1. előadás Matematikai és nyelvi alapok, Szintaktikai vizsgálat

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. előadás Matematikai és nyelvi alapok, Szintaktikai vizsgálat"

Átírás

1 1. előadás Matematikai és nyelvi alapok, Dr. Kallós Gábor Tartalom Matematikai alapfogalmak Halmazok Relációk Függvények Homomorfizmusok Nyelvi alapfogalmak Ábécé, szavak, nyelvek Műveletek szavakkal és nyelvekkel Kifejezés Köznapi nyelv Programozási nyelv 2

2 Matematikai alapfogalmak Halmazelmélet Halmaz és halmazhoz való hozzátartozás: nem definiált alapfogalom Tudjuk: a B és a B közül csak pontosan az egyik teljesül Halmaz megadási módja Kapcsos zárójelben felsoroljuk az elemeit Megadjuk az elemeket jellemző tulajdonságo(ka)t (a módszer alkalmazhatóságát a részhalmaz axióma garantálja) { h a h elem T tulajdonságú } Példa: { x R 0 < x < 1} A halmazelmélet (pontos matematikai) felépítése: axiómák, definíciók, állítások, tételek Meghatározottsági axióma Legyenek A és B halmazok. A akkor és csak akkor egyenlő B-vel, ha minden x A esetén x B, és minden y B esetén y A. Azaz: elemeik azonosak Definíció Legyenek A és B halmazok. A része B-nek, ha minden x A-ra x B is teljesül (jelölés: A B). Tétel (halmazok egyenlősége): A = B, ha A B és B A Üres halmaz axióma Létezik olyan halmaz, amelynek nincs eleme. Ez az üres halmaz, jelölése. Állítás: Pontosan egy ilyen halmaz létezik 3 Matematikai alapfogalmak Halmazelmélet (folyt.) Definíciók (Legyenek A és B halmazok) Unió, metszet, különbséghalmaz értelmezése (tudjuk) Jelölések: A B, A B, A \ B Az unió axiómából Disztributivitási tulajdonság, De-Morgan azonosságok, egyéb összefüggések (igazolhatók) A és B diszjunkt, ha nincs közös elemük Komplementer halmaz (H alaphalmazra vonatkozóan) H \ A, Jelölés: Hatványhalmaz axióma Legyen A halmaz. Létezik olyan halmaz, amely tartalmazza A minden egyes részhalmazát. Ezt a halmazt A hatványhalmazának nevezzük, P(A)-val jelöljük Állítás: P(A) elemszáma 2 A (ez indukcióval igazolható) Definíció: Legyenek A és B halmazok. A és B direkt (vagy Descartes-féle) szorzata az összes olyan rendezett (x, y) számpárból álló halmaz, amelyeknél x A és y B. A direkt szorzat jele:. A B = {(x, y) x A és y B} (Rendezett pár definíció) Általánosítható n darab halmazra Feladat: Soroljuk fel A B elemeit, ahol A = {1, 2} és B = {3, 4, 5} 4

3 Matematikai alapfogalmak Relációk Definíció: Legyenek M 1, M 2,, M n tetszőleges halmazok. Egy ρ M 1 M 2 M n halmazt relációnak nevezünk (rendezett szám n-es) Megj.: Az üres halmaz is reláció (mert nincs olyan eleme, ami nem rendezett szám n-es) Ha n = 2, akkor ρ-t bináris relációnak nevezzük Elemei rendezett párok, jelölés: a, b vagy (a, b) Itt már beszélhetünk értelmezési tartományról és értékkészletről Legyen a A és b B egy ρ A B bináris reláció esetén. Ha ekkor a, b ρ teljesül, akkor azt mondjuk, hogy aρrelációban van b-vel. Jelölések: ρ(a, b), vagy ρ a, b, vagy aρb. Definíció: Legyenek ρ A B 1 és σ B 2 C bináris relációk. Két bináris reláció kompozíciójának (szorzatának) nevezzük azt a ρ σrelációt, ahol ρ σ A C, és ρ σ= { a, c b B 1 B 2 úgy, hogy a, b ρés b, c σ}. A kompozícióképzés nem kommutatív művelet Feladat: Legyen ρ = { n, n + 1 n N} és σ = { n, 3n n N}. Adjuk meg a ρ σés σ ρ relációkat! Egy ρ M M reláció k-adik (k 0) hatványát a következő módon értelmezzük: ρ 0 = { (a, a) a M}; ρ k + 1 = ρ k ρ, ha k 1 Nyilván ρ 1 = ρ 5 Matematikai alapfogalmak Relációk (folyt.) Definíciók k Egy ρ M M reláció tranzitív lezártja ρ = ρ U ρ U ρ U... = U ρ Egy ρ M M reláció reflexív, tranzitív lezártjaρ* = ρ 0 ρ + k= 1 ρ + mindig tranzitív, és ez a legszűkebb olyan reláció, amely tranzitív, és tartalmazza ρ-t ρ* reflexív és tranzitív, és a legszűkebb az ilyen tulajdonságúρ-t tartalmazó relációk közül Definíció: Egy ρ M M (homogén) bináris reláció reflexív, ha minden x M-re fennáll xρx; szimmetrikus, ha minden x, y M-re xρy yρx; antiszimmetrikus, ha minden x, y M-re xρyés yρx x=y; tranzitív, ha minden x, y, z M-re xρyés yρz xρz (Megj.: A homogén reláció meghatározása az, hogy értékkészlete része az értelmezési tartományának, de sokszor úgy használják, hogy a két halmaz megegyezik) Speciális relációk Definíció: A ρ (homogén) bináris reláció ekvivalencia-reláció, ha reflexív, szimm. és tranzitív Ekvivalencia-reláció példák: egyenesek párhuzamossága, szakaszok egybevágósága, számhalmazok egyenlősége Igazolható, hogy minden ekvivalencia-reláció M-et páronként diszjunkt, nem üres részhalmazokra bontja fel (ekvivalencia-osztályok), és a részhalmazokból reprezentáns elem választható (Egy A halmazrendszer az A halmaz osztályfelbontása, ha A elemeinek uniója A-t adja, és tetszőleges két A-beli elemre teljesül, hogy ha nem diszjunktak, akkor megegyeznek) Reprezentáns példák: egyenesek párhuzamossága irány fogalom; szakaszok egybevágósága hosszúság fogalom 6

