1. előadás Matematikai és nyelvi alapok, Szintaktikai vizsgálat

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. előadás Matematikai és nyelvi alapok, Szintaktikai vizsgálat"

Átírás

1 1. előadás Matematikai és nyelvi alapok, Dr. Kallós Gábor Tartalom Matematikai alapfogalmak Halmazok Relációk Függvények Homomorfizmusok Nyelvi alapfogalmak Ábécé, szavak, nyelvek Műveletek szavakkal és nyelvekkel Kifejezés Köznapi nyelv Programozási nyelv 2

2 Matematikai alapfogalmak Halmazelmélet Halmaz és halmazhoz való hozzátartozás: nem definiált alapfogalom Tudjuk: a B és a B közül csak pontosan az egyik teljesül Halmaz megadási módja Kapcsos zárójelben felsoroljuk az elemeit Megadjuk az elemeket jellemző tulajdonságo(ka)t (a módszer alkalmazhatóságát a részhalmaz axióma garantálja) { h a h elem T tulajdonságú } Példa: { x R 0 < x < 1} A halmazelmélet (pontos matematikai) felépítése: axiómák, definíciók, állítások, tételek Meghatározottsági axióma Legyenek A és B halmazok. A akkor és csak akkor egyenlő B-vel, ha minden x A esetén x B, és minden y B esetén y A. Azaz: elemeik azonosak Definíció Legyenek A és B halmazok. A része B-nek, ha minden x A-ra x B is teljesül (jelölés: A B). Tétel (halmazok egyenlősége): A = B, ha A B és B A Üres halmaz axióma Létezik olyan halmaz, amelynek nincs eleme. Ez az üres halmaz, jelölése. Állítás: Pontosan egy ilyen halmaz létezik 3 Matematikai alapfogalmak Halmazelmélet (folyt.) Definíciók (Legyenek A és B halmazok) Unió, metszet, különbséghalmaz értelmezése (tudjuk) Jelölések: A B, A B, A \ B Az unió axiómából Disztributivitási tulajdonság, De-Morgan azonosságok, egyéb összefüggések (igazolhatók) A és B diszjunkt, ha nincs közös elemük Komplementer halmaz (H alaphalmazra vonatkozóan) H \ A, Jelölés: Hatványhalmaz axióma Legyen A halmaz. Létezik olyan halmaz, amely tartalmazza A minden egyes részhalmazát. Ezt a halmazt A hatványhalmazának nevezzük, P(A)-val jelöljük Állítás: P(A) elemszáma 2 A (ez indukcióval igazolható) Definíció: Legyenek A és B halmazok. A és B direkt (vagy Descartes-féle) szorzata az összes olyan rendezett (x, y) számpárból álló halmaz, amelyeknél x A és y B. A direkt szorzat jele:. A B = {(x, y) x A és y B} (Rendezett pár definíció) Általánosítható n darab halmazra Feladat: Soroljuk fel A B elemeit, ahol A = {1, 2} és B = {3, 4, 5} 4

3 Matematikai alapfogalmak Relációk Definíció: Legyenek M 1, M 2,, M n tetszőleges halmazok. Egy ρ M 1 M 2 M n halmazt relációnak nevezünk (rendezett szám n-es) Megj.: Az üres halmaz is reláció (mert nincs olyan eleme, ami nem rendezett szám n-es) Ha n = 2, akkor ρ-t bináris relációnak nevezzük Elemei rendezett párok, jelölés: a, b vagy (a, b) Itt már beszélhetünk értelmezési tartományról és értékkészletről Legyen a A és b B egy ρ A B bináris reláció esetén. Ha ekkor a, b ρ teljesül, akkor azt mondjuk, hogy aρrelációban van b-vel. Jelölések: ρ(a, b), vagy ρ a, b, vagy aρb. Definíció: Legyenek ρ A B 1 és σ B 2 C bináris relációk. Két bináris reláció kompozíciójának (szorzatának) nevezzük azt a ρ σrelációt, ahol ρ σ A C, és ρ σ= { a, c b B 1 B 2 úgy, hogy a, b ρés b, c σ}. A kompozícióképzés nem kommutatív művelet Feladat: Legyen ρ = { n, n + 1 n N} és σ = { n, 3n n N}. Adjuk meg a ρ σés σ ρ relációkat! Egy ρ M M reláció k-adik (k 0) hatványát a következő módon értelmezzük: ρ 0 = { (a, a) a M}; ρ k + 1 = ρ k ρ, ha k 1 Nyilván ρ 1 = ρ 5 Matematikai alapfogalmak Relációk (folyt.) Definíciók k Egy ρ M M reláció tranzitív lezártja ρ = ρ U ρ U ρ U... = U ρ Egy ρ M M reláció reflexív, tranzitív lezártjaρ* = ρ 0 ρ + k= 1 ρ + mindig tranzitív, és ez a legszűkebb olyan reláció, amely tranzitív, és tartalmazza ρ-t ρ* reflexív és tranzitív, és a legszűkebb az ilyen tulajdonságúρ-t tartalmazó relációk közül Definíció: Egy ρ M M (homogén) bináris reláció reflexív, ha minden x M-re fennáll xρx; szimmetrikus, ha minden x, y M-re xρy yρx; antiszimmetrikus, ha minden x, y M-re xρyés yρx x=y; tranzitív, ha minden x, y, z M-re xρyés yρz xρz (Megj.: A homogén reláció meghatározása az, hogy értékkészlete része az értelmezési tartományának, de sokszor úgy használják, hogy a két halmaz megegyezik) Speciális relációk Definíció: A ρ (homogén) bináris reláció ekvivalencia-reláció, ha reflexív, szimm. és tranzitív Ekvivalencia-reláció példák: egyenesek párhuzamossága, szakaszok egybevágósága, számhalmazok egyenlősége Igazolható, hogy minden ekvivalencia-reláció M-et páronként diszjunkt, nem üres részhalmazokra bontja fel (ekvivalencia-osztályok), és a részhalmazokból reprezentáns elem választható (Egy A halmazrendszer az A halmaz osztályfelbontása, ha A elemeinek uniója A-t adja, és tetszőleges két A-beli elemre teljesül, hogy ha nem diszjunktak, akkor megegyeznek) Reprezentáns példák: egyenesek párhuzamossága irány fogalom; szakaszok egybevágósága hosszúság fogalom 6

