A bányahatóság, felismerve a villamos gyújtással. kedvezőtlen. történő robbantás előkészitése során jelentkező nem kivánt

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A bányahatóság, felismerve a villamos gyújtással. kedvezőtlen. történő robbantás előkészitése során jelentkező nem kivánt"

Átírás

1

2 1 Bevezetés Ismert, hogy környezetünk egyre fokozódó villamositása, a bányászati munkahelyek gépesitése, valamint a magasfeszültségü energiaelosztó berendezések, a rádióés TV-adók, a radarállomások teljesitményének növekedése kedvezőtlen esetben veszélyezteti a közelben végzett villamos inditású robbantási munka biztonságát. Példák sora bizonyitja, hogy az ún. normál érzékenységü villamos gyutacsok használata nem mindig biztonságos, ezért egyes helyeken célszerü a kevésbé érzékeny villamos gyutacsok használatára áttérni és a kedvezőtlen villamos hatások kiküszöbölése céljából egyéb intézkedéseket is kivánatos tenni. A bányahatóság, felismerve a villamos gyújtással történő robbantás előkészitése során jelentkező nem kivánt villamos hatásokból eredő veszélyeket, a veszélyek csökkentése érdekében az"altalános robbantási biztonsági szabályzat "/ÁRBSz/ szept. l-től hatályos módositása során intézkedett. A szabályzat megfelelő előirásai jan. l-től teszik kötelezővé több helyen az ún. villamos érzéketlen gyutacsok használatát és egyéb intézkedések foganatositását /113./3/, /4/, /5/ és /6/. ~elen füzet összeállitói munkájukkal szeretnék az intézkedések időszerüségét a kevésbé ismert veszélyforrások elemzésével, tényanyagok be-

3 2 mutatásával megvilágitani, ezzel is elősegítve az átálláshoz szükséges műszaki és gazdasági intézkedéseket. Tökéletesen tisztában vagyunk azzal, hogy egy szabályzat megalkotásával egy téma nem zárul le, a probléma nem oldódik meg magától. A hátralévő hónapban a fejlesztőkön, gyártókon és a felhasználókon a sor, hogy munkájukkal valóban a robbantások biztonságának fokozását szolgálják. Nagy megelégedésünkre szolgálna, ha a füzet tartalmát áttanulmányozva felmerülő gondolatokkal, problémákkal megkeresnének bennünket, hogy a vitatható részletkérdéseket még időben megfelelő helyük re tehessük. A füzet tartalmát Dr.Kis Miklós tizikus vizsgálta felül. Eszrevételeiért, szakmai segítségéért őszinte köszönetet mondunk. A ha tó okok. A villamos gyutacsok rendellenes működésének e gyik oka, hogy olyan elektromos hatásoktól következik be a gyújtófejben levő szál felizzása, melyre sem időben, sem az adott helyen nem számítanak. Ennek számtalan módja lehet, amelyek közül csak néhányat emlitünk meg:

4 3 - meghibásodott, rosszul szigetelt, vagy szándékosan szigeteletlen villamos elemektől1 berendezésektől, elektromágneses áramforrástól, - vasúti sineken, fém csöveken és vezetékeken, vezető talaja~, kőzeten keresztül, - elektromos induk c iótól~ - elektrosztatikus feltöltődéstől, - légköri elektromosságtól. leggyakrabban villámcsapástól, s t b. ~ppen a ható okok nagyszámó variációja miatt a hatékony védekezés csak a villamos gyutacsok érzékenységének csökkentésével oldható meg~ A több országban kialakitott speciális "érzéketlen" villamos gyutacsokat Ozernoj M.I. professzor ceoportositotta a gyakorl~t szempontjából legmegfelelőbben (1] : a./ Normális érzékenyeégü villamos gyutacsok: robbanási impulzus : K 2-0,8. 4,0 A ms, biztonsági áramerősség: Ib = 0,15. 0,18 A. b./ Csökkentett érzékenységü villamos gyutacsok: 2 robbanási impulzus: K = A ms. biztonsági áramerősség: Ib = 0,45 1,0 A.

5 4 c./ Igen alacsony érzékenységü /"villámbiztos"/ villamos gyutacsok: robbanási impulzus: K = A 2 ms, biztonsági áramerősség: Ib = A. /A közeljövőben megjelenő hazai szabványokban az a./ tipusú gyutacsokat!j1. a b./ tipusúakat!!'.!. betükkel jelölik. Ezért a továbbiakban mi is gyakran fogjuk használni ezeket a jelöléseket./ Néhány külföldön gyártott csökkentett érzékenységü gyutacsot mutatunk be az alábbi l.sz. táblázatban. Vizsgáljuk meg a továbbiakban. milyen előnyökkel jár, ha a legelterjedtebben használt normál érzékenységü villamos gyutacsok helyett a csökkentett vagy az igen alacsony érzékenységüeket alkalmazzák és ismerkedjünk meg a villamos gyutacsok rendellenes működését kiváltó veszélyforrásokkal. Kóboráram-veszély Kóboráramnak a villamosenergia-átvitel normális üzeme következtében a talajban, ill. a talajba fektetett v~zető testekben előidézett áramot nevezik. I Erthető okokból a kóboráramtól csak akko-r jöhet létre átvezetés a villamos gyutacson, ha legalább két olyan pont van a robbantóhálózaton, melyek a vezető tulajdonságú anyaggal érintkeznek.

6 Pii ra Sica - la Zenon.-5 Fiduz Pol.ex U,UE HU ' ' méterek Csehsz.lovákía. ' Ausztria NSzK A hid ellen- 0,21.~o , 4. ~ 0, 9 0,08. 0,ll 0,4. 0,8 O,l állása,ohm. I Az izzógyújtófej ellen- 0,8 0, ,5 o,5. 0,6 állása.ohm~ - Biztonsági áram, A ' ' 1 5 0,45 4 0,45 4 Felizzitó áram, t izm illszekundum.qs 3-1,5-1,3 - - L '(izsgálatnál A Gy_uj tó impulzus A 2 ms ; a L táblázat

7 6 Lur'é szerint igen kicsi a kóboráram okozta önrobbanás veszélye L21, de annak teljes kiküszöbölése csak csökkentett érzékenységü villamos gyutacsok alkalmazásával lehetséges. Ilyen gyutacsok használatakor töltés alatt sem kell a közeli villamos berendezéseket kikapcsolni. /A villamos áramkörök ki- és bekapcsolását csak akkor szabad végezni, amikor a gyutacsok még nincs~nek a helyszínen, mivel a berendezés üzemi állapotának hirtelen megváltozása kapcsolási túlteszültséget indukál/ Biztonsági okokból általában azt irják elő, hogy a robbantás helyén mért, vagy arra a helyre számított áramerősség legfeljebb 1/3-a lehet a gyutacsre meghatározott biztonsági áramerősségnek. Ennek az előírásnak az a mü $Zaki indoka, hogy teljes biztonsággal számolva a robbantóhálózat akárhány pontja érintkezik is a vezető anyaggal, akkor sem haladhat át a gyutacsokon a legveszélyesebb helyen mért áramerősség 2,5-szeresénél nagyobb áram. A tényleges kóboráram-veszélyre példaként Budapesten, a Déli-pályaudvar környékén villamos sinek közelében végzett kóboráram mérési adathalmazra hivatkozunk, melyek közül a 0,2 ohm belső ellenállású müszeren maximum 4,5 ma nagyságú egyenáram folyt. Néhány bányaüzemünkben telsővezetékes villamos vontatást is alkalmaznak. A legveszélyesebb az az eset, ha

8 7 a robbantóhálózat egyik vezetéke a vezető sinnel, a másik a földdel érintkezik ógy, hogy a mozdony a közelben tartózkodik. Természetesen k ü lönböző villamos berendezések érintésekor is folyhat áram a villamos izzógyújtón keresztül. Az elektrotechnikában gyakori balesetet okoz a kóboráramtól létrejövő "lépésteszültség". Ennek egyik oka lehet pl. az, hogy a hálózat valamelyik munkavezetéke testzárlatos és a testzárlat helyétől áram folyik vissza a csillagpont felé. Az áram a talaj ellenállásán teszültségesést létesit, amelynek nagysága egy lépés távolságon belül veszélyes értékü lehet. Ugyanilyen módon, ha a roboantóhálóza t két, a földdel fémesen érintkező pontja között viszonylag nagyobb távolság van, a pontok közötti feszültség-küiönbség hatására olyan nagyságú áram folyhat keresztül a gyutacson, amely képes annak iniciálását előidézni. Az áram bevezetésének helyétől távolodva a földpotenciál hiperbolikusan csökken, igy a feszültségesés is egyre kisebb lesz. Nyilvánvaló, ha valaki az áram földbevezetésének helyéhez közel sugárirányban egy lépést tesz, vagy ebben az irányban érintkezik a robbantóhálózat két fémes pontja a talajjal, akkor a különböző feszültségü helyeken az emberre veszélyes, ill. a gyutacson meg nem engedett áram haladhat keresztül. Ezzel szemben az olyan lépés, vagy a robbantóhálózat olyan irányú fektetése,

