1. előadás Matematikai és nyelvi alapok, Szintaktikai vizsgálat

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. előadás Matematikai és nyelvi alapok, Szintaktikai vizsgálat"

Átírás

1 1. előadás Matematikai és nyelvi alapok, Dr. Kallós Gábor Tartalom Matematikai alapfogalmak Halmazok Relációk Függvények Homomorfizmusok Nyelvi alapfogalmak Ábécé, szavak, nyelvek Műveletek szavakkal és nyelvekkel Kifejezés Köznapi nyelv Programozási nyelv 2

2 Matematikai alapfogalmak Halmazelmélet Halmaz és halmazhoz való hozzátartozás: nem definiált alapfogalom Tudjuk: a B és a B közül csak pontosan az egyik teljesül Halmaz megadási módja Kapcsos zárójelben felsoroljuk az elemeit Megadjuk az elemeket jellemző tulajdonságo(ka)t (a módszer alkalmazhatóságát a részhalmaz axióma garantálja) { h a h elem T tulajdonságú } Példa: { x R 0 < x < 1} A halmazelmélet (pontos matematikai) felépítése: axiómák, definíciók, állítások, tételek Meghatározottsági axióma Legyenek A és B halmazok. A akkor és csak akkor egyenlő B-vel, ha minden x A esetén x B, és minden y B esetén y A. Azaz: elemeik azonosak Definíció Legyenek A és B halmazok. A része B-nek, ha minden x A-ra x B is teljesül (jelölés: A B). Tétel (halmazok egyenlősége): A = B, ha A B és B A Üres halmaz axióma Létezik olyan halmaz, amelynek nincs eleme. Ez az üres halmaz, jelölése. Állítás: Pontosan egy ilyen halmaz létezik 3 Matematikai alapfogalmak Halmazelmélet (folyt.) Definíciók (Legyenek A és B halmazok) Unió, metszet, különbséghalmaz értelmezése (tudjuk) Jelölések: A B, A B, A \ B Az unió axiómából Disztributivitási tulajdonság, De-Morgan azonosságok, egyéb összefüggések (igazolhatók) A és B diszjunkt, ha nincs közös elemük Komplementer halmaz (H alaphalmazra vonatkozóan) H \ A, Jelölés: Hatványhalmaz axióma Legyen A halmaz. Létezik olyan halmaz, amely tartalmazza A minden egyes részhalmazát. Ezt a halmazt A hatványhalmazának nevezzük, P(A)-val jelöljük Állítás: P(A) elemszáma 2 A (ez indukcióval igazolható) Definíció: Legyenek A és B halmazok. A és B direkt (vagy Descartes-féle) szorzata az összes olyan rendezett (x, y) számpárból álló halmaz, amelyeknél x A és y B. A direkt szorzat jele:. A B = {(x, y) x A és y B} (Rendezett pár definíció) Általánosítható n darab halmazra Feladat: Soroljuk fel A B elemeit, ahol A = {1, 2} és B = {3, 4, 5} 4

3 Matematikai alapfogalmak Relációk Definíció: Legyenek M 1, M 2,, M n tetszőleges halmazok. Egy ρ M 1 M 2 M n halmazt relációnak nevezünk (rendezett szám n-es) Megj.: Az üres halmaz is reláció (mert nincs olyan eleme, ami nem rendezett szám n-es) Ha n = 2, akkor ρ-t bináris relációnak nevezzük Elemei rendezett párok, jelölés: a, b vagy (a, b) Itt már beszélhetünk értelmezési tartományról és értékkészletről Legyen a A és b B egy ρ A B bináris reláció esetén. Ha ekkor a, b ρ teljesül, akkor azt mondjuk, hogy aρrelációban van b-vel. Jelölések: ρ(a, b), vagy ρ a, b, vagy aρb. Definíció: Legyenek ρ A B 1 és σ B 2 C bináris relációk. Két bináris reláció kompozíciójának (szorzatának) nevezzük azt a ρ σrelációt, ahol ρ σ A C, és ρ σ= { a, c b B 1 B 2 úgy, hogy a, b ρés b, c σ}. A kompozícióképzés nem kommutatív művelet Feladat: Legyen ρ = { n, n + 1 n N} és σ = { n, 3n n N}. Adjuk meg a ρ σés σ ρ relációkat! Egy ρ M M reláció k-adik (k 0) hatványát a következő módon értelmezzük: ρ 0 = { (a, a) a M}; ρ k + 1 = ρ k ρ, ha k 1 Nyilván ρ 1 = ρ 5 Matematikai alapfogalmak Relációk (folyt.) Definíciók k Egy ρ M M reláció tranzitív lezártja ρ = ρ U ρ U ρ U... = U ρ Egy ρ M M reláció reflexív, tranzitív lezártjaρ* = ρ 0 ρ + k= 1 ρ + mindig tranzitív, és ez a legszűkebb olyan reláció, amely tranzitív, és tartalmazza ρ-t ρ* reflexív és tranzitív, és a legszűkebb az ilyen tulajdonságúρ-t tartalmazó relációk közül Definíció: Egy ρ M M (homogén) bináris reláció reflexív, ha minden x M-re fennáll xρx; szimmetrikus, ha minden x, y M-re xρy yρx; antiszimmetrikus, ha minden x, y M-re xρyés yρx x=y; tranzitív, ha minden x, y, z M-re xρyés yρz xρz (Megj.: A homogén reláció meghatározása az, hogy értékkészlete része az értelmezési tartományának, de sokszor úgy használják, hogy a két halmaz megegyezik) Speciális relációk Definíció: A ρ (homogén) bináris reláció ekvivalencia-reláció, ha reflexív, szimm. és tranzitív Ekvivalencia-reláció példák: egyenesek párhuzamossága, szakaszok egybevágósága, számhalmazok egyenlősége Igazolható, hogy minden ekvivalencia-reláció M-et páronként diszjunkt, nem üres részhalmazokra bontja fel (ekvivalencia-osztályok), és a részhalmazokból reprezentáns elem választható (Egy A halmazrendszer az A halmaz osztályfelbontása, ha A elemeinek uniója A-t adja, és tetszőleges két A-beli elemre teljesül, hogy ha nem diszjunktak, akkor megegyeznek) Reprezentáns példák: egyenesek párhuzamossága irány fogalom; szakaszok egybevágósága hosszúság fogalom 6