4 Matematikai alapfogalmak Speciális relációk (folyt.) Definíció: A ρ (homogén) bináris reláció rendezési reláció, ha reflexív, antiszimmetrikus és tranzitív Ekkor (M, ρ)-t rendezett halmaznak nevezzük olyan (rendezett) pár, amelynek első komponense egy nem üres halmaz, második komponense pedig egy, a halmazon értelmezett rendezési reláció Rendezett halmaz példák: (N, ), és hasonlóan (Z, ), (Q, ), (R, ); (P(H), ) ahol H tetszőleges halmaz, részhalmaz tulajdonsággal; (N, ), (Z, ) itt az oszthatóság De: (N, <) és (Z, <) nem rendezett halmaz, mert < nem reflexív! Definíció: Egy f reláció függvény, ha minden x, y és x, z f esetén y = z Azaz ha nincs két olyan eleme, hogy az első komponensek megegyeznek, a másodikak pedig különbözők Jelölések függvény esetén: f(a, b) vagy a f b helyett b = f(a) Függvényekkel kapcsolatos fontos fogalmak (itt eml., összefoglaló módon, részl. nélkül) Értelmezési tartomány (D f ), értékkészlet (R f ), leképezés, helyettesítési érték (x-hez hozzárendelt elem) Függvényképző eljárások: függvény leszűkítése, függvények kompozíciója, függvény invertálása (invertálható kell, hogy legyen a függvény) Képhalmaz, X D f halmaz képe, Y R f halmaz ősképe Legyen f: A B. Azt mondjuk, hogy f az A-t B-be leképező injekció, ha f invertálható; f az A-t B-re leképező szuperjekció (szürjekció), ha R f = B; f az A és B közti bijekció, ha injekció és szuperjekció is 7 Matematikai alapfogalmak Definíció: Az (A, F) párt algebrának nevezzük, ahol A nem üres halmaz, F pedig az A- n értelmezett műveletek halmaza Példák algebrákra: (N, +), (N, {+, }) Definíció: Legyen (A, ) és (B, ) két algebra. Egy h: A B leképezést homomorfizmusnak nevezünk, ha injektív (monomorfizmus), azaz az értelmezési tartomány minden eleméhez az értékkészletnek pontosan egy eleme van hozzárendelve; és művelettartó, azaz minden a, b A esetén érvényes, hogy h(a b) = h(a) h(b). Ekkor A-t és h(a)-t homomorf(ak)nak nevezzük. A homomorfizmusok különös jelentősége az, hogy a definíciós halmaz struktúrájának típusát a képhalmazra viszik át (pl. csoportok) Egyes speciális struktúrák közötti homomorfizmusok (az algebrákon túl): csoportok, gyűrűk, vektorterek (köztük lineáris leképezések), rendezett halmazok Ha a h: A B függvény kölcsönösen egyértelmű (bijektív), és inverze is homomorfizmus, akkor izomorfizmusról beszélünk Az izomorf struktúrák algebrai nézőpont szerint megegyeznek Egyéb további speciális homomorfizmusok: Ha a leképezés szürjektív (epimorfizmus), illetve ha a leképzésnél B A (endomorfizmus) (Homomorf és izomorf struktúrákkal részletesen foglalkozunk még a számtud. slide-okon is) Félcsoport, monoid, csoport definíciója (számtud. slide-ok) 8

5 Nyelvi alapfogalmak Ábécé, szó Definíciók Ábécé: szimbólumok tetszőleges, nem üres, véges halmaza; jelölés: V (vagy Ʃ) A szimbólumokról feltesszük, hogy megkülönböztethetők és különböznek egymástól Szó (mondat): V elemeiből képzett sorozat, azaz a 1 a k, ahol k 0, és a 1,, a k V Üresszó (null szó): k = 0 eset, jele λ (néha ε) Összes szó halmaza V felett (benne az üres szó is); jelölés: V* Ha az üresszót nem engedjük meg: V + = V* {λ} (Megj.: Nem üres V halmaz esetén V* megszámlálhatóan végtelen) Szó hossza (V felett): szimbólumok száma benne, jelölés: w (w szóra) Rekurzív definíció is lehetséges Itt λ = 0 Példa Legyen Ʃ = {a, b} Néhány szóʃfelett: a, b, ab, bb, baa, aba, abba, baba, (Hány szót tudunk felsorolni?) Szavak hossza Ʃ felett: a = 1, ab = 2, Ʃ* = {λ, a, b, aa, ab, ba, bb, aaa, aab, aba, } (Milyen rendezést célszerű itt alkalmazni? Hány darab n hosszú szót tudunk megadni?) 9 Nyelvi alapfogalmak Ábécé, szó (folyt.) Definíció Szavak egyenlősége: csak ha betűről-betűre megegyeznek, azaz valamely V*-beli p = a 1 a m és q = b 1 b n szavakat pontosan akkor tekintünk egyenlőknek, ha m = n és i = 1,, n-re a i = b i Tréfás példa Legyen V = {1, 2, +}. Ekkor V*-ban (persze nem matematikai értelemben ) fennáll, hogy 1+1 2, mivel az 1+1 szó nem egyezik meg betűről-betűre a 2 szóval. Definíció Szavak konkatenációja (egymás után írás, összefűzés, szorzás ): u és v V*-beli szavakra uv V* Érvényes: uv = u + v u n : az u szó n-szer egymás után írva (hatványozás) Itt is megadható rekurzív definíció u V*-ra u 0 = λ Igaz továbbá: xλ = λx = x De: a konkatenáció általában nem kommutatív! (azaz általában uv vu) Példa Legyen Ʃ = {a, b}. Ekkor az abbaʃ*-beli szó baba szóval való szorzata abbababa, ami nem egyezik meg a babaabba szóval. 10

