SZENZOROK ÉS MIKROÁRAMKÖRÖK

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "SZENZOROK ÉS MIKROÁRAMKÖRÖK"

Átírás

1 SZENZOROK ÉS MIKROÁRAMKÖRÖK 11. ELŐADÁS: MÁGNESES ÉRZÉKELŐK I 2014/2015 tanév 2. félév 1 1. Mágneses tér mérése, mágneses térerősség (H) és mágneses indukció (B), mértékegységek. 2. Fizikai működési elvek. Hall-effektus, Hall-érzékelő, magnetorezisztor, óriás mágneses elllenállásváltozás (giant magnetoresistance, GMR). 3. Mágneses érzékelők alapanyagai (félvezetők, szilícium (Si), gallium-arzenid (GaAs), indium-antimonid (InSb), kobalt-réz-vas (Co-Cu-Fe) multi-réteg szerkezetek, stb.). 4. Hall-, magnetorezisztor-, GMR-érzékelők, gyakorlati típusok és mérőáramköreik. Mágneses térre érzékeny tranzisztorok, MAGFET, vertikális- és laterális- (bipoláris) magnetotranzisztor. Mikroelektronikai integrált érzékelők. 5. Alkalmazási példák. Lineáris elmozdulás és pozíció, távolság, szöglefordulás és szöghelyzet. Beavatkozás nélküli áramérzékelés 2 és mérés. Mágneses érzékelők gépkocsikban. 1

2 MÁGNESES ÉRZÉKELŐK Mágneseses érzékelő: funkciója szerint kétféle típusú lehet. 1. Közvetlenül érzékelhet egy mágneses teret (direkt alkalmazás), pl. mint egy magnetométerben a Föld mágneseses terét, vagy egy adattároló készülékben az adathordozó (mágneses lemez, szalag, kártya, stb.) lokális mágnesezettségét. 2. A mágneses tér mint közvetítő eszköz szolgál nemmágneses jelek érzékelésre (indirekt alkalmazás) mint pl. lineáris- vagy szöghelyzet, elmozdulás és sebesség érzékelés permanens mágnesekkel kontaktusmenetes módon, vagy áramérzékelés a mágneses tere révén, stb. 3 MÁGNESES ÉRZÉKELŐK Conventional sensors detect a physical property directly (A) Magnetic sensors detect changes in magnetic fields and from derive the information on physical properties (B) 4 2

3 DIREKT ALKALMAZÁSOK Információ kiolvasása mágneses adathordozóról (mágneses lemez, szalag vagy buborékmemória) Mágneses mintázat felismerése bankjegyeken vagy bankkártyákon Magnetometria: mágneses készülékek vezérlése mint pl. klasszikus vagy szupravezetős elektromágnesek, részecskegyorsítók mágnesei, továbbá a vektoriális mágneses terek meghatározása két-vagy három komponens detektálásával Mágneses levitáció (MAGLEV) vezérlése és szabályozása Föld mágneses terének mérése, elektronikus iránytű Geomágneses távérzékelés geológiai és vulkanikus felmérésekhez 5 DIREKT ALKALMAZÁSOK Mesterséges holdak helyzet szabályozása Repülőgépek, hajók, tengeralattjárók, rakéták és lövedékek pozicionálása a geomágneses térre kifejtett perturbáló hatásuk révén, valamint a globális navigációs rendszer kifejlesztésére Biomagnetometira: diagnosztikus adatok gyűjtése a kardiomágnesesség, miómamágnesesség és a neuromágnesesség révén a célból, hogy a szív, az izmok, az idegek és az agy működését feltérképezzék (emberek és állatok) 6 3

4 INDIREKT ALKALMAZÁSOK Távolság/elmozdulás (lineáris, szög), sebesség és rezgés mérés Helyzetérzékelés Forgás és forgásirány érzékelés (tachometria) Kollektor nélküli DC motorok Billentyűzet és közelség (proximity) kapcsolók Mikrofonok Lineáris és forgó potenciométerek, forgó tengely szöghelyzet indikálás, gépkocsi gyujtás-vezérlés Gépkocsi ASB (anti-skid breaking) Roncsolásmentes mágneses anyagvizsgálat, fémdetektálás 7 INDIREKT ALKALMAZÁSOK Villamos áram- és teljesítménymérés (kwh számlálók) a vezeték megszakítása nélkül Analóg szorzás Galvanikus elválasztás Járműérzékelés (ferromágneses test elhaladása) Mechanikai, kémiai, stb. jellemzők mérése, permanens mágneseket tartalmazó mágneses modulációs rendszerekben 8 4

5 MÁGNESSÉG TERMÉSZETE A mágnesség történetében van néhány különös ellentmondás, s ezek rendkívül érdekessé teszik a témakört. Egyfelől a mágnesvasérc, mint a hajózásban használt iránytű, a tudomány egyik legrégebben ismert ipari alkalmazása, és napjainkban a ferromágnesség talán még fontosabb az ipari társadalom számára, mint volt régen a hajósoknak. Másfelől a mágnesség eredetét hosszú ideig nem sikerült értelmezni, és az elmélet még ma sem tudja a kísérleti megfigyeléseket mind megmagyarázni. 9 MÁGNESSÉG TERMÉSZETE Feltételezik, hogy a kínaiak már i.e körül használtak iránytűt. Ha ez talán nem is igaz, annyi azonban egészen biztos, hogy az i.e. VI. évszázadban a milétoszi TÁLESZ ismerte a mágnesvasércnek azt a tulajdonságát, hogy a vasat magához vonzza. Az időpontot még kétszáz évvel korábbra hozza WILLIAM GILBERT (I. Erzsébet udvari tudósa), aki 1600-ban azt írta, hogy jó szerencsétől kísérve, a vasöntők vagy fémbányászok már 800 esztendővel Krisztus születése előtt felfedezték a magnetitot. Alig kétséges, hogy ma mekkora műszaki fontossága van a ferromágnességnek. Magyarországon ma a villamos erőművek kapacitása kb. 9 GW, és a nagymennyiségű elektromos energia előállítása lehetetlen lenne a ferromágneses anyagok és a mágnesség tulajdonságainak megfelelő felhasználása nélkül. 10 5