4 Matematikai alapfogalmak Speciális relációk (folyt.) Definíció: A ρ (homogén) bináris reláció rendezési reláció, ha reflexív, antiszimmetrikus és tranzitív Ekkor (M, ρ)-t rendezett halmaznak nevezzük olyan (rendezett) pár, amelynek első komponense egy nem üres halmaz, második komponense pedig egy, a halmazon értelmezett rendezési reláció Rendezett halmaz példák: (N, ), és hasonlóan (Z, ), (Q, ), (R, ); (P(H), ) ahol H tetszőleges halmaz, részhalmaz tulajdonsággal; (N, ), (Z, ) itt az oszthatóság De: (N, <) és (Z, <) nem rendezett halmaz, mert < nem reflexív! Definíció: Egy f reláció függvény, ha minden x, y és x, z f esetén y = z Azaz ha nincs két olyan eleme, hogy az első komponensek megegyeznek, a másodikak pedig különbözők Jelölések függvény esetén: f(a, b) vagy a f b helyett b = f(a) Függvényekkel kapcsolatos fontos fogalmak (itt eml., összefoglaló módon, részl. nélkül) Értelmezési tartomány (D f ), értékkészlet (R f ), leképezés, helyettesítési érték (x-hez hozzárendelt elem) Függvényképző eljárások: függvény leszűkítése, függvények kompozíciója, függvény invertálása (invertálható kell, hogy legyen a függvény) Képhalmaz, X D f halmaz képe, Y R f halmaz ősképe Legyen f: A B. Azt mondjuk, hogy f az A-t B-be leképező injekció, ha f invertálható; f az A-t B-re leképező szuperjekció (szürjekció), ha R f = B; f az A és B közti bijekció, ha injekció és szuperjekció is 7 Matematikai alapfogalmak Definíció: Az (A, F) párt algebrának nevezzük, ahol A nem üres halmaz, F pedig az A- n értelmezett műveletek halmaza Példák algebrákra: (N, +), (N, {+, }) Definíció: Legyen (A, ) és (B, ) két algebra. Egy h: A B leképezést homomorfizmusnak nevezünk, ha injektív (monomorfizmus), azaz az értelmezési tartomány minden eleméhez az értékkészletnek pontosan egy eleme van hozzárendelve; és művelettartó, azaz minden a, b A esetén érvényes, hogy h(a b) = h(a) h(b). Ekkor A-t és h(a)-t homomorf(ak)nak nevezzük. A homomorfizmusok különös jelentősége az, hogy a definíciós halmaz struktúrájának típusát a képhalmazra viszik át (pl. csoportok) Egyes speciális struktúrák közötti homomorfizmusok (az algebrákon túl): csoportok, gyűrűk, vektorterek (köztük lineáris leképezések), rendezett halmazok Ha a h: A B függvény kölcsönösen egyértelmű (bijektív), és inverze is homomorfizmus, akkor izomorfizmusról beszélünk Az izomorf struktúrák algebrai nézőpont szerint megegyeznek Egyéb további speciális homomorfizmusok: Ha a leképezés szürjektív (epimorfizmus), illetve ha a leképzésnél B A (endomorfizmus) (Homomorf és izomorf struktúrákkal részletesen foglalkozunk még a számtud. slide-okon is) Félcsoport, monoid, csoport definíciója (számtud. slide-ok) 8

5 Nyelvi alapfogalmak Ábécé, szó Definíciók Ábécé: szimbólumok tetszőleges, nem üres, véges halmaza; jelölés: V (vagy Ʃ) A szimbólumokról feltesszük, hogy megkülönböztethetők és különböznek egymástól Szó (mondat): V elemeiből képzett sorozat, azaz a 1 a k, ahol k 0, és a 1,, a k V Üresszó (null szó): k = 0 eset, jele λ (néha ε) Összes szó halmaza V felett (benne az üres szó is); jelölés: V* Ha az üresszót nem engedjük meg: V + = V* {λ} (Megj.: Nem üres V halmaz esetén V* megszámlálhatóan végtelen) Szó hossza (V felett): szimbólumok száma benne, jelölés: w (w szóra) Rekurzív definíció is lehetséges Itt λ = 0 Példa Legyen Ʃ = {a, b} Néhány szóʃfelett: a, b, ab, bb, baa, aba, abba, baba, (Hány szót tudunk felsorolni?) Szavak hossza Ʃ felett: a = 1, ab = 2, Ʃ* = {λ, a, b, aa, ab, ba, bb, aaa, aab, aba, } (Milyen rendezést célszerű itt alkalmazni? Hány darab n hosszú szót tudunk megadni?) 9 Nyelvi alapfogalmak Ábécé, szó (folyt.) Definíció Szavak egyenlősége: csak ha betűről-betűre megegyeznek, azaz valamely V*-beli p = a 1 a m és q = b 1 b n szavakat pontosan akkor tekintünk egyenlőknek, ha m = n és i = 1,, n-re a i = b i Tréfás példa Legyen V = {1, 2, +}. Ekkor V*-ban (persze nem matematikai értelemben ) fennáll, hogy 1+1 2, mivel az 1+1 szó nem egyezik meg betűről-betűre a 2 szóval. Definíció Szavak konkatenációja (egymás után írás, összefűzés, szorzás ): u és v V*-beli szavakra uv V* Érvényes: uv = u + v u n : az u szó n-szer egymás után írva (hatványozás) Itt is megadható rekurzív definíció u V*-ra u 0 = λ Igaz továbbá: xλ = λx = x De: a konkatenáció általában nem kommutatív! (azaz általában uv vu) Példa Legyen Ʃ = {a, b}. Ekkor az abbaʃ*-beli szó baba szóval való szorzata abbababa, ami nem egyezik meg a babaabba szóval. 10