6 Nyelvi alapfogalmak: szóműveletek Ábécé, szó (folyt.) Igazolható, hogy V* a konkatenáció művelettel egységelemes félcsoportot, monoidot alkot A művelet asszociatív, és az üresszó egység Definíció Legyenek x és w V*-beli szavak. Azt mondjuk, hogy x prefixe (kezdőszelete) w-nek, ha van olyan y V*-beli szó, hogy w = xy. Ha x, y λ, akkor valódi prefixről beszélünk Valódi prefixre: x = k a prefix hossza Hasonlóan értelmezhető egy szó szuffixe (végződése) Definíció Legyenek x és w V*-beli szavak. Azt mondjuk, hogy x részszava w-nek, ha van olyan y, z V*, hogy w = yxz (itt y és z lehet üresszó). Valódi részszó is hasonlóan értelmezhető Használatos az alszó, kezdő alszó, és befejező alszó megnevezés is Feladat: Adjunk meg részszót, prefixet és szuffixet az abbababa szónál! Hány különböző prefix lehetséges? (Szó tükörképe is definiálható, jelölés: w 1 ) 11 Nyelvi alapfogalmak Nyelv (vagy: V feletti nyelv, formális nyelv): V* tetszőleges L részhalmaza; azaz L V* Adott formális elem adott nyelvbe való tartozása egyértelműen eldönthető Egy nyelv lehet üres, véges vagy végtelen Üres nyelv: L = Csak az üres szót tartalmazó nyelv: L = {λ} (ennek van egy eleme) Egyszerű alapnyelvek: L = {a} típusúak A véges nyelvek elvileg elemeik felsorolásával megadhatók Teljes nyelv: L = V* (minden lehetséges szót tartalmaz) Megjegyzések Egy adott Ʃ ábécé feletti összes lehetséges nyelvek halmaza a Ʃ* összes részhalmazából alkotott halmaz, vagyis Ʃ* hatványhalmaza. Mivel Ʃ* számossága megszámlálhatóan végtelen, így egy véges, de nem üres Ʃ ábécé felett kontinuum sok (különböző) nyelv létezik. A hagyományos nyelvek (pl. magyar nyelv) nem tekinthetők formális nyelvnek abban az értelemben, hogy a nyelv halmaza nem tiszta, nem véglegesen lezárt, ill. részben szubjektív is; továbbá ugyanazon szónak lehet több jelentése Példa: Word helyesírás ellenőrzője (esettanulmányok) Feladat: Nézzük meg, hogy egyes, köznapinak tekinthető szavakat nem ismer fel, máskor számunkra teljesen magyartalan, ismeretlen szavakat elfogad 12

7 Nyelvi alapfogalmak Példa: nyelvek V = {0, 1,, 9} felett A magyar történelmi évszámok halmaza ekkor egy véges nyelv V felett Lehet persze szubjektív, de biztosan véges A páratlan számok halmaza (tízes számrendszer) egy V feletti végtelen nyelv Példa: néhány nyelv Ʃ = {a, b} felett Véges nyelvek {λ, a, aa, aab} {x Ʃ* x 7} Végtelen nyelvek {x Ʃ* x páratlan} {x Ʃ* x prím} {λ, ab, aabb, aaabbb, } = {a n b n n 0} Adjunk meg néhány további véges és végtelen nyelv példát! (Legyen például V = {0, 1} vagy V = {a, b}) (Megj.: Szükségünk lesz olyan eszközökre, amelyekkel az eddigieknél lényegesen bonyolultabb nyelveket is megadhatunk generatív nyelvtannal történő megadás, lásd később) 13 Műveletek nyelvekkel A nyelvek halmazok és jelsorozatok is egyben. Így a rajtuk értelmezett műveletek is kétféle típusúak. Boole műveletek (,, \, ) Reguláris műveletek (+,, *) Tetszőleges L 1, L 2 V* nyelvek esetén értelmezhető a nyelvek (mint halmazok) uniója, metszete, különbsége, illetve L 1 -nek a V*-ra vonatkozó komplementere, és ezek szintén V*-beliek A jelölések a megszokottak (,, \, ) Egy formális definíció (a többi hasonlóan) L 1 L 2 = {p p L 1 és p L 2 } A komplementer képzésnél nagyon vigyázni kell az alaphalmaz megadására (!) Példa: Az L = {λ, a, aa, aab} nyelv komplementere teljesen más a Ʃ = {a, b}, illetve a Ʃ' = {a, b, c} felett A konkatenációt is értelmezzük nyelvekre (ez a művelet halmazokra nincs értelmezve, itt a jelsorozat tulajdonság él!) L 1 L 2 = {uv u L 1, v L 2 } Általában L 1 L 2 L 2 L 1 Egy L 1 L 2 -beli szó nem feltétlenül csak egyféle módon bontható fel L 1 -beli és L 2 -beli elemekre A konkatenáció segítségével egy nyelv önmagával vett konkatenáltját (szorzatát) is értelmezhetjük 14

