Vállalkozók Európában 3 TARTALOMJEGYZÉK

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Vállalkozók Európában 3 TARTALOMJEGYZÉK"

Átírás

1 Vállalkozók Európában 3 TARTALOMJEGYZÉK Bevezetés, ajánlás A megújuló energiák fajtái Biomassza Napenergia Geotermia Szélenergia Vízenergia Egyéb megújuló energiák Környezetvédelem és megújuló energiaforrások Megújuló energia hasznosítás az Európai Unióban Megújuló energia hasznosítási lehetőségek Magyarországon A KKV-k energiahatékonyság-növelési és a megújuló energia hasznosítási lehetőségei Megújuló energia hasznosítási technológiák és gyakorlati alkalmazások Napkollektoros hőellátás Hőszivattyús hőellátás Biomassza alapú hőellátás Napelemes villamosenergia-ellátás (fotovillamos rendszerek) Szélgenerátoros villamosenergia-ellátás és szélerőgépek alkalmazása A megújuló energia projektek finanszírozási lehetőségei Felhasznált irodalom A megújuló energia hasznosítással kapcsolatos fontosabb jogszabályok A témához kapcsolódó fontosabb honlapok

2 4 Megújuló energiaforrások az EU-ban és Magyarországon BEVEZETÉS, AJÁNLÁS A hazai kis- és középvállalkozói szektor fejlődése az elmúlt másfél évtizedben az erős piaci verseny körülményei között zajlott, a hatékonysági kényszer jelentősen hatott a napjainkra kialakult vállalati szerkezetre. A kisés középvállalkozások kiemelkedően fontos szerepet játszanak a nemzetgazdaság termelésének növelésében és a foglalkoztatásban; a vállalati szektoron belül a foglalkoztatás kétharmadát a kis- és középvállalkozások adják. A versenyképességük megőrzése érdekében a hatékonyság további növelése elengedhetetlen. Ennek egyik fontos eszköze az energiahatékonyság-növelés és a megújuló energiaforrások együttes alkalmazása. A takarékos és környezetbarát energiagazdálkodás egyrészről közvetlenül hozzájárul a vállalkozás hatékony működésének elősegítéséhez az energiaköltségek csökkentése által, másrészt segíti az egészséges és fenntartható környezet kialakítását és a globális felmelegedés és az éghajlatváltozás elleni tevékenységeket. Jelen kiadvány ehhez kíván segítséget nyújtani a hazai kis- és középvállalkozások számára, bemutatva az Európai Unió számos tagországában eredményesen alkalmazott vállalati energiamenedzsment rendszer kialakításának módját, az energiahatékonyság-növelési és a megújuló energia hasznosítási lehetőségeket. Köszönetet mondok a kiadvány valamennyi szerzőjének, hogy munkájukkal, szakmai felkészültségükkel hozzájárultak a kiadvány létrejöttéhez. A szerzők nevében is külön megköszönöm Ari Andreának, dr. Hárs Titanillának és Kazai Zsoltnak a közreműködését, akik a kiadvány megjelenéséhez részanyagok gondos és szakszerű elkészítésével jelentős segítséget adtak. A kiadvány szerzői és közreműködői remélik, hogy sok hazai kis- és középvállalkozás fogja haszonnal forgatni e kiadványt, és megtalálja benne mindazon ismereteket, amelyek segítségével a vállalkozásuk energiahatékonysága, ezáltal versenyképessége tovább növelhető. Mészáros Géza szerkesztő

3 Vállalkozók Európában 5 1. A MEGÚJULÓ ENERGIÁK FAJTÁI Megújuló energiaforrások alatt azokat az energiaforrásokat értjük, amelyek hasznosítása közben a forrás nem csökken, hanem azonos ütemben újratermelődik, vagy megújul. Az iparosítást megelőző időkben és a fejlődő országok nagy részében ma is - az emberiség energiaellátása főként megújuló energián alapult (vízimalmok, szélmalmok, fatüzelés, mezőgazdasági melléktermékek tüzelése stb.) A megújuló energiaforrások felhasználása igen sokoldalú lehet. Hagyományosan legfontosabb alkalmazási területük az alapvetően fűtési célú hőenergia termelés, az utóbbi időben azonban a villamosenergiatermelés vált hangsúlyossá, és a jövőben várhatóan jelentős szerepet kapnak a járművek üzemanyagaként való felhasználásban is. Nemzetközi osztályozás szerint négy megújuló energiaforrás létezik: a Nap, a Föld forgási energiája, a gravitáció és a geotermális energia. A hétköznapi értelemben vett megújuló energiaforrások közvetlenül vagy közvetett módon a Napból származnak. A napenergiát közvetlen módon három területen hasznosíthatjuk: napkollektorokkal a fűtés és használati melegvíz készítés területén, napelemekkel elektromos áram előállításához mindkét esetben technológiai berendezésekről beszélünk - valamint az építészetben az ún. passzív napenergia-hasznosítással. Közvetett módon a napenergiából származik a szél, a víz, a biomassza, és a tenger hullámok energiája. Léteznek időjárástól függő (pl. nap, szél) és időjárás független (pl. geotermikus) megújuló energiaforrások. Az 1. sz. ábra bemutatja, hogy egy szakértői csoport számításai szerint a legfontosabb megújuló energia fajták éves elméleti potenciálja hogyan aránylik az emberi társadalom éves összes energiafelhasználásához. Látható, hogy a Napnak a Földre beeső sugárzása olyan állandó energiaforrást jelent a Föld számára, amelynek energiamennyisége szer nagyobb, mint az emberiség teljes energia felhasználása. (Egyes számítások szerint a Föld sivatagaira jutó napsugárzás kb. 1%-ával ki lehetne váltani a teljes fosszilis energiahordozó-felhasználást.) Emellett a rendelkezésre álló szélenergia, óceán energia és biomassza energia potenciál is egyenként meghaladja az emberiség jelenlegi energiaszükségletét. Nyilvánvaló, hogy a technológiailag és gazdaságilag hasznosítható potenciál lényegesen alacsonyabb az ábrán bemutatott elméleti aránynál (erre vonatkozóan is készülnek különböző szakértői becslések), de az arányok mindenképpen figyelemre méltóak.

4 6 Megújuló energiaforrások az EU-ban és Magyarországon 1. sz. ábra A legfontosabb megújuló energiák potenciálja és az emberi társadalom energiafelhasználásának aránya Forrás: Renewables for Power Generation Status-Prospekt 2003 IEA/OECD A megújuló energiák alapvetően két fő forrásból származnak: a napenergiából és a geotermikus energiából. A napenergia hasznosítás egyrészt történhet közvetlenül, különféle technikai eszközök segítségével, másrészt közvetve a fotoszintézis folyamatán keresztül. A 2. sz. ábra a megújuló energiák csoportosítását mutatja be.

5 Vállalkozók Európában 7 A megújuló energiaforrások csoportosítása 2. sz. ábra Forrás: Pataky T. Dr. Unk Jánosné: Települések mérnöki műveletei és létesítményei. BME. Tankönyvkiadó A különböző országok eltérő természeti adottságai más-más megújuló energia hasznosítási lehetőségét biztosítják. Ebben a fejezetben röviden ismertetésre kerülnek a Magyarország számára fontos megújuló energia fajták és legjellemzőbb alkalmazási területeik, kiemelve a magyarországi hasznosítási lehetőségeket. 1.1 Biomassza A biomassza valamely élettérben egy adott pillanatban jelen levő szerves anyagok és élőlények összessége. (Barótfi I.1999 p. 5.) A biomassza a Föld felületén egyenetlenül oszlik el. A sarkok felől az egyenlítő felé az élőlények tömege, fajtáinak száma növekszik. Az éghajlattól függően eltérő az élővilág sűrűsége, vagyis a biomassza mennyisége a Föld egyes területein.

6 8 Megújuló energiaforrások az EU-ban és Magyarországon Energetikai célokra szinte kizárólag a növényi anyagokat (fitomassza) hasznosítjuk, míg az állati eredetű biomasszát (zoomassza) csak kevés esetben Ez utóbbira lehet példa, amikor pl. vágóhídi hulladékot kevernek növényi anyagokkal biogáz-termelés céljából. Az energetikai célra hasznosított biomasszát legalább kétféleképpen csoportosíthatjuk. Egyrészt az anyag halmazállapota szerint, másrészt pedig a keletkezési hely, vagy eredet szerint. Halmazállapot szerint beszélhetünk szilárd, folyékony és gáznemű biomasszáról (1. sz. táblázat). A biomassza csoportosítása halmazállapot szerint 1. sz. táblázat szilárd folyékony gáznemű fásszárú növények (természetes és ültetvényerdők) lágyszárú növények (szalma, nád, energiafű stb.) hígtrágya szerves eredetű metán (depóniagáz, biogáz) A biomassza származási helye szerint pedig az alábbi csoportokat különböztetjük meg: - elsődleges biomassza: a teljes földi növényzet, a napenergia felhasználásával, fotoszintézis révén keletkezik. - másodlagos biomassza: az állati eredetű biomassza, mely alapvetően az elsődleges biomasszából keletkezik, annak lebontásával, majd újraépítésével. (különböző állati szerves trágyák) - harmadlagos biomassza: a biomasszák feldolgozásával, illetve felhasználásával összefüggően keletkező biomasszaként kezelhető anyag, mely különböző idegen anyagokat is tartalmazhat (pl. élelmiszerés különböző szerves, humán eredetű hulladékok). A fentiekből látható, hogy a biomassza, mint fogalom, még az energetikai értelmezésben is rendkívül összetett, többféle alapanyagot és technológiát takar. A biomassza energetikai célú hasznosítása előtt meg kell fontolni, hogy a felhasználandó növényi alapanyag típusától függően mekkora részt hasznosítunk energetikai célra, és mekkorát élelmiszertermelésre. A növényi alapanyagokat ugyanis valahol meg kell termelnünk. Ez a legtöbb esetben korábban élelmezési célra hasznosított területen történik. Tévhit ugyanis az, hogy nagy tömegű, energetikai célú termelést a művelés alól kivont,

7 Vállalkozók Európában 9 rosszabb minőségű területeken is folytathatunk. Az energetikai célú növénytermesztésnek, az élelmiszercélúhoz hasonlóan alapvető eleme a gazdaságosság, vagyis egységnyi területen a lehető legnagyobb tömeghozam elérése a cél, minél rövidebb idő alatt, minél hatékonyabban. Ehhez ugyanúgy jó talajadottságú termőterületekre van szükség, a rosszabb minőségű területeken alacsonyabb hozam mellett csak kiemelt földalapú támogatással éri meg termelni. Más kategóriát képvisel a növénytermesztésből és állattenyésztésből származó melléktermékek, hulladékok hasznosítása. Itt természetesen nincs konfliktus az élelmiszer- és az energetikai célú termesztés között, hisz a hulladékok ártalmatlanításával egy nagyon fontos környezetvédelmi célt is sikerül elérni. A mezőgazdasági eredetű hulladékok viszont az ország energiaigényéhez képest csak csekély energetikai potenciált képviselnek. A biomassza alkalmazása körüli ellentmondásosság másik forrása a környezetvédelmi okokra vezethető vissza. Itt szintén egy tévhitet érdemes eloszlatni, mivel a korábban gyakran hangoztatott érv, miszerint a biomassza alkalmazása a CO2-kibocsátás szempontjából semleges, sajnos nem állja meg a helyét. Bármilyen növény elégetésekor ugyan valóban annyi CO2 szabadul fel, mint amit a növény a növekedése során, fotoszintézis útján magába kötött, de egy technológia alkalmazása során a teljes életciklust kell figyelembe venni. Ez azt jelenti, hogy a növény termesztéséhez, betakarításához, szállításához, feldolgozásához, a létesítmények építéséhez, a végtermék szállításához, a hulladékok elhelyezéséhez/ártalmatlanításához stb. felhasznált energiát és az abból származó kibocsátásokat is számításba kell vennünk, amikor összehasonlítjuk az egyes technológiákat. A biomassza-felhasználás tehát soha nem lesz CO2-semleges, noha általában nagyságrendekkel kedvezőbb értékeket produkál a fosszilis energiahordozókkal szemben. Probléma igazából akkor merül fel, amikor a rendelkezésre álló alapanyag-mennyiséget nem hatékonyan, vagyis pazarló módon hasznosítják, és több energiát fektetnek a biomassza előállításába, mint amennyit az egésszel nyerni lehet. A biomassza-hasznosítás szakmai területe folyamatos mozgásban van. Összetettsége és a fent említett konfliktusok kiküszöbölése okán folyamatos kutatás-fejlesztés zajlik, újabb- és hatékonyabb eljárásokat dolgoznak ki, melyek rövid időn belül felülírhatják és kiszoríthatják a jelenlegieket. A biomassza hasznosításon belül is vannak azonban olyan területek, melyek meglehetősen nagy hagyományokkal rendelkeznek, és amelyek már ma is magas műszaki színvonalat és hatásfokot képviselnek. Ilyen a szilárd biomassza közvetlen eltüzelése, melyről bővebben szólunk a. továbbiakban.

