január 7. TÉMAKÖR Felhő technológián

Részletesebben