6 MÁGNESSÉG: ALAPFOGALMAK DIÓHÉJBAN Mágneses térerősség: Mágneses indukció (fluxussűrűség): Mágneses permeabilitás: H (A/m) B (Vs/m 2 = Tesla) µ (Vs/Am) Vákuumban B = µ o H Anyag jelenlétében B = µ o (H + M) M: térfogategységre eső mágneses dipólusmomentum (Am 2 /m 3 = A/m) azaz mágnesezettség M = χ m H χ m : mágneses szuszceptibilitás B = µ o (1 + χ m )H = µ o µ r H azaz µ r = 1 + χ m 11 MÁGNESES DIPÓLUS Felmágnesezett vasrúd mágneses tere A Föld mágneses terének dipólus modellje 12 6

7 MÉRTÉKEGYSÉGEK Mágneses egységek mindig gondot okoztak és okoznak ma is A cgs (Gauss) rendszer sokáig volt használatban. Ebben µ o = 1 és így H és B numerikusan azonosak vákuumban (és gyakorlatilag levegőben), és egységeiket (Oersted a téré, Gauss a fluxussűrűségé) gyakran össze-vissza felcserélik. Ez nagy kavarodást okozott és okoz néha ma is Ma: SI rendszer, definíció szerint µ o = 4 π x 10-7 Vs/Am 13 MÉRTÉKEGYSÉGEK Helyesen: Vs/m

8 MÁGNESES TEREK NAGYSÁGA Jelenség, mágneses tér forrása Mágneses indukció (Tesla) Biológiai /élő rendszerek Pico- és nanotesla Geomágneses tér (30-60)x10-6 Mágneses adatrögzítők 0,001 Vezető felszínén (r = 1-2 mm, 10 A) 0,001-0,002 Permanens mágnes (kapcsolók) 0,005-0,1 Permanens mágnes, ferrit 0,3 (max) Permanens mágnes, Alnico, SmCo, 0,4-0,8 (max) Vasmagos transzformátor 0,9-1 Vas telítési mágnesezettség 2,1 Szupravezető tekercs (T = 2-4 K) MRI 3-4 Rezisztív mágnes (50 mm dia szabad tér, MW táplálás) Lassú impulzus ( msec) Gyors impulzus ( µsec) One-shot Fluxus kompresszió > több száz 15 ANYAG ÉS MÁGNESES TÉR Csoport Anyag Szuszceptibilitás Permeabilitás diamágneses Cu, Ag, Au, Bi szupravezetők kicsi és negatív kb. 1 paramágneses Al, Pt kicsi és pozitív kb. 1 ferromágneses Fe, Co, Ni, ritka földfémek, pl. Sm, Dy nagy és pozitív ferrimágneses Fe 3 O 4 nagy és pozitív nagy és pozitív 0 Emlékeztető: µ r = 1 + χ m A szupravezetők abszolút diamágneses anyagok. 16 8

9 MÁGNESES SZENZOROK ÉRZÉKELÉSI TARTOMÁNYAI Élő szervezet Föld trafó MRI 17 MÁGNESTÉR ÉRZÉKELŐK CSOPOSTOSÍTÁSA Lehetséges és szokásos csoportosítás, illetve elnevezések Vektor (komponens) érzékelők Skalár (abszolút érték) érzékelők Kis terek (B < 1 mt) Nagy terek (B > 1 mt) magnetométer gaussméter 18 9

10 MÁGNESES ÉRZÉKELŐK CSOPORTOSÍTÁSA MÁGNESTÉR SZENZOROK MAGNETOMÉTEREK B < 1 mt GAUSSMÉTEREK B > 1mT VEKTOR Mérőtekercs Fluxgate szenzor SQUID Magnetorezisztív szenzor Száloptikai szenzor SKALÁR Proton precesszió Optikai pumpálás Hall effektus Magnetorezisztív Magnetodióda Magnetotranzisztor ERZÉKELÉSI TARTOMÁNYOK 20 10

11 MÉRÉSI TECHNIKÁK ÖSSZEHASONÍTÁSA Eszköz B tartomány Feloldás (mt) (nt) Tekercs változó Fluxgate ,5 0,1 SQUID , Hall effektus 0,1-3x MR Proton precesszió 0,02-0,1 0,05 Optikai pumpálás 0,01-0,1 0, MÁGNESES SZENZOR SZERKEZETEK B = µ r µ o H szerint a szenzor válasza nagy µ r esetén megnő. 22 Ennek alapján a szenzorok két nagy csoportra oszthatók. 11

12 MÁGNESES SZENZOR SZERKEZETEK A B = µ r µ o H összefüggés alapján a szenzor válasza nagy relatív permeabilitás esetén megnő. Ennek alapján a szenzorok két nagy csoportra oszthatók. Szenzorok, melyekben nagy permeabilitású anyag kerül alkalmazásra (ferro- vagy ferrimágneses anyag,µ r >> 1), mely a permeabilitás arányában megnöveli az érzékenységet. Pl. NiFe vékonyréteg mágneses ellenállásváltozási szenzor, optikai szálakon elhelyzett (ferromágneses) nikkel bevonat (magnetostrikciós hatás), illetve bármely szenzor, melyben fluxus koncentrátor kerül alkalmazásra. Kis relatív permeabilitás (µ r 1) esetén nincs ilyen jellegű erősítés. Pl. az összes, a galvanomágneses jelenségeken alapuló szenzor ebbe az osztályba tartozik. 23 MÁGNESES TÉR HATÁSAI: ÉRZÉKELÉS A legfontosabb, az érzékelőkben kihasznált effektusok: Mozgó töltéshordozók (áram) eltérítése (Lorentz erő) Hall-effektus (Lorentz erő) Mágneses ellenállásváltozás (többféle mechanizmus) Szupravezető állapotra való hatás (szupravezető kvantum interferencia) 24 12

13 LORENTZ ERŐ A legtöbb mágneses szenzor a Lorentz erőt használja ki F = qvb mely az anyagban (fém, félvezető vagy szigetelő) mozgó elektronra hat. Bár a H mágneses térerő az érzékelendő mennyiség, a B mágneses indukció mely az erőhatást leírja, és ez határozza meg a szenzor válaszát. F a töltésre ható erő q a részecske töltése B a mágneses indukció v a részecske sebessége 25 LORENTZ ERŐ 26 13