8 10 Megújuló energiaforrások az EU-ban és Magyarországon Alapanyagok, felhasználási területek Mielőtt bármelyik technológiát kiemelnénk, érdemes áttekinteni a ma energiatermelési célra leggyakrabban hasznosított alapanyag-típusokat és technológiákat. A 2. sz. táblázat összefoglalja ezeket. Alapanyag típusa Az egyes biomassza-alapanyagok felhasználási módjai Feldolgozás technológiája Lágyszárúak szalma, aprítás, energiafű pelletálás/fermentáció Nyert energiahordozó halmazállapot Energiatermelés technológiája szilárd/gáz apríték, pellet/biogáz apríték/pelletkazán, gázmotor 2. sz. táblázat nád aprítás apríték szilárd kazán hő Fásszárúak hasábfa aprítás, apríték/brikett/pellet szilárd brikettálás/pelletálás Olajosnövények repce, napraforgó Gabonanövények búza, kukorica Nyert energia típusa hő/ hő+vill. energia hő/ hő+vill. energia észterezés dízelolaj folyékony dízelmotor mechanikus/hő/ hő+vill. energia közvetlen tüzelés/faelgázosítás erjesztés+desztilláció Magas keményítő tartalmú növények burgonya, erjesztés+desztilláció csicsóka Magas cukortartalmú növények cukorcirok, erjesztés+desztilláció cukorrépa etanol folyékony belső égésű motor etanol folyékony belső égésű motor etanol folyékony belső égésű motor mechanikus/hő/ hő+vill. energia mechanikus/hő/ hő+vill. energia mechanikus/hő/ hő+vill. energia

9 Vállalkozók Európában 11 A táblázatból látható, hogy az alapanyagok szinte mindegyike felhasználható hő-, villamosenergia-termelésre, vagy mechanikus/mozgási energia előállítására. A táblázat a lehetőségeket mutatja be, ezért tüntettük fel pl. a bioüzemanyagoknál, az etanolnál és a dízelnél, hogy ezek is felhasználhatók hő- és villamosenergia-termelésre is, akár kisebb-nagyobb erőművekben, annak ellenére, hogy ma döntően gépjárművek meghajtása céljából termelik őket. Szilárd A biomassza a szén, a kőolaj és a földgáz után a világon jelenleg a negyedik helyen áll az energiafelhasználáson belül. Világátlagban a felhasznált energia kb. 10 %-át, fejlődő országokban 35 %-át biomassza felhasználásával nyerik. A biomassza valamely élettérben egy adott pillanatban jelen levő szerves anyagok és élőlények összessége. Ezek a szárazföldön és vízben található mikroorganizmusok, növények, állatok tömegei vagy már közvetett, transzformáción átesett (ember, állat, feldolgozó iparok) keletkező biológiai eredetű termékek és hulladékok. A biomassza tüzelése, tárolása történhet közvetlen formában (tűzifa, faapríték) vagy mechanikai átalakítást követően. A mechanikai átalakítás leggyakoribb formája a pellett, brikett készítése, amely során a könnyebb kezelhetőség és szállítás céljából a biomasszát háromirányú présekkel összepréselik. Folyékony (bioüzemanyag) A bioüzemanyagok gyártására fordított energia egy igen vitatott téma. A biohajtóanyagok előállítása nem a potenciális lehetőségek, hanem az igények szerint alakul. Az adott bio-üzemanyag előállításának gyártástechnológiai feltételei sem minden esetben tisztázottak. (Marosvölgyi, 2006) Magyarországon hazai termelésű alapanyagokból ezer tonna használható fel biodízel/biogázolaj gyártására, ebből azonban legfeljebb a hazai bekeveréshez szükséges ezer tonna motorhajtóanyag állítható elő. A jelenlegi 83 ezer tonna/év bioetanol gyártási kapacitás több mint tízszeresére növekedhet, a gabonafeleslegből megfelelő gyártókapacitások kiépülése esetén akár ezer tonna bioetanol is megtermelhető lenne belföldön. Azaz közel 1,0 millió tonna etanol előállítása várható mintegy 3,0 millió tonna gabona (főleg kukorica) felhasználásával. Az uniós prognózisok 2010-re 5,6 millió tonna, 2015-re pedig 9,3 millió tonna bioetanol igényről szólnak. Ezzel szemben az EU-ban 2006-ban 1,7 millió tonna bioetanolt állítottak elő.

10 12 Megújuló energiaforrások az EU-ban és Magyarországon A biodízel- és bioetanolgyárak területi elhelyezésénél, illetve beruházásainál figyelemmel kell lenni az alapanyagbázis rendelkezésre állására, a keletkezett melléktermékeknek lehetőleg helyben történő felhasználására, csökkentve a logisztikai költségeket, amelyek nagy szállítási távolságok esetén jelentősek lehetnek. Gáznemű (biogáz, depóniagáz) A biogáz, mint alternatív megújuló energiaforrás jelentősége növekvő, amely részben az új energiaforrások keresésének, részben a környezetvédelmi gondok enyhítésének is köszönhető. A biogáz részben hulladékból és melléktermékekből, részben speciálisan erre a célra termelt növényekből állítható elő. A melléktermékek közül fontos szerepet játszanak az állati trágyák és vágóhídi hulladékok, amelyeket a fermentációs folyamat során a biogáz üzemek ártalmatlanítanak is (környezetvédelmi előnyök). Ugyanígy a kommunális hulladékok és szennyvíziszapok biogáztermelés céljára történő felhasználása esetén, ahol azok ártalmatlanítása legalább annyira fontos, mint a belőlük származó energia. A megfelelő gázkihozatal és hatékonyság eléréséhez azonban a biogáz üzemekbe nagyobb energiatartalmú elsősorban mezőgazdasági eredetű alapanyagok (silókukorica, cukorcirok, teljes gabonanövény, szár- és rostmaradék stb.) bevitele is szükséges. A biogáz üzem létesítésénél komplexen szükséges áttekinteni a helyben rendelkezésre álló és kiegészíthető alapanyagbázist, a gázfelhasználás és a hulladék hőhasznosításának lehetőségeit. A biogáz termelés hatékonysága és költségei függnek a választott technológiáktól (nedves vagy száraz, tartályos vagy csőfermentor), az üzem méretétől, a gázés a hulladékhő hasznosításától. A méret szerint a 0,5-2,0 MW közötti üzemek hatékonysága elfogadható, amelyek alapanyagigénye ezer tonna MW-onként. A beruházási költségek a méret növekedésének függvényében exponenciálisan csökkennek, de ugyanígy a hulladékhő hasznosításának növelésével is jelentősen rövidíthető a beruházás megtérülése. Kisebb méretben, szilárd istállótrágyák és biohulladék esetén a száraz fermentoros biogáz termelés kínál jobb megoldást, nagytömegű hígtrágyák és szennyvíziszapok esetében a nedves fermentációs technológia az előnyösebb. 1.2 Napenergia A nap sugárzása közvetlen (direkt) és közvetett (diffúz) módon jut el a Föld felszínére. Amint az a korábbiakban bemutattuk, a Napból egy év alatt a

11 Vállalkozók Európában 13 Földre érkező energiamennyiség tizenhétezerszer nagyobb, mint az emberiség éves energia felhasználása. A napenergia hasznosítás közvetlen módjai: fotovillamos (aktív) hasznosításkor napelemek segítségével villamos energia állítható elő, amellyel közvetlenül, vagy tárolás után villamosenergia-fogyasztóberendezések működtethetők. hőenergia hasznosítás, amely passzív vagy aktív módon történhet: o passzív hasznosítás történhet az épületek megfelelő tájolásával, egyéb építészeti megoldásokkal (jelen tanulmányban nem részletezzük) o aktív hasznosítás esetén napkollektor, valamint gépészeti eszközök segítségével vizet melegítünk fel a napenergia segítségével (használati melegvíz készítés, fűtésrásegítés). Az aktív napenergia-hasznosítás elvét a 3. sz. ábra mutatja be. Az aktív napenergia hasznosítás elve 3. sz. ábra

12 14 Megújuló energiaforrások az EU-ban és Magyarországon A napkollektoros hőenergia-termelés és a napelemes villamosenergiatermelés gyakorlati megoldásait a kiadvány későbbi fejezeteiben részletesen is bemutatjuk. A napkollektoros rendszerek megfelelő kialakítás mellett a használati melegvíz előállítás és az esetenkénti fűtés rásegítés mellett a nyári időszakban az épületek hűtésére és légkondicionálására is alkalmassá tehetők (abszorpciós hűtés). E technológiák elterjedését a berendezések jelenleg még magas ára korlátozza, de hosszabb távon szélesebb körű alkalmazással is lehet számolni. További közvetlen napenergia hasznosítási lehetőséget jelent a koncentrált naperőművek (CSP) létesítése, amelyek nagyméretű tükrök segítségével fókuszálják a napsugárzást egy központi hőfejlesztő berendezésbe, és a termelt hő gőzturbinák segítségével villamosenergia-előállítását teszi lehetővé. Ezek a rendszerek főként az egyenlítőhöz közeli területeken jelentenek gazdaságos energia előállítási lehetőséget, ahol a napsütéses órák száma a magyarországinál lényegesen nagyobb. 1.3 Geotermia A kitermelt geotermikus energia hasznosítása igen változatos: alkalmazzák belső terek fűtésére, melegvíz-szolgáltatásra, termálfürdőkben, ipari célokra és a mezőgazdaságban. A termálvíz fűtési és melegvíz-szolgáltatási hasznosítása kommunális, de a mezőgazdaságot (pl. növényházak, fóliaházak, baromfitelepek, istállók, stb. fűtése) is érintő terület. Ez utóbbi ágazatban lehetőség nyílik speciális alkalmazásokra a fűtési időszakon kívül is (terményszárítás, haltenyésztés). Ezeknél az alkalmazásoknál a termálvíz előnye nem csupán fűtőolaj vagy földgáz megtakarításában jelentkezik, hanem a koncentráltság és a sokrétű hasznosíthatóság miatt vállalkozások alapítására, kereskedelmi tevékenység indítására is alkalmat nyújt, egy adott térség komplex fejlesztéséhez (termelés, kommunális ellátás, termálfürdő, sportuszoda) járul hozzá. Másrészről az előkezelés és szükség esetén a hőkicserélés lehetővé teszi a hagyományos fűtő- és melegvíz-hálózatok üzemeltetését magas hőmérsékletű hévízzel, így nincs szükség külön átviteli rendszerek kiépítésére. A hazai hévizek minősége és mennyisége lehetővé teszi hévízkútjaink komplex és többlépcsős hasznosítását. A komplex hasznosításon az egyes alkalmazási területek párhuzamos kapcsolását (pl. kommunális hasznosítás mellett ipari hasznosítás) vagy a szezonális kihasználását (télen fűtés, nyáron