8 Műveletek nyelvekkel Nyelv i-edik hatványa L k = LL L Itt L 0 = {λ} (megállapodás szerint), L 1 = L Itt is lehetséges rekurzív definíció Ugyanúgy mint szavakra, használatos V k = VV V is (Az ábécé is nyelv, hiszen V V*. Így az ábécére is értelmezett minden nyelvművelet, esetleg triviális eredménnyel.) Kleene-iteráció, a konkatenáció lezárása L* = {λ} L LL LLL (Kleene-csillag), vagy illetve: L + = L LL LLL (Kleene-plusz) =U =0 i Azaz: az L*-beli elemek azok a jelsorozatok, amelyeket fel lehet úgy darabolni, hogy minden darab a nyelv mondata legyen (a darabok számára nincs megkötés) Itt L + = L* is előfordulhat, pontosan akkor, ha λ L Hasonlóan: i V* = {λ} V VV VVV, vagy V V (Kérdés: Konzekvens ez az előző definícióval?) =U =0 i Természetes kérdés: zártak-e különböző nyelvosztályok ezekre a műveletekre? Az L nyelvosztály zárt a műveletre, ha tetszőleges L 1, L 2 L-re mindig L 1 L 2 Lis teljesül (Hasonlóan definiálható az egyváltozós műveletre való zártság is) Később az ilyen típusú vizsgálatok fontosak lesznek L i L 15 Műveletek nyelvekkel Legyen V egy rögzített ábécé. Ekkor tetszőleges L, L 1, L 2, L 3 V* esetén érvényesek a következő összefüggések: L 1 L 2 = L 2 L 1 (az unió kommutatív) (L 1 L 2 ) L 3 = L 1 (L 2 L 3 ) (az unió asszociatív) L L = L (az unió idempotens) L = L = L (az unióra nézve létezik egységelem, a üres nyelv) L 1 L 2 = L 2 L 1 (a metszet kommutatív) (L 1 L 2 ) L 3 = L 1 (L 2 L 3 ) (a metszet asszociatív) L L= L (a metszet idempotens) L V* = V* L= L (a metszetre nézve létezik egységelem, a V* univerzális nyelv) (L 1 L 2 )L 3 = L 1 (L 2 L 3 ) (a konkatenáció asszociatív) L{λ} = {λ}l = L (a konkatenációra nézve létezik egységelem, és ez {λ}) L = L = (a konkatenációra nézve létezik nullelem, és ez ; nem lehet szópárokat készíteni) L + = LL* = L*L L* = L + {λ} (L*)* = L* (az iteráció idempotens) (L + ) + = L + (a + művelet idempotens) 16

9 Műveletek nyelvekkel Nyelvekre vonatkozó összefüggések (folyt.) (L*) + = (L + )* = L* L 1 = L 1 (a komplementerképzés involúciós tulajdonságú) Megjegyzések A műveletek asszociativitása miatt általában nem is szoktuk zárójelekkel jelezni a(z elméleti) sorrendjüket További zárójelek hagyhatók el az egyértelmű precedencia következtében, sorrend: az egyargumentumú műveletek (komplementer, Kleene-csillag és Kleene-plusz) precedenciája nagyobb, mint a kétargumentumúaké; a konkatenációé nagyobb, mint az unióé és metszeté Disztributivitási tulajdonságok is megfogalmazhatók Feladat: hagyjuk el a felesleges zárójeleket a következő kifejezésekből, ill. hozzuk egyszerűbb alakra a kifejezéseket (L 1 *) L 2 ((L 1 L 2 ) L 3 ) (L*L) (L L) ( L L) Feladat (önálló gyakorlásra) Szemléltessük a fenti összefüggéseket konkrét nyelv példákkal (fontosabb esetek)! 17 Műveletek nyelvekkel Egyszerű nyelvműveleti példák {ab} {cd} = {ab, cd} {a, bx}{c, d} = {ac, ad, bxc, bxd} {c, d}{a, bx} = {ca, da, cbx, dbx} {ab} 3 = {ababab} {ab} + = {ab, abab, ababab, } {ab}* = {λ, ab, abab, ababab, } Nyelvműveletek feladatok (D. P ) Legyen V = {a, b, c}, L 1 = {a, c, bb, aba}, L 2 = {a, abba, baba, caba, abbaba, babaabba}. Adjuk meg az L 1 L 2, L 1 L 2, L 1 L 2, L 1 L 1 halmazokat. Adjunk példát olyan V ábécé feletti L 1 és L 2 nyelvekre, amelyekre L 1 L 2 = L 2 L 1. (Próbáljunk nem triviális megoldást is megadni.) Adottak L 1 és L 2 véges nyelvek V ábécé felett úgy, hogy L 1 = n és L 2 = m. Mennyi lehet a számossága az L 1 L 2, L 1 L 2 és L 1 L 2 nyelveknek? Adjunk meg alsó és felső korlátot, továbbá példákat is. Igazoljuk vagy cáfoljuk, hogy (L 1 L 2 )* = (L 1 )* (L 2 )* Segítség: az állítás hamis, például L 1 = {a}, L 2 = {b}-re látható Mivel egyenlő L 2, ha L = {a n b n n > 0} 18

10 Példa: Egy aritmetikai kifejezés szintaxisának megadása (Minden programozási nyelvben előfordul) Adott egy rögzített elemekből felépített kifejezés. Feladatunk eldönteni, hogy szintaktikusan helyes-e (nem ránézésre vagy megérzéssel, hanem algoritmussal). Ehhez formalizálni kell a rendszert! Milyen szimbólumok, számok, műveleti jelek szerepelhetnek a kifejezésben? Rögzítünk egy megfelelő halmazt (ebben az egyszerű példában): változók (A, B, C), konstansok (0, 1), műveleti jelek (+, ) és zárójelek Példa kifejezések: A + B C, AB ++ (C ) Milyen szabályok alapján épülhet fel a kifejezés a már rögzített szimbólumokból? Rekurzív definíció: a kifejezés állhat egy tagból, vagy lehet több tag összege; azaz a kifejezés lehet egy kifejezés és egy tag összege Nyilván definiálni kell majd a tagot is (és a többi részegységet is) Tömör és egyértelmű megfogalmazás kell! Formális leírás elemei kifejezés = kif., tag = tag, vagy művelet =, lehet = (vagy: ::=, Backus Naur jelölés) Kifejezés definíciója Így tehát kif. tag kif. + tag 19 Példa: Egy aritmetikai kifejezés szintaxisának megadása (folyt.) Tag definíciója Lehet egy tényezőből álló szorzat (faktor), vagy több tényező szorzata (szintén rekurzív definícióval) tag fakt. fakt. fakt. Faktor definíciója Lehet egy zárójelbe tett kifejezés, vagy változó, vagy konstans fakt. ( kif. ) vált. konst. A kifejezésből kaphatunk majd újra tagot Itt teljes zárójelezést használunk, ami esetleg egyébként elhagyható lenne, de ezt nem tudjuk könnyen formalizálni a prioritás kezelésére: lengyel-forma vagy valami hasonló eszköz kellene Változók és konstansok (ebben a példában) vált. A B C konst. 0 1 Azaz: aritmetikai kifejezésnek az A, B, és C változó jelekből, a 0 és 1 konstans jelekből, a + és műveleti jelekből a ( és ) csoportosító jelekből a kif. tag kif. + tag tag fakt. fakt. fakt. fakt. ( kif. ) vált. konst. vált. A B C konst. 0 1 szabályok alkalmazásával felépíthető jelsorozatokat (szavakat/mondatokat) nevezzük 20