14 LORENTZ ERŐ 27 LORENTZ ERŐ ÉS ÉRZÉKELÉS 28 14

15 LORENTZ ERŐ 29 GALVANOMÁGNESES EFFEKTUSOK A mágneses érzékelő működése gyakran valamely galvanomágneses effektuson (Hall jelenség, mágneses ellenállás-változás) alapul. A mágneses térerősség H dimenziója A/m, a vele összefüggő mágneses indukció (B, fluxus-sűrűség) dimenziója pedig Vs/m 2 (Tesla). Mivel a töltéshordozó-mozgékonyság (µ) dimenziója ennek éppen reciproka, azaz m 2 /Vs, ezért a µb szorzat dimenzió nélküli szám, és ez jellemzi a galvanomágneses hatások erősségét és egyben a szenzorok relatív érzékenységét. Általában nagy töltéshordozó-mozgékonyság és alacsony töltéshordozó-koncentrációk esetén erősek a galvanomágneses hatások, ez az oka, hogy az ilyen szenzorok anyaga félvezető és nem fém

16 A HALL EFFEKTUS Ha egy vezetőben vagy félvezetőben áram folyik, és azt mágneses térbe helyezzük, akkor a vezetőben mozgó elektronokra ható Lorentz-erő miatt a vezető két oldalán poteciálkülönbség lép fel, ez a Hall-feszültség. A jelenség jól keskeny mintában lép fel, ahol a töltéshordozók a hossziránnyal párhuzamosan mozognak az ez irányban kapcsolt feszültség hatására. A vékony minta síkjára merőleges mágneses térben keresztirányú elektromos erőtér is kialakul, ami kompenzálja a mágneses mezőben haladó töltéshordozókra ható Lorentz-erőt. A Hall feszültség: R H IB U H = t t a minta vastagsága, R H a Hall-állandó. 31 A HALL ELEKTROMOS TÉR p-típusú mintában a lyukak sebessége -x irányú, a lyukakra ható F = evb Lorentz erő iránya y, és lefelé téríti el a lyukakat. A lyukak az alsó lapon felhalmozódva egy +y irányú elektromos teret hoznak létre. Mivel az y irányban nem folyik áram, az y irányú tér (a Hall tér) egyensúlyt tart a Lorentz erő terével, E y = v x B z. Ekkor E y = V y /w = V H /w = R H j x B z, és a Hall állandó R 32 H = 1/ep. 16

17 HALL ÁLLANDÓ Lorentz erő Hall ellenerő F L = Bev F H = ee H Két erő egyensúlya ee H = Bev Áramsűrűség Hall állandó j = nev = neµe = σe E H /(jb) = 1/(ne) = R H = (U H /w)/b/(i/wt) = U H t/(bi) 33 ALKALMAZÁS: FÉLVEZETŐK MÉRÉSE A fizikai modell szerint a vezetőképesség, illetve a fajlagos ellenállás A Hall állandó σ = ρ -1 = enµ R H = 1/en A fajlagos ellenállás és a Hall állandó mérésével a félvezetők két alapvető paramétere, a töltéshordozók koncentrációja és mozgékonysága meghatározható. A Hall-mérés alapvető félvezető-fizikai és technikai mérés

18 ALKALMAZÁS: FÉLVEZETŐK MÉRÉSE Lyukkoncentráció (p=1/er H ) hőmérsékletfüggése mikrogravitációs környezetben növesztett GaSb-ban Hall állandó méréséből. 35 EGYKRISTÁLYNÖVESZTÉS MIKROGRAVITÁCIÓS KÖRNYEZETBEN Eötvös program (KFKI és MFKI): InSb, GaAs és GaSb kristálynövesztés mikrogravitációs környezetben a Szaljut űrhajó fedélzetén (Interkozmosz), SZPLÁV űrkemence

19 GaAs, InP, GaSb, III-V EGYKRISTÁLYOK Typical horizontal Bridgman apparatus for bulk growth of GaAs 37 HALL ÉRZÉKLEŐK Működése a félvezetőben a külső mágneses térben az áramot hordozó mozgó töltéshordozókra ható Lorentz erőn alapul. A lemez alakú, hosszú de kis vastagságú eszközben a lemezre merőleges irányú mágneses tér a hosszirányú áramot hordozó elektronokat vagy lyukakat keresztirányba eltéríti, így a domináns töltéshordozók előjelétől illetve a mágneses tér polaritásától függően a lemez két szélén ellentétes előjelű töltések halmozódnak fel, melyek egy keresztirányú feszültséget, az ún. Hall-feszültséget hozzák létre

20 Az eszköz alapegyenlete HALL ÉRZÉKELŐK U H = KIB I - az eszközön átfolyó áram [A], B - az alkalmazott mágneses indukció [Vs/m 2 ], U H - a Hall-feszültség [V], K - érzékenységi állandó [m 2 /As], mely magában foglalja a geometriai, és a félvezető anyagi paramétereket. Az eszköz kimenőjele a mágneses tér függvényében lineáris. 39 HALL ÉRZÉKLEŐK A Hall-generátor félvezető alapanyaga általában szilícium (Si), gallium-arzenid (GaAs) vagy indium-antimonid (InSb). A működési elvből következően a Hall-generátornál is célszerű nagy elektron-mozgékonyságú alapanyagot választani. Ezt a feltételt kielégíti a GaAs (az elektron mozgékonysága kb. ötszöröse mint a szilicíumé) de méginkább az InSb. Ugyanakkor a Si technológiája kiforrottabb, könnyen integrálható az eszköz

21 HALL ÉRZÉKELŐ: POTENCIÁL-ELOSZLÁS MÁGNESES TÉRBEN 41 HALL ÉRZÉKELŐ Hall érzékelő geometriája és kontaktus konfigurációja 42 21

22 OFFSET (NULLA-HIBA) 43 ANYAGOK 44 22

23 GaAs HALL SZENZOR Ionimplantációval létrehozott kb. 0,3 µm vastag n-típusú GaAs réteg félszigetelő GaAs hordozón (technológia: GaAs MESFET). Üzemi tartomány -40 o C o C (nagy tiltott sáv!). 45 HALL ELEM Si TECHNOLÓGIÁBAN Hall érzékelő cella megvalósítása Si bipoláris technológiában. Az aktív zóna az n-típusú epitaxiás réteg, az áramkontaktusok n + diffúziós szigetek