13 Vállalkozók Európában 15 hűtés) értjük. A többlépcsős hasznosítás esetén mely egyben komplexitást is jelent a felhasználási területek hőmérséklet szerinti sorba kapcsolását értjük. Kutatások folynak az ún. kis entalpiájú hévízből nyert energián alapuló villamosáram-fejlesztés gazdaságos megoldása, az un. kettősfolyadékciklusú áramfejlesztő rendszerek kialakítása érdekében. (Pataki, 2005 in Hárs, 2006) A geotermikus energiahasznosítás újabbnak számító, még részben kutatott területe a földalatti forró kőzetek hőjének a felszínről lejuttatott hőhordozó közeg segítségével való kivonása. Ezt forró - száraz kőzetes (Hot Dry Rock vagy Enhanced Geothermal System, HDR vagy EGS) eljárásnak nevezik, és kb m mély furatokra szükségesek hozzá, ahol a kőzet hőmérséklete C közötti. A kőzetrétegbe vizet sajtolnak, mely felhevül és egy szállító furaton keresztül jut a felszínre. A C hőmérsékletű víz hőcserélő közbeiktatásával adja le energiatartalmának egy részét, majd ismét visszapréselik a fellazított kőzetrétegbe. (Hárs, 2006) A geotermikus energia hasznosítása a világon mindenhol nyereséges és környezetbarát tevékenység, a károsanyag-kibocsátás (emisszió) csökkentésének egyik leghatékonyabb eszköze. 1.4 Szélenergia A szélenergiát ipari méretekben az országos villamos hálózatra termelő szélerőművek hasznosítják. Emellett számos helyen megfontolandó kis teljesítményű (100kW alatti) szélgenerátorok vagy szélmotorok alkalmazása helyi energiaigények kielégítésére (pl. tanyavillamosítás, öntözési rendszerek, vízszivattyúzás stb.) A szélenergia potenciál tér- és időbeli eloszlását igen nehéz meghatározni, a pontos értékekhez hosszú idejű mérésre van szükség minél több helyen és magasságban. A kihasználható szélenergia mennyiségét a méréseken alapuló számításokkal és becsléssel lehet megállapítani. Természetesen a szélsebességen és a szélteljesítményen kívül egyéb tényezők is befolyásolják a villamos energia termelő szélerőmű parkoknak a létrehozását, például jogi, környezet- és természetvédelmi, biztonsági, gazdaságossági stb. Ezek közül talán a legfontosabb, hogy különféle okok miatt Magyarország földrajzi területének kb. 65%-a alkalmatlan, szélerőművek telepítésére, un. tiltott területnek minősül (település belterülete, vízfelület, védett terület, villamos távvezeték megközelítés stb.) A 60 méteres magasságban mért 5 m/s érték feletti szélsebességű nem tiltott területeken a szélenergia 100 %-os hasznosítása egymagában fedezhetné az

14 16 Megújuló energiaforrások az EU-ban és Magyarországon ország jelenlegi 35 TWh-ás villamosenergia-igényének kb. a felét. Ez természetesen nem azt jelenti, hogy az ilyen módon termelt villamos energiával az év minden időszakában fedezhető lenne az országos igény. A szélsebesség változása miatt beleértve a szélcsendes időszakokat is a szélenergia mindig csak kiegészítő energiaforrás lesz, mivel a szélerőművek alkalmazásának alapvető problémája, hogy rendelkezésre álló szélteljesítmény és a fogyasztók által igényelt villamos teljesítmény időbeli lefutása jelentősen eltér. A különbséget más hagyományos vagy alternatív energiaforrásokból kell biztosítani, illetve meg kell oldani a szélenergiával termelt villamos energia tárolását. A villamos energia tárolásának több műszaki megoldása is ismert, például a szivattyús-tározó vízerőművek alkalmazása, vagy erre alkalmas akkumulátor telepek működtetése stb. Az utóbbi években fejlődésnek indult a völgyidőszakban termelt villamos energiával történő hidrogén előállítás, és ennek tüzelőanyag-cellákban történő hasznosítása villamosenergia-termelésre a fogyasztói csúcsidőszakban. Kisebb energiaigényű vállalkozások, háztartások energiaellátására a néhány kw teljesítményű, alacsonyabb szélkerék felállítása lehetséges. Ezek a rendszerek kisebb szélsebesség esetén is működőképesek. A megtermelt villamos energia akkumulátorok segítségével tárolható, illetve a szélenergiával közvetlenül mechanikai munka is végezhető (pl. öntözéshez, vízkiemeléshez stb.). 1.5 Vízenergia A víz energiáját az emberiség már a történelmi időkben is használta. A régi kultúrákban a vízkerekeket alkalmazták a mezőgazdasági területek öntözésére és ivóvíz ellátásra. A vízenergia hasznosítás reneszánsza 1830-tól köszöntött be, ekkor jelentek meg az első vízturbinák és szorították ki a vízkerekeket. A turbinák a nagy esésű és nagy energiájú vizet is tudták hasznosítani, és 1866-tól egy generátor segítségével villamos árammá tudták alakítani mozgási energiájukat. Törpe vízerőmű - Teljesítménye nem haladja meg az 1MW-ot. Jelentős részük korábban malomként funkcionált, ezeket később bővítették ki a generátorral. Ezek a kis berendezések rendkívül vízállás-függők, alacsony vízállás esetén általában leállítják őket. A régi törpe-erőművek szinte kizárólag vízkerékkel üzemelnek. Folyami vízerőmű - A folyókra telepített, azok mozgási energiáját hasznosító, általában közepes teljesítményű erőművek.

15 Vállalkozók Európában 17 Gát erőmű - gát által felduzzasztott folyó vizének helyzeti (potenciális mozgási) energiáját hasznosító erőmű. Hatalmas beruházást igényel, ezáltal olyan helyre érdemes telepíteni, ahol a víz esési magassága nagy, és hozama legalább közepes. A legnagyobb vízerőművek ebből a típusból kerülnek ki. A gát erőművek speciális alkalmazási területe a villamosenergia-tárolás. Ezt speciális szivattyú-turbina berendezésekkel valósítják meg. Éjszaka, amikor az áram átvételi ára alacsony, illetve a villamosenergia-fogyasztás a lehetséges termelésnél kevesebb, villamos áram többlet keletkezik az elosztóhálózaton. Ilyenkor ezeknél a gátaknál a szivattyúk felszivattyúzzák a vizet, mely majd a nappali csúcsidőszakban termel majd áramot a generátoron. A megoldás nem veszteségmentes, de egyre több villamos hálózaton alkalmazzák, ahol erre a természeti és földrajzi adottságok rendelkezésre állnak. 1.6 Egyéb megújuló energiák A tengerparttal rendelkező országok számára az apály-dagály, a tengeri hullámok és a tengerek hőjének hasznosítása is megújuló energia hasznosítási lehetőség. A jövő legígéretesebb másodlagos szekunder energiahordozóinak a hidrogén és a metanol látszanak, természetesen a villamos energia mellett. Jelentős ráfordításokkal folynak a fejlett gazdaságú országokban mind a hidrogén, mind a metanol energetikai alkalmazásaival kapcsolatos kutatások, és az un. hidrogéngazdaság illetve a metanolgazdaság kiépítésére vonatkozó stratégiák kidolgozása és megvalósítása. A hidrogénnek elsősorban a környezetvédelmi előnyei a meghatározóak, később a gazdaságiak is azok lesznek, és mindezek felett a legfontosabb a fenntarthatóság: előállítható megújuló energiaforrásokból vagy hasadóanyag segítségével is, tehát karbon-mentes energiaellátást ígér. A metanol melletti érvek is megfontolandók: gazdaságos előállíthatóság, egyszerű tárolás és szállítás a jelenleg is meglévő infrastruktúra felhasználásával stb. A hidrogén a Földön szabadon nem, de vegyületeiben hatalmas mennyiségben fordul elő. Ezekből a vegyületekből lehet előállítani energia felhasználásával, így fosszilis tüzelőanyagokból például földgázból reformálás segítségével, vagy vízbontással megújuló és egyéb nem fosszilis alapú energiahordozók felhasználásával. Fejlesztik a még korszerűbb radiokémiai és plazmakémiai eljárásokat, a bakteorológiai módszereket, sőt a mesterséges fotoszintézis is segíthet. A hidrogén-technológia következő lépéseként meg kell oldani a tisztítási, tárolási és szállítási kérdéseket.

16 18 Megújuló energiaforrások az EU-ban és Magyarországon Évente mintegy 45 millió tonna hidrogént állítanak elő, és ennek a 96%-át fosszilis tüzelőanyagból, főleg az egésznek mintegy a felét földgázból (4. sz. ábra). A szén és a szénhidrogének jelentik ma a fő energiaforrást. A hidrogénnek mintegy 40%-a manapság a kőolaj-feldolgozás és a földgázszintézis melléktermékeként keletkezik. A jövőbeli cél a hidrogén megújuló energiaforrások segítségével történő előállításának növelése, és a fosszilis energia alapú hidrogén termelés csökkentése. Várható, hogy a nukleáris energia szerepe jelentősen nő a hidrogén előállítási technológiák között. A hidrogén előállítás jelene és várható jövője 4. sz. ábra szén 16% elektrolízis 4% nap-, szél-, vízerőmű atomerőmű közvetlen nukleáris közvetlen napenergia elektrolízis kőolaj 30% földgáz 50% biomassza az éves termelés ~45 millió tonna ennek 96%-a fosszilis tüzelőanyagból a piaci kereslet évente 6%-kal nő földgáz szén Forrás: Stróbl, 2007 A hidrogén sok területen használható. Felhasználásával villamos energia termelhető tüzelőanyag-cellákkal, amely ígéretes alkalmazást jelent a járművek hajtása esetében is. A hidrogén-technológiára épülő energiaellátás ma még viszonylag drága, de a technológiák ára gyorsan csökken. Már jelenleg is versenyképes áron kínálnak közvetlenül hidrogénnel, vagy metanollal működő tüzelőanyag-cellás áramforrásokat 1-5 kw-os teljesítmény tartományban telekommunikációs rendszerek, számítógép hálózatok stb. tartalék áramforrásaként, szünetmentes energiaellátáshoz. A

17 Vállalkozók Európában 19 fajlagos szén-dioxid-kibocsátásban a hidrogén előnyei vitathatatlanok, de a teljes ellátási hatásláncot tekintve a széles körű elterjedés csak egy-két évtized múlva várható. (Stróbl, 2007) A hidrogén jelentős előnyei mellett alkalmazásának jelenleg komoly akadályát jelenti, hogy biztonságos tárolása, szállítása ma még csak részben megoldott. A hidrogéngazdaság mellett alternatívaként erősödik a metanolgazdaság fejlesztése irányában kifejtett kutatói aktivitás. A metanol biztonságosan tárolható, szállítható, a hagyományos energiaellátó infrastruktúra viszonylag csekély átalakítással erre a célra felhasználható, vannak már közvetlenül metanollal működő tüzelőanyagcellák, illetve a metanolból a felhasználás helyén hidrogén állítható elő különféle energetikai technológiák céljára. A legújabb kutatások szerint a hagyományos erőművek által kibocsátott széndioxid felhasználható lehet metanol előállítására is, amely technológia óriási jelentőségű lehet a klímaváltozás mérséklésében (Oláh, 2007). A hidrogén és a metanol energetikai hasznosítása jelenleg még korlátozott, de számos referencia rendszer már működik. Mindkét szakterületen jelentős kutatások folynak, és már napjainkban is kaphatók a piacon erre alkalmas berendezések, rendszerek.