11 Példa: Egy aritmetikai kifejezés szintaxisának megadása (folyt.) Hogyan építhető fel egy szó a fenti szabályok alkalmazásával? kif. -ből indulunk Egy jelsorozat (szó) esetén helyettesítsük a részegységek megnevezésére szolgáló szimbólumot az őt definiáló szintaktikai szabály jobb oldalának valamely lehetséges változatával (alternatíva) Helyettesítés (jelölés): A (B + 1) levezetése kif. tag fakt. fakt. fakt. ( kif. ) fakt. ( kif. + tag ) fakt. ( tag + tag ) fakt. ( fakt. + fakt. ) vált. ( fakt. + fakt. ) vált. ( vált. + konst. ) A ( vált. + konst. ) A (B + 1) Szintaktikailag hibás kifejezést nem tudunk így levezetni, például: + (B + 1), )B + 1( Ilyen következtetési mód: levezetés Persze a gyakorlatban bonyolultabb aritmetikai kifejezések jönnek elő (ez a példa nagyon egyszerű), de azok is ugyanilyen módon kezelhetők Szintaxis ezen megadási módja: generatív nyelvtannal való szintaxis megadás (Ez a leggyakoribb) 21 és generatív nyelvtanok (Eddigi tapasztalataink alapján ) Mit kell tartalmaznia egy generatív nyelvtan definíciójának? Azon szimbólumok (betűk) megadását, amelyekből a nyelvtannal definiálandó nyelv szavai állhatnak (terminális szimbólumok, nyelvi szimbólumok) Azon további szimbólumok megadását, amelyek nem szerepelnek (!) a nyelv szavaiban (mondataiban), de szükség van rájuk a szintaktikai szabályok megfogalmazásához (nemterminális szimbólumok, grammatikai szimbólumok) A szintaktikai (levezetési) szabályokat Azt a nemterminális szimbólumot (kezdő szimbólum), amelyből levezetés alkalmazásával a definiálandó nyelv valamennyi szavát megkapjuk A levezetés pontos definícióját Szokásos jelölés szimbólum = terminális szimbólum szimbólum = nemterminális szimbólum 22

12 Példa: Köznapi nyelv (leszűkített részhalmaz, minimagyar ) Szabályok mondat ::= alanyi rész állítmányi rész alanyi rész ::= főnévi rész határozó állítmányi rész ::= tárgyi rész igei rész főnévi rész ::= névelő jelzők főnév jelzők ::= jelző jelző jelzők tárgyi rész ::= főnévi rész t névelő ::= λ a az egy jelző ::= λ hideg meleg fehér fekete nagy kis főnév ::= kutya macska hús egér sajt tej víz határozó ::= λ nappal éjjel reggel este igei rész ::= eszik iszik Megjegyzések A szavak itt terminális szimbólumok (de most nem dőlten írtuk őket) A mondat végére írhatnánk pontot (de ekkor is gond lenne abból, hogy a nagybetűs kezdést nem tudnánk egyszerűen biztosítani Látható már most is, hogy nem tudunk minden valós nyelvtani szabályt alkalmazni (tárgyi rész: sajt, sajtot, víz, vizet, tej, tejet) 23 Példa: Minimagyar (folyt.) Levezetés példa mondat alanyi rész állítmányi rész főnévi rész határozó állítmányi rész névelő jelzők főnév határozó állítmányi rész a jelzők főnév határozó állítmányi rész a jelző jelzők főnév határozó állítmányi rész a nagy fehér főnév határozó állítmányi rész a nagy fehér kutya határozó állítmányi rész a nagy fehér kutya reggel állítmányi rész a nagy fehér kutya reggel tárgyi rész igei rész a nagy fehér kutya reggel főnévi rész t igei rész a nagy fehér kutya reggel névelő jelzők főnév t igei rész a nagy fehér kutya reggel jelző főnév t igei rész a nagy fehér kutya reggel meleg húst igei rész a nagy fehér kutya reggel meleg húst eszik Ez normális magyar mondat, de persze sok a mi szintaktikánk szerint helyes normális magyarul mégis szintaktikailag hibás mondatot is le tudunk így vezetni az fehér egér hideg sajtt eszik az kis fekete macska meleg tejt iszik Hasonlóan levezethető több, normális magyarul szemantikailag is támadható mondat a fehér tej macskat iszik És persze léteznek minimagyarul is szintaktikailag helytelen (levezethetetlen) mondatok hús kutya reggel fekete eszik víz az 24

13 Példa: Egy programozási nyelv szintaxisának megadása Szándékosan egyszerű programozási nyelvet választunk (PÉLDA) Kezdőszimbólum: program Szabályok program ut. lista. ut. lista ut. ut. ; ut. lista ut. ért. adó if ut. while ut. blokk ért. adó vált := kif. if ut. if reláció then ut. else ut. while ut. while reláció do ut. blokk begin ut. lista end reláció kif. relációjel kif. relációjel < > = kif. tag kif. + tag tag fakt. fakt. fakt. fakt. ( kif. ) vált. konst. vált. A B C konst. 0 1 Egy jelsorozat akkor és csak akkor szintaktikusan helyes PÉLDA nyelvű program, ha levezethető a program nemterminális szimbólumból a fenti szabályok alkalmazásával Feladat: Adjunk meg szintaktikusan helyes és helytelen PÉLDA nyelvű programot! 25 Egyszerű programok esetében (viszonylag) könnyű eldönteni, hogy szintaktikusan helyesek-e [A szintaktikusan helyesnek bizonyult kódokat utána még természetesen szemantikusan is elemezni kell! (Ezzel egyelőre nem foglalkozunk.) Időnként beépítenek bizonyos szemantikai ellenőrzést a szintaktikába, pl. szám és szám típusú szöveg összeadása, Excelben megengedett, C-ben/Java-ban nem Beadható feladat: Készítsünk szintaktikailag helyes, de szemantikailag helytelen kódot C- ben, Java-ban Ugyanakkor még a szemantikai helyesség sem garantálja feltétlenül az értelmes/céljainknak megfelelő működést] Probléma hosszú programoknál A levezetés során sok konfliktus adódik (több lehetőség a helyettesítésre, melyik a jó/melyiket válasszuk?) Intuitív módon: Az a cél, hogy közelebb kerüljünk a kívánt végeredményhez Algoritmikusan: Valami módon sorba rakjuk a szabályokat, ebben a sorrendben alkalmazzuk őket a helyettesítésnél Lehet, hogy rossz szabályt választottunk! (Backtrack technikákat is be kell vetni, ez viszont magával vonja a rekurzív működést és az exponenciális típusú kimenetelt ) Mennyi sikertelen levezetési kísérlet után lehet kimondani, hogy a program szintaktikusan helytelen? Ezekre a (nehéz) kérdésekre választ adnak az elemzési algoritmusok A jó elemzési algoritmus legfeljebb az input hosszának konstansszorosa számú lépést hajt végre, és utána megadja a választ Ez persze nehezen biztosítható 26