4 Matematikai alapfogalmak Speciális relációk (folyt.) Definíció: A ρ (homogén) bináris reláció rendezési reláció, ha reflexív, antiszimmetrikus és tranzitív Ekkor (M, ρ)-t rendezett halmaznak nevezzük olyan (rendezett) pár, amelynek első komponense egy nem üres halmaz, második komponense pedig egy, a halmazon értelmezett rendezési reláció Rendezett halmaz példák: (N, ), és hasonlóan (Z, ), (Q, ), (R, ); (P(H), ) ahol H tetszőleges halmaz, részhalmaz tulajdonsággal; (N, ), (Z, ) itt az oszthatóság De: (N, <) és (Z, <) nem rendezett halmaz, mert < nem reflexív! Definíció: Egy f reláció függvény, ha minden x, y és x, z f esetén y = z Azaz ha nincs két olyan eleme, hogy az első komponensek megegyeznek, a másodikak pedig különbözők Jelölések függvény esetén: f(a, b) vagy a f b helyett b = f(a) Függvényekkel kapcsolatos fontos fogalmak (itt eml., összefoglaló módon, részl. nélkül) Értelmezési tartomány (D f ), értékkészlet (R f ), leképezés, helyettesítési érték (x-hez hozzárendelt elem) Függvényképző eljárások: függvény leszűkítése, függvények kompozíciója, függvény invertálása (invertálható kell, hogy legyen a függvény) Képhalmaz, X D f halmaz képe, Y R f halmaz ősképe Legyen f: A B. Azt mondjuk, hogy f az A-t B-be leképező injekció, ha f invertálható; f az A-t B-re leképező szuperjekció (szürjekció), ha R f = B; f az A és B közti bijekció, ha injekció és szuperjekció is 7 Matematikai alapfogalmak Definíció: Az (A, F) párt algebrának nevezzük, ahol A nem üres halmaz, F pedig az A- n értelmezett műveletek halmaza Példák algebrákra: (N, +), (N, {+, }) Definíció: Legyen (A, ) és (B, ) két algebra. Egy h: A B leképezést homomorfizmusnak nevezünk, ha injektív (monomorfizmus), azaz az értelmezési tartomány minden eleméhez az értékkészletnek pontosan egy eleme van hozzárendelve; és művelettartó, azaz minden a, b A esetén érvényes, hogy h(a b) = h(a) h(b). Ekkor A-t és h(a)-t homomorf(ak)nak nevezzük. A homomorfizmusok különös jelentősége az, hogy a definíciós halmaz struktúrájának típusát a képhalmazra viszik át (pl. csoportok) Egyes speciális struktúrák közötti homomorfizmusok (az algebrákon túl): csoportok, gyűrűk, vektorterek (köztük lineáris leképezések), rendezett halmazok Ha a h: A B függvény kölcsönösen egyértelmű (bijektív), és inverze is homomorfizmus, akkor izomorfizmusról beszélünk Az izomorf struktúrák algebrai nézőpont szerint megegyeznek Egyéb további speciális homomorfizmusok: Ha a leképezés szürjektív (epimorfizmus), illetve ha a leképzésnél B A (endomorfizmus) (Homomorf és izomorf struktúrákkal részletesen foglalkozunk még a számtud. slide-okon is) Félcsoport, monoid, csoport definíciója (számtud. slide-ok) 8

5 Nyelvi alapfogalmak Ábécé, szó Definíciók Ábécé: szimbólumok tetszőleges, nem üres, véges halmaza; jelölés: V (vagy Ʃ) A szimbólumokról feltesszük, hogy megkülönböztethetők és különböznek egymástól Szó (mondat): V elemeiből képzett sorozat, azaz a 1 a k, ahol k 0, és a 1,, a k V Üresszó (null szó): k = 0 eset, jele λ (néha ε) Összes szó halmaza V felett (benne az üres szó is); jelölés: V* Ha az üresszót nem engedjük meg: V + = V* {λ} (Megj.: Nem üres V halmaz esetén V* megszámlálhatóan végtelen) Szó hossza (V felett): szimbólumok száma benne, jelölés: w (w szóra) Rekurzív definíció is lehetséges Itt λ = 0 Példa Legyen Ʃ = {a, b} Néhány szóʃfelett: a, b, ab, bb, baa, aba, abba, baba, (Hány szót tudunk felsorolni?) Szavak hossza Ʃ felett: a = 1, ab = 2, Ʃ* = {λ, a, b, aa, ab, ba, bb, aaa, aab, aba, } (Milyen rendezést célszerű itt alkalmazni? Hány darab n hosszú szót tudunk megadni?) 9 Nyelvi alapfogalmak Ábécé, szó (folyt.) Definíció Szavak egyenlősége: csak ha betűről-betűre megegyeznek, azaz valamely V*-beli p = a 1 a m és q = b 1 b n szavakat pontosan akkor tekintünk egyenlőknek, ha m = n és i = 1,, n-re a i = b i Tréfás példa Legyen V = {1, 2, +}. Ekkor V*-ban (persze nem matematikai értelemben ) fennáll, hogy 1+1 2, mivel az 1+1 szó nem egyezik meg betűről-betűre a 2 szóval. Definíció Szavak konkatenációja (egymás után írás, összefűzés, szorzás ): u és v V*-beli szavakra uv V* Érvényes: uv = u + v u n : az u szó n-szer egymás után írva (hatványozás) Itt is megadható rekurzív definíció u V*-ra u 0 = λ Igaz továbbá: xλ = λx = x De: a konkatenáció általában nem kommutatív! (azaz általában uv vu) Példa Legyen Ʃ = {a, b}. Ekkor az abbaʃ*-beli szó baba szóval való szorzata abbababa, ami nem egyezik meg a babaabba szóval. 10