9 9 A fenti adatokkal: 0,6. luo 2 = 2. l 1+2 ul - 6,4 v, G,Lf ;1:2, :r I = = 0,3 A. 22 A kóboráram..,.mérés közismert módszereit e helyen nem ismertetjük, csak utalunk arra, hogy a Bányagyutacsgyár körül már szerkesztett egy ilyen mérőmüszert elsősorban laboratóriumi mérési célokra. Robbantás elektromágneses források közelében A nagyteljesitményü rádió- és TV adók közelében végzett robbantásoknál a robbantóhálózat mint vevőantenna szerepel, amelyben az adó által kisugárzott elektromágneses energia olyan nagy áramot indukálhat, mely a gyutacsok nem kivánt robbanását idézheti elő. Hasonló veszélyforrást jelentenek a nagyfrekvenciás nagyfeszültségü villamos berendezések. Éppen ezért több országban tiltják e berendezések közelében a villamos robbantást. [3) Mint i~meretes, az elektromágneses tér feszültséget indulláf a vezető hurokban, amelyre k nagysága:

10 10 u = k. ~ dt ahol k - arányossági tényező, ~ - a mágneses tér fluxusa, időbeli t - az idő. Az u indukált feszültség nagysága tehát a fluxus változásától függ. Állandó fluxus mellett /pl. egyenáramú sin aluminium kohóban/ a vezetőben csak akkor mérhetünk indukált feszültséget, ha a vezetőt úgy mozgatjuk, hogy a vezetőhurok által metszett erővonalszám változzon. Nyugvó hurokban csak váltóáram indukálhat feszültséget. A ~ fluxus nagysága függ attól, hogy mekkora a hurok által bezárt terület. A fluxus változása váltakozó elektromágneses térben az elektromágneses rezgés f rakvenciájából is függ. A középhullámú rádióadók f rekvenciája khz közötti tartományban, az URH adók frekvenciája pedig MHz tartományban van. A frekvencia ismeretében meghatározható az elektromágneses hullám hossza: \ - /1 - e \) mely ismert összefüggésben e a fénysebesség, v a frekvencia. A középhullámú adók hullámhossza ennek megfelelően néhányszor 100 m, az URH adóké 0,1 1 m.ennek

11 11 megfelelően az indukált feszültség igen nagy lehet, frekvenciája pedig az adó frekvenciájával egyezik. A gyutacsok iniciálásához viszont meghatározott idő is szükséges, mely idő egyenáramd inditásnál is függ a robbantóhálózat ellenállásától, A váltóáram~ inditás lehetősége külön gondos vizsgálatot igényel, melyre példaként szolgáljon Dárdai P. munkája [ 4) Tovább neheziti az iniciálási lehetőségeket a nagyfrekvenciás indukció következtében a robbantóhálózat által képviselt szórt kapacitás, melynek indukciós együtthatója igen jelentős befolyásoló tényező lehet. E kapacitás csak mérésekkel állapitható meg, ami tovább bonyolitja e biztonsági távolság meghatározását. Mint láttuk, az indukált feszültség megjelenésének két feltétele van~ a vezető hurok és a mágneses fluxus időbeni változása. A talaj, vagy kőzet is elektromos vezető lehet, amelyben a változó mágnes~s tér elektromos áramot indukálhat. Ennek megfelelően jön lére a talajban a már részletezett nlépésfeszültség'', mely természetesen lehet nagyfrekvenciás is. Az elektromágneses sugárzók közelében a legnagyobb "lépésfes-zültség" a félhullámhossznyi távolságban várható. Középhullámó rádióadók esetén ez a távolság 250 soo m, URH adóknál 0,1. 0,s m körüli érték. Természetesen itt igen jelentős szerepet játszanak a már emli-

12 12 tett szórt kapacitások és indukciók mellett a talaj vezető képességének inhomogenitása i,. ezért itt a "lépésfeszül tség" még nehezebben számi tha tó elő re. Veszélyesség szempontjából azonben e két effektust mindenképpen célszerü különválasztani és az ilyen területen végzett robbantási munkákhoz mindkettőt különkulön is vizsgálni. /Sajnos, az irodalomban gyakran nem választják szét ezt a két hatást, ami elsősorban a biztonsági távolságban okoz nagyfokú bizonytalanságot. / 2. és 3. táblázatok./ T~ljesen használata nagym~rtékben nyilvánvaló azonban, hogy az én-gyutacsok növeli a biztonságot. Ezen gyutacsok használatán kivül a robbantóhálózat kialakitására, a vezetékek kötési helyeinek elrendezésére, megfelelő is előirásokat keresztmetszetü és anyagú vezetékek használatára szoktak tenni. Az elmondottakat két táblázattal kivánjuk illusztrálni, valamint más országokban használt egyéb javaslatokkal alátámasztani. A 2. táblázatban a l3} irodalom által javasolt biztonsági-távolságokat foglaltuk össze, mely esetben a rádióadó rövidhullámon sugároz. A 3. táblázatban néhány országban javasolt biztonsági távolságokat foglaltuk össze ;rz_ adó teljesitményének függvényében.

13 A villamo s gyutac~ t ípusa " Bizton- Az izzó= A felizzi... gyújtó-= táshoz sági h id el,.. szüks. min, áram lenállá-r t elj. szü k,-, A a; ohm séglet,w '..,. Min. táv. 100 kw_ os rá- dió adó'."" m A feliz= zi tás.,, hoz szüks. min. nagyf rekven= ciás -á ram telj-e. w Elő irt bizt;, táv, /2,5-20ÖE b izt. táv',/ m normális érzé... kenységü 0,1.8 1,5 ' 0,05 '. 0, ' csökkentett 0,54 0,11 0,45 l,oo 0,2.:0,3 0,23 é rz:ékenységü - ~ 2, s 23 5,5 ' "" "villámbiztos" 4~0 5,0 0,04 0, táblázat

14 Adó.teljesitménye,kW ==============: 0,01 0,1 1 normál é rzékenységü Bizt onsági távol.ság, m gyutac s 1 csökk. é rz_. gyu t a cs Kanada USA Franc iao. Svédo rszág. ========== ===-===== ============== ==============~========~===== ' ~ táblázat

15 Irány~tott 15 sugárzó adók esetében /általában kisebb teljesf tményü relék/ a biztonsági távolságot az adás irányában végzett robbantás esetén célszerü megnövelni, gyakerlatilag megkettőzni. hogy Az egyéb technológiai előirások közül megemlitjük, - lágyvashuzal helyett rézhuzalt kell alkalmazni, - a vezetékeket a föld közelében kell elhelyezni, - a kötési helyeket lehetőleg egymáshoz közel kell kialakitani. Általában nem térnek ki az előirásokban arra,hogy a kör által bezárt területet a lehető legkisebbre célszerü koncentrálni, ami például könnyen megoldható szorosan egymás mellett vezetett gyutacsvezetékekkel. A robbantóhálózat kialakitására és az adóhoz viszonyitott irányitottságra vonatkozóan javasolják, hogy a rövid- és ultrarövid hullámú adók esetén a kialakított kör sugárirányú, mig közép- és hosszúhullámú adók esetén tangenciális legyen. A körök ilyen kialakitását mi csak kritikával fogadhatjuk, hiszen a "lépésfeszültségn veszélyességének csökkentése éppen forditott irányú körök kialakitását kivánja, ugyanakkor az indukciós törvény f igyelembevttele mindegyik esetben a tangenciálisan vezetett huzalokat kívánja. Mindezek figyelembevétele helyett a helyszíni mérések alapján kell dönteni és a - legnagyobb biztonságot nyújtó formájú robbantóhálózatot kialakitani.

16 16 A TV- és radarállomások közelében lényegesen kisebb biztonsági távolság elegendő, mivel az igen nagy rezgésszámok miatt létrejövő szórt kapacitások, indukciók jelenléte a robbantóhál6zatban folyó áramot jelentős mértékben csökkenti. A csehszlovák bányahatóság által meghatározott biztonsági távolságok kb. 1/3-at érik csak el a rádióadókra előirt - véleményünk szerint túlzottan szigorú - biztonsági távolságoknak. Az energiaveszteségek csökkentése érdekében egyre nagyobb feszültségü távvezetékeken vezetik a villamos áramot. A nagyfeszültségü váltóáram ugyancsak feszültséget indukál a közelben található vezetőhurkokban. Ilyen vezetőhurok lehet a rövidrezárt villamos gyutacs, vagy robbantóhálózat. Az ilyen helyeken alkalmazandó biztonsági távolságok meghatározásához álljon példaként a következő adatsor: 110 kv-os távvezetéktől min. 30 m-re, 220 kv-os " min. 40 m-re, 400 kv-os 11 min. 60 m-re szabad normális érzékenységü villamos gyutacsokkal robbantásokat végezni. Csökkentett érzékenységü villamos gyutacsok használatakor pl. a 400 kv-os távvezetéktől kijelölt biztonsági távolság 20 m-re mérséklődik.