24 HALL ELEM Si TECHNOLÓGIÁBAN PMOS szerkezet, az inverziós réteg vastagságát, mely az érzékenységet határozza meg, a vezérlő elektróda feszültsége állítja be. 47 MAGFET Osztott drain-es laterális MOS magnetotranzisztor (MAGFET) szerkezete és kapcsolási vázlata

25 BIPOLÁRIS MAGNETOTRANZISZTOR Kettős kollektorú bipoláris magnetotranzisztor elvi vázlata. A Lorentz eltérítésen túlmenően a többségi hordozók bázisemitter árama a merőleges mágneses térben Hall feszültséget generál, amely eltéríti a kisebbségi töltéshordozók injekciós áramát az emitterből. Ez a többleteffektus a töltésinjekció 49 moduláció. FELVEZETŐ MAGNETOREZISZTOROK Megfelelően kialakított vezetőben (széles és vékony, hasábalakú eszköz), keresztirányú mágneses térbe helyezve, a töltéshordozókra (elektronok vagy lyukak) ható Lorentz erő hatására az árampályák elfordulnak, az áramút hossza és így az eszköz ellenállása megnő. Az ellenállásváltozás nagysága az eszköz geometriája, illetve a félvezető alapanyag megválasztásával optimalizálható. Az ellenállás relatív megváltozása R/R (µb) 2 (µ - mozgékonyság, B - mágneses indukció)

26 FELVEZETŐ MAGNETOREZISZTOROK A magnetorezisztor alapanyaga ezért nagy elektronmozgékonysággal rendelkező félvezető, legtöbbször indiumantimonid (InSb). Az eszköz ellenállás-mágneses tér jelleggörbéje nagyjából négyzetes, és nem függ a mágneses tér polaritásától. A változás nagysága néhány tized Tesla mágneses indukciónál akár 100 % is lehet. Alkalmazási területei: különféle érzékelési feladatok (helyzet, szögelfordulás, távolság, stb.) illetve kontaktus nélküli potenciométerek. 51 InSb-NiSb MAGNETOREZISZTOR 52 26

27 HALL ÉRZÉKLŐ ALKALMAZÁSOK 53 Alkalmazási lehetőségek 54 27

28 HALL SZONDA MÉRŐKAPCSOLÁS Hall szonda/cella alapkapcsolás The Hall voltage is a low-level signal. This low-level output requires an amplifier with low noise, high input impedance and moderate gain. A differential amplifier with these characteristics can be readily integrated with the Hall element using standard bipolar transistor technology. Temperature compensation is also easily integrated. 55 HALL SZONDA MÉRŐKAPCSOLÁS Ajánlott mérőkapcsolás. A baloldali OPAMP a virtuális föld révén gyakorlatilag nulla potenciálon tartja az egyik kimenetet, így a teljes Hall feszültség megjelenik a másik kontaktuson

29 ANALÓG KIMENETŰ SZENZOR Egyszerű, analóg kimenetű szenzor 57 DIGTÁLIS KIMENETŰ SZENZOR 58 29

30 DIGITÁLIS KIMENETŰ SZENZOR Digitális kimenetű szenzor átviteli függvénye 59 ÁRAMÉRZÉKELÉS/MÉRÉS Áramérzékelés a vezető megszakítása nélkül 60 30

31 ÁRAMÉRZÉKELÉS/MÉRÉS Árammérés közvetlenül a mágneses tér mérésével, illetve kompenzációs módszerrel (ekkor a Hall szonda a nulldetektor). 61 AC TELJESÍTMÉNYMÉRÉS 62 31

32 PROGRAMOZHATÓ HALL IC 63 PROGRAMOZHATÓ HALL IC Programmable according to application needs, e.g.: 1. Bipolar, 50% offset, low sensitivity, clamping 2. Unipolar, no offset, high sensitivity, no clamping 64 32

SZENZOROK ÉS MIKROÁRAMKÖRÖK 11. ELŐADÁS: MÁGNESES ÉRZÉKELŐK I

SZENZOROK ÉS MIKROÁRAMKÖRÖK 11. ELŐADÁS: MÁGNESES ÉRZÉKELŐK I SZENZOROK ÉS MIKROÁRAMKÖRÖK 11. ELŐADÁS: MÁGNESES ÉRZÉKELŐK I 2015/2016 tanév 2. félév 1 1. Mágneses tér mérése, mágneses térerősség (H) és mágneses indukció (B), mértékegységek. 2. Fizikai működési elvek.

Részletesebben

MIKROELEKTRONIKAI ÉRZÉKELİK I

MIKROELEKTRONIKAI ÉRZÉKELİK I MIKROELEKTRONIKAI ÉRZÉKELİK I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet és MTA Mőszaki Fizikai és Anyagtudományi Kutató Intézet 11. ELİADÁS: MÁGNESES ÉRZÉKELİK I 11. ELİADÁS: 1.

Részletesebben

MIKROELEKTRONIKAI ÉRZÉKELİK I

MIKROELEKTRONIKAI ÉRZÉKELİK I MIKROELEKTRONIKAI ÉRZÉKELİK I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet és MTA Mőszaki Fizikai és Anyagtudományi Kutató Intézet 12. ELİADÁS: MÁGNESES ÉRZÉKELİK II 12. ELİADÁS: 1.