6 Nyelvi alapfogalmak: szóműveletek Ábécé, szó (folyt.) Igazolható, hogy V* a konkatenáció művelettel egységelemes félcsoportot, monoidot alkot A művelet asszociatív, és az üresszó egység Definíció Legyenek x és w V*-beli szavak. Azt mondjuk, hogy x prefixe (kezdőszelete) w-nek, ha van olyan y V*-beli szó, hogy w = xy. Ha x, y λ, akkor valódi prefixről beszélünk Valódi prefixre: x = k a prefix hossza Hasonlóan értelmezhető egy szó szuffixe (végződése) Definíció Legyenek x és w V*-beli szavak. Azt mondjuk, hogy x részszava w-nek, ha van olyan y, z V*, hogy w = yxz (itt y és z lehet üresszó). Valódi részszó is hasonlóan értelmezhető Használatos az alszó, kezdő alszó, és befejező alszó megnevezés is Feladat: Adjunk meg részszót, prefixet és szuffixet az abbababa szónál! Hány különböző prefix lehetséges? (Szó tükörképe is definiálható, jelölés: w 1 ) 11 Nyelvi alapfogalmak Nyelv (vagy: V feletti nyelv, formális nyelv): V* tetszőleges L részhalmaza; azaz L V* Adott formális elem adott nyelvbe való tartozása egyértelműen eldönthető Egy nyelv lehet üres, véges vagy végtelen Üres nyelv: L = Csak az üres szót tartalmazó nyelv: L = {λ} (ennek van egy eleme) Egyszerű alapnyelvek: L = {a} típusúak A véges nyelvek elvileg elemeik felsorolásával megadhatók Teljes nyelv: L = V* (minden lehetséges szót tartalmaz) Megjegyzések Egy adott Ʃ ábécé feletti összes lehetséges nyelvek halmaza a Ʃ* összes részhalmazából alkotott halmaz, vagyis Ʃ* hatványhalmaza. Mivel Ʃ* számossága megszámlálhatóan végtelen, így egy véges, de nem üres Ʃ ábécé felett kontinuum sok (különböző) nyelv létezik. A hagyományos nyelvek (pl. magyar nyelv) nem tekinthetők formális nyelvnek abban az értelemben, hogy a nyelv halmaza nem tiszta, nem véglegesen lezárt, ill. részben szubjektív is; továbbá ugyanazon szónak lehet több jelentése Példa: Word helyesírás ellenőrzője (esettanulmányok) Feladat: Nézzük meg, hogy egyes, köznapinak tekinthető szavakat nem ismer fel, máskor számunkra teljesen magyartalan, ismeretlen szavakat elfogad 12

7 Nyelvi alapfogalmak Példa: nyelvek V = {0, 1,, 9} felett A magyar történelmi évszámok halmaza ekkor egy véges nyelv V felett Lehet persze szubjektív, de biztosan véges A páratlan számok halmaza (tízes számrendszer) egy V feletti végtelen nyelv Példa: néhány nyelv Ʃ = {a, b} felett Véges nyelvek {λ, a, aa, aab} {x Ʃ* x 7} Végtelen nyelvek {x Ʃ* x páratlan} {x Ʃ* x prím} {λ, ab, aabb, aaabbb, } = {a n b n n 0} Adjunk meg néhány további véges és végtelen nyelv példát! (Legyen például V = {0, 1} vagy V = {a, b}) (Megj.: Szükségünk lesz olyan eszközökre, amelyekkel az eddigieknél lényegesen bonyolultabb nyelveket is megadhatunk generatív nyelvtannal történő megadás, lásd később) 13 Műveletek nyelvekkel A nyelvek halmazok és jelsorozatok is egyben. Így a rajtuk értelmezett műveletek is kétféle típusúak. Boole műveletek (,, \, ) Reguláris műveletek (+,, *) Tetszőleges L 1, L 2 V* nyelvek esetén értelmezhető a nyelvek (mint halmazok) uniója, metszete, különbsége, illetve L 1 -nek a V*-ra vonatkozó komplementere, és ezek szintén V*-beliek A jelölések a megszokottak (,, \, ) Egy formális definíció (a többi hasonlóan) L 1 L 2 = {p p L 1 és p L 2 } A komplementer képzésnél nagyon vigyázni kell az alaphalmaz megadására (!) Példa: Az L = {λ, a, aa, aab} nyelv komplementere teljesen más a Ʃ = {a, b}, illetve a Ʃ' = {a, b, c} felett A konkatenációt is értelmezzük nyelvekre (ez a művelet halmazokra nincs értelmezve, itt a jelsorozat tulajdonság él!) L 1 L 2 = {uv u L 1, v L 2 } Általában L 1 L 2 L 2 L 1 Egy L 1 L 2 -beli szó nem feltétlenül csak egyféle módon bontható fel L 1 -beli és L 2 -beli elemekre A konkatenáció segítségével egy nyelv önmagával vett konkatenáltját (szorzatát) is értelmezhetjük 14