17 Nagyfeszültségű 17 távvezetékek mentén a robbantóhálózatban indukált feszültség frekvenciája nyilván 50 Hz, mely alacsony frekvenciás indukció áll.en jól lehet védeke ni szorosan egymás mtt"llett vezetett rézvezetékes hálózat kiépitésével. Az ilyen alacsony f rekvenciák esetén viszont a földben indukált feszültségek lehetnek nagyok, mivel a szórt kapacitások, indukciók elsősorban a riagyf rekvenciák hatására kialakuló áramerősséget korlátozzák. Ennek megfelelően nagyobb gondot kell forditani a "lépésfeszültség" vizsgálatára. Célszerü a kötési helyeket a talajfelszín fölött elhelyezni. Csehszlovák előirások szerint a nagyfeszültségü távvezetékek közelébe::i a föld felett max. 0,4 m magasan vezethetik a gyutacsvezetékeket. Mint már utaltunk rá, a robbantóhálózat kialakításánál gondosan ügyelni kell a robbantóhálózat, mint hurok által bezárt terület nagyságára. Megállapitották például, hogy amíg a 35 kv-os távvezeték közelében bármilyen méretü és formájú robbantóhálózat kialakítható, addig 500 kv közeláben a csökkentett érzákenységü ~illamos gyutacsokra sem szabad 4 w-nél nagyobb területnek esnie. A robbantóhálózat formai kialakításának tehát igen nagy szerepe van a biztonság fokozásában. Olyan egyenáramú vezető sinek mellett végzett robbantásnál, melyekben az áramerősség meghaladja a 10 ka-t, külön gondoskodni kell az indukció lehetősé-

18 B = f r r o H' 18 gének kiküszöböléséről. Az! egyenáram hatására a vezető sintől L távolságban észlelhető mágneses tér H erőssége a következő módon határozható meg: H = I 2 rt A mágneses térerősségből számitható az indukció: -6 ahol fj-o az abszolut permeabilitás, értéke 1,26.10 Vs/Am. /Levegőre a f-r relativ permeabilitás 1-nek vehető, ezért ezzel korrigálni nem kell./ A mágneses térbe helyezett zárt vezetőhurokban indukált feszültség két módon jöhet létre: a., vagy hirtelen megváltoztatjuk a vezetőhurok által közbezárt területet, b., vagy az áramerősség változik meg hirtelen. Az indukált feszültség: ad.a., ad.b., U. = B l. dt 2 r 'lí d I --- dt Az indukált feszültség hatására a vezetökőrben folyó áram: I = U. l. R gy

19 19 ahol R gy - a gyutacs ellenállása. Bizonyitható, hogy ilyen nagy áramerősségü vezetők közelében végzett robbantás előkészitése során véletlenszerü gyutacsrobbanás következhet be az a., esetben, ha a rövidrezárt gyutacsvezetéket a robbantómester úgy húzza szét, h81.ja gyutacsvezetékek által bezárt terület 0,1 s alatt kb. 1 ~-es hurkot alkot, a b., esetben pedig, ha a rövidrezártan tartott 1 ~ felületü körtől 0,2 m-re levő vezetősinben az áramerősség pl. valamilyen üzemzavar következtében O,Olsalatt kb. a felére csökken. A védekezés módszere igen egyszerű. A robbantóhálózatot úgy kell kialakitani, hogy a töltés ideje a latt a gyutacsokat és a robbantóhálózat egyetlen szakaszát sem szabad rövidre zárni. Tovább javitja a robbantási munka biztonságát, ha ilyen helyeken én gyutacsoka t használnak. Elektrosztatikus feltöltődés Az elektrosztatikus terer gyakran lebecsülik az elektromágneses térrel szemben, mivel energiasürüsége néhány nagyságrenddel kisebb és ezért a veszélyt már eleve kizárják.manapság már jól tudjuk, hogy a feltöltődésbol adódó igen kis energiák is katasztrofális következményekkel járó tüzekhez és robbanásokhoz vezethetnek. A probléma megitéléséhez ismernünk kell, hogyan jön

20 20 létre a sztatikus feltöltődés és közben milyen fiz ikai folyamatok játszódnak le. Ha két különböző szilárd anyag felületei jól érintkeznek egymással és utána elválasztjuk őket, akkor feltöltődés jön létre. A feltöltődésifolyamatot az 1. ábra szerint három szakaszra bonthatjuk Cs1 =. ~,.., 1 a,.,_ 2 ~,. '.... :... ' ' b,. :.,. e.'. 'J....., (.. ' ;. '..,...,., - ( ( ' '. <... v ~ </.....l1 ''4' \, ~ _{. ' * t "' f l- < ' ~. ' '-', #... j -: - ' t... ~ 1 _... t yl',. '_,,. '\. 1: ~t.....l~ ' ' r.., ( '. 1. ábra. A sztatikus feltöltődés három szakasza.

21 21 Az első szakaszban a két felület érintkezési helyei.n a nagyobb kilép'ési munkával rendelkező anyag felé elektronok vándorolnak. /Kilépési munka, W alatt azt az e V~b an kifejezett e nergiát értjük, amely az a ny agból egy l, e elemi töltésü elektront képes kiragadni az any$g körüli légüres térbe./ Mivel! példánkb a r. w 2 :> w 1, ezért az 1 a nyag p0zitiv, a ~ a nyag negativ töltésü lesz. Ezzel egy kettős réteg &lakó polarizác ió jön létre. amely r ől feltételezzük, hogy a rajta keletkezett töltésmennyiség vi~zonylag kicsiny. A folyamatban csak a felületek érin tk e~ése mértékadó ' függetlenül a ttól, hogy a két a nyag nyugalmi vagy mozgási állapotban van-e. A folyamat második szakaszában az anyagok eltávolodnak egym~stól~ viszont a feszültsé'g jelentős Ugyanakkor a kapacitás csökken, ami növekedését vonja maga. után. Ezzel megnöveksz~k ai elektroszt a tikus tér energiáj~ és eléri a mws-os nagyságrendet. Az elekt roszta tikus tér energiájának megnövekedése döntő sze.repet játszik a gyulladási és robbanási jeleriségeknél. Nagysága azzal a me chanikai energ~áv l egy~nlő, amelye t a szétválasztási úthosszon a töltések által keltett c_~:ulomb~erővel szemben kell végezni. A sztatikus feltöltődés tehát mechanikai munka árán jöhet létre. A sztatikus feltöltődés elektrosztatikus t ér energiájának vizsgálatánál tehát és az

22 22-1 mindig a töltések jelenlétéből kell kiindulni. A keletkező &lektrosztatikus tér energiáját, valamint a feltöltött felület elektromos potenciálját valamely kiválasztott ponthoz képest a vizsgált felület és a választott viszonyitó pontot tartalmazó felület által meghatározott kapacitás nagysága határozza meg, ill. a kialakult elektrosztatikus teret e felületek egymáshoz viszonyitott mozgása módositja. A töltések felhalmozódását és a szétválasztott két felület között fellépő feszültség minden határon túli növekedését a levegő átiltési szilárdságának részleges le-, törése /a gázkisülések valamilyen formájában/, a felületek közötti szigetelők ohmikus ellenállása, valamint a felületekhez kapcsolódó egyéb szigetelési ellenállások más felülétekhez vagy a földhöz képest viszonyitott nagysága korlátozza. A gyakorlatban már akkor megkezdődik a töltéskiegyenlitődés, amikor a két vizsgált felületen töltés jelenik meg. Ezért gyakran nem is tudunk létrehozni hosszú ideig feltöltött felületeket, csak ha folyamatosan gondoskodunk a töltések állandó keletkezéséről. /Pl. nagy sebességgel port áramoltatunk csőben, amikor az 1. ábrán látható folyamatot újra és újra létrehoz~uk./ Az elektrosztatikus terek letörését, illetve a töltések f~lhalmozódását elsősorban a szigetelési ellenállás csökkentésével lehet befolyásolni.

23 23 A szigetelési ellen&-llá.s csökkentésére több lehetőség kinálkozik. A jobb vezetőképességü komponense_k /antisztatikumok/ gy9rsitják a töltéskieg.yenlitődést a rendszeren belül,.a. földelés pedi.g a környezettel szemben További lehetőség a levegő re lat iv p a ra tartalmának növelése, vagy a töltések elim inálása és számos egyéb módszer; helyi vizsgálatokkal kell eldönteni, hogy az emlitet t lehetőségek közül melyik a legalkalmasabb. Jól ismert, hogy a robbanóanyagipar és azon belül is az iniciáló robbanóanyagok gyártása külön~ leges helyzetben van, ahol a sztatikus feltöltődés nem egyszerüen a technológia~. folyamatot nehezitő vagy kellemetlen villamos ütéseket okozó.jelenség;. hane m komoly veszély forrása L6). /A. tricinát a z egyik leg-" érzékenyebb ini,c:::iáló robbanóanya g melynek feldo.l.gozása minden fáz.isában meg kell. akadályozni a sztatikus szikrák kialakulását~/ Hogyan következhet. be. a villamos gyutacs akarat- lan robbanása elektrosztatikus feltöltődés következté~ ben? Különleges körülmények között a gyutacs hüvelye és az izzógyújtófej között elektromos kisülés révén szikra keletkezhet. Mivel a gyutacs hüvelye és az izzógyújtófej közötti átütési szilárdság 1500 V, ha

24 24 a két "elektróda" között ennél nagyobb feszültségkülönbség lép fel, elektromos szikra keletkezik. Néhány, a villamos gyutacsok használátával kapcsolatban bekövetkezett üzemi balesetet elektrosztatikus feltöltődéssel esettel: magyaráztak. [1] Ismerkedjünk meg két ilyen Szigetelt padozatú helyiségben /Pl.PVC burkolat/ munkát végző személy járás közben az l.a., ábrának megfelelő elektróda rendszert hoz létre a saját cipőtalpa és. a padozat között. /2. ábra/ Maga az ill. személy mintegy 250 pf kapacitású kondenzátort képvisel. A kondenzátor a jó szigetelés miatt a földpotenciálhoz / padozat potenciáljához/ képest igen magas feszültségre is feltöltődhet, mely potenciálkülönbség jóval meghaladhatja az 1500 V átütési szilárdságot. Amennyiben az igy feltöltött egyén úgy vesz kezébe gyutacsot, hogy a gyutacs hüvelyét fogja meg, a rövidre zárt és szigeteletlen huzalvég viszont a padlóhoz ér, akkor a gyutacson keresztül létrejövő vezethet. elektromos kisülés a gyutacs nem kívánt inditásához