Részletesebben

Speciális passzív eszközök

Speciális passzív eszközök Varisztorok Voltage Dependent Resistor VDR Variable resistor - varistor Speciális passzív eszközök Feszültségfüggő ellenállás, az áram erősen függ a feszültségtől: I=CU α ahol C konstans, α értéke 3 és

Részletesebben

Mechanikai érzékelők I. Érzékelési módszerek

Mechanikai érzékelők I. Érzékelési módszerek Mechanikai érzékelők I. Érzékelési módszerek Battistig Gábor MTA EK Műszaki Fizikai és Anyagtudományi Intézet Mikrotechnológiai laboratórium battistig@mfa.kfki.hu 1 MECHANIKAI ÉRZÉKELŐK Érzékelő: a mérendő

Részletesebben

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel? Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező vonalak Tartalom, erőhatások pólusok dipólus mező, szemléltetése meghatározása forgatónyomaték méréssel Elektromotor nagysága különböző

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

MIKROELEKTRONIKAI ÉRZÉKELŐK I

MIKROELEKTRONIKAI ÉRZÉKELŐK I MIKROELEKTRONIKAI ÉRZÉKELŐK I Dr. Pődör Bálint BMF KVK Mikroelektronikai és Technológia Intézet és MTA Műszaki Fizikai és Anyagtudományi Kutató Intézet 2. ELŐADÁS: LABORMÉRÉSEK 2008/2009 tanév 1. félév

Részletesebben

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása:

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása: N I. 02 B A mérés eszközei: Számítógép Gerjesztésszabályzó toroid transzformátor Minták Mágneses anyagvizsgálat G ép. 118 A mérés menetének leírása: Beindítottuk a számtógépet, Behelyeztük a mintát a ferrotestbe.

Részletesebben

MÁGNESESSÉG. Türmer Kata

MÁGNESESSÉG. Türmer Kata MÁGESESSÉG Türmer Kata HOA? év: görög falu Magnesia, sok természetes mágnes Ezeket iodestones (iode= vonz), magnetitet tartalmaznak, Fe3O4. Kínaiak: iránytű, két olyan hely ahol maximum a vonzás Kínaiak

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az

Részletesebben

Szupravezetés. Mágneses tér mérő szenzorok (DC, AC) BME, Anyagtudomány és Technológia Tanszék. Dr. Mészáros István. Előadásvázlat 2013.

Szupravezetés. Mágneses tér mérő szenzorok (DC, AC) BME, Anyagtudomány és Technológia Tanszék. Dr. Mészáros István. Előadásvázlat 2013. BME, Anyagtudomány és Technológia Tanszék Dr. Mészáros István Szupravezetés Előadásvázlat 2013. Mágneses tér mérő szenzorok (DC, AC) Erő ill. nyomaték mérésen alapuló eszközök Tekercs (induktív) Magnetorezisztív

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

Elmozdulás mérés BELEON KRISZTIÁN BELEON KRISTIÁN - MÉRÉSELMÉLET - ELMOZDULÁSMÉRÉS 1

Elmozdulás mérés BELEON KRISZTIÁN BELEON KRISTIÁN - MÉRÉSELMÉLET - ELMOZDULÁSMÉRÉS 1 Elmozdulás mérés BELEON KRISZTIÁN 2016.11.17. 2016.11.17. BELEON KRISTIÁN - MÉRÉSELMÉLET - ELMOZDULÁSMÉRÉS 1 Mérési eljárás szerint Rezisztív Induktív Kapacitív Optikai Mágneses 2016.11.17. BELEON KRISTIÁN

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező kölcsönhatás A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonalak vonzó és taszító erő pólusok dipólus mező pólusok északi

Részletesebben

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7) Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz

Részletesebben

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük. Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Fizika 1 Elektrodinamika belépő kérdések

Fizika 1 Elektrodinamika belépő kérdések Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/19/2011 Beadás ideje: 10/26/2011 1 1. A mérés rövid leírása

Részletesebben

ÓRIÁS MÁGNESES ELLENÁLLÁS

ÓRIÁS MÁGNESES ELLENÁLLÁS ÓRIÁS MÁGNESES ELLENÁLLÁS Modern fizikai kísérletek szemináriúm Ariunbold Kherlenzaya Tartalomjegyzék Mágneses ellenállás Óriás mágneses ellenállás FM/NM multirétegek elektromos transzportja Kísérleti

Részletesebben

Miért vonzza a vegyészt a mágnes? Németh Zoltán, Magkémiai Laboratórium, ELTE Alkímia ma - 2011.03.31.

Miért vonzza a vegyészt a mágnes? Németh Zoltán, Magkémiai Laboratórium, ELTE Alkímia ma - 2011.03.31. Miért vonzza a vegyészt a mágnes? Németh Zoltán, Magkémiai Laboratórium, ELTE Alkímia ma - 2011.03.31. Mítosz Magnesz görög pásztor az Ida-hegyen sétálgatva odatapadt a földhöz vastalpú szandáljával /

Részletesebben

Tervezte és készítette Géczy LászlL. szló 1999-2008

Tervezte és készítette Géczy LászlL. szló 1999-2008 Tervezte és készítette Géczy LászlL szló 1999-2008 ADATHORDOZÓ Különböző ADATHORDOZÓK LEMEZ hajlékonylemez MO lemez merevlemez CDROM, DVDROM lemez CDRAM, DVDRAM lemez ADATHORDOZÓ SZALAG Különböző ADATHORDOZÓK

Részletesebben

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték

Részletesebben

III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján?

III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? 2.) Mi a tiltott sáv fogalma? 3.) Hogyan befolyásolja a tiltott sáv szélessége az anyagok

Részletesebben

MÁGNESES TÉR, INDUKCIÓ

MÁGNESES TÉR, INDUKCIÓ Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses

Részletesebben

7. Mágneses szuszceptibilitás mérése

7. Mágneses szuszceptibilitás mérése 7. Mágneses szuszceptibilitás mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Mérés időpontja: 2012. 10. 25. I. A mérés célja: Egy mágneses térerősségmérő műszer

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az

Részletesebben

EHA kód:...2009-2010-1f. As,

EHA kód:...2009-2010-1f. As, MŰSZAKI FIZIKA I. RMINB135/22/v/4 1. ZH A csoport Név:... Mérnök Informatikus EHA kód:...29-21-1f ε 1 As = 9 4π 9 Vm µ = 4π1 7 Vs Am 1) Két ± Q = 3µC nagyságú töltés közti távolság d = 2 cm. Határozza

Részletesebben

SZENZOROK ÉS MIKROÁRAMKÖRÖK

SZENZOROK ÉS MIKROÁRAMKÖRÖK SZENZOROK ÉS MIKROÁRAMKÖRÖK 12. ELŐADÁS: MÁGNESES ÉRZÉKELŐK II 2014/2015 tanév 2. félév 1 1. Hall érzékelő alkalmazások. 2. Félvezető magnetorezisztor-érzékelők. 3. Ferromágneses alapú érzékelők: aniztróp