6 Nyelvi alapfogalmak: szóműveletek Ábécé, szó (folyt.) Igazolható, hogy V* a konkatenáció művelettel egységelemes félcsoportot, monoidot alkot A művelet asszociatív, és az üresszó egység Definíció Legyenek x és w V*-beli szavak. Azt mondjuk, hogy x prefixe (kezdőszelete) w-nek, ha van olyan y V*-beli szó, hogy w = xy. Ha x, y λ, akkor valódi prefixről beszélünk Valódi prefixre: x = k a prefix hossza Hasonlóan értelmezhető egy szó szuffixe (végződése) Definíció Legyenek x és w V*-beli szavak. Azt mondjuk, hogy x részszava w-nek, ha van olyan y, z V*, hogy w = yxz (itt y és z lehet üresszó). Valódi részszó is hasonlóan értelmezhető Használatos az alszó, kezdő alszó, és befejező alszó megnevezés is Feladat: Adjunk meg részszót, prefixet és szuffixet az abbababa szónál! Hány különböző prefix lehetséges? (Szó tükörképe is definiálható, jelölés: w 1 ) 11 Nyelvi alapfogalmak Nyelv (vagy: V feletti nyelv, formális nyelv): V* tetszőleges L részhalmaza; azaz L V* Adott formális elem adott nyelvbe való tartozása egyértelműen eldönthető Egy nyelv lehet üres, véges vagy végtelen Üres nyelv: L = Csak az üres szót tartalmazó nyelv: L = {λ} (ennek van egy eleme) Egyszerű alapnyelvek: L = {a} típusúak A véges nyelvek elvileg elemeik felsorolásával megadhatók Teljes nyelv: L = V* (minden lehetséges szót tartalmaz) Megjegyzések Egy adott Ʃ ábécé feletti összes lehetséges nyelvek halmaza a Ʃ* összes részhalmazából alkotott halmaz, vagyis Ʃ* hatványhalmaza. Mivel Ʃ* számossága megszámlálhatóan végtelen, így egy véges, de nem üres Ʃ ábécé felett kontinuum sok (különböző) nyelv létezik. A hagyományos nyelvek (pl. magyar nyelv) nem tekinthetők formális nyelvnek abban az értelemben, hogy a nyelv halmaza nem tiszta, nem véglegesen lezárt, ill. részben szubjektív is; továbbá ugyanazon szónak lehet több jelentése Példa: Word helyesírás ellenőrzője (esettanulmányok) Feladat: Nézzük meg, hogy egyes, köznapinak tekinthető szavakat nem ismer fel, máskor számunkra teljesen magyartalan, ismeretlen szavakat elfogad 12

7 Nyelvi alapfogalmak Példa: nyelvek V = {0, 1,, 9} felett A magyar történelmi évszámok halmaza ekkor egy véges nyelv V felett Lehet persze szubjektív, de biztosan véges A páratlan számok halmaza (tízes számrendszer) egy V feletti végtelen nyelv Példa: néhány nyelv Ʃ = {a, b} felett Véges nyelvek {λ, a, aa, aab} {x Ʃ* x 7} Végtelen nyelvek {x Ʃ* x páratlan} {x Ʃ* x prím} {λ, ab, aabb, aaabbb, } = {a n b n n 0} Adjunk meg néhány további véges és végtelen nyelv példát! (Legyen például V = {0, 1} vagy V = {a, b}) (Megj.: Szükségünk lesz olyan eszközökre, amelyekkel az eddigieknél lényegesen bonyolultabb nyelveket is megadhatunk generatív nyelvtannal történő megadás, lásd később) 13 Műveletek nyelvekkel A nyelvek halmazok és jelsorozatok is egyben. Így a rajtuk értelmezett műveletek is kétféle típusúak. Boole műveletek (,, \, ) Reguláris műveletek (+,, *) Tetszőleges L 1, L 2 V* nyelvek esetén értelmezhető a nyelvek (mint halmazok) uniója, metszete, különbsége, illetve L 1 -nek a V*-ra vonatkozó komplementere, és ezek szintén V*-beliek A jelölések a megszokottak (,, \, ) Egy formális definíció (a többi hasonlóan) L 1 L 2 = {p p L 1 és p L 2 } A komplementer képzésnél nagyon vigyázni kell az alaphalmaz megadására (!) Példa: Az L = {λ, a, aa, aab} nyelv komplementere teljesen más a Ʃ = {a, b}, illetve a Ʃ' = {a, b, c} felett A konkatenációt is értelmezzük nyelvekre (ez a művelet halmazokra nincs értelmezve, itt a jelsorozat tulajdonság él!) L 1 L 2 = {uv u L 1, v L 2 } Általában L 1 L 2 L 2 L 1 Egy L 1 L 2 -beli szó nem feltétlenül csak egyféle módon bontható fel L 1 -beli és L 2 -beli elemekre A konkatenáció segítségével egy nyelv önmagával vett konkatenáltját (szorzatát) is értelmezhetjük 14