25 25 " ; ":... #.- - :-- ~ ' y -.~ ~ :',... ~... ' ~: { '!!. :. érti~r- ",,,. ::. : --:-talaj.::" '. i -- 'l\i ~ -- (... ~.... ( -\ ~ 4..., t ~. \_ l.,. '. - ~., ;o.,.". emberi k~z. ~ ' i '. -~ l -., _. ' l. f. 1. : tt.,,, ' },. l. 'J" '. :.'1 11.,;. r ;.. ;: _l. ~ j... v. -,, r!... ' '... ' ~" ". 1, 1 t 1,. ' '...,, ' ' 1,1 qyujfo-.j fej -.1,. - ' ( ' ',:.. -scrilu ~iit1ete".: '..J.esü- ve1,et.élc '. ~. "'.;~---1~. ' '. J-.. ~ - ~ -... ' ) ';. -~ ~ \. r. ~,... : -~. :,,,. ). ;. 1 ~ ~ '. l. r '.. '. '.-,.,, ~ ',... :.:! '. ~.-t: 1.. ~ 1 ( ' '1.Á ), y\."..;;._.. _":. t..,., ~.,.,,,.... 1' ;..... '",...;. ~.-~. \... ~... t... "..-. t 2. ábra. Egy példa a villamos gyutacs váratlan felrobbanására elektrosztatikus feltöltődés következet ében. Igen nagy feszültségü feltöltés és potenciálkülönbség esetén a 3. ábra szerint is létrejöhet kisülés. A robbantómester itt a szigetelt gyutacsvezetéket tartja a kezében és a gyutacs hüvelye ér le a földpotenciálú he.lyre. Ekkor a gyutacs átütéséhez az emberen é~ gyutacsvezetéken keresztül legalább 5000 V szükséges. Példák stikasága bizonyitja, hogy ilyen, vagy még ennél magasabb potenciálra is feltöltődhet az emberi test. [a1.

26 : 26 l ' '.... "...., -~... -~ :-..i ~ ~ r;böa,:, [ó v~zhtj~. ~-... '..... '. '\ -.,... ~. ~.. N.! '... '. ~,. - '.. -. l... - ~'. 't ~~~~~ '. " "". :..., :.., 'i ~. ~ 'p- "' -.~':., ;.\., "; ', ' J i'....-.l. : _ '.. qvuj~o.""f fj:f -~. ', t:" ' - ;' l ~ 1:,.,'!a. i,,.. -'... <.; - ~ 3. ábra. A gyutacs váratlan felrobbanásának egy másik lehetősége. Bár ezek a példák nem utalnak arra, hogy a szikrakisülés igen rövid ideje miatt elég kicsi a valószinüsége a villamosgyutacsok véletlenszerű felrobbanásának, az!!:!. gyutacsok használata ezekkel a jelenségekkel szemben i s fokozott védelmet biztosit.

27 27 Villámveszél~ eltérően Az elektromos balesetektől és üzemzavaroktdl jelentőséget, a villámcsapásoknak nem tulajdonitanak nagy pedig a Földet évenként sok millió villámcsapás éri és ebből több, mint ezer a halálos balesetek száma, nem is beszélve az anyagi károkról. Az egyes országok villámveezélyezettsége eltérő. Hazánk nem tartozik a villámme ntes földrajzi fekvéső országok közé. viszonylag gyakoriak a villámcsapásos balesetekről és anyagi károsodásokról szóló jelentések. A klimatikus viszonyok jelentős mértékben befo-. lyásolják a Föld egyes ~rületeinek villámveszélyességét. A zivatarok száma az e~yenlitőtől a sarkok felé csökken. Dél-Amerika egyer.litőhöz közel eső részein az év minden napján es t étől reggelig tart a villámlás. A nedves trópuson minden második vagy harmadik napon van zivatar. Ak~-enkénti és évenkénti villámcsapások száma adja a villámsürüs~get, amely Magyarors~ágon 1,6, 2,4 között van, az évenkénti villám csapások száma 150 OOO. 220 OOO -re becs ülhető, mig a zivataros napoké z2 Z6/év [g) Zivataros időben az igen gyors légköri mozgások következtében részle~eiben még ma sem ismert módon igen jelgntő~ mértékben megváltozhat ~ légkör különböző helyein az ionkoncentráció. A negativ vagy pozitiv ionok

28 28 megnövekedett koncentrációja miatt potenciálkülönbség lép fel a térben szétvált, töltéssel rende.lkező _ terek., valamint a töltéssel _ rendelkező tér és a föld, mint zérus p~tenciál között. A potenciálkülönbség miatt az egyes töltött terek kö~ött időben és térben igen változó értékű lehet az elektromos térerősség. Az ionkoncentráció igen gyors növekedése miatt a térerősség meghaladhatja a levegő 30 kv/cm átütési szilárdságát és először ún. "előkisülések" formájában részleges átütések történhetnek /korona-kisülés, szikrakisülés, stb/. Az előkisüléseket különösen elősegitik a talajból kiálló épitmények, tárgyak, fák csúcsai. A térerősség további növekedése esetén, vagy a részleges kisülés következtében csökkenő vezetőképesség miatt az előkisülés igen nagy áramintenzitású kisülésbe megy át, melyben olyan gyors a töltéskiegyenlitődés, hogy az áramerősség akár több ezer amper nagyságrendet is elérhet. A kisülési csatornában /"villámcsatornában "/ a levegő plazma állapotba kerül, melyet az indukált elektromos tér és a hozzátartozó mágneses tér a kisülés teljes befejezéséig fenntart a csatornában. A töltések kiegyenlitődésével egyidejűleg indul meg a csatorna magas hőmérsékletű gázainak robbanásszerű kitágulása az ismert hangjelenség kiséretében. A hangjelenség segitségével a hanghullámok terjedési sebességé~ől meg lehet becsülni a vihar körülbelüli távolságát és a robbantási munkákkal

29 29 kapcsolatos döntést általában kellő időben meg lehet tenni. /A villámlás látványa és a hang beérkezés~ közötti minden 3 s idő kb. 1-1 km távolságot jelent./ A villám jól ism~rt megjelenési formáján kivül más villámok is ismertek, mint a gömb-, a sik- és a tapadó villám, melyek jóval kisebb energiájúaki Ezek keletkezési körülményei még nem ismertek, ritkán figyelhetők meg, ezért tanulmány~zásuk is nehezebb. A villámlás ideje néhány f.s-tól legfeljebb 1 ms-ig tart. Figyelembe véve az igen nagy áramerősségeket, a villám által képviselt energia MW nagyságrendü. Mindebből következik, hogy e koncentrált igen nagy energia miatt a robbantástechnikában gyakorlatilag nem tudunk védekezni a villámok káros hatása ellen. Becsült értékek alapján nézzünk egy számpéldát: Egy 150 m hosszúságú robbantóhálózat hurkai és a függőleges villámcsatorna közötti térerősség 3~5 - H~ A 10 ka erősségü villám a vezetékben 15 kv-os elektromotoros erőt indukál. Tételezzük fel, hogy a hálózatba 10 db 7 ohm-os gyutacsot kapcsoltak. A 15 kv-os feszültség a 70 ohm ellenállá&on 220 A~es áramot hajt keresztül. Ha az indukált áramlökés ideje fs, akkor az áramkörön /ll. 22;.10 3 e töltés megy át. A gyújtás feltétele : 4 ms-on át 0,8 A~es áram folyjon az izzógyújtófejen keresztül, mely 3, e. A villámlásnál tehát ~nnél az értéknél nagyobb töltések jelen-

30 30 hetnek meg. A rövid idejü nagyobb erősségü áramok iniciáló hatására adatsora álljon példaként Maróthy G. 3 mws/ohm gyújtási impulzusú g,yutacsokra [10] ' á rame r6sség, A wyújtási idő, ms 0,8 4,68 1 3,00 2 0,75 3 0,34 A villámcsapás. következtében a robbantandó kőzetben, vagy azon a területen, amelyen dolgozunk, szintén "lépésfeszültség" alakulhat ki, a csupasz vagy hib-ás szigetelésü gyutacsvezetékeken keresztül a villamos gyutacsok nem várt inditását okozhatják. A nedves kőzet elektromos vezetőképessége igen erősen megjavulhat, ami nagy távolságokban is biztosithatja az inditáshoz szükséges energiát. Példaként emlitjük, hogy a recski mélyszinti ércbányában viszonylag jelentős fémtartalmú, vizes felületü kőzeten 0,2 l m távolságban elhelyezett szondák között csak 3 8 kohm ellenállást mér~ünk, ami igen kis értéknek számit. A gyakorlati megfigyelések szerint normál érzékenységü gyutacsok alkalmazásakor az 5 6 km-nél távolabbi villámlás hatástalan. 2-szeres biztonságra törekedve irják

VILODENT-98. Mérnöki Szolgáltató Kft. feltöltődés

VILODENT-98. Mérnöki Szolgáltató Kft. feltöltődés Mérnöki Szolgáltató Kft. ELEKTROSZTATIKUS feltöltődés robbanás veszélyes térben ESC- ESD Dr. Fodor István EOS E M ESC C ESD ESC AKTÍV PASSZÍV Anyag Tűz- és Reprográfia Mechanikai szeparálás robbanásveszély

Részletesebben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

Roncsolásmentes részleges kisülés diagnosztika

Roncsolásmentes részleges kisülés diagnosztika Roncsolásmentes részleges kisülés diagnosztika Tevékenységeink 1. Roncsolásmentes helyszíni diagnosztikai vizsgálatok Generátorok Transzformátorok Túlfeszültséglevezetők Mérőváltók Kábelek (olajpapír és