8 Műveletek nyelvekkel Nyelv i-edik hatványa L k = LL L Itt L 0 = {λ} (megállapodás szerint), L 1 = L Itt is lehetséges rekurzív definíció Ugyanúgy mint szavakra, használatos V k = VV V is (Az ábécé is nyelv, hiszen V V*. Így az ábécére is értelmezett minden nyelvművelet, esetleg triviális eredménnyel.) Kleene-iteráció, a konkatenáció lezárása L* = {λ} L LL LLL (Kleene-csillag), vagy illetve: L + = L LL LLL (Kleene-plusz) =U =0 i Azaz: az L*-beli elemek azok a jelsorozatok, amelyeket fel lehet úgy darabolni, hogy minden darab a nyelv mondata legyen (a darabok számára nincs megkötés) Itt L + = L* is előfordulhat, pontosan akkor, ha λ L Hasonlóan: i V* = {λ} V VV VVV, vagy V V (Kérdés: Konzekvens ez az előző definícióval?) =U =0 i Természetes kérdés: zártak-e különböző nyelvosztályok ezekre a műveletekre? Az L nyelvosztály zárt a műveletre, ha tetszőleges L 1, L 2 L-re mindig L 1 L 2 Lis teljesül (Hasonlóan definiálható az egyváltozós műveletre való zártság is) Később az ilyen típusú vizsgálatok fontosak lesznek L i L 15 Műveletek nyelvekkel Legyen V egy rögzített ábécé. Ekkor tetszőleges L, L 1, L 2, L 3 V* esetén érvényesek a következő összefüggések: L 1 L 2 = L 2 L 1 (az unió kommutatív) (L 1 L 2 ) L 3 = L 1 (L 2 L 3 ) (az unió asszociatív) L L = L (az unió idempotens) L = L = L (az unióra nézve létezik egységelem, a üres nyelv) L 1 L 2 = L 2 L 1 (a metszet kommutatív) (L 1 L 2 ) L 3 = L 1 (L 2 L 3 ) (a metszet asszociatív) L L= L (a metszet idempotens) L V* = V* L= L (a metszetre nézve létezik egységelem, a V* univerzális nyelv) (L 1 L 2 )L 3 = L 1 (L 2 L 3 ) (a konkatenáció asszociatív) L{λ} = {λ}l = L (a konkatenációra nézve létezik egységelem, és ez {λ}) L = L = (a konkatenációra nézve létezik nullelem, és ez ; nem lehet szópárokat készíteni) L + = LL* = L*L L* = L + {λ} (L*)* = L* (az iteráció idempotens) (L + ) + = L + (a + művelet idempotens) 16

9 Műveletek nyelvekkel Nyelvekre vonatkozó összefüggések (folyt.) (L*) + = (L + )* = L* L 1 = L 1 (a komplementerképzés involúciós tulajdonságú) Megjegyzések A műveletek asszociativitása miatt általában nem is szoktuk zárójelekkel jelezni a(z elméleti) sorrendjüket További zárójelek hagyhatók el az egyértelmű precedencia következtében, sorrend: az egyargumentumú műveletek (komplementer, Kleene-csillag és Kleene-plusz) precedenciája nagyobb, mint a kétargumentumúaké; a konkatenációé nagyobb, mint az unióé és metszeté Disztributivitási tulajdonságok is megfogalmazhatók Feladat: hagyjuk el a felesleges zárójeleket a következő kifejezésekből, ill. hozzuk egyszerűbb alakra a kifejezéseket (L 1 *) L 2 ((L 1 L 2 ) L 3 ) (L*L) (L L) ( L L) Feladat (önálló gyakorlásra) Szemléltessük a fenti összefüggéseket konkrét nyelv példákkal (fontosabb esetek)! 17 Műveletek nyelvekkel Egyszerű nyelvműveleti példák {ab} {cd} = {ab, cd} {a, bx}{c, d} = {ac, ad, bxc, bxd} {c, d}{a, bx} = {ca, da, cbx, dbx} {ab} 3 = {ababab} {ab} + = {ab, abab, ababab, } {ab}* = {λ, ab, abab, ababab, } Nyelvműveletek feladatok (D. P ) Legyen V = {a, b, c}, L 1 = {a, c, bb, aba}, L 2 = {a, abba, baba, caba, abbaba, babaabba}. Adjuk meg az L 1 L 2, L 1 L 2, L 1 L 2, L 1 L 1 halmazokat. Adjunk példát olyan V ábécé feletti L 1 és L 2 nyelvekre, amelyekre L 1 L 2 = L 2 L 1. (Próbáljunk nem triviális megoldást is megadni.) Adottak L 1 és L 2 véges nyelvek V ábécé felett úgy, hogy L 1 = n és L 2 = m. Mennyi lehet a számossága az L 1 L 2, L 1 L 2 és L 1 L 2 nyelveknek? Adjunk meg alsó és felső korlátot, továbbá példákat is. Igazoljuk vagy cáfoljuk, hogy (L 1 L 2 )* = (L 1 )* (L 2 )* Segítség: az állítás hamis, például L 1 = {a}, L 2 = {b}-re látható Mivel egyenlő L 2, ha L = {a n b n n > 0} 18

10 Példa: Egy aritmetikai kifejezés szintaxisának megadása (Minden programozási nyelvben előfordul) Adott egy rögzített elemekből felépített kifejezés. Feladatunk eldönteni, hogy szintaktikusan helyes-e (nem ránézésre vagy megérzéssel, hanem algoritmussal). Ehhez formalizálni kell a rendszert! Milyen szimbólumok, számok, műveleti jelek szerepelhetnek a kifejezésben? Rögzítünk egy megfelelő halmazt (ebben az egyszerű példában): változók (A, B, C), konstansok (0, 1), műveleti jelek (+, ) és zárójelek Példa kifejezések: A + B C, AB ++ (C ) Milyen szabályok alapján épülhet fel a kifejezés a már rögzített szimbólumokból? Rekurzív definíció: a kifejezés állhat egy tagból, vagy lehet több tag összege; azaz a kifejezés lehet egy kifejezés és egy tag összege Nyilván definiálni kell majd a tagot is (és a többi részegységet is) Tömör és egyértelmű megfogalmazás kell! Formális leírás elemei kifejezés = kif., tag = tag, vagy művelet =, lehet = (vagy: ::=, Backus Naur jelölés) Kifejezés definíciója Így tehát kif. tag kif. + tag 19 Példa: Egy aritmetikai kifejezés szintaxisának megadása (folyt.) Tag definíciója Lehet egy tényezőből álló szorzat (faktor), vagy több tényező szorzata (szintén rekurzív definícióval) tag fakt. fakt. fakt. Faktor definíciója Lehet egy zárójelbe tett kifejezés, vagy változó, vagy konstans fakt. ( kif. ) vált. konst. A kifejezésből kaphatunk majd újra tagot Itt teljes zárójelezést használunk, ami esetleg egyébként elhagyható lenne, de ezt nem tudjuk könnyen formalizálni a prioritás kezelésére: lengyel-forma vagy valami hasonló eszköz kellene Változók és konstansok (ebben a példában) vált. A B C konst. 0 1 Azaz: aritmetikai kifejezésnek az A, B, és C változó jelekből, a 0 és 1 konstans jelekből, a + és műveleti jelekből a ( és ) csoportosító jelekből a kif. tag kif. + tag tag fakt. fakt. fakt. fakt. ( kif. ) vált. konst. vált. A B C konst. 0 1 szabályok alkalmazásával felépíthető jelsorozatokat (szavakat/mondatokat) nevezzük 20