8 Műveletek nyelvekkel Nyelv i-edik hatványa L k = LL L Itt L 0 = {λ} (megállapodás szerint), L 1 = L Itt is lehetséges rekurzív definíció Ugyanúgy mint szavakra, használatos V k = VV V is (Az ábécé is nyelv, hiszen V V*. Így az ábécére is értelmezett minden nyelvművelet, esetleg triviális eredménnyel.) Kleene-iteráció, a konkatenáció lezárása L* = {λ} L LL LLL (Kleene-csillag), vagy illetve: L + = L LL LLL (Kleene-plusz) =U =0 i Azaz: az L*-beli elemek azok a jelsorozatok, amelyeket fel lehet úgy darabolni, hogy minden darab a nyelv mondata legyen (a darabok számára nincs megkötés) Itt L + = L* is előfordulhat, pontosan akkor, ha λ L Hasonlóan: i V* = {λ} V VV VVV, vagy V V (Kérdés: Konzekvens ez az előző definícióval?) =U =0 i Természetes kérdés: zártak-e különböző nyelvosztályok ezekre a műveletekre? Az L nyelvosztály zárt a műveletre, ha tetszőleges L 1, L 2 L-re mindig L 1 L 2 Lis teljesül (Hasonlóan definiálható az egyváltozós műveletre való zártság is) Később az ilyen típusú vizsgálatok fontosak lesznek L i L 15 Műveletek nyelvekkel Legyen V egy rögzített ábécé. Ekkor tetszőleges L, L 1, L 2, L 3 V* esetén érvényesek a következő összefüggések: L 1 L 2 = L 2 L 1 (az unió kommutatív) (L 1 L 2 ) L 3 = L 1 (L 2 L 3 ) (az unió asszociatív) L L = L (az unió idempotens) L = L = L (az unióra nézve létezik egységelem, a üres nyelv) L 1 L 2 = L 2 L 1 (a metszet kommutatív) (L 1 L 2 ) L 3 = L 1 (L 2 L 3 ) (a metszet asszociatív) L L= L (a metszet idempotens) L V* = V* L= L (a metszetre nézve létezik egységelem, a V* univerzális nyelv) (L 1 L 2 )L 3 = L 1 (L 2 L 3 ) (a konkatenáció asszociatív) L{λ} = {λ}l = L (a konkatenációra nézve létezik egységelem, és ez {λ}) L = L = (a konkatenációra nézve létezik nullelem, és ez ; nem lehet szópárokat készíteni) L + = LL* = L*L L* = L + {λ} (L*)* = L* (az iteráció idempotens) (L + ) + = L + (a + művelet idempotens) 16

9 Műveletek nyelvekkel Nyelvekre vonatkozó összefüggések (folyt.) (L*) + = (L + )* = L* L 1 = L 1 (a komplementerképzés involúciós tulajdonságú) Megjegyzések A műveletek asszociativitása miatt általában nem is szoktuk zárójelekkel jelezni a(z elméleti) sorrendjüket További zárójelek hagyhatók el az egyértelmű precedencia következtében, sorrend: az egyargumentumú műveletek (komplementer, Kleene-csillag és Kleene-plusz) precedenciája nagyobb, mint a kétargumentumúaké; a konkatenációé nagyobb, mint az unióé és metszeté Disztributivitási tulajdonságok is megfogalmazhatók Feladat: hagyjuk el a felesleges zárójeleket a következő kifejezésekből, ill. hozzuk egyszerűbb alakra a kifejezéseket (L 1 *) L 2 ((L 1 L 2 ) L 3 ) (L*L) (L L) ( L L) Feladat (önálló gyakorlásra) Szemléltessük a fenti összefüggéseket konkrét nyelv példákkal (fontosabb esetek)! 17 Műveletek nyelvekkel Egyszerű nyelvműveleti példák {ab} {cd} = {ab, cd} {a, bx}{c, d} = {ac, ad, bxc, bxd} {c, d}{a, bx} = {ca, da, cbx, dbx} {ab} 3 = {ababab} {ab} + = {ab, abab, ababab, } {ab}* = {λ, ab, abab, ababab, } Nyelvműveletek feladatok (D. P ) Legyen V = {a, b, c}, L 1 = {a, c, bb, aba}, L 2 = {a, abba, baba, caba, abbaba, babaabba}. Adjuk meg az L 1 L 2, L 1 L 2, L 1 L 2, L 1 L 1 halmazokat. Adjunk példát olyan V ábécé feletti L 1 és L 2 nyelvekre, amelyekre L 1 L 2 = L 2 L 1. (Próbáljunk nem triviális megoldást is megadni.) Adottak L 1 és L 2 véges nyelvek V ábécé felett úgy, hogy L 1 = n és L 2 = m. Mennyi lehet a számossága az L 1 L 2, L 1 L 2 és L 1 L 2 nyelveknek? Adjunk meg alsó és felső korlátot, továbbá példákat is. Igazoljuk vagy cáfoljuk, hogy (L 1 L 2 )* = (L 1 )* (L 2 )* Segítség: az állítás hamis, például L 1 = {a}, L 2 = {b}-re látható Mivel egyenlő L 2, ha L = {a n b n n > 0} 18

10 Példa: Egy aritmetikai kifejezés szintaxisának megadása (Minden programozási nyelvben előfordul) Adott egy rögzített elemekből felépített kifejezés. Feladatunk eldönteni, hogy szintaktikusan helyes-e (nem ránézésre vagy megérzéssel, hanem algoritmussal). Ehhez formalizálni kell a rendszert! Milyen szimbólumok, számok, műveleti jelek szerepelhetnek a kifejezésben? Rögzítünk egy megfelelő halmazt (ebben az egyszerű példában): változók (A, B, C), konstansok (0, 1), műveleti jelek (+, ) és zárójelek Példa kifejezések: A + B C, AB ++ (C ) Milyen szabályok alapján épülhet fel a kifejezés a már rögzített szimbólumokból? Rekurzív definíció: a kifejezés állhat egy tagból, vagy lehet több tag összege; azaz a kifejezés lehet egy kifejezés és egy tag összege Nyilván definiálni kell majd a tagot is (és a többi részegységet is) Tömör és egyértelmű megfogalmazás kell! Formális leírás elemei kifejezés = kif., tag = tag, vagy művelet =, lehet = (vagy: ::=, Backus Naur jelölés) Kifejezés definíciója Így tehát kif. tag kif. + tag 19 Példa: Egy aritmetikai kifejezés szintaxisának megadása (folyt.) Tag definíciója Lehet egy tényezőből álló szorzat (faktor), vagy több tényező szorzata (szintén rekurzív definícióval) tag fakt. fakt. fakt. Faktor definíciója Lehet egy zárójelbe tett kifejezés, vagy változó, vagy konstans fakt. ( kif. ) vált. konst. A kifejezésből kaphatunk majd újra tagot Itt teljes zárójelezést használunk, ami esetleg egyébként elhagyható lenne, de ezt nem tudjuk könnyen formalizálni a prioritás kezelésére: lengyel-forma vagy valami hasonló eszköz kellene Változók és konstansok (ebben a példában) vált. A B C konst. 0 1 Azaz: aritmetikai kifejezésnek az A, B, és C változó jelekből, a 0 és 1 konstans jelekből, a + és műveleti jelekből a ( és ) csoportosító jelekből a kif. tag kif. + tag tag fakt. fakt. fakt. fakt. ( kif. ) vált. konst. vált. A B C konst. 0 1 szabályok alkalmazásával felépíthető jelsorozatokat (szavakat/mondatokat) nevezzük 20