Részletesebben

Érintésvédelem alapfogalmak

Érintésvédelem alapfogalmak Érintésvédelem alapfogalmak Horváth Zoltán Villamos üzemmérnök T: 06 20 9 284 299, E mail: horvath.z@clh.hu Miért fontos az ÉV ellenőrzése? Munkánk során felelősek vagyunk azért, amit teszünk DE: felelősek

Részletesebben

8. A vezetékek elektromos ellenállása

8. A vezetékek elektromos ellenállása 8. A vezetékek elektromos ellenállása a) Fémbôl készült vezeték van az elektromos melegítôkészülékekben, a villanymotorban és sok más elektromos készülékben. Fémhuzalból vannak a távvezetékek és az elektromos

Részletesebben

Elektromágnesség tesztek

Elektromágnesség tesztek Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

Villámvédelem. #1. Az MSZ EN 62305 szabványkiadások közötti fontosabb eltérések MSZ EN 62305-1:2011 Fogalmi változások

Villámvédelem. #1. Az MSZ EN 62305 szabványkiadások közötti fontosabb eltérések MSZ EN 62305-1:2011 Fogalmi változások Magyar Mérnöki Kamara ELEKTROTECHNIKAI TAGOZAT Szakmai segédlet 2015 Villámvédelem #1. Az MSZ EN 62305 szabványkiadások közötti fontosabb eltérések MSZ EN 62305-1:2011 Fogalmi változások Villámvédelem

Részletesebben

SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU AUTOMATIZÁLÁSI TANSZÉK HTTP://AUTOMATIZALAS.SZE.HU HÁLÓZATOK MÉRETEZÉSE

SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU AUTOMATIZÁLÁSI TANSZÉK HTTP://AUTOMATIZALAS.SZE.HU HÁLÓZATOK MÉRETEZÉSE SZÉCHENY STÁN EGYETEM HTT://N.SZE.H HÁLÓZATOK MÉRETEZÉSE Marcsa Dániel illamos gépek és energetika 2013/2014 - őszi szemeszter Kisfeszültségű hálózatok méretezése A leggyakrabban kisfeszültségű vezetékek

Részletesebben

Porrobbanás elleni védelem. Villamos berendezések kiválasztása

Porrobbanás elleni védelem. Villamos berendezések kiválasztása Porrobbanás elleni védelem Villamos berendezések kiválasztása Villamos berendezések kiválasztása Por fajtája Robbanásveszélyes atmoszféra fellépésének valószínűsége 31 Por fajtája Por minimális gyújtási

Részletesebben

Az elektromos áram emberre gyakorolt hatásai (összeállította: Schön Tibor)

Az elektromos áram emberre gyakorolt hatásai (összeállította: Schön Tibor) Az elektromos áram emberre gyakorolt hatásai (összeállította: Schön Tibor) Köztudott hogy az emberi test vezeti az áramot. Ezen áramvezetésért a testnedvek a felelősek. A fémekkel ellentétben a testben

Részletesebben

Töltődj fel! Az összes kísérlet egyetlen eszköz, a Van de Graaff-generátor, vagy más néven szalaggenerátor használatát igényli.

Töltődj fel! Az összes kísérlet egyetlen eszköz, a Van de Graaff-generátor, vagy más néven szalaggenerátor használatát igényli. Tanári segédlet Ajánlott évfolyam: 8. Időtartam: 45 Töltődj fel! FIZIKA LEVEGŐ VIZSGÁLATAI Kötelező védőeszköz: Balesetvédelmi rendszabályok: Pacemakerrel vagy hallókészülékkel élő ember ne végezze a kísérleteket!

Részletesebben

SZIGETELŐANYAGOK VIZSGÁLATA

SZIGETELŐANYAGOK VIZSGÁLATA SZIGETELŐANYAGOK VIZSGÁLATA Szigetelési ellenállás mérése A villamos szigetelőanyagok és szigetelések egyik legfontosabb jellemzője a szigetelési ellenállás. Szigetelési ellenálláson az anyagra kapcsolt

Részletesebben

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív

Részletesebben

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken Transzformátor rezgés mérés A BME Villamos Energetika Tanszéken A valóság egyszerűsítése, modellezés. A mérés tervszerűen végrehajtott tevékenység, ezért a bonyolult valóságos rendszert először egyszerűsítik.

Részletesebben

Egyenáramú geoelektromos módszerek. Alkalmazott földfizika

Egyenáramú geoelektromos módszerek. Alkalmazott földfizika Egyenáramú geoelektromos módszerek Alkalmazott földfizika A felszíni egyenáramú elektromos mérések alapján a különböző fajlagos ellenállású kőzetek elhelyezkedését vizsgáljuk. Kőzetek fajlagos ellenállása

Részletesebben

A tűzvédelmi felülvizsgálatról az új OTSZ tükrében

A tűzvédelmi felülvizsgálatról az új OTSZ tükrében A tűzvédelmi felülvizsgálatról az új OTSZ tükrében Változás történt a tűzveszélyességi osztályok meghatározásánál. Már nem A, B, C, D, E tűzveszélyességi osztályú helyiségeket és szabadtereket találunk,

Részletesebben

Ex Fórum 2014 Konferencia. 2014. május 13. robbanásbiztonság-technika haladóknak 1

Ex Fórum 2014 Konferencia. 2014. május 13. robbanásbiztonság-technika haladóknak 1 1 Robbanásbiztonság-technika: gyújtóforrás elleni védelem a teljes élettartam során 2 Főbb tűzesetek gyújtóforrásai (Európa 2000-2014) Motorok villamos kábelezései 23% Dohányzás 18% Súrlódás (csapágyazás

Részletesebben

ÖVEGES JÓZSEF FIZIKAVERSENY

ÖVEGES JÓZSEF FIZIKAVERSENY ÖVEGES JÓZSEF FZKAVERSENY skolai forduló Számításos feladatok Oldd meg az alábbi számításos feladatokat! ibátlan megoldás esetén a szöveg után látható kis táblázat jobb felső sarkában feltüntetett pontszámot

Részletesebben

Az MSZ EN 62305 villámvédelmi szabványsorozat. 3. rész: A létesítmények fizikai károsodása és életveszély (IEC 62305-3:2006)

Az MSZ EN 62305 villámvédelmi szabványsorozat. 3. rész: A létesítmények fizikai károsodása és életveszély (IEC 62305-3:2006) Az MSZ EN 62305 villámvédelmi szabványsorozat 3. rész: A létesítmények fizikai károsodása és életveszély (IEC 62305-3:2006) Az MSZ EN 62305-3-ben leírt intézkedések célja Az építmények megóvása a fizikai

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

80-as sorozat - Idõrelék 16 A

80-as sorozat - Idõrelék 16 A 80-as sorozat - Idõrelék A Egy vagy többfunkciós idõrelék 80.01 80.11 öbbfunkciós idõrelé: 6 mûködési funkcióval öbbfeszültségû kivitel: (12...240) V AC/DC vagy (24...240) V AC/DC, a feszültség automatikus

Részletesebben

Mértékegysége: 1A (amper) az áramerősség, ha a vezető keresztmetszetén 1s alatt 1C töltés áramlik át.

Mértékegysége: 1A (amper) az áramerősség, ha a vezető keresztmetszetén 1s alatt 1C töltés áramlik át. 1. Az áram fogalma 2. Az egyenáram hatásai 3. Az áramkör elemei 4. Vezetők ellenállása a) Ohm-törvénye b) fajlagos ellenállás c) az ellenállás hőmérsékletfüggése 5. Az ellenállások kapcsolása a) soros

Részletesebben

MSz EN 62305 szabvány tartalmi jellemzése, összefoglalása

MSz EN 62305 szabvány tartalmi jellemzése, összefoglalása PROT-EL Műszaki és Kereskedelmi KFT. 1026 Budapest Pasaréti u. 25. Tel./Fax: 326-1072 www.prot-el.hu e-mail: protel@t-online.hu MSz EN 62305 szabvány tartalmi jellemzése, összefoglalása Az MSz EN 62305

Részletesebben

Útmutatás és a gyártó nyilatkozata Elektromágneses kibocsátás és zavartűrés

Útmutatás és a gyártó nyilatkozata Elektromágneses kibocsátás és zavartűrés Útmutatás és a gyártó nyilatkozata Elektromágneses kibocsátás és zavartűrés Magyar Oldal AirSense 10 AirCurve 10 1-3 S9 -as sorozat 4-6 Stellar 7-9 S8 & S8 -as sorozat II VPAP -as sorozat III 10-12 AirSense

Részletesebben

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek ELEKTROMÁGNESES REZGÉSEK a 11. B-nek Elektromos Kondenzátor: töltés tárolására szolgáló eszköz (szó szerint összesűrít) Kapacitás (C): hány töltés fér el rajta 1 V-on A homogén elektromos mező energiát

Részletesebben

A hétvégi vihar ismertetése

A hétvégi vihar ismertetése A hétvégi vihar ismertetése Zivatarlánc Szupercella Dió nagyságú jég Tuba Tornádó Jégeső Villámok Tatabánya Pécs felett Pécs felett Csontváry u. szombat 20:10 Köszönöm a kitartó figyelmet! ;) Készítette:

Részletesebben

34-es sorozat - Ultravékony print-/dugaszolható relék 6 A

34-es sorozat - Ultravékony print-/dugaszolható relék 6 A -es sorozat - Ultravékony print-/dugaszolható relék 6 A - 5 mm széles, ultravékony relé - Érzékeny DC tekercs, 170 mw - Biztonsági elválasztás VDE 0160/EN 50178 szerint a tekercs és az érintkezõk között