18 20 Megújuló energiaforrások az EU-ban és Magyarországon 2. KÖRNYEZETVÉDELEM ÉS MEGÚJULÓ ENERGIAFORRÁSOK A fosszilis energiahordozók felhasználása a környezetünkben számtalan környezeti elemet károsít, melynek kapcsán világszerte törekednünk kell a légszennyezés vízszennyezés talajszennyezés üvegházhatás mértékének csökkentésére. A Föld hőmérsékletét a Napból érkező és a Föld felszínéről a világűrbe távozó sugárzási energia egyensúlya határozza meg. A légkörben egyes gázok a Napból érkező rövid hullámhosszú sugárzást akadálytalanul átengedik, de a földfelszín felől érkező hosszúhullámú sugárzást elnyelik. Ettől az alsó légkör felmelegszik, s ezek is hősugarakat bocsátanak ki magukból, vagyis ez által a talaj közelében tartják a meleget. Az üvegházhatás természetes folyamat, amely nélkül a földi hőmérséklet 33 0 C- kal alacsonyabb lenne. A természetben - az emberi tevékenységektől függetlenül - előforduló üvegházhatású gázok közül a legfontosabbak a vízgőz, a szén-dioxid, a metán, és a dinitrogén-oxid. Az üvegházhatásáért kiemelten hat gázhalmazállapotú vegyület, illetve vegyületcsoport a felelős. Ezek a gázok a következők: szén-dioxid (CO2), metán (CH4), dinitrogén-oxid (N2O), fluorozott szénhidrogének (HFC vegyületek), perfluorkarbonátok (PFC vegyületek), kén-hexafluorid (SF6). Minden üvegházhatású gáz különböző mértékben járul hozzá a globális felmelegedéshez sugárzási tulajdonságától, molekuláris tömegétől és légköri tartózkodási idejétől függően. A globális melegítési potenciál (GWP) az az általánosan elfogadott index, mely megmutatja, hogy adott tömegű üvegházhatású gáz meghatározott időszak alatt általában 100 évet vesznek mekkora sugárzási kényszerrel rendelkezik azaz mennyire melegíti a légkört - ugyanakkora tömegű szén-dioxidhoz képest.

19 Vállalkozók Európában 21 Az 5. sz. ábra a szén kibocsátás, a CO2 koncentráció és a hőmérséklet alakulását mutatja be az elmúlt 1000 éves időtartamban. Az ábrán jól látható az összefüggés a CO2 koncentráció növekedése és a hőmérséklet emelkedése között. Az ábra azt is mutatja, hogy a több évszázadon keresztül tartó stagnálást, illetve meghatározott határok közötti ingadozást követően a XIX. század közepétől megkezdődött a CO2 koncentráció erőteljes növekedése, amelyet az ipari forradalom, a gőzgépek elterjedése és ezzel összefüggően a szén felhasználás fokozódása okozott. CO2 koncentráció és a hőmérséklet alakulást az elmúlt 1000 évben 5. sz. ábra Forrás: A szén-dioxid kibocsátás jelentős mértékben energetikai eredetű, vagyis tüzelőanyagok égetéséből származik. Alacsonyabb szén-dioxid kibocsátás csak a széntartalmú tüzelőanyagok felhasználásának csökkentésével érhető el. Az erre vonatkozó kutatások többsége szerint a légkör széndioxidkoncentrációjának megnövekedése kiszámíthatatlanná teszi az időjárást, és soha nem tapasztalt meteorológiai szélsőségekhez vezet. A metán kibocsátását az állattartás jelentősen befolyásolja. A dinitrogénoxid elsősorban a mezőgazdasági tevékenységgel áll összefüggésben. Csökkenő mezőgazdasági tevékenység tehát kevesebb dinitrogén-oxid kibocsátást eredményez.

20 22 Megújuló energiaforrások az EU-ban és Magyarországon A vízgőznek a levegőben való tartózkodási ideje mindössze 10 nap, de a másik három fő összetevőé (széndioxid, metán, dinitrogén-oxid) év. Minden egyes üvegházhatású gáz az eltérő tulajdonságai alapján különböző mértékben járul hozzá a globális felmelegedéshez. Az energiatermelés, az ipar és a közlekedés jelentős forrásai a globális felmelegedést előidéző gázok kibocsátásának. A világgazdasági és a társadalmi fejlődést, valamint a földi éghajlat érzékenységét számításba véve a tudományos kutatók értékelése szerint további 1,1-6,4 o C közötti mértékben várható 2100-ra a melegedés. Hazánkban az átlaghőmérséklet emelkedése mellett a következő évtizedekre az éves csapadék átlagos mennyiségének csökkenése és a csapadékeloszlás átrendeződése várható, továbbá a szélsőséges időjárási események gyakoriságának és intenzitásának növekedése. A hazánkra előjelzett változások a természetes ökoszisztémákat, az erdőállományokat, a mezőgazdaságot, a vízgazdálkodást, és az emberi egészséget egyaránt érintik. Az üvegházhatású gázok (ÜHG) kibocsátását szén-dioxid egyenértékben mérik (CO2-eq). A legfrissebb felmérések szerint Magyarországon a kibocsátás 2006-ban 78,6 millió tonna szén-dioxid egyenérték volt. Ez az érték a évhez képest 2%-kal kevesebb, viszont a közlekedésből származó kibocsátások ugyanakkor erőteljes növekedést mutatnak. A Kiotói Jegyzőkönyv ratifikálásával hazánk 6%-os csökkentést vállalt az es évek átlagos kibocsátási szintjéhez viszonyítva, amelyet 2006-ban sikerült teljesíteni. A legfontosabb üvegházhatású gáz továbbra is a szén-dioxid, amely az összes kibocsátás 77%-áért felel. A metán 10%-os súlyt képvisel a teljes ÜHG kibocsátásban, amely elsősorban az állattenyésztés és a hulladékgazdálkodás során keletkezik, de a földgáz szállításakor is elillan belőle. A 12%-os részarányú dinitrogén-oxid elsősorban a mezőgazdasági talajokból, illetve vegyipari termelés következtében kerül a levegőbe. A fluor tartalmú gázok összesen 1%-ot képviselnek, de tendenciájuk növekvő, főleg a hűtő- és klíma-berendezések alkalmazása miatt. A teljes ÜHG kibocsátás több mint háromnegyede az energiaszektor számlájára írható. A mezőgazdaság 11%-kal, az ipari folyamatok további 8%-kal járulnak hozzá az üvegházhatású gázok kibocsátásához, míg a hulladék szektor 5%-ot képvisel a leltárban. Az erdők (és a földhasználati változások) viszont általában nyelőként viselkednek, vagyis kivonják a széndioxidot a levegőből: 2006-ban csaknem 6 millió tonnát.

TARTALOMJEGYZÉK 1. KÖTET I. FEJLESZTÉSI STRATÉGIA... 6

TARTALOMJEGYZÉK 1. KÖTET I. FEJLESZTÉSI STRATÉGIA... 6 TARTALOMJEGYZÉK 1. KÖTET I. FEJLESZTÉSI STRATÉGIA... 6 II. HÓDMEZŐVÁSÁRHELY ÉS TÉRKÖRNYEZETE (NÖVÉNYI ÉS ÁLLATI BIOMASSZA)... 8 1. Jogszabályi háttér ismertetése... 8 1.1. Bevezetés... 8 1.2. Nemzetközi

Részletesebben

A megújuló energiaforrások környezeti hatásai

A megújuló energiaforrások környezeti hatásai A megújuló energiaforrások környezeti hatásai Dr. Nemes Csaba Főosztályvezető Környezetmegőrzési és Fejlesztési Főosztály Vidékfejlesztési Minisztérium Budapest, 2011. május 10.. Az energiapolitikai alappillérek

Részletesebben

Energiatakarékossági szemlélet kialakítása

Energiatakarékossági szemlélet kialakítása Energiatakarékossági szemlélet kialakítása Nógrád megye energetikai lehetőségei Megújuló energiák Mottónk: A korlátozott készletekkel való takarékosság a jövő generációja iránti felelősségteljes kötelességünk.

Részletesebben

A biometán előállítása és betáplálása a földgázhálózatba

A biometán előállítása és betáplálása a földgázhálózatba A biometán előállítása és betáplálása a földgázhálózatba Dr. Kovács Attila - Fuchsz Máté Első Magyar Biogáz Kft. 2011. 1. április 13. XIX. Dunagáz Szakmai Napok, Visegrád Mottó: Amikor kivágjátok az utolsó

Részletesebben

A napenergia hasznosítás támogatásának helyzete és fejlesztési tervei Magyarországon. 2009. Március 16. Rajnai Attila Ügyvezetı igazgató

A napenergia hasznosítás támogatásának helyzete és fejlesztési tervei Magyarországon. 2009. Március 16. Rajnai Attila Ügyvezetı igazgató A napenergia hasznosítás támogatásának helyzete és fejlesztési tervei Magyarországon 2009. Március 16. Rajnai Attila Ügyvezetı igazgató Energia Központ Nonprofit Kft. bemutatása Megnevezés : Energia Központ

Részletesebben

Tervezzük együtt a jövőt!

Tervezzük együtt a jövőt! Tervezzük együtt a jövőt! gondolkodj globálisan - cselekedj lokálisan CÉLOK jövedelemforrások, munkahelyek biztosítása az egymásra épülő zöld gazdaság hálózati keretein belül, megújuló energiaforrásokra

Részletesebben

Energiamenedzsment ISO 50001. A SURVIVE ENVIRO Nonprofit Kft. környezetmenedzsment rendszerekről szóló tájékoztatója

Energiamenedzsment ISO 50001. A SURVIVE ENVIRO Nonprofit Kft. környezetmenedzsment rendszerekről szóló tájékoztatója Energiamenedzsment ISO 50001 A SURVIVE ENVIRO Nonprofit Kft. környezetmenedzsment rendszerekről szóló tájékoztatója Hogyan bizonyítható egy vállalat környezettudatossága vásárlói felé? Az egész vállalatra,

Részletesebben

Megújuló energiaforrások hasznosításának növelése a fenntartható fejlődés biztosítása érdekében

Megújuló energiaforrások hasznosításának növelése a fenntartható fejlődés biztosítása érdekében Megújuló energiaforrások hasznosításának növelése a fenntartható fejlődés biztosítása érdekében Dr. Csoknyai Istvánné Vezető főtanácsos Környezetvédelmi és Vízügyi Minisztérium 2008. február 26-i Geotermia

Részletesebben

Megújuló energiák hasznosítása MTA tanulmány elvei

Megújuló energiák hasznosítása MTA tanulmány elvei Megújuló energiák hasznosítása MTA tanulmány elvei Büki Gergely A MTA Földtudományi Osztálya és a Környezettudományi Elnöki Bizottság Energetika és Környezet Albizottsága tudományos ülése Budapest, 2011.