11 Példa: Egy aritmetikai kifejezés szintaxisának megadása (folyt.) Hogyan építhető fel egy szó a fenti szabályok alkalmazásával? kif. -ből indulunk Egy jelsorozat (szó) esetén helyettesítsük a részegységek megnevezésére szolgáló szimbólumot az őt definiáló szintaktikai szabály jobb oldalának valamely lehetséges változatával (alternatíva) Helyettesítés (jelölés): A (B + 1) levezetése kif. tag fakt. fakt. fakt. ( kif. ) fakt. ( kif. + tag ) fakt. ( tag + tag ) fakt. ( fakt. + fakt. ) vált. ( fakt. + fakt. ) vált. ( vált. + konst. ) A ( vált. + konst. ) A (B + 1) Szintaktikailag hibás kifejezést nem tudunk így levezetni, például: + (B + 1), )B + 1( Ilyen következtetési mód: levezetés Persze a gyakorlatban bonyolultabb aritmetikai kifejezések jönnek elő (ez a példa nagyon egyszerű), de azok is ugyanilyen módon kezelhetők Szintaxis ezen megadási módja: generatív nyelvtannal való szintaxis megadás (Ez a leggyakoribb) 21 és generatív nyelvtanok (Eddigi tapasztalataink alapján ) Mit kell tartalmaznia egy generatív nyelvtan definíciójának? Azon szimbólumok (betűk) megadását, amelyekből a nyelvtannal definiálandó nyelv szavai állhatnak (terminális szimbólumok, nyelvi szimbólumok) Azon további szimbólumok megadását, amelyek nem szerepelnek (!) a nyelv szavaiban (mondataiban), de szükség van rájuk a szintaktikai szabályok megfogalmazásához (nemterminális szimbólumok, grammatikai szimbólumok) A szintaktikai (levezetési) szabályokat Azt a nemterminális szimbólumot (kezdő szimbólum), amelyből levezetés alkalmazásával a definiálandó nyelv valamennyi szavát megkapjuk A levezetés pontos definícióját Szokásos jelölés szimbólum = terminális szimbólum szimbólum = nemterminális szimbólum 22

12 Példa: Köznapi nyelv (leszűkített részhalmaz, minimagyar ) Szabályok mondat ::= alanyi rész állítmányi rész alanyi rész ::= főnévi rész határozó állítmányi rész ::= tárgyi rész igei rész főnévi rész ::= névelő jelzők főnév jelzők ::= jelző jelző jelzők tárgyi rész ::= főnévi rész t névelő ::= λ a az egy jelző ::= λ hideg meleg fehér fekete nagy kis főnév ::= kutya macska hús egér sajt tej víz határozó ::= λ nappal éjjel reggel este igei rész ::= eszik iszik Megjegyzések A szavak itt terminális szimbólumok (de most nem dőlten írtuk őket) A mondat végére írhatnánk pontot (de ekkor is gond lenne abból, hogy a nagybetűs kezdést nem tudnánk egyszerűen biztosítani Látható már most is, hogy nem tudunk minden valós nyelvtani szabályt alkalmazni (tárgyi rész: sajt, sajtot, víz, vizet, tej, tejet) 23 Példa: Minimagyar (folyt.) Levezetés példa mondat alanyi rész állítmányi rész főnévi rész határozó állítmányi rész névelő jelzők főnév határozó állítmányi rész a jelzők főnév határozó állítmányi rész a jelző jelzők főnév határozó állítmányi rész a nagy fehér főnév határozó állítmányi rész a nagy fehér kutya határozó állítmányi rész a nagy fehér kutya reggel állítmányi rész a nagy fehér kutya reggel tárgyi rész igei rész a nagy fehér kutya reggel főnévi rész t igei rész a nagy fehér kutya reggel névelő jelzők főnév t igei rész a nagy fehér kutya reggel jelző főnév t igei rész a nagy fehér kutya reggel meleg húst igei rész a nagy fehér kutya reggel meleg húst eszik Ez normális magyar mondat, de persze sok a mi szintaktikánk szerint helyes normális magyarul mégis szintaktikailag hibás mondatot is le tudunk így vezetni az fehér egér hideg sajtt eszik az kis fekete macska meleg tejt iszik Hasonlóan levezethető több, normális magyarul szemantikailag is támadható mondat a fehér tej macskat iszik És persze léteznek minimagyarul is szintaktikailag helytelen (levezethetetlen) mondatok hús kutya reggel fekete eszik víz az 24