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 5. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 5. óra Verzió: 1.1 Utolsó frissítés: 2011. április 12. 1/20 Tartalom I 1 Demók 2 Digitális multiméterek

Részletesebben

IGÉNYLŐ ÁLTAL VÉGEZHETŐ TERVKÉSZÍTÉS KÖVETELMÉNYEI

IGÉNYLŐ ÁLTAL VÉGEZHETŐ TERVKÉSZÍTÉS KÖVETELMÉNYEI FREKVENCIAGAZDÁLKODÁSI IGAZGATÓSÁG IGÉNYLŐ ÁLTAL VÉGEZHETŐ TERVKÉSZÍTÉS KÖVETELMÉNYEI URH FM RÁDIÓADÓ Budapest 2008 március I. A frekvenciaterv követelményei és kötelező tartalma 1. Tervezési feladat A

Részletesebben

601H-R és 601H-F típusú HŐÉRZÉKELŐK

601H-R és 601H-F típusú HŐÉRZÉKELŐK 601H-R és 601H-F típusú HŐÉRZÉKELŐK 1. BEVEZETÉS A 601H-R és 601H-F hőérzékelők a mennyezetre szerelhető, aljzatra illeszthető 600-as sorozatú érzékelők közé tartoznak. Kétvezetékes hálózatba szerelhető,

Részletesebben

Transzformátorok tervezése

Transzformátorok tervezése Transzformátorok tervezése Többféle céllal használhatunk transzformátorokat, pl. a hálózati feszültség csökken-tésére, invertereknél a feszültség növelésére, ellenállás illesztésre, mérőműszerek méréshatárának

Részletesebben

MÉRÉSI JEGYZŐKÖNYV T: +36703394791. Típus: HS-71-H No: HS-0010596/14

MÉRÉSI JEGYZŐKÖNYV T: +36703394791. Típus: HS-71-H No: HS-0010596/14 MÉRÉSI JEGYZŐKÖNYV Hivatkozási szám: Megrendelő: Kapcsolat tartó személy: Vizsgált termék: Vizsgálati körülmények: EMC-140702/2 Víztisztító Szervíz Kft. H1138. Budapest, Váci út 108.. Panker Teodóra T:

Részletesebben

Az elektromágneses terek tulajdonságai. Összeállította: Henézi Ferenc Pécs, 2009. december

Az elektromágneses terek tulajdonságai. Összeállította: Henézi Ferenc Pécs, 2009. december Az elektromágneses terek tulajdonságai Összeállította: Henézi Ferenc Pécs, 2009. december Tartalomjegyzék 1. Bevezetés... 3 2. Váltakozó EM terek néhány jellemzője... 4 Hullámhossz (λ)... 5 Frekvencia...

Részletesebben

A kémiai és az elektrokémiai potenciál

A kémiai és az elektrokémiai potenciál Dr. Báder Imre A kémiai és az elektrokémiai potenciál Anyagi rendszerben a termodinamikai egyensúly akkor állhat be, ha a rendszerben a megfelelő termodinamikai függvénynek minimuma van, vagyis a megváltozása

Részletesebben

Elektronika I. Gyakorló feladatok

Elektronika I. Gyakorló feladatok Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó

Részletesebben

NAPELEMES ERŐMŰVEK ÁRAMÜTÉS ELLENI VÉDELME

NAPELEMES ERŐMŰVEK ÁRAMÜTÉS ELLENI VÉDELME NAPELEMES ERŐMŰVEK ÁRAMÜTÉS ELLENI VÉDELME Dr. Novothny Ferenc ( PhD) Egyetemi docens Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Villamosenergetikai Intézet V. Energetikai konferencia 2010.11.25.

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Fizikai példatár 4. Elektromosságtan Csordásné Marton, Melinda

Fizikai példatár 4. Elektromosságtan Csordásné Marton, Melinda Fizikai példatár 4. Elektromosságtan Csordásné Marton, Melinda Fizikai példatár 4.: Elektromosságtan Csordásné Marton, Melinda Lektor: Mihályi, Gyula Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel

Részletesebben

ő ü ő ę ü ź ź ĺ Ť ĺ ľ ü ű ö ő ő ő í ź ľ í ü ú ü ö ű ú ö ő ýľ Á Á í ĺí ö ű ű ö ő Á ľ í ľ ü ľ ľ í ű ö ö í Ĺ ĺ ú ö ľ ö ĺ ő Ą ö ő í ő ĺ í ő ý ľ ő ö ő í ő ľ ľ ú ö ľ ć í ő ő ü ő ü í ő ĺ ű ł í ő ő ü ö ź ľ ź ü

Részletesebben

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele Áramköri elemek Az elektronikai áramkörök áramköri elemekből épülnek fel. Az áramköri elemeket két osztályba sorolhatjuk: aktív áramköri elemek: T passzív áramköri elemek: R, C, L Aktív áramköri elemek

Részletesebben

Az együttfutásról általában, és konkrétan 2.

Az együttfutásról általában, és konkrétan 2. Az együttfutásról általában, és konkrétan 2. Az első részben áttekintettük azt, hogy milyen számítási eljárás szükséges ahhoz, hogy egy szuperheterodin készülék rezgőköreit optimálisan tudjuk megméretezni.

Részletesebben

Villamos biztonságtechnika

Villamos biztonságtechnika Energiaforrások: Villamos biztonságtechnika Miért pont villamos? egyszerűsítve Gáz Szén Benzin Ló Sűrített levegő Villamosság stb. 1/61 2/52 Miért jó a villamos energia: A villamosság a leggazdaságosabban

Részletesebben

Villamos gépek. Érintésvédelem. Fodor Attila

Villamos gépek. Érintésvédelem. Fodor Attila Villamos gépek Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010. május 3. Az előadás tartalma Tartalom (Elektromos áram használatához

Részletesebben

H-2040 Budaörs, Komáromi u. 22. Pf. 296. Telefon: +36 23 365280, Fax: +36 23 365087

H-2040 Budaörs, Komáromi u. 22. Pf. 296. Telefon: +36 23 365280, Fax: +36 23 365087 MŰSZER AUTOMATIKA KFT. H-2040 Budaörs, Komáromi u. 22. Pf. 296. Telefon: +36 23 365280, Fax: +36 23 365087 Telephely: H-2030 Érd, Alsó u.10. Pf.56.Telefon: +36 23 365152 Fax: +36 23 365837 www.muszerautomatika.hu

Részletesebben

Az úszás biomechanikája

Az úszás biomechanikája Az úszás biomechanikája Alapvető összetevők Izomerő Kondíció állóképesség Mozgáskoordináció kivitelezés + Nem levegő, mint közeg + Izmok nem gravitációval szembeni mozgása + Levegővétel Az úszóra ható

Részletesebben

Fizika összefoglaló kérdések (11. évfolyam)

Fizika összefoglaló kérdések (11. évfolyam) I. Mechanika Fizika összefoglaló kérdések (11. évfolyam) 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;

Részletesebben

60-as sorozat - Ipari relék 6-10 A

60-as sorozat - Ipari relék 6-10 A Dugaszolható ipari relék AC vagy DC kivitelű tekercsek Zárható teszt nyomógomb és mechanikus Választható kettős érintkezők a 60.12 és 60.13 típusoknál Multifunkciós időrelévé alakítható (a 86.00 típusú

Részletesebben

33 522 04 1000 00 00 Villanyszerelő 4 Villanyszerelő 4 33 522 04 0100 21 01 Kábelszerelő Villanyszerelő 4

33 522 04 1000 00 00 Villanyszerelő 4 Villanyszerelő 4 33 522 04 0100 21 01 Kábelszerelő Villanyszerelő 4 A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Megbízhatóság Felhasználóbarát megoldások Környezetbarát kivitel. EL-ngn A fény motorja. P e o p l e I n n o v a t i o n s S o l u t i o n s

Megbízhatóság Felhasználóbarát megoldások Környezetbarát kivitel. EL-ngn A fény motorja. P e o p l e I n n o v a t i o n s S o l u t i o n s Megbízhatóság Felhasználóbarát megoldások Környezetbarát kivitel EL-ngn A fény motorja P e o p l e I n n o v a t i o n s S o l u t i o n s Next GeNeration A világítás energiahatékonyságát célzó piaci elvárások

Részletesebben

ELEKTROMOS ÉS ELEKTROMÁGNESES MÓDSZEREK A VÍZBÁZISVÉDELEM SZOLGÁLATÁBAN

ELEKTROMOS ÉS ELEKTROMÁGNESES MÓDSZEREK A VÍZBÁZISVÉDELEM SZOLGÁLATÁBAN JÁKFALVI SÁNDOR 1, SERFŐZŐ ANTAL 1, BAGI ISTVÁN 1, MÜLLER IMRE 2, SIMON SZILVIA 3 1 okl. geológus (info@geogold.eu, tel.: +36-20-48-000-32) 2 okl. geológus (címzetes egyetemi tanár ELTE-TTK; imre.muller

Részletesebben

Nyári gyakorlat teljesítésének igazolása Hiányzások

Nyári gyakorlat teljesítésének igazolása Hiányzások Nyári gyakorlat teljesítésének igazolása Hiányzások - - Az összefüggő szakmai gyakorlatról hiányozni nem lehet. Rendkívüli, nem tervezhető esemény esetén az igazgatóhelyettest kell értesíteni. - A tanulók