11 Példa: Egy aritmetikai kifejezés szintaxisának megadása (folyt.) Hogyan építhető fel egy szó a fenti szabályok alkalmazásával? kif. -ből indulunk Egy jelsorozat (szó) esetén helyettesítsük a részegységek megnevezésére szolgáló szimbólumot az őt definiáló szintaktikai szabály jobb oldalának valamely lehetséges változatával (alternatíva) Helyettesítés (jelölés): A (B + 1) levezetése kif. tag fakt. fakt. fakt. ( kif. ) fakt. ( kif. + tag ) fakt. ( tag + tag ) fakt. ( fakt. + fakt. ) vált. ( fakt. + fakt. ) vált. ( vált. + konst. ) A ( vált. + konst. ) A (B + 1) Szintaktikailag hibás kifejezést nem tudunk így levezetni, például: + (B + 1), )B + 1( Ilyen következtetési mód: levezetés Persze a gyakorlatban bonyolultabb aritmetikai kifejezések jönnek elő (ez a példa nagyon egyszerű), de azok is ugyanilyen módon kezelhetők Szintaxis ezen megadási módja: generatív nyelvtannal való szintaxis megadás (Ez a leggyakoribb) 21 és generatív nyelvtanok (Eddigi tapasztalataink alapján ) Mit kell tartalmaznia egy generatív nyelvtan definíciójának? Azon szimbólumok (betűk) megadását, amelyekből a nyelvtannal definiálandó nyelv szavai állhatnak (terminális szimbólumok, nyelvi szimbólumok) Azon további szimbólumok megadását, amelyek nem szerepelnek (!) a nyelv szavaiban (mondataiban), de szükség van rájuk a szintaktikai szabályok megfogalmazásához (nemterminális szimbólumok, grammatikai szimbólumok) A szintaktikai (levezetési) szabályokat Azt a nemterminális szimbólumot (kezdő szimbólum), amelyből levezetés alkalmazásával a definiálandó nyelv valamennyi szavát megkapjuk A levezetés pontos definícióját Szokásos jelölés szimbólum = terminális szimbólum szimbólum = nemterminális szimbólum 22

12 Példa: Köznapi nyelv (leszűkített részhalmaz, minimagyar ) Szabályok mondat ::= alanyi rész állítmányi rész alanyi rész ::= főnévi rész határozó állítmányi rész ::= tárgyi rész igei rész főnévi rész ::= névelő jelzők főnév jelzők ::= jelző jelző jelzők tárgyi rész ::= főnévi rész t névelő ::= λ a az egy jelző ::= λ hideg meleg fehér fekete nagy kis főnév ::= kutya macska hús egér sajt tej víz határozó ::= λ nappal éjjel reggel este igei rész ::= eszik iszik Megjegyzések A szavak itt terminális szimbólumok (de most nem dőlten írtuk őket) A mondat végére írhatnánk pontot (de ekkor is gond lenne abból, hogy a nagybetűs kezdést nem tudnánk egyszerűen biztosítani Látható már most is, hogy nem tudunk minden valós nyelvtani szabályt alkalmazni (tárgyi rész: sajt, sajtot, víz, vizet, tej, tejet) 23 Példa: Minimagyar (folyt.) Levezetés példa mondat alanyi rész állítmányi rész főnévi rész határozó állítmányi rész névelő jelzők főnév határozó állítmányi rész a jelzők főnév határozó állítmányi rész a jelző jelzők főnév határozó állítmányi rész a nagy fehér főnév határozó állítmányi rész a nagy fehér kutya határozó állítmányi rész a nagy fehér kutya reggel állítmányi rész a nagy fehér kutya reggel tárgyi rész igei rész a nagy fehér kutya reggel főnévi rész t igei rész a nagy fehér kutya reggel névelő jelzők főnév t igei rész a nagy fehér kutya reggel jelző főnév t igei rész a nagy fehér kutya reggel meleg húst igei rész a nagy fehér kutya reggel meleg húst eszik Ez normális magyar mondat, de persze sok a mi szintaktikánk szerint helyes normális magyarul mégis szintaktikailag hibás mondatot is le tudunk így vezetni az fehér egér hideg sajtt eszik az kis fekete macska meleg tejt iszik Hasonlóan levezethető több, normális magyarul szemantikailag is támadható mondat a fehér tej macskat iszik És persze léteznek minimagyarul is szintaktikailag helytelen (levezethetetlen) mondatok hús kutya reggel fekete eszik víz az 24