13 Példa: Egy programozási nyelv szintaxisának megadása Szándékosan egyszerű programozási nyelvet választunk (PÉLDA) Kezdőszimbólum: program Szabályok program ut. lista. ut. lista ut. ut. ; ut. lista ut. ért. adó if ut. while ut. blokk ért. adó vált := kif. if ut. if reláció then ut. else ut. while ut. while reláció do ut. blokk begin ut. lista end reláció kif. relációjel kif. relációjel < > = kif. tag kif. + tag tag fakt. fakt. fakt. fakt. ( kif. ) vált. konst. vált. A B C konst. 0 1 Egy jelsorozat akkor és csak akkor szintaktikusan helyes PÉLDA nyelvű program, ha levezethető a program nemterminális szimbólumból a fenti szabályok alkalmazásával Feladat: Adjunk meg szintaktikusan helyes és helytelen PÉLDA nyelvű programot! 25 Egyszerű programok esetében (viszonylag) könnyű eldönteni, hogy szintaktikusan helyesek-e [A szintaktikusan helyesnek bizonyult kódokat utána még természetesen szemantikusan is elemezni kell! (Ezzel egyelőre nem foglalkozunk.) Időnként beépítenek bizonyos szemantikai ellenőrzést a szintaktikába, pl. szám és szám típusú szöveg összeadása, Excelben megengedett, C-ben/Java-ban nem Beadható feladat: Készítsünk szintaktikailag helyes, de szemantikailag helytelen kódot C- ben, Java-ban Ugyanakkor még a szemantikai helyesség sem garantálja feltétlenül az értelmes/céljainknak megfelelő működést] Probléma hosszú programoknál A levezetés során sok konfliktus adódik (több lehetőség a helyettesítésre, melyik a jó/melyiket válasszuk?) Intuitív módon: Az a cél, hogy közelebb kerüljünk a kívánt végeredményhez Algoritmikusan: Valami módon sorba rakjuk a szabályokat, ebben a sorrendben alkalmazzuk őket a helyettesítésnél Lehet, hogy rossz szabályt választottunk! (Backtrack technikákat is be kell vetni, ez viszont magával vonja a rekurzív működést és az exponenciális típusú kimenetelt ) Mennyi sikertelen levezetési kísérlet után lehet kimondani, hogy a program szintaktikusan helytelen? Ezekre a (nehéz) kérdésekre választ adnak az elemzési algoritmusok A jó elemzési algoritmus legfeljebb az input hosszának konstansszorosa számú lépést hajt végre, és utána megadja a választ Ez persze nehezen biztosítható 26

14 Ajánlott irodalom Fülöp Zoltán: és szintaktikus elemzésük, Polygon, Szeged, 2001 Dömösi Pál és társai: és automaták, Elektronikus jegyzet, 2011 Bach Iván:, Typotex kiadó, Budapest, 2002 Katona Gyula, Recski András, Szabó Csaba: A számítástudomány alapjai, Typotex Kiadó, Budapest,

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

1.1 Halmazelméleti fogalmak, jelölések

1.1 Halmazelméleti fogalmak, jelölések 1.1 Halmazelméleti fogalmak, jelölések Alapfogalmak (nem definiáljuk) Halmaz x eleme az A halmaznak x nem eleme A halmaznak Jelölések A,B,C, x A x A SiUDWODQ V]iRN Halmaz megadása: Elemeinek felsorolásával:

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

1. Algebrai alapok: Melyek műveletek az alábbiak közül? 1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy

Részletesebben

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12

Részletesebben

Chomsky-féle hierarchia

Chomsky-féle hierarchia http://www.ms.sapientia.ro/ kasa/formalis.htm Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezetű), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Számítástudomány matematikai alapjai segédlet táv és levelező

Számítástudomány matematikai alapjai segédlet táv és levelező Számítástudomány matematikai alapjai segédlet táv és levelező Horváth Árpád 2008. december 16. A segédletek egy része a matek honlapon található: http://www.roik.bmf.hu/matek Kötelező irodalom: Bagyinszki

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

9. előadás Környezetfüggetlen nyelvek

9. előadás Környezetfüggetlen nyelvek 9. előadás Környezetfüggetlen nyelvek Dr. Kallós Gábor 2015 2016 1 Tartalom Bevezetés CF nyelv példák Nyelvek és nyelvtanok egy- és többértelműsége Bal- és jobboldali levezetések A fák magassága és határa

Részletesebben

Készítette: Ernyei Kitti. Halmazok

Készítette: Ernyei Kitti. Halmazok Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

http://www.ms.sapientia.ro/~kasa/formalis.htm

http://www.ms.sapientia.ro/~kasa/formalis.htm Formális nyelvek és fordítóprogramok http://www.ms.sapientia.ro/~kasa/formalis.htm Könyvészet 1. Csörnyei Zoltán, Kása Zoltán, Formális nyelvek és fordítóprogramok, Kolozsvári Egyetemi Kiadó, 2007. 2.

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések 1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

Házi feladatok megoldása. Nyelvtani transzformációk. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 6. gyakorlat.

Házi feladatok megoldása. Nyelvtani transzformációk. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 6. gyakorlat. Nyelvtani transzformációk Formális nyelvek, 6. gyakorlat a. S (S) SS ε b. S XS ε és X (S) c. S (SS ) Megoldás: Célja: A nyelvtani transzformációk bemutatása Fogalmak: Megszorított típusok, normálformák,

Részletesebben

DISZKRÉT MATEMATIKA I. TÉTELEK

DISZKRÉT MATEMATIKA I. TÉTELEK DISZKRÉT MATEMATIKA I. TÉTELEK Szerkesztette: Bókay Csongor 2011 őszi félév Az esetleges hibákat kérlek a csongor@csongorbokay.com címen jelezd! Utolsó módosítás: 2012. január 16. Ez a Mű a Creative Commons

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28.

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28. Miskolci Egyetem Diszkrét matek I. Vizsga-jegyzet Hegedűs Ádám Imre 2010.12.28. KOMBINATORIKA Permutáció Ismétlés nélküli permutáció alatt néhány különböző dolognak a sorba rendezését értjük. Az "ismétlés

Részletesebben

Formális Nyelvek és Automaták. Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek

Formális Nyelvek és Automaták. Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek Formális Nyelvek és Automaták Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek Formális Nyelvek és Automaták Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 7 VII. Gyűrűk 1. Gyűrű Definíció Egy a következő axiómákat: gyűrű alatt olyan halmazt értünk, amelyben definiálva van egy összeadás és egy szorzás, amelyek teljesítik (1) egy

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1. Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)

Részletesebben

Formális nyelvek és automaták előadások

Formális nyelvek és automaták előadások VÁRTERÉSZ MAGDA Formális nyelvek és automaták előadások 2005/06-os tanév 1. félév Tartalomjegyzék 1. Előzetes tudnivalók 4 2. Bevezetés 15 3. Ábécé, szó, formális nyelv 17 4. Műveletek nyelvekkel 24 4.1.