Részletesebben

A fény korpuszkuláris jellegét tükröző fizikai jelenségek

A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény elektromágneses sugárzás, amely hullámjelleggel és korpuszkuláris sajátosságokkal is rendelkezik. A fény hullámjellege elsősorban az olyan

Részletesebben

MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: A laboratórium rendje, munkavédelmi és tűzvédelmi oktatás, villamos biztonságtechnika, szabványismeret

MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: A laboratórium rendje, munkavédelmi és tűzvédelmi oktatás, villamos biztonságtechnika, szabványismeret MÉRÉSI JEGYZŐKÖNYV A mérés megnevezése: A laboratórium rendje, munkavédelmi és tűzvédelmi oktatás, villamos biztonságtechnika, szabványismeret A mérés helye: Irinyi János Szakközépiskola és Kollégium 156-os

Részletesebben

Kézi- és villamos működtető mechanizmusok (hajtások) a KM-típusú kompakt megszakítókhoz. Műszaki ismertető

Kézi- és villamos működtető mechanizmusok (hajtások) a KM-típusú kompakt megszakítókhoz. Műszaki ismertető Kézi- és villamos működtető mechanizmusok (hajtások) a KM-típusú kompakt megszakítókhoz Műszaki ismertető TRCON udapest Kft. KM-típusú megszakító-sorozata által nyújtott műszaki szolgáltatások körét bővítik

Részletesebben

Energiaminőség- és energiamérés LINETRAXX PEM330/333

Energiaminőség- és energiamérés LINETRAXX PEM330/333 Energiaminőség- és energiamérés LINETRAXX PEM330/333 1/6 Jellemzők Az univerzális mérőkészülék alkalmas villamos hálózat elektromos mennyiségeinek mérésére, megjelenítésére és tárolására. A megjelenített

Részletesebben

SOLART-SYSTEM KFT. Napenergiás berendezések tervezése és kivitelezése. 1112 Budapest XI. Gulyás u. 20 Telefon: 2461783 Telefax: 2461783

SOLART-SYSTEM KFT. Napenergiás berendezések tervezése és kivitelezése. 1112 Budapest XI. Gulyás u. 20 Telefon: 2461783 Telefax: 2461783 30 ÉV Napenergiás berendezések tervezése és kivitelezése Több napelem, több energia Csak egyszer kell megvenni, utána a villany ingyen van! 1m 2 jóminőségű napelem egy évben akár 150 kwh villamos energiát

Részletesebben

Félvezetk vizsgálata

Félvezetk vizsgálata Félvezetk vizsgálata jegyzkönyv Zsigmond Anna Fizika BSc III. Mérés vezetje: Böhönyei András Mérés dátuma: 010. március 4. Leadás dátuma: 010. március 17. Mérés célja A mérés célja a szilícium tulajdonságainak

Részletesebben

Teljesítménymérési jegyzőkönyv

Teljesítménymérési jegyzőkönyv Teljesítménymérési jegyzőkönyv Marosi Imre DOIN8J Faipari mérnökhallgató Levelező Teljesítmény elméleti alapok, teljesítménytényező Egy berendezés pillanatnyi villamos teljesítménye: P (t) = U (t) *I (t)

Részletesebben

LÉPCSŐHÁZI AUTOMATÁK W LÉPCSŐHÁZI AUTOMATA TIMON W SCHRACK INFO W FUNKCIÓK W MŰSZAKI ADATOK

LÉPCSŐHÁZI AUTOMATÁK W LÉPCSŐHÁZI AUTOMATA TIMON W SCHRACK INFO W FUNKCIÓK W MŰSZAKI ADATOK W LÉPCSŐHÁZI AUTOMATA TIMON 150 BZ327210-A W FUNKCIÓK Energiamegtakarítás funkció Beállíthatóság 0,5 30 perc Halk működés Nagy bekapcsoló képesség, 80 A max / 20 ms 3 vagy 4 vezetékes bekötés Glimmlámpaállóság:

Részletesebben

Bolyai Farkas Országos Fizika Tantárgyverseny 2014 Bolyai Farkas Elméleti Líceum Marosvásárhely X. Osztály. Válaszoljatok a következő kérdésekre:

Bolyai Farkas Országos Fizika Tantárgyverseny 2014 Bolyai Farkas Elméleti Líceum Marosvásárhely X. Osztály. Válaszoljatok a következő kérdésekre: Válaszoljatok a következő kérdésekre: 1. feladat Adott mennyiségű levegőt Q=1050 J hőközléssel p 0 =10 5 Pa állandó nyomáson melegítünk. A kezdeti térfogat V=2l. (γ=7/5). Mennyi a végső térfogat és a kezdeti

Részletesebben

A veszélyességi övezet és a veszélyeztetett terület

A veszélyességi övezet és a veszélyeztetett terület A veszélyességi övezet és a veszélyeztetett terület. Laczkó Levente tű. százados Iparbiztonsági Szakértői napok 2012. november 8-9. -1- -2- Előadás tartalma: 1. Településrendezési tervezés jogi szabályozása

Részletesebben

1. BEVEZETŐ 2. FŐ TULAJDONSÁGOK

1. BEVEZETŐ 2. FŐ TULAJDONSÁGOK 1. BEVEZETŐ Az IB aktív infravörös mozgásérzékelő szenzorok különböző magasságban és szélességben védik az átjárókat, beltéri és kültéri ablakokat. Az eszközök két darabos, adó és vevő kiszerelésben készülnek,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2006. október 2006. 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

Elektrosztatika tesztek

Elektrosztatika tesztek Elektrosztatika tesztek 1. A megdörzsölt ebonitrúd az asztalon külön-külön heverő kis papírdarabkákat messziről magához vonzza. A jelenségnek mi az oka? a) A papírdarabok nem voltak semlegesek. b) A semleges

Részletesebben

SZABVÁNYOK. 2009-tõl hatályban lévõ szabványok jegyzéke (forrás MSZT)

SZABVÁNYOK. 2009-tõl hatályban lévõ szabványok jegyzéke (forrás MSZT) SZABVÁNYOK 2009-tõl hatályban lévõ szabványok jegyzéke (forrás MSZT) Sorszám Hivatkozási szám Szabványcím 1 MSZ 1:2002 Szabványos villamos feszültségek 2 MSZ 10900:1970 Az 1000 V-nál nem nagyobb feszültségû

Részletesebben

HIBAÁRAM KAPCSOLÓK 25-100A, BCF SOROZAT

HIBAÁRAM KAPCSOLÓK 25-100A, BCF SOROZAT HIBAÁRAM KAPCSOLÓK 25-00A, BCF SOROZAT HIBAÁRAM KAPCSOLÓK 25-00A, BCF SOROZAT BC60203 Mûködés áramiránytól független, elektromechanikus kioldás Tartozékok: segédérintkezõ, sínezés A sínezést l. a Sínzés

Részletesebben

Épületvillamosság. Robbanásbiztos villamos gyártmányok. Gyújtószikramentes védelem "i" MSZ EN 50020:2003

Épületvillamosság. Robbanásbiztos villamos gyártmányok. Gyújtószikramentes védelem i MSZ EN 50020:2003 Épületvillamosság Robbanásbiztos villamos gyártmányok. I-es alkalmazási csoport. Gyújtószikramentes rendszerek. 1. rész: Szerkezet és vizsgálatok MSZ EN 50394-1:2004* Villamos gyártmányok robbanóképes

Részletesebben

Az EMC védelem aktuális kérései az EU szabványok tükrében

Az EMC védelem aktuális kérései az EU szabványok tükrében Az EMC védelem aktuális kérései az EU szabványok tükrében Fehér Antal PROT-EL Műszaki és Kereskedelmi KFT. 1026 Budapest Pasaréti u. 25.Tel./Fax: 326-1072 www.prot-el.hu e-mail: fehera@protel.t-online.hu

Részletesebben

Tűzterjedés és ellenük történő védekezés az épített környezetben IV.

Tűzterjedés és ellenük történő védekezés az épített környezetben IV. Veres György Tűzterjedés és ellenük történő védekezés az épített környezetben IV. A tűzterjedés módjai és a tűzgátlást biztosító épületszerkezetek, a tűzszakaszolás lehetőségei és a kivitelezés során betartandó

Részletesebben

ELLENÁLLÁSMÉRÉS. A mérés célja. Biztonságtechnikai útmutató. Mérési módszerek ANALÓG UNIVERZÁLIS MŰSZER (MULTIMÉTER) ELLENÁLLÁSMÉRŐ MÓDBAN.