13 Példa: Egy programozási nyelv szintaxisának megadása Szándékosan egyszerű programozási nyelvet választunk (PÉLDA) Kezdőszimbólum: program Szabályok program ut. lista. ut. lista ut. ut. ; ut. lista ut. ért. adó if ut. while ut. blokk ért. adó vált := kif. if ut. if reláció then ut. else ut. while ut. while reláció do ut. blokk begin ut. lista end reláció kif. relációjel kif. relációjel < > = kif. tag kif. + tag tag fakt. fakt. fakt. fakt. ( kif. ) vált. konst. vált. A B C konst. 0 1 Egy jelsorozat akkor és csak akkor szintaktikusan helyes PÉLDA nyelvű program, ha levezethető a program nemterminális szimbólumból a fenti szabályok alkalmazásával Feladat: Adjunk meg szintaktikusan helyes és helytelen PÉLDA nyelvű programot! 25 Egyszerű programok esetében (viszonylag) könnyű eldönteni, hogy szintaktikusan helyesek-e [A szintaktikusan helyesnek bizonyult kódokat utána még természetesen szemantikusan is elemezni kell! (Ezzel egyelőre nem foglalkozunk.) Időnként beépítenek bizonyos szemantikai ellenőrzést a szintaktikába, pl. szám és szám típusú szöveg összeadása, Excelben megengedett, C-ben/Java-ban nem Beadható feladat: Készítsünk szintaktikailag helyes, de szemantikailag helytelen kódot C- ben, Java-ban Ugyanakkor még a szemantikai helyesség sem garantálja feltétlenül az értelmes/céljainknak megfelelő működést] Probléma hosszú programoknál A levezetés során sok konfliktus adódik (több lehetőség a helyettesítésre, melyik a jó/melyiket válasszuk?) Intuitív módon: Az a cél, hogy közelebb kerüljünk a kívánt végeredményhez Algoritmikusan: Valami módon sorba rakjuk a szabályokat, ebben a sorrendben alkalmazzuk őket a helyettesítésnél Lehet, hogy rossz szabályt választottunk! (Backtrack technikákat is be kell vetni, ez viszont magával vonja a rekurzív működést és az exponenciális típusú kimenetelt ) Mennyi sikertelen levezetési kísérlet után lehet kimondani, hogy a program szintaktikusan helytelen? Ezekre a (nehéz) kérdésekre választ adnak az elemzési algoritmusok A jó elemzési algoritmus legfeljebb az input hosszának konstansszorosa számú lépést hajt végre, és utána megadja a választ Ez persze nehezen biztosítható 26

14 Ajánlott irodalom Fülöp Zoltán: és szintaktikus elemzésük, Polygon, Szeged, 2001 Dömösi Pál és társai: és automaták, Elektronikus jegyzet, 2011 Bach Iván:, Typotex kiadó, Budapest, 2002 Katona Gyula, Recski András, Szabó Csaba: A számítástudomány alapjai, Typotex Kiadó, Budapest,

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

1. Algebrai alapok: Melyek műveletek az alábbiak közül? 1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser

Részletesebben

Formális Nyelvek és Automaták. Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek

Formális Nyelvek és Automaták. Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek Formális Nyelvek és Automaták Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek Formális Nyelvek és Automaták Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek

Részletesebben

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések 1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Formális nyelvek és automaták előadások

Formális nyelvek és automaták előadások VÁRTERÉSZ MAGDA Formális nyelvek és automaták előadások 2005/06-os tanév 1. félév Tartalomjegyzék 1. Előzetes tudnivalók 4 2. Bevezetés 15 3. Ábécé, szó, formális nyelv 17 4. Műveletek nyelvekkel 24 4.1.

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

Alap fatranszformátorok I. Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap

Alap fatranszformátorok I. Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap Alap fatranszformátorok I Vágvölgyi Sándor Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap termátíró rendszerről eldönthető hogy összefolyó-e. Mindannyian

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3.

DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Rendezett halmaz R A x A rendezési reláció A-n, ha R Másképpen: (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Tranzitív arb for (a, b) R. 1. a A ara 2. a,b A (arb bra a = b 3. a,b,c A (arb brc arc

Részletesebben

Reguláris kifejezések 1.

Reguláris kifejezések 1. Reguláris kifejezések 1. A nyelvtechnológia eszközei és nyersanyagai 1. gyakorlat A beadandó feladatok be vannak keretezve! 1.1. Miért hívják reguláris kifejezésnek? (!) Az elméleti és a gyakorlati reguláris

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések)

Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések) Emlékeztető Emlékeztető: LR(0) elemzés A lexikális által előállított szimbólumsorozatot balról jobbra olvassuk, a szimbólumokat az vermébe tesszük. LR elemzések (SLR() és LR() elemzések) Fordítóprogramok

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Halmazelmélet. 1. Jelenítsük meg Venn-diagrammon az alábbi halmazokat: a) b) c) 2. Milyen halmazokat határoznak meg az alábbi Venn-diagrammok?

Halmazelmélet. 1. Jelenítsük meg Venn-diagrammon az alábbi halmazokat: a) b) c) 2. Milyen halmazokat határoznak meg az alábbi Venn-diagrammok? Halmazelmélet Alapfogalmak Unió: ; metszet: ; különbség: ; komplementer: (itt U egy univerzum halmaz). Egyenlőség: két halmaz egyenlő, ha ugyanazok az elemeik. Ezzel ekvivalens, hogy. Tartalmazás: ; valódi

Részletesebben

6. előadás Környezetfüggetlen nyelvtanok/1.

6. előadás Környezetfüggetlen nyelvtanok/1. 6. előadás Környezetfüggetlen nyelvtanok/1. Dr. Kallós Gábor 2013 2014 1 Tartalom Bevezetés CF nyelv példák Nyelvek és nyelvtanok egy- és többértelműsége Bal- és jobboldali levezetések Levezetési fák A

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám rendje A rend fogalma A 1-nek két darab egész kitevőjű hatványa van: 1 és 1. Az i-nek 4 van: i, i 2 = 1, i 3 = i, i 4 = 1. Innentől kezdve ismétlődik: i 5 = i, i 6 = i 2 = 1, stb. Négyesével

Részletesebben

A + B = B + A, A + ( B + C ) = ( A + B ) + C.