Részletesebben

Relációk. 1. Descartes-szorzat. 2. Relációk

Relációk. 1. Descartes-szorzat. 2. Relációk Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram. 1. Descartes-szorzat 1. Deníció. Tetsz leges két a, b objektum

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Automaták mint elfogadók (akceptorok)

Automaták mint elfogadók (akceptorok) Automaták mint elfogadók (akceptorok) Ha egy iniciális Moore-automatában a kimenőjelek halmaza csupán kételemű: {elfogadom, nem fogadom el}, és az utolsó kimenőjel dönti el azt a kérdést, hogy elfogadható-e

Részletesebben

A matematika nyelvéről bevezetés

A matematika nyelvéről bevezetés A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

Reguláris kifejezések 1.

Reguláris kifejezések 1. Reguláris kifejezések 1. A nyelvtechnológia eszközei és nyersanyagai 1. gyakorlat A beadandó feladatok be vannak keretezve! 1.1. Miért hívják reguláris kifejezésnek? (!) Az elméleti és a gyakorlati reguláris

Részletesebben

Nagyordó, Omega, Theta, Kisordó

Nagyordó, Omega, Theta, Kisordó A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 2. MA3-2 modul. Eseményalgebra

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 2. MA3-2 modul. Eseményalgebra Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 2. MA3-2 modul Eseményalgebra SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI.

Részletesebben

Kaposi Ambrus. University of Nottingham Functional Programming Lab. Hackerspace Budapest 2015. január 6.

Kaposi Ambrus. University of Nottingham Functional Programming Lab. Hackerspace Budapest 2015. január 6. Bizonyítás és programozás Kaposi Ambrus University of Nottingham Functional Programming Lab Hackerspace Budapest 2015. január 6. Bizonyítás, érvelés Példa: sáros a csizmám ha vizes a föld, esett az eső

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3.

DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Rendezett halmaz R A x A rendezési reláció A-n, ha R Másképpen: (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Tranzitív arb for (a, b) R. 1. a A ara 2. a,b A (arb bra a = b 3. a,b,c A (arb brc arc

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Sorozatok B.: Tanulmányok a számosságokról, a végtelenről, a prímekről, a rac. és irrac számokról

Sorozatok B.: Tanulmányok a számosságokról, a végtelenről, a prímekről, a rac. és irrac számokról Sorozatok B.: Tanulmányok a számosságokról, a végtelenről, a prímekről, a rac. és irrac számokról A. Sorozatok általában B. Tanulmányok a végtelenről, a prímekről a racionális és irracionális számokról.

Részletesebben

Atomataelmélet: A Rabin Scott-automata

Atomataelmélet: A Rabin Scott-automata A 19. óra vázlata: Atomataelmélet: A Rabin Scott-automata Az eddigieken a formális nyelveket generatív szempontból vizsgáltuk, vagyis a nyelvtan (generatív grammatika) szemszögéből. A generatív grammatika

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Alap fatranszformátorok I. Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap

Alap fatranszformátorok I. Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap Alap fatranszformátorok I Vágvölgyi Sándor Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap termátíró rendszerről eldönthető hogy összefolyó-e. Mindannyian

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Halmazok-előadás vázlat

Halmazok-előadás vázlat Halmazok-előadás vázlat Naiv halmazelmélet:. Mi a halmaz? Mit jelent, hogy valami eleme a halmaznak? Igaz-e, hogy a halmaz elemei valamilyen kapcsolatban állnak egymással? Jelölés: a A azt jelenti, hogy

Részletesebben

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI Dr. Tóth László Pécsi Tudományegyetem, 2005 Bevezetés A logika a gondolkodás általános törvényszerűségeit, szabályait vizsgálja. A matematikai logika a

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések)

Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések) Emlékeztető Emlékeztető: LR(0) elemzés A lexikális által előállított szimbólumsorozatot balról jobbra olvassuk, a szimbólumokat az vermébe tesszük. LR elemzések (SLR() és LR() elemzések) Fordítóprogramok

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

Gazdasági Matematika I.

Gazdasági Matematika I. Dr. Lajkó Károly Gazdasági Matematika I. NYÍREGYHÁZI FŐISKOLA GAZDASÁGMÓDSZERTANI TANSZÉK Dr. Lajkó Károly Gazdasági Matematika I. jegyzet az alapképzéshez NYÍREGYHÁZI FŐISKOLA GAZDASÁGMÓDSZERTANI TANSZÉK

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Bácsó Sándor Diszkrét Matematika I. mobidiák könyvtár Bácsó Sándor Diszkrét Matematika I. mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Bácsó Sándor Diszkrét Matematika I. egyetemi jegyzet mobidiák

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra

Részletesebben

Algebrai egész kifejezések (polinomok)

Algebrai egész kifejezések (polinomok) Algebrai egész kifejezések (polinomok) Betűk használata a matematikában Feladat Mekkora a 107m 68m oldalhosszúságú téglalap alakú focipála kerülete, területe? a = 107 m b = 68 m Terület T = a b = 107m

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

AUTOMATÁK ÉS FORMÁLIS NYELVEK PÉLDATÁR

AUTOMATÁK ÉS FORMÁLIS NYELVEK PÉLDATÁR Írta: ÉSIK ZOLTÁN GOMBÁS ÉVA IVÁN SZABOLCS AUTOMATÁK ÉS FORMÁLIS NYELVEK PÉLDATÁR Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Ésik Zoltán, Dr. Gombás Éva és Dr. Iván Szabolcs, Szegedi Tudományegyetem

Részletesebben

Csikós Pajor Gizella Péics Hajnalka

Csikós Pajor Gizella Péics Hajnalka Csikós Pajor Gizella Péics Hajnalka ANALÍZIS elméleti összefoglaló és példatár Bolyai Farkas Alapítvány Zenta 00. Szerzők: Csikós Pajor Gizella magiszter, szakfőiskolai tanár, Szabadkai Műszaki Szakfőiskola,

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 ) Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden

Részletesebben

KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula

KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula KOMBINATORIKA ELŐADÁS osztatlan matematka tanár hallgatók számára Szta formula Előadó: Hajnal Péter 2015. 1. Bevezető példák 1. Feladat. Hány olyan sorbaállítása van a a, b, c, d, e} halmaznak, amelyben