Részletesebben

Egzotikus elektromágneses jelenségek alacsony hőmérsékleten Mihály György BME Fizikai Intézet Hall effektus Edwin Hall és az összenyomhatatlan elektromosság Kvantum Hall effektus Mágneses áram anomális

Részletesebben

Galvanomágneses jelenségek

Galvanomágneses jelenségek isme d meg Galvanomágneses jelenségek Azokat a jelenségeket, amelyek az áramátjárta vezetőben mágneses tér hatására jönnek létre galvanomágneses jelenségebiek nevezzük. Ezek a jelenségek a közegben haladó

Részletesebben

mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés

mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés MÁGNESESSÉG A mágneses sajátságok, az elektromossághoz hasonlóan, régóta megfigyelt tapasztalatok voltak, a két jelenségkör szoros kapcsolatának felismerése azonban csak mintegy két évszázaddal ezelőtt

Részletesebben

Elektromos ellenállás, az áram hatásai, teljesítmény

Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak

Részletesebben

ADATHORDOZÓ LEMEZ. Különböző ADATHORDOZÓK. MO lemez. hajlékonylemez CDROM, DVDROM. lemez. merevlemez CDRAM, DVDRAM. lemez

ADATHORDOZÓ LEMEZ. Különböző ADATHORDOZÓK. MO lemez. hajlékonylemez CDROM, DVDROM. lemez. merevlemez CDRAM, DVDRAM. lemez ADATHORDOZÓ Különböző ADATHORDOZÓK LEMEZ hajlékonylemez MO lemez merevlemez CDROM, DVDROM lemez CDRAM, DVDRAM lemez ADATHORDOZÓ SZALAG Különböző ADATHORDOZÓK DAT, DATA DATA CARTRIDGE TAPE 1/2 SZALAG A

Részletesebben

Tervezte és készítette Géczy László 1999-2002

Tervezte és készítette Géczy László 1999-2002 Tervezte és készítette Géczy László 1999-2002 ADATHORDOZÓ Különböző ADATHORDOZÓK LEMEZ hajlékonylemez MO lemez merevlemez CDROM, DVDROM lemez CDRAM, DVDRAM lemez ADATHORDOZÓ SZALAG Különböző ADATHORDOZÓK

Részletesebben

Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet. Mikro- és nanotechnika (KMENT14TNC)

Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet. Mikro- és nanotechnika (KMENT14TNC) Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet Mikro- és nanotechnika (KMENT14TNC) Laboratóriumi gyakorlatok Mérési útmutató 3. Hall-szondák alkalmazásai a. Félvezető

Részletesebben

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

Vezetékek. Fizikai alapok

Vezetékek. Fizikai alapok Vezetékek Fizikai alapok Elektromos áram A vezetékeket az elektromos áram ill. elektromos jelek vezetésére használják. Az elektromos áramot töltéshordozók (elektromos töltéssel rendelkező részecskék: elektronok,

Részletesebben

Elektromos áram. Vezetési jelenségek

Elektromos áram. Vezetési jelenségek Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai

Részletesebben

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti

Részletesebben

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1. Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS

Részletesebben

Félvezetk vizsgálata

Félvezetk vizsgálata Félvezetk vizsgálata jegyzkönyv Zsigmond Anna Fizika BSc III. Mérés vezetje: Böhönyei András Mérés dátuma: 010. március 4. Leadás dátuma: 010. március 17. Mérés célja A mérés célja a szilícium tulajdonságainak

Részletesebben

Hiszterézis: Egy rendszer kimenete nem csak az aktuális állapottól függ, hanem az állapotváltozás aktuális irányától is.

Hiszterézis: Egy rendszer kimenete nem csak az aktuális állapottól függ, hanem az állapotváltozás aktuális irányától is. 1. Mi az érzékelő? Definiálja a típusait (belső/külső). Mit jelent a hiszterézis? Miért nem tudunk közvetlenül mérni, miért származtatunk? Hogyan kapcsolódik össze az érzékelés és a becslés a mérések során?

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA 1. Egyenáramú körök Követelmények, matematikai alapok, prefixumok Töltés, áramerősség Feszültség Ellenállás és vezetés. Vezetők, szigetelők Áramkör fogalma Áramköri

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

Integrált áramkörök/2. Rencz Márta Elektronikus Eszközök Tanszék

Integrált áramkörök/2. Rencz Márta Elektronikus Eszközök Tanszék Integrált áramkörök/2 Rencz Márta Elektronikus Eszközök Tanszék Mai témák MOS áramkörök alkatrészkészlete Bipoláris áramkörök alkatrészkészlete 11/2/2007 2/27 MOS áramkörök alkatrészkészlete Tranzisztorok

Részletesebben

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés: Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati

Részletesebben

Elektromágnesség tesztek

Elektromágnesség tesztek Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Jegyzetelési segédlet 8.

Jegyzetelési segédlet 8. Jegyzetelési segédlet 8. Informatikai rendszerelemek tárgyhoz 2009 Szerkesztett változat Géczy László Billentyűzet, billentyűk szabványos elrendezése funkció billentyűk ISO nemzetközi írógép alap billentyűk

Részletesebben

7. Mágneses szuszceptibilitás mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

7. Mágneses szuszceptibilitás mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 7. Mágneses szuszceptibilitás mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 10. 22. Leadás dátuma: 2008. 11. 05. 1 1. A mérési összeállítás A mérési összeállítás sematikus ábrája

Részletesebben

Érzékelők és beavatkozók

Érzékelők és beavatkozók Érzékelők és beavatkozók DC motorok 1. rész egyetemi docens - 1 - Főbb típusok: Elektromos motorok Egyenáramú motor DC motor. Kefenélküli egyenáramú motor BLDC motor. Indukciós motor AC motor aszinkron

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás Hobbi Elektronika Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás 1 Felhasznált irodalom Hodossy László: Elektrotechnika I. Torda Béla: Bevezetés az Elektrotechnikába

Részletesebben

Mágneses tér anyag kölcsönhatás leírása

Mágneses tér anyag kölcsönhatás leírása Anyagszerkezettan és anyagvizsgálat 2014/15 Mágneses anyagok Dr. Szabó Péter János szpj@eik.bme.hu Mágneses tér anyag kölcsönhatás leírása B H B H H M ) 0 1 M H V 1 r r 0 ( 1 Pi P V H : az anyagra ható