14 Ajánlott irodalom Fülöp Zoltán: és szintaktikus elemzésük, Polygon, Szeged, 2001 Dömösi Pál és társai: és automaták, Elektronikus jegyzet, 2011 Bach Iván:, Typotex kiadó, Budapest, 2002 Katona Gyula, Recski András, Szabó Csaba: A számítástudomány alapjai, Typotex Kiadó, Budapest,

1. előadás Matematikai és nyelvi alapok, Szintaktikai vizsgálat

1. előadás Matematikai és nyelvi alapok, Szintaktikai vizsgálat 1. előadás Matematikai és nyelvi alapok, Szintaktikai vizsgálat Dr. Kallós Gábor 2014 2015 1 Tartalom Matematikai alapfogalmak Halmazok Relációk Függvények Homomorfizmusok Számosságok, végtelenek Nyelvi

Részletesebben

1. előadás Matematikai és nyelvi alapok, Szintaktikai vizsgálat

1. előadás Matematikai és nyelvi alapok, Szintaktikai vizsgálat 1. előadás Matematikai és nyelvi alapok, Szintaktikai vizsgálat Dr. Kallós Gábor 2014 2015 1 Tartalom Matematikai alapfogalmak Halmazok Relációk Függvények Homomorfizmusok Számosságok, végtelenek Nyelvi

Részletesebben

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk:

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk: 1. Halmazok, relációk, függvények 1.A. Halmazok A halmaz bizonyos jól meghatározott dolgok (tárgyak, fogalmak), a halmaz elemeinek az összessége. Azt, hogy az a elem hozzátartozik az A halmazhoz így jelöljük:

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben

A számítógépes nyelvészet elmélete és gyakorlata. Formális nyelvek elmélete

A számítógépes nyelvészet elmélete és gyakorlata. Formális nyelvek elmélete A számítógépes nyelvészet elmélete és gyakorlata Formális nyelvek elmélete Nyelv Nyelvnek tekintem a mondatok valamely (véges vagy végtelen) halmazát; minden egyes mondat véges hosszúságú, és elemek véges

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

1.1 Halmazelméleti fogalmak, jelölések

1.1 Halmazelméleti fogalmak, jelölések 1.1 Halmazelméleti fogalmak, jelölések Alapfogalmak (nem definiáljuk) Halmaz x eleme az A halmaznak x nem eleme A halmaznak Jelölések A,B,C, x A x A SiUDWODQ V]iRN Halmaz megadása: Elemeinek felsorolásával:

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 5. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Számfogalom bővítése Diszkrét matematika I. középszint

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

A relációelmélet alapjai

A relációelmélet alapjai A relációelmélet alapjai A reláció latin eredet szó, jelentése kapcsolat. A reláció, két vagy több nem feltétlenül különböz halmaz elemei közötti viszonyt, kapcsolatot fejez ki. A reláció értelmezése gráffal

Részletesebben

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes 1. Algebrai alapok: DISZKRÉT MATEMATIKA: STRUKTÚRÁK Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. : Eseményalgebra Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel

Részletesebben

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint

Részletesebben

Házi feladatok megoldása. Nyelvek használata adatszerkezetek, képek leírására

Házi feladatok megoldása. Nyelvek használata adatszerkezetek, képek leírására Nyelvek használata adatszerkezetek, képek leírására Formális nyelvek, 2. gyakorlat 1. feladat Módosított : belsejében lehet _ jel is. Kezdődhet, de nem végződhet vele, két aláhúzás nem lehet egymás mellett.

Részletesebben

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A

Részletesebben

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

1. Algebrai alapok: Melyek műveletek az alábbiak közül? 1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy

Részletesebben

Chomsky-féle hierarchia

Chomsky-féle hierarchia http://www.ms.sapientia.ro/ kasa/formalis.htm Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezetű), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Számítástudomány matematikai alapjai segédlet táv és levelező

Számítástudomány matematikai alapjai segédlet táv és levelező Számítástudomány matematikai alapjai segédlet táv és levelező Horváth Árpád 2008. december 16. A segédletek egy része a matek honlapon található: http://www.roik.bmf.hu/matek Kötelező irodalom: Bagyinszki

Részletesebben

Permutációk véges halmazon (el adásvázlat, február 12.)

Permutációk véges halmazon (el adásvázlat, február 12.) Permutációk véges halmazon el adásvázlat 2008 február 12 Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: ismétlés nélküli variáció leképezés indulási és érkezési halmaz

Részletesebben

Készítette: Ernyei Kitti. Halmazok

Készítette: Ernyei Kitti. Halmazok Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

9. előadás Környezetfüggetlen nyelvek

9. előadás Környezetfüggetlen nyelvek 9. előadás Környezetfüggetlen nyelvek Dr. Kallós Gábor 2015 2016 1 Tartalom Bevezetés CF nyelv példák Nyelvek és nyelvtanok egy- és többértelműsége Bal- és jobboldali levezetések A fák magassága és határa

Részletesebben

http://www.ms.sapientia.ro/~kasa/formalis.htm

http://www.ms.sapientia.ro/~kasa/formalis.htm Formális nyelvek és fordítóprogramok http://www.ms.sapientia.ro/~kasa/formalis.htm Könyvészet 1. Csörnyei Zoltán, Kása Zoltán, Formális nyelvek és fordítóprogramok, Kolozsvári Egyetemi Kiadó, 2007. 2.