Részletesebben

A megújuló energiahordozók szerepe

A megújuló energiahordozók szerepe Magyar Energia Szimpózium MESZ 2013 Budapest A megújuló energiahordozók szerepe dr Szilágyi Zsombor okl. gázmérnök c. egyetemi docens Az ország energia felhasználása 2008 2009 2010 2011 2012 PJ 1126,4

Részletesebben

Biogáz és Biofinomító Klaszter szakmai tevékenysége. Kép!!!

Biogáz és Biofinomító Klaszter szakmai tevékenysége. Kép!!! Biogáz és Biofinomító Klaszter szakmai tevékenysége Kép!!! Decentralizált bioenergia központok energiaforrásai Nap Szél Növényzet Napelem Napkollektor Szélerőgépek Biomassza Szilárd Erjeszthető Fagáz Tüzelés

Részletesebben

NCST és a NAPENERGIA

NCST és a NAPENERGIA SZIE Egyetemi Klímatanács SZENT ISTVÁN EGYETEM NCST és a NAPENERGIA Tóth László ACRUX http://klimatanacs.szie.hu TARTALOM 1.Napenergia potenciál 2.A lehetséges megoldások 3.Termikus és PV rendszerek 4.Nagyrendszerek,

Részletesebben

Közép-Magyarországi Operatív Program Megújuló energiahordozó-felhasználás növelése. Kódszám: KMOP-3.3.3-13.

Közép-Magyarországi Operatív Program Megújuló energiahordozó-felhasználás növelése. Kódszám: KMOP-3.3.3-13. Közép-Magyarországi Operatív Program Megújuló energiahordozó-felhasználás növelése Kódszám: KMOP-3.3.3-13. Támogatható tevékenységek köre I. Megújuló energia alapú villamosenergia-, kapcsolt hő- és villamosenergia-,

Részletesebben

Megújuló energiaforrások jövője Magyarországon. Budapest, 2008. május 28. Erőművekkel a klímakatasztrófa megelőzéséért. Budapest, 2008. május 28.

Megújuló energiaforrások jövője Magyarországon. Budapest, 2008. május 28. Erőművekkel a klímakatasztrófa megelőzéséért. Budapest, 2008. május 28. Megújuló energiaforrások jövője Magyarországon Bohoczky Ferenc ny. vezető főtanácsos az MTA Megújuló Albizottság tagja Budapest, 2008. május 28. Budapest, 2008. május 28. Erőművekkel a klímakatasztrófa

Részletesebben

Kapcsolt energia termelés, megújulók és a KÁT a távhőben

Kapcsolt energia termelés, megújulók és a KÁT a távhőben Kapcsolt energia termelés, megújulók és a KÁT a távhőben A múlt EU Távlatok, lehetőségek, feladatok A múlt Kapcsolt energia termelés előnyei, hátrányai 2 30-45 % -al kevesebb primerenergia felhasználás

Részletesebben

A fenntartható energetika kérdései

A fenntartható energetika kérdései A fenntartható energetika kérdései Dr. Aszódi Attila igazgató, Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technikai Intézet elnök, MTA Energetikai Bizottság Budapest, MTA, 2011. május 4.

Részletesebben

Hatékony energiafelhasználás Vállalkozási és önkormányzati projektek Kohéziós Alap támogatás Költségvetés kb. 42 md Ft

Hatékony energiafelhasználás Vállalkozási és önkormányzati projektek Kohéziós Alap támogatás Költségvetés kb. 42 md Ft Környezetvédelemi és Energetikai fejlesztések támogatási lehetőségei 2007-13 KEOP Energia prioritások Megújuló energiaforrás felhasználás Vállalkozási és önkormányzati projektek ERFA alapú támogatás KMR

Részletesebben

G L O B A L W A R M I N

G L O B A L W A R M I N G L O B A L W A R M I N Az üvegházhatás és a globális felmelegedés Az utóbbi kétszáz évben a légkör egyre többet szenved az emberi tevékenység okozta zavaró következményektől. Az utóbbi évtizedek fő változása

Részletesebben

Az alternatív energiák fizikai alapjai. Horváth Ákos ELTE Atomfizikai Tanszék

Az alternatív energiák fizikai alapjai. Horváth Ákos ELTE Atomfizikai Tanszék Az alternatív energiák fizikai alapjai Horváth Ákos ELTE Atomfizikai Tanszék Az energia felhasználása Hétköznapi energiafelhasználás: autók meghajtása, háztartási eszközök működtetése, fűtés ipari méretű

Részletesebben

Magyar László Környezettudomány MSc. Témavezető: Takács-Sánta András PhD

Magyar László Környezettudomány MSc. Témavezető: Takács-Sánta András PhD Magyar László Környezettudomány MSc Témavezető: Takács-Sánta András PhD Két kutatás: Güssing-modell tanulmányozása mélyinterjúk Mintaterület Bevált, működő, megújuló energiákra épülő rendszer Bicskei járás

Részletesebben

Átalakuló energiapiac

Átalakuló energiapiac Energiapolitikánk főbb alapvetései ügyvezető GKI Energiakutató és Tanácsadó Kft. Átalakuló energiapiac Napi Gazdaság Konferencia Budapest, December 1. Az előadásban érintett témák 1., Kell-e új energiapolitika?

Részletesebben

Bohoczky Ferenc. Gazdasági. zlekedési

Bohoczky Ferenc. Gazdasági. zlekedési Energiapolitika, energiatakarékoss kosság, megújul juló energia források Bohoczky Ferenc vezető főtan tanácsos Gazdasági és s Közleked K zlekedési Minisztérium Az energiapolitika Ellátásbiztonság, vezérelvei

Részletesebben

7. Hány órán keresztül világít egy hagyományos, 60 wattos villanykörte? a 450 óra b 600 óra c 1000 óra

7. Hány órán keresztül világít egy hagyományos, 60 wattos villanykörte? a 450 óra b 600 óra c 1000 óra Feladatsor a Föld napjára oszt:.. 1. Mi a villamos energia mértékegysége(lakossági szinten)? a MJ (MegaJoule) b kwh (kilówattóra) c kw (kilówatt) 2. Napelem mit állít elő közvetlenül? a Villamos energiát

Részletesebben

energiaforrása Kőrösi Viktor Energetikai Osztály KUTIK, Summer School, Miskolc, 2007. Augusztus 30.

energiaforrása Kőrösi Viktor Energetikai Osztály KUTIK, Summer School, Miskolc, 2007. Augusztus 30. Biogáz z a jövőj energiaforrása Kőrösi Viktor Energetikai Osztály Biogáz jelentősége Energiatermelés és a hulladékok környezetbarát megsemmisítése (21CH 4 =1CO 2, állati trágya, szennyvíziszap, hulladéklerakók),

Részletesebben

Európa energiaügyi prioritásai J.M. Barroso, az Európai Bizottság elnökének ismertetője

Európa energiaügyi prioritásai J.M. Barroso, az Európai Bizottság elnökének ismertetője Európa energiaügyi prioritásai J.M. Barroso, az Európai Bizottság elnökének ismertetője az Európai Tanács 2013. május 22-i ülésére A globális energiapiac új realitásai A pénzügyi válság hatása A magánberuházások

Részletesebben

Zöldenergia - Energiatermelés melléktermékekbıl és hulladékokból

Zöldenergia - Energiatermelés melléktermékekbıl és hulladékokból Zöldenergia - Energiatermelés melléktermékekbıl és hulladékokból Dr. Ivelics Ramon PhD. irodavezetı-helyettes Barcs Város Önkormányzata Polgármesteri Hivatal Városfejlesztési és Üzemeltetési Iroda Hulladékgazdálkodás

Részletesebben

Az Energia[Forradalom] Magyarországon

Az Energia[Forradalom] Magyarországon Az Energia[Forradalom] Magyarországon Stoll É. Barbara Klíma és energia kampányfelelős Magyarország barbara.stoll@greenpeace.hu Láncreakció, Pécs, 2011. november 25. Áttekintés: Pár szó a Greenpeace-ről

Részletesebben

Energiamenedzsment kihívásai a XXI. században

Energiamenedzsment kihívásai a XXI. században Energiamenedzsment kihívásai a XXI. században Bertalan Zsolt vezérigazgató MAVIR ZRt. HTE Közgyűlés 2013. május 23. A megfizethető energia 2 A Nemzeti Energiastratégia 4 célt azonosít: 1. Energiahatékonyság

Részletesebben

A NEMZETI MEGÚJULÓ ENERGIAHORDOZÓ STRATÉGIA. Gazdasági és Közlekedési Minisztérium

A NEMZETI MEGÚJULÓ ENERGIAHORDOZÓ STRATÉGIA. Gazdasági és Közlekedési Minisztérium A NEMZETI MEGÚJULÓ ENERGIAHORDOZÓ STRATÉGIA Gazdasági és Közlekedési Minisztérium Az energiapolitika alapjai ELLÁTÁSBIZTONSÁG-POLITIKAI ELVÁRÁSOK GAZDASÁGI NÖVEKEDÉS MINIMÁLIS KÖLTSÉG ELVE KÖRNYEZETVÉDELEM

Részletesebben

A tanyás térségekben elérhető megújuló energiaforrások

A tanyás térségekben elérhető megújuló energiaforrások A tanyás térségekben elérhető megújuló energiaforrások Romvári Róbert tervezési referens Magyar Tanyákért Programiroda NAKVI Tanyák és aprófalvak Magyarországon Budapest, 2014. 12. 16. Amiről szó lesz

Részletesebben

Energetikai pályázatok 2012/13

Energetikai pályázatok 2012/13 Energetikai pályázatok 2012/13 Összefoglaló A Környezet és Energia Operatív Program keretében 2012/13-ban 8 új pályázat konstrukció jelenik meg. A pályázatok célja az energiahatékonyság és az energiatakarékosság

Részletesebben

A környezeti szempontok megjelenítése az energetikai KEOP pályázatoknál

A környezeti szempontok megjelenítése az energetikai KEOP pályázatoknál A környezeti szempontok megjelenítése az energetikai KEOP pályázatoknál.dr. Makai Martina főosztályvezető VM Környezeti Fejlesztéspolitikai Főosztály 1 Környezet és Energia Operatív Program 2007-2013 2007-2013

Részletesebben

K+F lehet bármi szerepe?