Részletesebben

Fizika A2 Alapkérdések

Fizika A2 Alapkérdések Fizika A2 Alapkérdések Összeállította: Dr. Pipek János, Dr. zunyogh László 20. február 5. Elektrosztatika Írja fel a légüres térben egymástól r távolságban elhelyezett Q és Q 2 pontszer pozitív töltések

Részletesebben

FIZIKA II. Az áram és a mágneses tér kapcsolata

FIZIKA II. Az áram és a mágneses tér kapcsolata Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T = Vs/m 2 ) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér:

Részletesebben

XII. előadás április 29. tromos

XII. előadás április 29. tromos Bevezetés s az anyagtudományba nyba XII. előadás 2010. április 29. Ferroelektr tromos kerámi miák Ferroelektromosság: elektromos tér hiányában spontán polarizáltak (a ferromágneses viselkedés elektromos

Részletesebben

Forgójeladók (kép - Heidenhain)

Forgójeladók (kép - Heidenhain) Forgójeladók A forgójeladók választékában számos gyártó különböző szempontoknak megfelelő terméke megtalálható, ezért a felhasználónak a megfelelő típus kiválasztása néha nem kis nehézséget okoz. Ezen

Részletesebben

Programozható Vezérlő Rendszerek. Hardver

Programozható Vezérlő Rendszerek. Hardver Programozható Vezérlő Rendszerek Hardver Hardver-bemeneti kártyák 12-24 Vdc 100-120 Vac 10-60 Vdc 12-24 Vac/dc 5 Vdc (TTL) 200-240 Vac 48 Vdc 24 Vac Belül 5V DC!! 2 Hardver-bemeneti kártyák Potenciál ingadozások

Részletesebben

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 5. Laboratóriumi gyakorlat A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 1. A gyakorlat célja: A p-n átmenet hőmérsékletfüggésének tanulmányozása egy nyitóirányban polarizált dióda esetében. A hőmérsékletváltozási

Részletesebben

A töltőfolyadék térfogatváltozása alapján, egy viszonyítási skála segítségével határozható meg a hőmérséklet.

A töltőfolyadék térfogatváltozása alapján, egy viszonyítási skála segítségével határozható meg a hőmérséklet. 1. HŐTÁGULÁSON ALAPULÓ ÁTALAKÍTÓK: HŐMÉRSÉKLET A hőmérséklet változását elmozdulássá alakítják át 1.1 Folyadéktöltésű hőmérők (helyzet változássá) A töltőfolyadék térfogatváltozása alapján, egy viszonyítási

Részletesebben

A mágneses térerő mérése roncsolásmentes hibavizsgálat céljából

A mágneses térerő mérése roncsolásmentes hibavizsgálat céljából A TERMELÉSI FOLYAMAT MINÕSÉGKÉRDÉSEI, VIZSGÁLATOK 2.5 A mágneses térerő mérése roncsolásmentes hibavizsgálat céljából Tárgyszavak: elektronikus (integrált) áramkörök vizsgálata; vezetékstruktúra ellenőrzése;

Részletesebben

1. ERŐMÉRÉS NYÚLÁSMÉRŐ BÉLYEG ALKALMAZÁSÁVAL

1. ERŐMÉRÉS NYÚLÁSMÉRŐ BÉLYEG ALKALMAZÁSÁVAL 1. ERŐMÉRÉS NYÚLÁSMÉRŐ BÉLYEG LKLMZÁSÁVL nyúlásmérő bélyegek mechanikai deformációt alakítanak át ellenállás-változássá. lkalmazásukkal úgy készítenek erőmérő cellát, hogy egy rugalmas alakváltozást szenvedő

Részletesebben

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.

Részletesebben

Elektrotechnika 9. évfolyam

Elektrotechnika 9. évfolyam Elektrotechnika 9. évfolyam Villamos áramkörök A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.

Részletesebben

VILLANYSZERELŐ KÉPZÉS MÁGNESES TÉR ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR

VILLANYSZERELŐ KÉPZÉS MÁGNESES TÉR ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR VIANYSZEREŐ KÉPZÉS 2 0 5 MÁGNESES TÉR ÖSSZEÁÍTOTTA NAGY ÁSZÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Mágneses tér fogalma, jellemzői...3 A mágneses tér hatása az anyagokra...4 Elektromágneses indukció...6 Mozgási

Részletesebben

Mikro- és nanotechnika I. - Laboratóriumi mérések

Mikro- és nanotechnika I. - Laboratóriumi mérések Mikro- és nanotechnika I. - Laboratóriumi mérések 1. Piezorezisztív nyomásérzékelő tulajdonságainak mérése. 2. Világító diódák spektrumának és optikai érzékelők tulajdonságainak mérése. 3. Hall effektus

Részletesebben

Műszertechnikai és Automatizálási Intézet MÉRÉSTECHNIKA LABORATÓRIUMI MÉRÉSEK ÚTMUTATÓ

Műszertechnikai és Automatizálási Intézet MÉRÉSTECHNIKA LABORATÓRIUMI MÉRÉSEK ÚTMUTATÓ Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Műszertechnikai és Automatizálási Intézet MÉRÉSTECHNIKA LABORATÓRIUMI MÉRÉSEK ÚTMUTATÓ 20/3. sz. mérés Villamos mennyiségek mérése Mágneses mennyiségek Hall

Részletesebben

Az elektromágneses indukció jelensége

Az elektromágneses indukció jelensége Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér

Részletesebben

Mérésadatgyűjtés, jelfeldolgozás.