A + B = B + A, A + ( B + C ) = ( A + B ) + C. 6. LOGIKAI ÁRAMKÖRÖK Számítógépekben, műszerekben, vezérlő automatákban alapvető szerep jut az olyan áramköröknek, melyek valamilyen logikai összefüggést fejeznek ki. Ezeknek a logikai áramköröknek az

Részletesebben

Formális nyelvek és automaták

Formális nyelvek és automaták Formális nyelvek és automaták Király Roland 2012. november 16. 1 2 Tartalomjegyzék 1. Előszó 7 2. Bevezetés 9 2.1. Út a matematikai formulától az implementációig........ 9 2.2. Feladatok.............................

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Programozási Módszertan definíciók, stb.

Programozási Módszertan definíciók, stb. Programozási Módszertan definíciók, stb. 1. Bevezetés Egy adat típusát az adat által felvehető lehetséges értékek halmaza (típusérték halmaz, TÉH), és az ezen értelmezett műveletek (típusműveletek) együttesen

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Diszkrét matematika II., 1. el adás. Lineáris leképezések

Diszkrét matematika II., 1. el adás. Lineáris leképezések 1 Diszkrét matematika II., 1. el adás Lineáris leképezések Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. február 6 Gyakorlati célok Ezen el adáson,

Részletesebben

Partíció probléma rekurzíómemorizálással

Partíció probléma rekurzíómemorizálással Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

Programozási tételek. Dr. Iványi Péter

Programozási tételek. Dr. Iványi Péter Programozási tételek Dr. Iványi Péter 1 Programozási tételek A programozási tételek olyan általános algoritmusok, melyekkel programozás során gyakran találkozunk. Az algoritmusok általában számsorozatokkal,

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

A matematikai modellalkotás folyamatáról

A matematikai modellalkotás folyamatáról Máté László A matematikai modellalkotás folyamatáról 1. A felsőoktatás tömegessé válása olyan problémákat vet fel a matematika oktatásában amelyek a matematikai ismeretszerzés folyamatának az átgondolására

Részletesebben

Melléklet a Matematika című részhez

Melléklet a Matematika című részhez Melléklet a Matematika című részhez Az arányosság bemutatása Az első könyvsorozatban 7. osztály, Tk-2 és Tk-3-ban 6. osztály, Tk-3b-ben 5. osztály(!), Tk-4-ben ismét 6. osztály, és végül Tk-4b-ben 5-6.

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

Analízis. 11 12. évfolyam. Szerkesztette: Surányi László. 2015. július 5.

Analízis. 11 12. évfolyam. Szerkesztette: Surányi László. 2015. július 5. Analízis 11 12. évfolyam Szerkesztette: Surányi László 2015. július 5. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó András, Kalló

Részletesebben

Diszkrét Matematika 2 (C)

Diszkrét Matematika 2 (C) Diszkrét Matematika 2 (C) 2014-15 / őszi félév Jegyzet Az esetleges elírásokért, hibákért felelősséget nem vállalok! Javításokat, javaslatokat a következő címre küldhetsz: blackhawk1990@gmail.com Diszkrét

Részletesebben

Formális nyelvek Második, javított kiadás

Formális nyelvek Második, javított kiadás BACH IVÁN Formális nyelvek Második, javított kiadás Egyetemi tankönyv TYPOTEX Kiadó Budapest, 2002 A könyv az illetékes kuratórium döntése alapján az Oktatási Minisztérium támogatásával a Felsőoktatási

Részletesebben

file./script.sh > Bourne-Again shell script text executable << tartalmat néz >>

file./script.sh > Bourne-Again shell script text executable << tartalmat néz >> I. Alapok Interaktív shell-ben vagy shell-scriptben megadott karaktersorozat feldolgozásakor az első lépés a szavakra tördelés. A szavakra tördelés a következő metakarakterek mentén zajlik: & ; ( ) < >

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Formális Nyelvek és Automaták v1.9

Formális Nyelvek és Automaták v1.9 Formális Nyelvek és Automaták v1.9 Hernyák Zoltán E másolat nem használható fel szabadon, a készülő jegyzet egy munkapéldánya. A teljes jegyzetről, vagy annak bármely részéről bármely másolat készítéséhez

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu Polinomgy r k Dr. Vattamány Szabolcs 1. Bevezet Ezen jegyzet célja, hogy megismertesse az olvasót az egész, a racionális, a valós és a komplex számok halmaza fölötti polinomokkal. A szokásos jelölést használjuk:

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Matematika (alsó tagozat)

Matematika (alsó tagozat) Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

matematikus-informatikus szemével

matematikus-informatikus szemével Ontológiák egy matematikus-informatikus szemével Szeredi Péter Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi és Információelméleti Tanszék ➀ Mi az ontológia, mire jó, hogyan csináljuk?

Részletesebben

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

A hiperbolikus síkgeometria Poincaré-féle körmodellje

A hiperbolikus síkgeometria Poincaré-féle körmodellje A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április Hány osztója van egy adott számnak? Hány osztója van egy adott számnak? Dr. Tóth László http://www.ttk.pte.hu/matek/ltoth előadásanyag, Pécsi Tudományegyetem, TTK 2008. április. Bevezetés Lehetséges válaszok:

Részletesebben

LÁNG CSABÁNÉ TELJES INDUKCIÓ, LOGIKA, HALMAZOK, RELÁCIÓK, FÜGGVÉNYEK. Példák és feladatok

LÁNG CSABÁNÉ TELJES INDUKCIÓ, LOGIKA, HALMAZOK, RELÁCIÓK, FÜGGVÉNYEK. Példák és feladatok LÁNG CSABÁNÉ TELJES INDUKCIÓ, LOGIKA, HALMAZOK, RELÁCIÓK, FÜGGVÉNYEK Példák és feladatok Lektorálta: Czirbusz Sándor c Láng Csabáné, 2010 ELTE IK Budapest 20101020 1. kiadás Tartalomjegyzék 1. Bevezetés...............................