Részletesebben

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0 Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon

Részletesebben

Formális Nyelvek - 1.

Formális Nyelvek - 1. Formális Nyelvek - 1. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 A

Részletesebben

Formális Nyelvek - 1. Előadás

Formális Nyelvek - 1. Előadás Formális Nyelvek - 1. Előadás Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu

Részletesebben

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat 8.2. Gyűrűk Fogalmak, definíciók: Gyűrű, kommutatív gyűrű, integritási tartomány, test Az (R, +, ) algebrai struktúra gyűrű, ha + és R-en binér műveletek, valamint I. (R, +) Abel-csoport, II. (R, ) félcsoport,

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

ZH feladatok megoldásai

ZH feladatok megoldásai ZH feladatok megoldásai A CSOPORT 5. Írja le, hogy milyen szabályokat tartalmazhatnak az egyes Chomskynyelvosztályok (03 típusú nyelvek)! (4 pont) 3. típusú, vagy reguláris nyelvek szabályai A ab, A a

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések 1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser

Részletesebben

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum. Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

Házi feladatok megoldása. Nyelvtani transzformációk. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 6. gyakorlat.

Házi feladatok megoldása. Nyelvtani transzformációk. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 6. gyakorlat. Nyelvtani transzformációk Formális nyelvek, 6. gyakorlat a. S (S) SS ε b. S XS ε és X (S) c. S (SS ) Megoldás: Célja: A nyelvtani transzformációk bemutatása Fogalmak: Megszorított típusok, normálformák,

Részletesebben

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28.

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28. Miskolci Egyetem Diszkrét matek I. Vizsga-jegyzet Hegedűs Ádám Imre 2010.12.28. KOMBINATORIKA Permutáció Ismétlés nélküli permutáció alatt néhány különböző dolognak a sorba rendezését értjük. Az "ismétlés

Részletesebben

Diszkrét matematika gyakorlat 1. ZH október 10. α csoport

Diszkrét matematika gyakorlat 1. ZH október 10. α csoport Diszkrét matematika gyakorlat 1. ZH 2016. október 10. α csoport 1. Feladat. (5 pont) Adja meg az α 1 β szorzatrelációt, amennyiben ahol A {1, 2, 3, 4}. α {(1, 2), (1, 3), (2, 1), (3, 1), (3, 4), (4, 4)}

Részletesebben

Komplex számok. (a, b) + (c, d) := (a + c, b + d)

Komplex számok. (a, b) + (c, d) := (a + c, b + d) Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 7 VII. Gyűrűk 1. Gyűrű Definíció Egy a következő axiómákat: gyűrű alatt olyan halmazt értünk, amelyben definiálva van egy összeadás és egy szorzás, amelyek teljesítik (1) egy

Részletesebben

DISZKRÉT MATEMATIKA I. TÉTELEK

DISZKRÉT MATEMATIKA I. TÉTELEK DISZKRÉT MATEMATIKA I. TÉTELEK Szerkesztette: Bókay Csongor 2011 őszi félév Az esetleges hibákat kérlek a csongor@csongorbokay.com címen jelezd! Utolsó módosítás: 2012. január 16. Ez a Mű a Creative Commons

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

DEFINICIÓK. Például a síkgeometriában predikátumok: ( egyenes ), ( pont ), ( illeszkedik - ra ).

DEFINICIÓK. Például a síkgeometriában predikátumok: ( egyenes ), ( pont ), ( illeszkedik - ra ). DEFINICIÓK 1. Mondjon legalább három példát predikátumra. Például a síkgeometriában predikátumok: ( egyenes ), ( pont ), ( illeszkedik - ra ). 2. Sorolja fel a logikai jeleket. A logikai formulák alkotóelemei:

Részletesebben

Számítástudomány matematikai alapjai segédlet táv és levelező

Számítástudomány matematikai alapjai segédlet táv és levelező Számítástudomány matematikai alapjai segédlet táv és levelező Horváth Árpád 2010. június 18. A segédletek egy része az http://elearning.bmf.hu oldal Számítástudomány kurzusában található, de esetleg a

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Formális Nyelvek és Automaták. Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek

Formális Nyelvek és Automaták. Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek Formális Nyelvek és Automaták Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek Formális Nyelvek és Automaták Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

MATEMATIKA I. JEGYZET 1. RÉSZ

MATEMATIKA I. JEGYZET 1. RÉSZ MATEMATIKA I. JEGYZET 1. RÉSZ KÉZI CSABA GÁBOR Date: today. 1 KÉZI CSABA GÁBOR 1. Logikai állítások, műveletek 1.1. Definíció. Matematikai értelemben állításnak nevezünk egy olyan kijelentést, melynek

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1. Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)

Részletesebben

Formális nyelvek és gépek (definíciós és tétel lista - 09/10/2)

Formális nyelvek és gépek (definíciós és tétel lista - 09/10/2) Formális nyelvek és gépek (definíciós és tétel lista - 09/10/2) ábécé: Ábécének nevezünk egy tetszőleges véges szimbólumhalmazt. Jelölése: X, Y betű: Az ábécé elemeit betűknek hívjuk. szó: Az X ábécé elemeinek

Részletesebben

A matematika nyelvér l bevezetés

A matematika nyelvér l bevezetés A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások

Részletesebben

Lineáris algebra (10A103)

Lineáris algebra (10A103) Lineáris algebra (10A103 Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli (beugróval, feltétele a Lineáris algebra gyakorlat

Részletesebben

Automaták mint elfogadók (akceptorok)

Automaták mint elfogadók (akceptorok) Automaták mint elfogadók (akceptorok) Ha egy iniciális Moore-automatában a kimenőjelek halmaza csupán kételemű: {elfogadom, nem fogadom el}, és az utolsó kimenőjel dönti el azt a kérdést, hogy elfogadható-e

Részletesebben

Formális nyelvek és automaták előadások

Formális nyelvek és automaták előadások VÁRTERÉSZ MAGDA Formális nyelvek és automaták előadások 2005/06-os tanév 1. félév Tartalomjegyzék 1. Előzetes tudnivalók 4 2. Bevezetés 15 3. Ábécé, szó, formális nyelv 17 4. Műveletek nyelvekkel 24 4.1.