Mérésadatgyűjtés, jelfeldolgozás. Mérésadatgyűjtés, jelfeldolgozás. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók. 1.Ellenállás változáson alapuló jelátalakítók -nyúlásmérő ellenállások

Részletesebben

Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen:

Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen: Tekercsek Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: u i =-N dφ/dt=-n dφ/di di/dt=-l di/dt Innen: L=N dφ/di Ezt integrálva: L=N Φ/I A tekercs induktivitása

Részletesebben

Elektronika alapjai. Témakörök 11. évfolyam

Elektronika alapjai. Témakörök 11. évfolyam Elektronika alapjai Témakörök 11. évfolyam Négypólusok Aktív négypólusok. Passzív négypólusok. Lineáris négypólusok. Nemlineáris négypólusok. Négypólusok paraméterei. Impedancia paraméterek. Admittancia

Részletesebben

Elektromos alapjelenségek

Elektromos alapjelenségek Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor

Részletesebben

Diszkrét aktív alkatrészek

Diszkrét aktív alkatrészek Aktív alkatrészek Az aktív alkatrészek képesek kapcsolási és erősítési feladatokat ellátni. A digitális elektronika és a teljesítményelektronika gyors kapcsolókra épül, az analóg technikában elsősorban

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív

Részletesebben

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék 3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal

Részletesebben

Mágneses tér anyag kölcsönhatás leírása

Mágneses tér anyag kölcsönhatás leírása Anyagszerkezettan és anyagvizsgálat 2012/13 Mágneses anyagok Dr. Szabó Péter János szpj@eik.bme.hu Mágneses tér anyag kölcsönhatás leírása B = µ H B = µ µ H = µ H + M ) 0 r 0 ( 1 1 M = κh = Pi = P V V

Részletesebben

Az elektromos töltések eloszlása atomokban, molekulákban, ionokon belül és a vegyületekben. Vezetők, félvezetők és szigetelők molekuláris szerkezete.

Az elektromos töltések eloszlása atomokban, molekulákban, ionokon belül és a vegyületekben. Vezetők, félvezetők és szigetelők molekuláris szerkezete. Szakképesítés: Log Autószerelő - 54 525 02 iszti Tantárgy: Elektrotechnikaelektronika Modul: 10416-12 Közlekedéstechnikai alapok Osztály: 11.a Évfolyam: 11. 36 hét, heti 2 óra, évi 72 óra Ok Dátum: 2013.09.21

Részletesebben

Moore & more than Moore

Moore & more than Moore 1 Moore & more than Moore Fürjes Péter E-mail:, www.mems.hu 2 A SZILÍCIUM (silex) 3 A SZILÍCIUM Felfedező: Jons Berzelius 1823, Svédország Természetes előfordulás: gránit, kvarc, agyag, homok 2. leggyakoribb

Részletesebben

ELEKTRONIKA I. (KAUEL11OLK)

ELEKTRONIKA I. (KAUEL11OLK) Félévi követelmények és beadandó feladatok ELEKTRONIKA I. (KAUEL11OLK) tárgyból a Villamosmérnöki szak levelező tagozat hallgatói számára Óbuda Budapest, 2005/2006. Az ELEKTRONIKA I. tárgy témaköre: Az

Részletesebben

A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük. Az áram irányán a pozitív részecskék áramlási irányát értjük.

A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük. Az áram irányán a pozitív részecskék áramlási irányát értjük. Elektromos mezőben az elektromos töltésekre erő hat. Az erő hatására az elektromos töltések elmozdulnak, a mező munkát végez. A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak

Részletesebben

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II.

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II. Elektromágneses kompatibilitás II. EMC érintkező védelem - az érintkezők nyitása és zárása során ún. átívelések jönnek létre - ezek csökkentik az érintkezők élettartamát - és nagyfrekvenciás EM sugárzások

Részletesebben

Feszültségszintek. a) Ha egy esemény bekövetkezik akkor az értéke 1 b) Ha nem következik be akkor az értéke 0

Feszültségszintek. a) Ha egy esemény bekövetkezik akkor az értéke 1 b) Ha nem következik be akkor az értéke 0 Logikai áramkörök Feszültségszintek A logikai rendszerekben az állapotokat 0 ill. 1 vagy H ill. L jelzéssel jelöljük, amelyek konkrét feszültségszinteket jelentenek. A logikai algebrában a változókat nagy

Részletesebben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos

Részletesebben

Laptop: a fekete doboz

Laptop: a fekete doboz Laptop: a fekete doboz Dankházi Zoltán ELTE Anyagfizikai Tanszék Lássuk a fekete doboz -t NÉZZÜK MEG! És hány GB-os??? SZEDJÜK SZÉT!!!.2.2. AtomCsill 2 ... hát akkor... SZEDJÜK SZÉT!!!.2.2. AtomCsill 3

Részletesebben

Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér

Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér Bevezetés az analóg és digitális elektronikába III. Villamos és mágneses tér Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos

Részletesebben

Optika Gröller BMF Kandó MTI. Optikai alapfogalmak. Fény: transzverzális elektromágneses hullám. n = c vákuum /c közeg. Optika Gröller BMF Kandó MTI

Optika Gröller BMF Kandó MTI. Optikai alapfogalmak. Fény: transzverzális elektromágneses hullám. n = c vákuum /c közeg. Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg 1 Az elektromágneses spektrum 2 Az anyag és s a fény f kölcsk lcsönhatása Visszaverődés, reflexió Törés, kettőstörés,

Részletesebben

Mérnöki alapok 2. előadás

Mérnöki alapok 2. előadás Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Fizika II. tantárgy 4. előadásának vázlata MÁGNESES INDUKCIÓ, VÁLTÓÁRAM, VÁLTÓÁRAMÚ HÁLÓZATOK 1. Mágneses indukció: Mozgási indukció

Fizika II. tantárgy 4. előadásának vázlata MÁGNESES INDUKCIÓ, VÁLTÓÁRAM, VÁLTÓÁRAMÚ HÁLÓZATOK 1. Mágneses indukció: Mozgási indukció Fizika. tatárgy 4. előadásáak vázlata MÁGNESES NDKÓ, VÁLÓÁAM, VÁLÓÁAMÚ HÁLÓAOK. Mágeses idukció: Mozgási idukció B v - Vezetőt elmozdítuk mágeses térbe B-re merőlegese, akkor a vezetőbe áram keletkezik,

Részletesebben

Orvosi Fizika 14. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

Orvosi Fizika 14. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika 14. Elektromosságtan és mágnességtan az életfolyamatokban 3.. Bari Ferenc egyetemi tanár SZTE ÁOK-TTK Orvosi Fizikai és Orvosi nformatikai ntézet Szeged, 2011. december 19. 2. DEMO eredménye

Részletesebben

2. (d) Hővezetési problémák II. főtétel - termoelektromosság

2. (d) Hővezetési problémák II. főtétel - termoelektromosság 2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.

Részletesebben