K+F lehet bármi szerepe? Olaj kitermelés, millió hordó/nap K+F lehet bármi szerepe? 100 90 80 70 60 50 40 Olajhozam-csúcs szcenáriók 30 20 10 0 2000 2020 Bizonytalanság: Az előrejelzések bizonytalanságának oka az olaj kitermelési

Részletesebben

MEGÚJULÓ ENERGIA ALAPÚ VILLAMOS ENERGIA, KAPCSOLT HŐ ÉS VILLAMOS ENERGIA, VALAMINT BIOMETÁN TERMELÉS KEOP-2012-4.10.0./C

MEGÚJULÓ ENERGIA ALAPÚ VILLAMOS ENERGIA, KAPCSOLT HŐ ÉS VILLAMOS ENERGIA, VALAMINT BIOMETÁN TERMELÉS KEOP-2012-4.10.0./C MEGÚJULÓ ENERGIA ALAPÚ VILLAMOS ENERGIA, KAPCSOLT HŐ ÉS VILLAMOS ENERGIA, VALAMINT BIOMETÁN TERMELÉS KEOP-2012-4.10.0./C A pályázati felhívás kiemelt célkitűzése ösztönözni a decentralizált, környezetbarát

Részletesebben

Klímapolitika és a megújuló energia használata Magyarországon

Klímapolitika és a megújuló energia használata Magyarországon Klímapolitika és a megújuló energia használata Magyarországon Dióssy László Szakállamtitkár, c. egyetemi docens Környezetvédelmi és Vízügyi Minisztérium Enterprise Europe Network Nemzetközi Üzletember

Részletesebben

Élelmiszerhulladék-csökkentés a Jövő Élelmiszeripari Gyárában Igények és megoldások

Élelmiszerhulladék-csökkentés a Jövő Élelmiszeripari Gyárában Igények és megoldások Élelmiszerhulladék-csökkentés a Jövő Élelmiszeripari Gyárában Igények és megoldások Jasper Anita Campden BRI Magyarország Nonprofit Kft. Élelmiszerhulladékok kezelésének és újrahasznosításának jelentősége

Részletesebben

2008-2009. tanév tavaszi félév. Hazánk energiagazdálkodása, és villamosenergia-ipara. Ballabás Gábor bagi@ludens.elte.hu

2008-2009. tanév tavaszi félév. Hazánk energiagazdálkodása, és villamosenergia-ipara. Ballabás Gábor bagi@ludens.elte.hu Magyarország társadalmi-gazdasági földrajza 2008-2009. tanév tavaszi félév Hazánk energiagazdálkodása, és villamosenergia-ipara Ballabás Gábor bagi@ludens.elte.hu Forrás: GKM Alapkérdések a XXI. század

Részletesebben

Pályázati lehetőségek vállalkozások számára a KEOP keretein belül

Pályázati lehetőségek vállalkozások számára a KEOP keretein belül Pályázati lehetőségek vállalkozások számára a KEOP keretein belül 2010. február1. KEOP-2009-4.2.0/A: Helyi hő és hűtési igény kielégítése megújuló energiaforrásokkal A konstrukció ösztönözni és támogatni

Részletesebben

A KÖRNYEZET ÉS ENERGIA OPERATÍV PROGRAM. Széchenyi Programirodák létrehozása, működtetése VOP-2.1.4-11-2011-0001

A KÖRNYEZET ÉS ENERGIA OPERATÍV PROGRAM. Széchenyi Programirodák létrehozása, működtetése VOP-2.1.4-11-2011-0001 A KÖRNYEZET ÉS ENERGIA OPERATÍV PROGRAM Széchenyi Programirodák létrehozása, működtetése VOP-2.1.4-11-2011-0001 A KÖRNYEZET ÉS ENERGIA OPERATÍV PROGRAM A KÖRNYEZET ÉS ENERGIA OPERATÍV PROGRAM Fejlesztési

Részletesebben

ENERGETIKAI BEAVATKOZÁSOK A HATÉKONYSÁG ÉRDEKÉBEN SZABÓ VALÉRIA

ENERGETIKAI BEAVATKOZÁSOK A HATÉKONYSÁG ÉRDEKÉBEN SZABÓ VALÉRIA ENERGETIKAI BEAVATKOZÁSOK A HATÉKONYSÁG ÉRDEKÉBEN SZABÓ VALÉRIA TARTALOM I. HAZAI PÁLYÁZATI LEHETŐSÉGEK 1. KEHOP, GINOP 2014-2020 2. Pályázatok előkészítése II. ENERGIA HATÉKONY VÁLLALKOZÁSFEJLESZTÉS LEHETŐSÉGEK

Részletesebben

A bányászat szerepe az energetikában és a nemzetgazdaságban

A bányászat szerepe az energetikában és a nemzetgazdaságban A bányászat szerepe az energetikában és a nemzetgazdaságban Kovács Pál energiaügyért felelős államtitkár Országos Bányászati Konferencia, 2013. november 7-8., Egerszalók Tartalom 1. Globális folyamatok

Részletesebben

Megújuló energetikai és energiahatékonysági helyzetkép

Megújuló energetikai és energiahatékonysági helyzetkép Megújuló energetikai és energiahatékonysági helyzetkép Országos Önkormányzati és Közigazgatási Konferencia 2014 Előadó: Hizó Ferenc Zöldgazdaság fejlesztésért, klímapolitikáért és kiemelt közszolgáltatásokért

Részletesebben

Frank-Elektro Kft. BEMUTATKOZÓ ANYAG

Frank-Elektro Kft. BEMUTATKOZÓ ANYAG Frank-Elektro Kft. 5440 Kunszentmárton Zrínyi u. 42. Telefon: 56/560-040, 30/970-5749 frankelektro.kft@gmail.com BEMUTATKOZÓ ANYAG Frank-Elektro Kft. telephely korszerűsítése, építési munkái. A Frank-Elektro

Részletesebben

Jövőkép 2030 fenntarthatóság versenyképesség biztonság

Jövőkép 2030 fenntarthatóság versenyképesség biztonság Energiastratégia 2030 a magyar EU elnökség tükrében Globális trendek (Kína, India); Kovács Pál helyettes államtitkár 2 A bolygónk, a kontinens, és benne Magyarország energiaigénye a jövőben várhatóan tovább

Részletesebben

A KÖRNYEZET ÉS ENERGIA OPERATÍV PROGRAM. Széchenyi Programirodák létrehozása, működtetése VOP-2.1.4-11-2011-0001

A KÖRNYEZET ÉS ENERGIA OPERATÍV PROGRAM. Széchenyi Programirodák létrehozása, működtetése VOP-2.1.4-11-2011-0001 A KÖRNYEZET ÉS ENERGIA OPERATÍV PROGRAM A KÖRNYEZET ÉS ENERGIA OPERATÍV PROGRAM A KÖRNYEZET ÉS ENERGIA OPERATÍV PROGRAM A Fejlesztési program eszközrendszere: Energiahatékonyság Zöldenergia megújuló energiaforrások

Részletesebben

Fosszilis energiák jelen- és jövőképe

Fosszilis energiák jelen- és jövőképe Fosszilis energiák jelen- és jövőképe A FÖLDGÁZELLÁTÁS HELYZETE A HAZAI ENERGIASZERKEZET TÜKRÉBEN Dr. TIHANYI LÁSZLÓ egyetemi tanár, Miskolci Egyetem MTA Energetikai Bizottság Foszilis energia albizottság

Részletesebben

A MEGÚJULÓ ENERGIAHORDOZÓ FELHASZNÁLÁS MAGYARORSZÁGI STRATÉGIÁJA

A MEGÚJULÓ ENERGIAHORDOZÓ FELHASZNÁLÁS MAGYARORSZÁGI STRATÉGIÁJA A MEGÚJULÓ ENERGIAHORDOZÓ FELHASZNÁLÁS MAGYARORSZÁGI STRATÉGIÁJA Dr. Szerdahelyi György Főosztályvezető-helyettes Gazdasági és Közlekedési Minisztérium Megújuló energiahordozó felhasználás növelés szükségességének

Részletesebben

A VPP szabályozó központ működési modellje, és fejlődési irányai. Örményi Viktor 2015. május 6.

A VPP szabályozó központ működési modellje, és fejlődési irányai. Örményi Viktor 2015. május 6. A VPP szabályozó központ működési modellje, és fejlődési irányai Örményi Viktor 2015. május 6. Előzmények A Virtuális Erőművek kialakulásának körülményei 2008-2011. között a villamos energia piaci árai

Részletesebben

Ajkai Mechatronikai és Járműipari Klaszter Energetikai Stratégiája 2011. február 28.

Ajkai Mechatronikai és Járműipari Klaszter Energetikai Stratégiája 2011. február 28. Ajkai Mechatronikai és Járműipari Klaszter Energetikai Stratégiája 2011. február 28. Nagy István épületenergetikai szakértő T: +36-20-9519904 info@adaptiv.eu A projekt az Európai Unió támogatásával, az

Részletesebben

A villamos energiát termelő erőművekről. EED ÁHO Mérnökiroda 2014.11.13

A villamos energiát termelő erőművekről. EED ÁHO Mérnökiroda 2014.11.13 A villamos energiát termelő erőművekről EED ÁHO Mérnökiroda 2014.11.13 A villamos energia előállítása Az ember fejlődésével nőtt az energia felhasználás Egyes energiafajták megtestesítői az energiahordozók:

Részletesebben

Prof. Dr. Krómer István. Óbudai Egyetem

Prof. Dr. Krómer István. Óbudai Egyetem Környezetbarát energia technológiák fejlődési kilátásai Óbudai Egyetem 1 Bevezetés Az emberiség hosszú távú kihívásaira a környezetbarát technológiák fejlődése adhat megoldást: A CO 2 kibocsátás csökkentésével,

Részletesebben

Megújuló energiák hasznosítása: a napenergia. Készítette: Pribelszky Csenge Környezettan BSc.

Megújuló energiák hasznosítása: a napenergia. Készítette: Pribelszky Csenge Környezettan BSc. Megújuló energiák hasznosítása: a napenergia Készítette: Pribelszky Csenge Környezettan BSc. A minket körülvevı energiaforrások (energiahordozók) - Azokat az anyagokat, amelyek energiát közvetítenek energiahordozóknak

Részletesebben

Az enhome komplex energetikai megoldásai. Pénz, de honnan? Zalaegerszeg, 2015 október 1.

Az enhome komplex energetikai megoldásai. Pénz, de honnan? Zalaegerszeg, 2015 október 1. Az enhome komplex energetikai megoldásai Pénz, de honnan? Zalaegerszeg, 2015 október 1. Az energiaszolgáltatás jövőbeli iránya: decentralizált energia (DE) megoldások Hagyományos, központosított energiatermelés

Részletesebben

A nagy hatásfokú hasznos hőigényen alapuló kapcsolt hő- és villamosenergia-termelés terén elért előrehaladásról Magyarországon

A nagy hatásfokú hasznos hőigényen alapuló kapcsolt hő- és villamosenergia-termelés terén elért előrehaladásról Magyarországon A nagy hatásfokú hasznos hőigényen alapuló kapcsolt hő- és villamosenergia-termelés terén elért előrehaladásról Magyarországon (az Európai Parlament és a Tanács 2004/8/EK irányelv 6. cikk (3) bekezdésében

Részletesebben

Távhőszolgáltatás és fogyasztóközeli megújuló energiaforrások

Távhőszolgáltatás és fogyasztóközeli megújuló energiaforrások szolgáltatás és fogyasztóközeli megújuló energiaforrások Pécs, 2010. szeptember 14. Győri Csaba műszaki igazgatóhelyettes Németh András üzemviteli mérnök helyett/mellett megújuló energia Megújuló Energia

Részletesebben

Új biomassza erőmű - és kiszolgáló ültetvények - helyének meghatározása térinformatikai módszerekkel az Inno Energy KIC keretében

Új biomassza erőmű - és kiszolgáló ültetvények - helyének meghatározása térinformatikai módszerekkel az Inno Energy KIC keretében Új biomassza erőmű - és kiszolgáló ültetvények - helyének meghatározása térinformatikai módszerekkel az Inno Energy KIC keretében Dr. Ladányi Richard - Chrabák Péter - Kiss Levente Bay Zoltán Alkalmazott

Részletesebben

A Megújuló Energiaforrás Irányelv és a Nemzeti Cselekvési Terv szerepe a 2020 as célok elérésében