Részletesebben

I. NÉHÁNY FONTOS FOGALOM

I. NÉHÁNY FONTOS FOGALOM I. NÉHÁNY FONTOS FOGALOM 1. Halmazok, relációk, függvények A matematika alapfogalma a halmaz, amely szemléletesen dolgok összességét jelenti. Az alábbiakban az úgynevezett naív halmazelméletet ismertetjük,

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

Relációk. 1. Descartes-szorzat. 2. Relációk

Relációk. 1. Descartes-szorzat. 2. Relációk Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram. 1. Descartes-szorzat 1. Deníció. Tetsz leges két a, b objektum

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt. Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

A valós számok halmaza 5. I. rész MATEMATIKAI ANALÍZIS

A valós számok halmaza 5. I. rész MATEMATIKAI ANALÍZIS A valós számok halmaza 5 I rész MATEMATIKAI ANALÍZIS 6 A valós számok halmaza A valós számok halmaza 7 I A valós számok halmaza A valós számokra vonatkozó axiómák A matematika lépten-nyomon felhasználja

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 2. MA3-2 modul. Eseményalgebra

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 2. MA3-2 modul. Eseményalgebra Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 2. MA3-2 modul Eseményalgebra SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI.

Részletesebben

A matematika nyelvéről bevezetés

A matematika nyelvéről bevezetés A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések

Részletesebben

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c

Részletesebben

Hozzárendelés, lineáris függvény

Hozzárendelés, lineáris függvény Hozzárendelés, lineáris függvény Feladat 1 A ménesben a lovak száma és a lábaik száma közötti összefüggést vizsgáljuk. Hány lába van 0; 1; 2; 3; 5; 7... lónak? Készíts értéktáblázatot, és ábrázold derékszögű

Részletesebben

Készítettel: Szegedi Gábor (SZGRACI.ELTE)

Készítettel: Szegedi Gábor (SZGRACI.ELTE) Készítettel: Szegedi Gábor (SZGRACI.ELTE) http://people.inf.elte.hu/szgraci/egyetem Burcsi Péter tanár úr előadása alapján készült 2010-2011. őszi félév Logikai alapok Halmazelméleti alapfogalmak 1. Mondjon

Részletesebben

Reguláris kifejezések 1.

Reguláris kifejezések 1. Reguláris kifejezések 1. A nyelvtechnológia eszközei és nyersanyagai 1. gyakorlat A beadandó feladatok be vannak keretezve! 1.1. Miért hívják reguláris kifejezésnek? (!) Az elméleti és a gyakorlati reguláris

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

Halmazok-előadás vázlat

Halmazok-előadás vázlat Halmazok-előadás vázlat Naiv halmazelmélet:. Mi a halmaz? Mit jelent, hogy valami eleme a halmaznak? Igaz-e, hogy a halmaz elemei valamilyen kapcsolatban állnak egymással? Jelölés: a A azt jelenti, hogy

Részletesebben

Kaposi Ambrus. University of Nottingham Functional Programming Lab. Hackerspace Budapest 2015. január 6.

Kaposi Ambrus. University of Nottingham Functional Programming Lab. Hackerspace Budapest 2015. január 6. Bizonyítás és programozás Kaposi Ambrus University of Nottingham Functional Programming Lab Hackerspace Budapest 2015. január 6. Bizonyítás, érvelés Példa: sáros a csizmám ha vizes a föld, esett az eső

Részletesebben

Nagyordó, Omega, Theta, Kisordó

Nagyordó, Omega, Theta, Kisordó A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,

Részletesebben

DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3.

DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Rendezett halmaz R A x A rendezési reláció A-n, ha R Másképpen: (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Tranzitív arb for (a, b) R. 1. a A ara 2. a,b A (arb bra a = b 3. a,b,c A (arb brc arc

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6

Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6 Informatika alapjai-5 Logikai áramkörök 1/6 Logikai áramkörök Az analóg rendszerekben például hangerősítő, TV, rádió analóg áramkörök, a digitális rendszerekben digitális vagy logikai áramkörök működnek.

Részletesebben

BEVEZETÉS A MAGASABBSZINTŰ MATEMATIKÁBA ÉS ALKALMAZÁSAIBA KÉZI CSABA GÁBOR

BEVEZETÉS A MAGASABBSZINTŰ MATEMATIKÁBA ÉS ALKALMAZÁSAIBA KÉZI CSABA GÁBOR BEVEZETÉS A MAGASABBSZINTŰ MATEMATIKÁBA ÉS ALKALMAZÁSAIBA KÉZI CSABA GÁBOR 1 KÉZI CSABA GÁBOR Előszó Ez a jegyzet egy többrészes sorozat első kötete, mely elsősorban a Debrecen Egyetem Műszaki Karának

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

Magasabbfokú egyenletek

Magasabbfokú egyenletek 86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y

Részletesebben

Atomataelmélet: A Rabin Scott-automata

Atomataelmélet: A Rabin Scott-automata A 19. óra vázlata: Atomataelmélet: A Rabin Scott-automata Az eddigieken a formális nyelveket generatív szempontból vizsgáltuk, vagyis a nyelvtan (generatív grammatika) szemszögéből. A generatív grammatika

Részletesebben

... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak.

... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Párhuzamos programok Legyen S parbegin S 1... S n parend; program. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Folyamat

Részletesebben

Halmazok. Halmazelméleti alapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai.

Halmazok. Halmazelméleti alapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai. Halmazok Halmazelméleti alapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai. 1. lapfogalmak halmaz és az eleme fogalmakat alapfogalmaknak tekintjük, nem deniáljuk ket. Jelölés: x

Részletesebben