ELLENÁLLÁSMÉRÉS. A mérés célja. Biztonságtechnikai útmutató. Mérési módszerek ANALÓG UNIVERZÁLIS MŰSZER (MULTIMÉTER) ELLENÁLLÁSMÉRŐ MÓDBAN. ELLENÁLLÁSMÉRÉS A mérés célja Az egyenáramú hidakkal, az ellenállásmérő műszerekkel, az ellenállásmérő módban is használható univerzális műszerekkel végzett ellenállásmérés módszereinek, alkalmazási sajátosságainak

Részletesebben

Ergépek csoportosítása

Ergépek csoportosítása Ergépek csoportosítása 1 2 3 4 5 6 Villamos gépek u = U sinωt U = U max eff U = max 2 7 8 u = R I max sinωt = U max sinωt ohmos ellenállás 9 induktivitás u = U max sin( ωt + 90 0 ) kapacitás u = U sin(

Részletesebben

IP 66 védettségű VLT frekvenciaváltók 90kW-ig

IP 66 védettségű VLT frekvenciaváltók 90kW-ig IP 66 védettségű VLT frekvenciaváltók 90kW-ig Az IP 66 védettségű VLT frekvenciaváltók 0,25 és 90 kw közötti teljesítménytartományban érhetők el. Ezzel lehetővé válik a frekvenciaváltó motor mellé történő

Részletesebben

GFE AD. Analóg címezhető hő és hősebesség érzékelő, illetve füstérzékelő analóg tűzjelző központhoz

GFE AD. Analóg címezhető hő és hősebesség érzékelő, illetve füstérzékelő analóg tűzjelző központhoz GFE AD Analóg címezhető hő és hősebesség érzékelő, illetve füstérzékelő analóg tűzjelző központhoz 1.oldal Kábelezés Az 1 ábrán a kábelezés látható. A hurokra az eszközök sorra kapcsolódnak rá, a központ

Részletesebben

Az eszköz sérülésének veszélye Ellenőrizze a következőket : a tartalék áramforrás feszültsége az tápellátó rendszer frekvenciája (50 vagy 60 Hz)

Az eszköz sérülésének veszélye Ellenőrizze a következőket : a tartalék áramforrás feszültsége az tápellátó rendszer frekvenciája (50 vagy 60 Hz) Veszély és figyelmeztetés Az eszközt csak szakember szerelheti be. A gyártó nem vállal felelősséget a használati útmutató elolvasásának elmulasztásából bekövetkező hibákért. Áramütés veszélye, égés vagy

Részletesebben

3.16.1. A rádiózavarok forrásai A rádió adó-vevő berendezés üzemeltetésével kapcsolatban két féle rádiózavar fordulhat elő:

3.16.1. A rádiózavarok forrásai A rádió adó-vevő berendezés üzemeltetésével kapcsolatban két féle rádiózavar fordulhat elő: 3.16. Zavarvédelem 3.16.1. A rádiózavarok forrásai A rádió adó-vevő berendezés üzemeltetésével kapcsolatban két féle rádiózavar fordulhat elő: Az adóállomás jelei zavart okoznak valamely más berendezés

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2008. november 3. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. november 3. 14:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Paksi Atomerőmű üzemidő hosszabbítása. 4. melléklet

Paksi Atomerőmű üzemidő hosszabbítása. 4. melléklet 4. melléklet A Paksi Atomerőmű Rt. területén található dízel-generátorok levegőtisztaság-védelmi hatásterületének meghatározása, a terjedés számítógépes modellezésével 4. melléklet 2004.11.15. TARTALOMJEGYZÉK

Részletesebben

Forgó mágneses tér létrehozása

Forgó mágneses tér létrehozása Forgó mágnee tér létrehozáa 3 f-ú tekercelé, pólupárok záma: p=1 A póluoztá: U X kivezetéekre i=io egyenáram Az indukció kerület menti elozláa: U X kivezetéekre Im=Io amplitúdójú váltakozó áram Az indukció

Részletesebben

PAB 02 típusú ablakátbeszélő

PAB 02 típusú ablakátbeszélő Használati utasítás a SIVA gyártmányú PAB 02 típusú ablakátbeszélő készülékhez Tisztelt Vásárló! Köszönjük, hogy termékünket választotta, remélve, hogy hosszú ideig segíti az Ön munkáját. A biztonság,

Részletesebben

l i CSATLAKOZÓ-KOMBINÁCIÓK

l i CSATLAKOZÓ-KOMBINÁCIÓK r e GANZ KK Kft n ISO 9001 d s z e rb a en t l tá i d u CSATLAKOZÓKOMBINÁCIÓK A ház különlegesen erõs, ütésálló könnyen nyitható, ezáltal komfortos szerelést biztosít tömszelencén át csatlakoztatható 35

Részletesebben

Munka- és tűzvédelmi oktatás. hallgatók részére

Munka- és tűzvédelmi oktatás. hallgatók részére Munka- és tűzvédelmi oktatás hallgatók részére A munkavédelem mindenki feladata! A munkavédelem nem egy külön tevékenység, azt a tanulás közben kell csinálni! 2 A munkavédelem feladata: megvédeni a veszélyektől

Részletesebben

J7TKN. Engedélyezések. Rendelési információ. Hőkioldó. A típusszámok magyarázata. Hőkioldó. Tartozékok. Hőkioldó J7TKN 1

J7TKN. Engedélyezések. Rendelési információ. Hőkioldó. A típusszámok magyarázata. Hőkioldó. Tartozékok. Hőkioldó J7TKN 1 Hőkioldó J7TKN ) Hőkioldó Közvetlen és különálló felszerelés Egyfázisú érzékenység az IEC 947-4-1-nek megfelelően Érintésbiztos (VBG 4) Tartozékok Gyűjtősín-készletek Egyetlen felszereléshez tartozó készlet

Részletesebben

Hol vagyunk? A laboratórium megújulása 2012. Kik vagyunk? Milyen eszközeink vannak? Mivel foglalkozunk?

Hol vagyunk? A laboratórium megújulása 2012. Kik vagyunk? Milyen eszközeink vannak? Mivel foglalkozunk? Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika Tanszék BME Nagyfeszültségű Laboratórium és a Megújulás Németh Bálint BME VET Nagyfeszültségű Laboratórium Hol vagyunk? A laboratórium

Részletesebben

Csináljuk a feszültséget! Van de Graaff-generátor

Csináljuk a feszültséget! Van de Graaff-generátor Csináljuk a feszültséget! Van de Graaff-generátor A Van de Graaff-generátor (más néven szalaggenerátor) nagyfeszültség előállítására alkalmas elektrosztatikus generátor. Az iskolai kísérletek céljára készített

Részletesebben

Kéziműszerek. 4-állású kézikapcsoló: V AC / V DC / DC A / Ω. DC árammérés: Pontosság feszültség: ±(1,2%+10d)

Kéziműszerek. 4-állású kézikapcsoló: V AC / V DC / DC A / Ω. DC árammérés: Pontosság feszültség: ±(1,2%+10d) A zsebméretű multiméter egy es kijelzővel rendelkező univerzális mérőműszer, amely forgókapcsolóval és 4-állású kézikapcsolóval rendelkezik. Alkalmas feszültség, ellenállás, egyenáram, dióda és folytonosság

Részletesebben

CES Hőgenerátor Kezelési útmutató

CES Hőgenerátor Kezelési útmutató CES Hőgenerátor Kezelési útmutató CES KFT. Üzembe helyezés előtt figyelmesen olvassa el! Tartalom Bevezető... 3 C.E.S. kavitációs hőgenerátorok leírása és alkalmazása... 3 2. A C.E.S. kavitációs hőgenerátorok

Részletesebben

Elektromágneses sugárzás Látható fény: 380 és 780 nm között Hullám és részecske terjedési jellemzők

Elektromágneses sugárzás Látható fény: 380 és 780 nm között Hullám és részecske terjedési jellemzők VILÁGÍTÁSTECHNIKA A fényf Elektromágneses sugárzás Látható fény: 380 és 780 nm között Hullám és részecske terjedési jellemzők Villtech mennyiségek Fényáram (lumen) teljes térbe kisugárzott látható fény

Részletesebben

Bicskei Oroszlán Patika Bt 22076423-2-07

Bicskei Oroszlán Patika Bt 22076423-2-07 MVM Partner - a vállalkozások energiatudatosságáért pályázat 2. rész A pályázó által megvalósított, energiahatékonyságot növelő beruházás és/vagy fejlesztés bemutatása A napelem a Napból érkező sugarak

Részletesebben

A rádió. IV. Az audionlámpás felvevőkészülék.

A rádió. IV. Az audionlámpás felvevőkészülék. A rádió IV. Az audionlámpás felvevőkészülék. A rádióhullámok energiaszállítása. A múlt alkalommal megismertük a hangátvitel alapelvét és a kristálydetektoros felvevőkészülék működését. Most először is

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

53. sz. mérés. Hurokszabályozás vizsgálata

53. sz. mérés. Hurokszabályozás vizsgálata 53. sz. mérés Hurokszaályozás vizsgálata nagyszültségű alap- illtv losztóhálózat (4,, kv a hálózatok unkcióáól kövtkzőn hurkolt (töszörösn hurkolt kialakítású. sok csomóponttal, tö táplálási illtv ogyasztási

Részletesebben

VILLAMOS ENERGETIKA PÓT-PÓTZÁRTHELYI - A csoport

VILLAMOS ENERGETIKA PÓT-PÓTZÁRTHELYI - A csoport VILLAMOS ENERGETIKA PÓT-PÓTZÁRTHELYI - A csoport MEGOLDÁS 2014. május 21. 1.1. Tekintsünk egy megoszló terheléssel jellemezhető hálózatot! A hosszegységre eső áramfelvétel i = 0,24 A/m fázisonként egyenlő

Részletesebben

Az átjárhatóság műszaki specifikációi. Az Energia alrendszer

Az átjárhatóság műszaki specifikációi. Az Energia alrendszer Az átjárhatóság műszaki specifikációi Az Energia alrendszer A nagysebességű és a hagyományos vasúti rendszer átjárhatóságának műszaki specifikációi TSI HS ENE 2008/284/EU TSI CR ENE 2011/274/EU A hagyományos

Részletesebben

ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás

ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás ELEKTROKÉMIA 1 ELEKTROKÉMIA Elektromos áram: - fémekben: elektronok áramlása - elektrolitokban: ionok irányított mozgása Elektrolízis: elektromos áram által előidézett kémiai átalakulás Galvánelem: elektromos

Részletesebben