A Megújuló Energiaforrás Irányelv és a Nemzeti Cselekvési Terv szerepe a 2020 as célok elérésében A Megújuló Energiaforrás Irányelv és a Nemzeti Cselekvési Terv szerepe a 2020 as célok elérésében Szélenergia a tények szélenergia integrációja Magyarországon, EWEA Budapest, 2009 június 12. EUROPEAN COMMISSION

Részletesebben

Heves Megyei Kereskedelmi és Iparkamara. A (megújuló) energia. jelen

Heves Megyei Kereskedelmi és Iparkamara. A (megújuló) energia. jelen Heves Megyei Kereskedelmi és Iparkamara A (megújuló) energia jelen és s jövőj EU stratégia 2007: az energiahatékonys konyság g 20%-os növeln velése az üvegházhatású gázok kibocsátásának 20%-os csökkent

Részletesebben

A biomassza képződés alapja: a fotoszintézis. Up hill csoda (egyszerűből bonyolult) Alacsony energia-hatékonyság (1 to 2%)

A biomassza képződés alapja: a fotoszintézis. Up hill csoda (egyszerűből bonyolult) Alacsony energia-hatékonyság (1 to 2%) A biomassza képződés alapja: a fotoszintézis Up hill csoda (egyszerűből bonyolult) Alacsony energia-hatékonyság (1 to 2%) Megújulók-Biomassza Def.: A mezőgazdaságból, erdőgazdálkodásból és ezekhez a tevékenységekhez

Részletesebben

A tanyás térségekben elérhető megújuló energiaforrások

A tanyás térségekben elérhető megújuló energiaforrások A tanyás térségekben elérhető megújuló energiaforrások Romvári Róbert tervezési referens Magyar Tanyákért Programiroda NAKVI Tanyavilág 2020 Szentkirály, 2015. 03. 11. Amiről szó lesz 1. Megújuló energiaforrások

Részletesebben

Megújuló energia projektek finanszírozása Magyarországon

Megújuló energia projektek finanszírozása Magyarországon Megújuló energia projektek finanszírozása Magyarországon Energia Másképp III., Heti Válasz Konferencia 2011. március 24. Dr. Németh Miklós, ügyvezető igazgató Projektfinanszírozási Igazgatóság OTP Bank

Részletesebben

A megújuló energiaforrások közgazdaságtana

A megújuló energiaforrások közgazdaságtana A megújuló energiaforrások közgazdaságtana Ságodi Attila Partner KPMG Tanácsadó Kft. Energetikai és közüzemi tanácsadás Energetikai körkép FAKT Konferencia 214. október 7. AGENDA I. Megújulók helyzete

Részletesebben

2014. Év. rendeletére, és 2012/27/EK irányelvére Teljesítés határideje 2015.04.30

2014. Év. rendeletére, és 2012/27/EK irányelvére Teljesítés határideje 2015.04.30 Adatszolgáltatásra vonatkozó adatai Adatszolgáltatás címe Energiafelhasználási beszámoló Adatszolgáltatás száma OSAP 1335a Adatszolgáltatás időszaka 2014. Év Az adatszolgáltatás a statisztikáról szóló

Részletesebben

A MEGÚJULÓ ENERGIAFORRÁSOK LEHETSÉGES SZEREPE A LOKÁLIS HŐELLÁTÁSBAN. Németh István Okl. gépészmérnök Energetikai szakmérnök

A MEGÚJULÓ ENERGIAFORRÁSOK LEHETSÉGES SZEREPE A LOKÁLIS HŐELLÁTÁSBAN. Németh István Okl. gépészmérnök Energetikai szakmérnök A MEGÚJULÓ ENERGIAFORRÁSOK LEHETSÉGES SZEREPE A LOKÁLIS HŐELLÁTÁSBAN Németh István Okl. gépészmérnök Energetikai szakmérnök TÁVHŐSZOLGÁLTATÁS ÖSSZEFOGLALÓ ADATAI Mértékegység 1990 1995 2000 2001 2002

Részletesebben

NEMZETI ÉS EU CÉLOK A MEGÚJULÓ ENERGIAHORDOZÓ PIAC ÉLÉNKÍTÉSE ÉRDEKÉBEN (kihívások, kötelezettségek, nemzeti reagálás)

NEMZETI ÉS EU CÉLOK A MEGÚJULÓ ENERGIAHORDOZÓ PIAC ÉLÉNKÍTÉSE ÉRDEKÉBEN (kihívások, kötelezettségek, nemzeti reagálás) NEMZETI ÉS EU CÉLOK A MEGÚJULÓ ENERGIAHORDOZÓ PIAC ÉLÉNKÍTÉSE ÉRDEKÉBEN (kihívások, kötelezettségek, nemzeti reagálás) Dr. Szerdahelyi György Közlekedési, Hírközlési és Energiaügyi Minisztérium MIÉRT KERÜLT

Részletesebben

Honvári Patrícia MTA KRTK MRTT Vándorgyűlés, 2014.11.28.

Honvári Patrícia MTA KRTK MRTT Vándorgyűlés, 2014.11.28. Honvári Patrícia MTA KRTK MRTT Vándorgyűlés, 2014.11.28. Miért kikerülhetetlen ma a megújuló energiák alkalmazása? o Globális klímaváltozás Magyarország sérülékeny területnek számít o Magyarország energiatermelése

Részletesebben

Zöldenergia Konferencia. Dr. Lenner Áron Márk Nemzetgazdasági Minisztérium Iparstratégiai Főosztály főosztályvezető Budapest, 2012.

Zöldenergia Konferencia. Dr. Lenner Áron Márk Nemzetgazdasági Minisztérium Iparstratégiai Főosztály főosztályvezető Budapest, 2012. Zöldenergia Konferencia Dr. Lenner Áron Márk Nemzetgazdasági Minisztérium Iparstratégiai Főosztály főosztályvezető Budapest, 2012. június 14 A zöldenergia szerepe a hazai energiatermelés és felhasználás

Részletesebben

AZ NCST A MEGÚJULÓ ENERGIA FORRÁSOK ALKALMAZÁSÁNAK NÖVELÉSÉBEN ÉS AZ ÚJ MAGYAR ENERGIA STRATÉGIÁBAN. dr.balogh László MMESZ elnöke

AZ NCST A MEGÚJULÓ ENERGIA FORRÁSOK ALKALMAZÁSÁNAK NÖVELÉSÉBEN ÉS AZ ÚJ MAGYAR ENERGIA STRATÉGIÁBAN. dr.balogh László MMESZ elnöke AZ NCST A MEGÚJULÓ ENERGIA FORRÁSOK ALKALMAZÁSÁNAK NÖVELÉSÉBEN ÉS AZ ÚJ MAGYAR ENERGIA STRATÉGIÁBAN dr.balogh László MMESZ elnöke mmesz11@gmail.com MET ENERGIA FÓRUM 2011.06.8-9. BALATONALMÁDI BEMUTATKOZUNK

Részletesebben

A zöldgazdaság-fejlesztés lehetőségei

A zöldgazdaság-fejlesztés lehetőségei A zöldgazdaság-fejlesztés lehetőségei dr. Nemes Csaba főosztályvezető Zöldgazdaság Fejlesztési Főosztály Budapest, 2015. Október 15. Az előadás tartalma I. A klíma- és energiapolitika stratégiai keretrendszere

Részletesebben

Tapasztalatok és tervek a pécsi erőműben

Tapasztalatok és tervek a pécsi erőműben Tapasztalatok és tervek a pécsi erőműben Péterffy Attila erőmű üzletág-vezető ERŐMŰ FÓRUM 2012. március 22-23. Balatonalmádi Tartalom 1. Bemutatkozás 1.1 Tulajdonosi háttér 1.2 A pécsi erőmű 2. Tapasztalatok

Részletesebben

Megújuló energia források magyarországi felhasználása, energiatakarékossági helyzetkép

Megújuló energia források magyarországi felhasználása, energiatakarékossági helyzetkép Megújuló energia források magyarországi felhasználása, energiatakarékossági helyzetkép Bohoczky Ferenc vezeto fotanácsos Gazdasági és Közlekedési Minisztérium Megújuló energiaforrások szükségessége Magyar

Részletesebben

Aktuális kutatási trendek a villamos energetikában

Aktuális kutatási trendek a villamos energetikában Aktuális kutatási trendek a villamos energetikában Prof. Dr. Krómer István 1 Tartalom - Bevezető megjegyzések - Általános tendenciák - Fő fejlesztési területek villamos energia termelés megújuló energiaforrások

Részletesebben

A JÖVŐ ENERGIÁJA MEGÚJULÓ ENERGIA

A JÖVŐ ENERGIÁJA MEGÚJULÓ ENERGIA PANNON PELLET Kft. A JÖVŐ ENERGIÁJA MEGÚJULÓ ENERGIA PUSZTAMAGYARÓD 2008-04-04 MEGÚJULÓ-ENERGIA POLITIKA, FEJLESZTÉSI IRÁNYOK ÉS TÁMOGATÁSI LEHETŐSÉGEK Dr. Németh Imre államtitkár Miniszterelnöki Hivatal

Részletesebben

Villamos hálózati csatlakozás lehetőségei itthon, és az EU-ban

Villamos hálózati csatlakozás lehetőségei itthon, és az EU-ban Villamos hálózati csatlakozás lehetőségei itthon, és az EU-ban Molnár Ágnes Mannvit Budapest Regionális Workshop Climate Action and renewable package Az Európai Parlament 2009-ben elfogadta a megújuló

Részletesebben

A BIZOTTSÁG KÖZLEMÉNYE AZ EURÓPAI PARLAMENTNEK ÉS A TANÁCSNAK. Megújuló energia: A 2020-ra szóló célkitűzés teljesítése terén tett előrehaladás

A BIZOTTSÁG KÖZLEMÉNYE AZ EURÓPAI PARLAMENTNEK ÉS A TANÁCSNAK. Megújuló energia: A 2020-ra szóló célkitűzés teljesítése terén tett előrehaladás HU HU HU EURÓPAI BIZOTTSÁG Brüsszel, 2011.1.31. COM(2011) 31 végleges A BIZOTTSÁG KÖZLEMÉNYE AZ EURÓPAI PARLAMENTNEK ÉS A TANÁCSNAK Megújuló energia: A 2020-ra szóló célkitűzés teljesítése terén tett előrehaladás

Részletesebben

EGS Magyarországon. Kovács Péter Ügyvezető igazgató Budapest, 2011. június 16.

EGS Magyarországon. Kovács Péter Ügyvezető igazgató Budapest, 2011. június 16. 2 0 1 1 EGS Magyarországon Kovács Péter Ügyvezető igazgató Budapest, 2011. június 16. TARTALOM Geotermális energia felhasználási lehetőségek Geotermális villamos erőmű és a NER300 program 2 I. RÉSZ Geotermális

Részletesebben

Az önkormányzati energiagazdálkodás néhány esete Dr. Éri Vilma Éghajlatváltozás, energiatakarékosság, környezetvédelem és kármentesítés VIII. Környezetvédelmi Konferencia Dunaújváros, 2006. június 6. Amiről

Részletesebben

Ajkai Mechatronikai és Járműipari Klaszter Energetikai Stratégiája 2010. December 8.

Ajkai Mechatronikai és Járműipari Klaszter Energetikai Stratégiája 2010. December 8. Ajkai Mechatronikai és Járműipari Klaszter Energetikai Stratégiája 2010. December 8. Nagy István épületenergetikai szakértő T: +36-20-9519904 info@adaptiv.eu A projekt az Európai Unió támogatásával, az

Részletesebben

A hazai beszállító ipar esélyeinek javítása innovációval a megújuló energiatermelés területén

A hazai beszállító ipar esélyeinek javítása innovációval a megújuló energiatermelés területén A hazai beszállító ipar esélyeinek javítása innovációval a megújuló energiatermelés területén Lontay Zoltán irodavezető, GEA EGI Zrt. KÖZÖS CÉL: A VALÓDI INNOVÁCIÓ Direct-Line Kft., Dunaharszti, 2011.

Részletesebben

A Mátrai Erőmű ZRt. Ipari parkjának bemutatása

A Mátrai Erőmű ZRt. Ipari parkjának bemutatása A Mátrai Erőmű ZRt. Ipari parkjának bemutatása Ipari szimbiózis workshop Orosz Zoltán 2014.04.15. 1 A Mátrai Erőmű ZRt. vállalati profilja Telephely Mutatók Tulajdonosi struktúra Beépített teljesítm. Értékesített

Részletesebben

Towards the optimal energy mix for Hungary. 2013. október 01. EWEA Workshop. Dr. Hoffmann László Elnök. Balogh Antal Tudományos munkatárs

Towards the optimal energy mix for Hungary. 2013. október 01. EWEA Workshop. Dr. Hoffmann László Elnök. Balogh Antal Tudományos munkatárs Towards the optimal energy mix for Hungary 2013. október 01. EWEA Workshop Dr. Hoffmann László Elnök Balogh Antal Tudományos munkatárs A Magyarországi szélerőmű-kapacitásaink: - ~330 MW üzemben (mind 2006-os

Részletesebben

energetikai fejlesztései

energetikai fejlesztései Miskolc város v energetikai fejlesztései sei 2015. 09. 04. Kókai Péter MIHŐ Miskolci Hőszolgáltató Kft. Célok A város levegőminőségének javítása Helyi adottságok kihasználása Miskolc város v energiastratégi

Részletesebben

A Nemzeti Energiastratégia keretében készülő Távhőfejlesztési Cselekvési Terv bemutatása

A Nemzeti Energiastratégia keretében készülő Távhőfejlesztési Cselekvési Terv bemutatása A Nemzeti Energiastratégia keretében készülő Távhőfejlesztési Cselekvési Terv bemutatása Dr. Toldi Ottó főosztályvezető helyettes Klímaügyi-, és Energiapolitikai Államtitkárság Nemzeti Fejlesztési Minisztérium

Részletesebben

HŐENERGIA HELYBEN. Célok és lehetőségek. Fűtsünk kevesebbet, olcsóbban, hazai energiával!

HŐENERGIA HELYBEN. Célok és lehetőségek. Fűtsünk kevesebbet, olcsóbban, hazai energiával! HŐENERGIA HELYBEN Célok és lehetőségek Fűtsünk kevesebbet, olcsóbban, hazai energiával! Hazánk hőellátó energiahordozó struktúrája ma (EurObserv ER 2013): Földgáz 340 PJ (9,3 milliárd m3) Geotermia 4,5

Részletesebben

Települések hőellátása helyi energiával

Települések hőellátása helyi energiával MTA KÖTEB Jövőnk a Földön Albizottság MTA Energetikai Bizottság, Hőellátás Albizottság, a MMK, MATÁSZSZ és MTT közreműködésével szervezett konferencia Települések hőellátása helyi energiával A konferencia

Részletesebben

MAGYAR KAPCSOLT ENERGIA TÁRSASÁG COGEN HUNGARY. A biogáz hasznosítás helyzete Közép- Európában és hazánkban Mármarosi István, MKET elnökségi tag

MAGYAR KAPCSOLT ENERGIA TÁRSASÁG COGEN HUNGARY. A biogáz hasznosítás helyzete Közép- Európában és hazánkban Mármarosi István, MKET elnökségi tag ? A biogáz hasznosítás helyzete Közép- Európában és hazánkban Mármarosi István, MKET elnökségi tag Tartalom MAGYAR KAPCSOLT ENERGIA TÁRSASÁG A biogáz és a fosszilis energiahordozók A biogáz felhasználásának

Részletesebben

Jelentés az Európai Bizottság részéremagyarország indikatív nemzeti energiahatékonysági célkitűzéséről a 2020. évre vonatkozóan

Jelentés az Európai Bizottság részéremagyarország indikatív nemzeti energiahatékonysági célkitűzéséről a 2020. évre vonatkozóan Jelentés az Európai Bizottság részéremagyarország indikatív nemzeti energiahatékonysági célkitűzéséről a 2020. évre vonatkozóan I. Bevezetés E dokumentum célja az Európai Parlament és a Tanács 2012/27/EU

Részletesebben

KF-II-6.8. Mit nevezünk pirolízisnek és milyen éghető gázok keletkeznek?

KF-II-6.8. Mit nevezünk pirolízisnek és milyen éghető gázok keletkeznek? Körny. Fiz. 201. november 28. Név: TTK BSc, AKORN16 1 K-II-2.9. Mik egy fűtőrendszer tagjai? Mi az energetikai hatásfoka? 2 KF-II-6.. Mit nevezünk égésnek és milyen gázok keletkezhetnek? 4 KF-II-6.8. Mit

Részletesebben

NEMZETI CSELEKVÉSI TERV 2010 Változatok és konzekvenciák Gondolat ébresztő az új helyzetben

NEMZETI CSELEKVÉSI TERV 2010 Változatok és konzekvenciák Gondolat ébresztő az új helyzetben NEMZETI CSELEKVÉSI TERV 2010 Változatok és konzekvenciák Gondolat ébresztő az új helyzetben Balogh László MMESZ elnöke mmesz11@gmail.com 2010. SZEPT. 23. Szeged REMEK BEMUTATKOZUNK MAGYAR MEGÚJULÓ ENERGIA

Részletesebben

Településenergetikai fejlesztési lehetőségek az EU 2014-2020 időszakában

Településenergetikai fejlesztési lehetőségek az EU 2014-2020 időszakában Településenergetikai fejlesztési lehetőségek az EU 2014-2020 időszakában CONSTRUMA 33. Nemzetközi Építőipari Szakkiállítás 2014. április 2-6. Előadó: Hizó Ferenc Zöldgazdaság fejlesztésért, klímapolitikáért

Részletesebben

ELSŐ SZALMATÜZELÉSŰ ERŐMŰ SZERENCS BHD

ELSŐ SZALMATÜZELÉSŰ ERŐMŰ SZERENCS BHD ELSŐ SZALMATÜZEL ZELÉSŰ ERŐMŰ SZERENCS BHD HőerH erőmű Zrt. http:// //www.bhd.hu info@bhd bhd.hu 1 ELŐZM ZMÉNYEK A fosszilis készletek kimerülése Globális felmelegedés: CO 2, CH 4,... kibocsátás Magyarország

Részletesebben

Tartalom. 2010.02.27. Szkeptikus Konferencia

Tartalom. 2010.02.27. Szkeptikus Konferencia Bajsz József Tartalom Villamos energia: trendek, prognózisok Az energia ipar kihívásai Az energiatakarékosságról Miért atomenergia? Tervek a világban, a szomszédban és itthon 2 EU-27 villamos energia termelése

Részletesebben

Havasi Patrícia Energia Központ. Szolnok, 2011. április 14.

Havasi Patrícia Energia Központ. Szolnok, 2011. április 14. Az Új Széchenyi Terv Zöldgazdaság-fejlesztési Programjához kapcsolódó megújuló energiaforrást támogató pályázati lehetőségek Havasi Patrícia Energia Központ Szolnok, 2011. április 14. Zöldgazdaság-fejlesztési

Részletesebben

Újrahasznosítási logisztika. 1. Bevezetés az újrahasznosításba

Újrahasznosítási logisztika. 1. Bevezetés az újrahasznosításba Újrahasznosítási logisztika 1. Bevezetés az újrahasznosításba Nyílt láncú gazdaság Termelési szektor Természeti erőforrások Fogyasztók Zárt láncú gazdaság Termelési szektor Természeti erőforrások Fogyasztók

Részletesebben

Energia Műhely 3. A hazai napkollektoros szakma jelene és jövője. Körkép a megújuló energiák alkalmazásáról. Varga Pál elnök

Energia Műhely 3. A hazai napkollektoros szakma jelene és jövője. Körkép a megújuló energiák alkalmazásáról. Varga Pál elnök Energia Műhely 3. Körkép a megújuló energiák alkalmazásáról A hazai napkollektoros szakma jelene és jövője Magyar Épületgépészek Napenergia Szövetsége Varga Pál elnök Az Európai napkollektoros piac benne

Részletesebben

Energia alternatívák a kisvárosokban.

Energia alternatívák a kisvárosokban. A MAGYAR REGIONÁLIS TUDOMÁNYI TÁRSASÁG XII. VÁNDORGYŰLÉSE Helyi fejlesztés Veszprém, 2014. november 27 28. Energia alternatívák a kisvárosokban. A Dél-dunántúli régió megújuló energiaforrásainak hasznosítása

Részletesebben

A NAPENERGIA HASZNOSÍTÁSÁNAK HAZAI LEHETŐSÉGEI. Farkas István, DSc egyetemi tanár, intézetigazgató E-mail: Farkas.Istvan@gek.szie.

A NAPENERGIA HASZNOSÍTÁSÁNAK HAZAI LEHETŐSÉGEI. Farkas István, DSc egyetemi tanár, intézetigazgató E-mail: Farkas.Istvan@gek.szie. SZENT ISTVÁN EGYETEM A NAPENERGIA HASZNOSÍTÁSÁNAK HAZAI LEHETŐSÉGEI MTA Budapest, 2011. november 9. GÉPÉSZMÉRNÖKI KAR KÖRNYEZETIPARI RENDSZEREK INTÉZET Fizika és Folyamatirányítási Tanszék 2103 Gödöllő

Részletesebben

ENERGIAFELHASZNÁLÁSI BESZÁMOLÓ (Közlekedési szektor) Adatszolgáltatás száma OSAP 1335/C Adatszolgáltatás időszaka

ENERGIAFELHASZNÁLÁSI BESZÁMOLÓ (Közlekedési szektor) Adatszolgáltatás száma OSAP 1335/C Adatszolgáltatás időszaka Adatszolgáltatásra vonatkozó adatai Adatszolgáltatás címe ENERGIAFELHASZNÁLÁSI BESZÁMOLÓ (Közlekedési szektor) Adatszolgáltatás száma OSAP 1335/C Adatszolgáltatás időszaka 2014. Év Az adatszolgáltatás

Részletesebben

Elemzés a megújuló energia ágazatról - Visegrádi négyek és Románia 2012

Elemzés a megújuló energia ágazatról - Visegrádi négyek és Románia 2012 Elemzés a megújuló energia ágazatról - Visegrádi négyek és Románia 2012 2012. január info@trinitinfo.hu www.trinitinfo.hu Tartalomjegyzék 1. Vezetői összefoglaló...5 2. A megújuló energiaforrások helyzete

Részletesebben

MÉGNAP A hazai napkollektoros szakma jelene és jövıje

MÉGNAP A hazai napkollektoros szakma jelene és jövıje MÉGNAP A hazai napkollektoros szakma jelene és jövıje A magyarországi napkollektoros piac jelene és lehetséges jövője 2020-ig, az európai tendenciák és a hazai támogatáspolitika tükrében Varga Pál elnök

Részletesebben