Részletesebben

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013 UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

II. Halmazok. Relációk. II.1. Rövid halmazelmélet. A halmaz megadása. { } { } { } { }

II. Halmazok. Relációk. II.1. Rövid halmazelmélet. A halmaz megadása. { } { } { } { } II. Halmazok. Relációk II.1. Rövid halmazelmélet A halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. A halmaz alapfogalom. Ez azt jelenti, hogy csak példákon

Részletesebben

MATEMATIKA 9. osztály Segédanyag 4 óra/hét

MATEMATIKA 9. osztály Segédanyag 4 óra/hét MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Halmazelmélet. 2. fejezet 2-1

Halmazelmélet. 2. fejezet 2-1 2. fejezet Halmazelmélet D 2.1 Két halmazt akkor és csak akkor tekintünk egyenl nek, ha elemeik ugyanazok. A halmazt, melynek nincs eleme, üres halmaznak nevezzük. Jele:. D 2.2 Az A halmazt a B halmaz

Részletesebben

2. Halmazelmélet (megoldások)

2. Halmazelmélet (megoldások) (megoldások) 1. A pozitív háromjegy páros számok halmaza. 2. Az olyan, 3-mal osztható egész számok halmaza, amelyek ( 100)-nál nagyobbak és 100-nál kisebbek. 3. Az olyan pozitív egész számok halmaza, amelyeknek

Részletesebben

Halmazelmélet. 1. Jelenítsük meg Venn-diagrammon az alábbi halmazokat: a) b) c) 2. Milyen halmazokat határoznak meg az alábbi Venn-diagrammok?

Halmazelmélet. 1. Jelenítsük meg Venn-diagrammon az alábbi halmazokat: a) b) c) 2. Milyen halmazokat határoznak meg az alábbi Venn-diagrammok? Halmazelmélet Alapfogalmak Unió: ; metszet: ; különbség: ; komplementer: (itt U egy univerzum halmaz). Egyenlőség: két halmaz egyenlő, ha ugyanazok az elemeik. Ezzel ekvivalens, hogy. Tartalmazás: ; valódi

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

7. Gyakorlat A relációs adatmodell műveleti része

7. Gyakorlat A relációs adatmodell műveleti része 7. Gyakorlat A relációs adatmodell műveleti része Relációs algebra: az operandusok és az eredmények relációk; azaz a relációs algebra műveletei zártak a relációk halmazára Műveletei: Egy operandusú Két

Részletesebben

Mátrixok. 3. fejezet. 3.1. Bevezetés: műveletek táblázatokkal

Mátrixok. 3. fejezet. 3.1. Bevezetés: műveletek táblázatokkal fejezet Mátrixok Az előző fejezetben a mátrixokat csak egyszerű jelölésnek tekintettük, mely az egyenletrendszer együtthatóinak tárolására, és az egyenletrendszer megoldása közbeni számítások egyszerüsítésére

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

Széchenyi István Egyetem, 2005

Széchenyi István Egyetem, 2005 Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 9 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Fordítóprogramok felépítése, az egyes programok feladata. A következő jelölésmódot használjuk: program(bemenet)(kimenet)

Fordítóprogramok felépítése, az egyes programok feladata. A következő jelölésmódot használjuk: program(bemenet)(kimenet) Fordítóprogramok. (Fordítóprogramok felépítése, az egyes komponensek feladata. A lexikáliselemző működése, implementációja. Szintaktikus elemző algoritmusok csoportosítása, összehasonlítása; létrehozásuk

Részletesebben

A Borda-szavazás Nash-implementálható értelmezési tartományai

A Borda-szavazás Nash-implementálható értelmezési tartományai A Borda-szavazás Nash-implementálható értelmezési tartományai Tasnádi Attila 2007. június 8. Alapfogalmak Jelölések: X az alternatívák véges nem üres halmaza (q = X ). Alapfogalmak Jelölések: X az alternatívák

Részletesebben

Analízis. 11 12. évfolyam. Szerkesztette: Surányi László. 2015. július 5.

Analízis. 11 12. évfolyam. Szerkesztette: Surányi László. 2015. július 5. Analízis 11 12. évfolyam Szerkesztette: Surányi László 2015. július 5. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó András, Kalló

Részletesebben

Bevezetés a matematikai analízisbe

Bevezetés a matematikai analízisbe DancsIstván MagyarkútiGyula Medvegyev Péter Puskás Csaba Tallos Péter Bevezetés a matematikai analízisbe Budapesti Közgazdaságtudományi Egyetem Budapest: Aula, 1996 Tartalomjegyzék Tartalomjegyzék i 1

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Absztrakt adatstruktúrák A bináris fák

Absztrakt adatstruktúrák A bináris fák ciós lámpa a legnagyobb élettartamú és a legjobb hatásfokú fényforrásnak tekinthető, nyugodtan mondhatjuk, hogy a jövő fényforrása. Ezt bizonyítja az a tény, hogy ezen a területen a kutatások és a bejelentett

Részletesebben

Gáspár Csaba. Analízis

Gáspár Csaba. Analízis Gáspár Csaba Analízis Készült a HEFOP 3.3.-P.-004-09-00/.0 pályázat támogatásával Szerzők: Lektor: Gáspár Csaba Szili László, egyetemi docens c Gáspár Csaba, 006. Tartalomjegyzék. Bevezetés 5. Alapvető

Részletesebben

FRAKTÁLGEOMETRIA. Metrikus terek, szeparábilitás, kompaktság. Czirbusz Sándor czirbusz@gmail.com. Komputeralgebra Tanszék ELTE Informatika Kar

FRAKTÁLGEOMETRIA. Metrikus terek, szeparábilitás, kompaktság. Czirbusz Sándor czirbusz@gmail.com. Komputeralgebra Tanszék ELTE Informatika Kar Metrikus terek, szeparábilitás, kompaktság Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010. március 7. Vázlat 1 Szeparábilitás Definíciók A szeparábilitás ekvivalens

Részletesebben