Részletesebben

Fogalomtár a Formális nyelvek és

Fogalomtár a Formális nyelvek és Fogalomtár a Formális nyelvek és automaták tárgyhoz (A törzsanyaghoz tartozó definíciókat és tételeket jelöli.) Definíciók Univerzális ábécé: Szimbólumok egy megszámlálhatóan végtelen halmazát univerzális

Részletesebben

BEVEZETÉS A PROGRAMOZÁSHOZ

BEVEZETÉS A PROGRAMOZÁSHOZ FÓTHI ÁKOS BEVEZETÉS A PROGRAMOZÁSHOZ Harmadik, javított kiadás c Fóthi Ákos, 2012 Tartalomjegyzék 1. Alapfogalmak 11 1.1. Halmazok................................ 11 1.2. Sorozatok................................

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

Kombinatorika jegyzet és feladatgyűjtemény

Kombinatorika jegyzet és feladatgyűjtemény Kombinatorika jegyzet és feladatgyűjtemény Király Balázs, Tóth László Pécsi Tudományegyetem 2011 2 Lektor: Kátai Imre egyetemi tanár, az MTA rendes tagja Tartalomjegyzék Előszó 5 I. Jegyzet 7 I.1. Permutációk,

Részletesebben

Oktatási segédlet 2014

Oktatási segédlet 2014 Oktatási segédlet 2014 A kutatás a TÁMOP 4.2.4.A/2-11-1-2012- 0001 azonosító számú Nemzeti Kiválóság Program Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi C programozás Márton Gyöngyvér, 2009 Sapientia, Erdélyi Magyar Tudományegyetem http://www.ms.sapientia.ro/~mgyongyi 1 Könyvészet Kátai Z.: Programozás C nyelven Brian W. Kernighan, D.M. Ritchie: A C programozási

Részletesebben

Komplex számok algebrai alakja

Komplex számok algebrai alakja Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

NP-teljesség röviden

NP-teljesség röviden NP-teljesség röviden Bucsay Balázs earthquake[at]rycon[dot]hu http://rycon.hu 1 Turing gépek 1/3 Mi a turing gép? 1. Definíció. [Turing gép] Egy Turing-gép formálisan egy M = (K, Σ, δ, s) rendezett négyessel

Részletesebben

Geometriai algoritmusok

Geometriai algoritmusok Geometriai algoritmusok Alapfogalmak Pont: (x,y) R R Szakasz: Legyen A,B két pont. Az A és B pontok által meghatározott szakasz: AB = {p = (x,y) : x = aa.x + (1 a)b.x,y = aa.y + (1 a)b.y),a R,0 a 1. Ha

Részletesebben

1/50. Teljes indukció 1. Back Close

1/50. Teljes indukció 1. Back Close 1/50 Teljes indukció 1 A teljes indukció talán a legfontosabb bizonyítási módszer a számítástudományban. Teljes indukció elve. Legyen P (n) egy állítás. Tegyük fel, hogy (1) P (0) igaz, (2) minden n N

Részletesebben

Feladatok. 7. Tíz rabló a kincseit egy több lakattal lezárható ládában gyűjti. Az egyes lakatokat egy-egy

Feladatok. 7. Tíz rabló a kincseit egy több lakattal lezárható ládában gyűjti. Az egyes lakatokat egy-egy Feladatok 1. Hányféleképpen állhat sorba n fiú és n lány úgy, hogy azonos neműek ne álljanak egymás mellett?. Hány olyan hétszámjegyű telefonszám készíthető, amiben pontosan két különböző számjegy szerepel,

Részletesebben

Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar. Vajda István Záborszky Ágnes. matematika

Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar. Vajda István Záborszky Ágnes. matematika Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar György Anna Kárász Péter Sergyán Szabolcs Vajda István Záborszky Ágnes Diszkrét matematika példatár 2003 A példatár a Budapesti Műszaki

Részletesebben

Knoch László: Információelmélet LOGIKA

Knoch László: Információelmélet LOGIKA Mi az ítélet? Az ítélet olyan mondat, amely vagy igaz, vagy hamis. Azt, hogy az adott ítélet igaz vagy hamis, az ítélet logikai értékének nevezzük. Jelölése: i igaz h hamis A 2 páros és prím. Logikai értéke

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

Információ megjelenítés Alapok

Információ megjelenítés Alapok Információ megjelenítés Alapok Szavak és képek Duális kódolás elmélete (Paivio) Szerkezetek Vizuális Vizuális Rendszer Képi információ Imagens Nem-verbális válasz Szóbeli Halló Rendszer Információ beszédből

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Molnár Györgynének, aki korrekt szigorúságával a középiskolában alapozta

Molnár Györgynének, aki korrekt szigorúságával a középiskolában alapozta Ajánlom ezt a könyvet illetve sorozatot mind közül is legkedvesebb tanáraimnak, Molnár Györgynének, aki korrekt szigorúságával a középiskolában alapozta meg szeretetemet a matematika iránt, és Pósa Lajosnak,

Részletesebben

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. 5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan

Részletesebben

Függőségek felismerése és attribútum halmazok lezártja

Függőségek felismerése és attribútum halmazok lezártja Függőségek felismerése és attribútum halmazok lezártja Elméleti összefoglaló Függőségek: mezők közötti érték kapcsolatok leírása. A Funkcionális függőség (FD=Functional Dependency): Ha R két sora megegyezik

Részletesebben

Lakóház tervezés ADT 3.3-al. Segédlet

Lakóház tervezés ADT 3.3-al. Segédlet Lakóház tervezés ADT 3.3-al Segédlet A lakóház tervezési gyakorlathoz főleg a Tervezés és a Dokumentáció menüket fogjuk használni az AutoDesk Architectural Desktop programból. A program centiméterben dolgozik!!!

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

MATEMATIKA HELYI TANTERV Kéttannyelvű magyar-francia előkészítő év számára

MATEMATIKA HELYI TANTERV Kéttannyelvű magyar-francia előkészítő év számára MATEMATIKA HELYI TANTERV Kéttannyelvű magyar-francia előkészítő év számára Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben