Matematika feladatok

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Matematika feladatok"

Átírás

1 Matematika feladatok 2. osztály 1. Két tégla = 6 kg meg egy fél tégla. Három tégla hány kg? A) 6 kg B) 3 kg C) 4 kg D) 8 kg E) 12 kg 2. A parkolóban 5 járműnek összesen 14 kereke van. Mennyi lehet az autó és mennyi a motorkerékpár? A) 2 autó és 3 motor B) 3 autó és 2 motor C) 4 autó és 1 motor D) 1 autó és 4 motor E) 0 autó és 7 motor 3. Egy rudat 5 részre szeretnénk fűrésszel szétvágni. Egy fűrészelés ideje 4 perc. Mennyi ideig tart a rúd szétfűrészelése? A) 16 perc B) 4 perc C) 5perc D) 1 perc E) 20 perc 4. Bendegúz születésnapi összejövetelt szervez. Szeretné meghívni Z. G.-t, és persze otthon lesz két húga - Rozi és Bözsi - is. Olyan társasjátékot fognak játszani, amelyhez párokat kell alkotniuk. Hányféleképpen játszhatnak? A) 4 B) 2 C) 6 D) 8 E) 3 5. Három jóbarát benevezett egy kerékpárversenyre. A verseny útvonala 30 km hosszú volt. Végig együtt mentek, így 2 óra alatt értek a célhoz. Egy kerékpáros mennyi idő alatt tette meg az utat? A) 10 óra B) 15 óra C) 30 óra D) 3 óra E) 2 óra 6. Z.G. most 7 éves. Hány év múlva lesz háromszor annyi idős, mint most? A) 7 B) 3 C) 14 D) 21 E) Egy baromfiudvarban több kacsa és liba van, amiket két kutya őriz. Az állatoknak összesen 24 lábuk van. Legfeljebb hány liba lehet a baromfiudvarban? A) 3 B) 4 C) 5 D) 6 E) 7 8. Bendegúz egy délután levelet írt a Mikulásnak. Nehezen tudta összeszedni kívánságait, és hogy nehogy kimaradjon valami, többször átolvasta. A boríték

2 megcímzéséhez segítséget kért nővérétől. Mire mindennel elkészült, összesen 1 órát és 20 percet töltött el a levéllel. Utána nyomban útnak indult. Fel tudta-e még adni aznap a levelet, ha délután 4 órakor kezdte a levélírást, az út a postáig 10 perc, és a posta este 6 órakor zár be? A) Nem, mert fél órával a zárás előtt ért a postára. B) Igen, mert fél órával a zárás előtt ért a postára. C) Igen, mert 1 órával a zárás előtt ért a postára. D) Igen, mert fél órával a zárás után ért a postára. E) Nem, mert 20 perccel a zárás után ért a postára. 9. Vasárnap délután Dorka két testvérével és három unokatestvérével meglátogatta a nagyszüleit. Nagymamája aznap fánkot sütött, összesen 20 darabot. Nagypapa már sütés közben megevett 2 fánkot, és a nagymama is megkóstolt egyet. Hány fánk maradt hétfőre a nagypapának, ha minden unoka 2 fánkot evett? A) 8 B) 7 C) 6 D) 5 E) egy sem 10. Julcsi babájának háromféle (piros, kék és sárga) szoknyája, kétféle (zöld és fehér) blúza van. Hányféleképp öltöztetheti fel Julcsi a babát? A) 3 B) 5 C) 6 D) 10 E) Szeged és Makó 28 km-re van egymástól. Szegedről elindul egy motorkerékpáros Makóra, ugyanekkor vele szembe Makóról elindul egy autó Szegedre. Melyikük van messzebb Makótól, amikor találkoznak? A) az autós megelőzi a motorost B) a motoros C) nem találkozhatnak D) az autós E) ugyanolyan messzire vannak 12. Az erdei etetőnél 12 őzike és 4 nyúl evett. Később csatlakozott hozzájuk 3 szarvas, egy vaddisznó 5 kicsinyével és odaoldalgott még két róka is. Nemsokára azonban megjelent egy négytagú farkascsapat, akik elijesztették a nyulakat, az őzikéket és 3 kis vaddisznót is. Hány állat maradt az etetőnél? A) 4 B) 6 C) 8 D) 10 E) Nagymama éléskamrájában 10 polcon vannak a befőttek és lekvárok. 22 üveg őszibarack-, 14 üveg sárgabarack-, 30 üveg cseresznye- és 18 üveg meggybefőtt. Lekvár is van kétféle: 6 üveg eper- és 10 üveg baracklekvár. A karácsonyi vacsorán 5 üveg barack-, 2 üveg cseresznye- és egy üveg meggybefőtt fogyott el. A

3 süteményekhez nagymama elhasznált két üveg lekvárt is. Hány üveg kerül karácsony után egy-egy polcra, ha a nagymama minden polcra ugyanannyi üveget szeretne tenni? A) 6 B) 7 C) 8 D) 9 E) Bendegúznak van egy fekete és egy sötétkék szövetnadrágja, és két különbözőszép fehér inge. Anyukája már vett neki egy nyakkendőt is, de azt Bendegúz nem szereti. Hányféleképpen tud Bendegúz felöltözni az iskolai ünnepélyre? (A nyakkendő viselete nem kötelező.) A) 8 B) 6 C) 5 D) 4 E) ZG-t megtréfálták a barátai, karóráját elállították. Az óra így most 13 percet siet. Ha 9 percet késne, akkor 8 óra 28 percet mutatna. Hány óra van? A)8 óra 15 perc B)8 óra 37 perc C)8 óra 21 perc D)8 óra 41 perc E)8 óra 24 perc 16. Egy családban 4 fiúgyermek van. Mindegyik fiúnak két lánytestvére van. Hány főre kell teríteni a családi vacsorán, ha a szülők meghívják mindkét nagymamát és nagypapát? A) 12 B) 10 C) 14 D) 16 E) Bendegúz három barátjával sakkbajnokságot tartott. Hány sakkpartit játszottak, ha mindenki mindenkivel játszott? A) 2 B) 3 C) 4 D) 5 E) Egy banánt egy csokiért és két almáért lehet elcserélni. Két csoki egy banánt és egy almát ér. Hány almáért lehet elcserélni egy csokit? A) 1 B) 2 C) 3 D) 4 E) Melyik számok illenek a kérdőjelek helyére? 11, 22, 33,?, 55, 66, 77, 88, 99 30, 25,?, 15, 10, 5, 0?, 4, 8, 16, 32, 64 A )44, 20, 2 B) 44, 10, 0 C) 44, 12, 0 D) 44, 20, 0 E) 11, 12, 2

4 20. Melyik ábrát nem tudod egy vonallal megrajzolni úgy, hogy közben nem emeled fel a ceruzádat és minden vonalon csak egyszer haladsz végig? A) B) C) D) E) 21. Bendegúz születésnapi összejövetelt rendez. Az üdítő bevásárlását ZG-vel intézték. Úgy számoltak, hogy egy gyerek kb. 4 dl üdítőt fogyaszt el a délután folyamán (ez így is történt). Bendegúz ZG-n kívül még meghívta 8 osztálytársát és 3 unokatestvérét. Természetesen otthon lesznek a szülei és két testvére is. Bendegúz és ZG úgy döntöttek, 3 üveg 2l-es üdítőt vesznek. Az összejövetel nagyon jól sikerült, csak sajnos Bendegúz egyik osztálytársa nem tudott eljönni. Hány dl üdítő maradt a szülőknek, ha a gyerekzsivajra még átjött a szomszédból két kislány, akik hoztak egy literes üdítőt is? A) 2 dl B) 6 l C) 2 l D) 6 dl E) 4 dl 22. Bendegúzék kertjének négy sarkában áll egy-egy almafa. Mindegyik almafának négy vastag ága van, minden vastag ágon négy kis gally, minden kis gallyon négy virág nyílt. Minden négy virágból egy-egy elszáradt, a többiből gyönyörű piros alma fejlődött. Hány almafa van Bendegúzék kertjében? A) 64 B) 4 C) 16 D) 15 E) Egy szép napos délután ZG fagyizni ment. A cukrászdában hétféle fagyi volt: csokoládé, vanília, eper, citrom, őszibarack, rizs és málna. ZG csak a csokoládés és a gyümölcsös fagyikat szereti, kivéve a citromosat, és sajnos allergiás a málnára, ezért azt nem eszik. Hányféleképpen válogathatott a fagylaltok közül, ha két gombócos fagyit akart enni, és nem akarta, hogy a két gombóc egyforma legyen? A) 2 B) 3 C) 5 D) 6 E) Egy szoba négy sarkában ül egy-egy macska, minden macskának van négy kiscicája, minden kiscica fogott 4 egeret. Hány egeret fogtak a kiscicák összesen? A) 4 B) 8 C) 16 D) 32 E) Csilla az összegyűjtött zsebpénzén matricákat szeretne vásárolni az albumába. Egy matrica 60 Ft-ba kerül, de csak 3-as és 5-ös csomagokban lehet kapni. Legfeljebb hány darab új matrica kerül az albumba, ha Csillának 450 Ft-ja van? A) 3 B) 4 C) 5 D) 6 E) 7

5 26. Amikor Bendegúz megfázott, a piros gyógyszerből háromóránként kellett bevennie kettőt, a másikból, amelyik fehér színű volt, naponta kétszer 3 szemet. Az első adag gyógyszert mindig reggel 8-kor, az utolsót este 8-kor vette be. Hány nap alatt fogytak el a gyógyszerei, ha a pirosból 40, a fehérből 24 szemet szedett be? A) a piros 5, a fehér 4 nap alatt B) 4 nap alatt C) 5 nap alatt D) 6 nap alatt E) a piros 4, a fehér 6 nap alatt 27. Egy horgászversenyen megkérdezték a nyertest, hogy hány halat fogott. Ô így válaszolt: - Tizenkettőt szerettem volna, de ha háromszor annyit kifogtam volna, mint amennyit sikerült, még akkor is 3-mal kevesebb lett volna, mint amennyit szerettem volna. Hány halat fogott a nyertes horgász? A) 1 B) 2 C) 3 D) 4 E) Bendegúzék testnevelés órán futóversenyt szerveztek a 13 fiú számára. Bendegúz elfelejtette, hogy hányadik lett, csak azt tudta, hogy ZG előtte futott be a célba, és köztük voltak még hárman. Összesen feleannyian futottak be Bendegúz előtt, mint mögötte. Hányadik helyen ért be ZG és Bendegúz? A) első, negyedik B) első, ötödik C) második, ötödik D) ötödik, kilencedik E) hatodik, kilencedik 29. Piroska szeretné meglátogatni a nagymamáját. A busz 14 óra 05 és 17 óra 45 perc között 20 percenként indul a végállomásról. Piroska a házuk előtti megállóban szeretne felszállni, ahová 6 perc alatt ér el a busz. A nagymamájához a nyolcadik megállónál kell leszállni, ahová 18 perc alatt ér a busz a végállomásról. Piroska nagymamája 12 percre lakik a buszmegállótól. Legkésőbb hány órakor induljon el otthonról, ha 3 órára mindenképpen szeretne a nagymamájához megérkezni, és 1 perc alatt odaér a házuk előtti megállóba? A) 14 óra 30 perckor B) 14 óra 25 perckor C) 14 óra 05 perckor D) 14 óra 10 perckor E)14 óra 11 perckor

6 30. Melyik a hibás műveletsor? A) 6 x (7 + 8) : 9 = 10 B) (89-58 : 2) : 12 x 5 = 25 C) 2 x (3 + 2) x 4-11 = 29 D) (1 + 2 x 3 x 4) : 5 x = 45 E) x 9-7 = Egy utcában 200 épület van. Házszámokat szeretnének festeni. Hány darab 0 és hány darab 9-es számjegyet kell festeni a házakra? A) 31; 40 B) 22; 40 C) 31; 20 D) 21; 38 E) 30; Egy 60 éves férfi most kétszer annyi idős, mint a fia. Hány évvel ezelőtt volt az apa hétszer annyi idős, mint a fia? A) Nem volt ilyen. B) 5 éve C) 15 éve D) 20 éve E) 25 éve 33. Mézes anyó mézeskalács gombákat készít. Minden gombára 7 habpöttyöt helyez el. Hányadik gombánál tart a 65. pötty elhelyezésekor, ha mindig csak akkor kezd új gomba díszítéséhez, amikor az előzőt befejezte? A) 9 B) 10 C) 11 D) 13 E) Sorban leírtuk az 1, 2, 3 számokat piros ceruzával, majd ugyanezeket a számokat kékkel, végül sárgával és így folytattuk tovább 50 számjegyig. Melyik és milyen színű szám áll az 50. helyen? A) piros 1 B) piros 2 C) sárga 3 D) kék 2 E) kék Melyik szám áll az x helyén az alábbi számsorban? 3, 6, 9, 15, 24, 39, x A) 24 B) 15 C) 53 D) 49 E) osztály 1. Tapsi és Hapsi versenyt futnak a káposztaföldig. Tapsi feleakkorát ugrik, mint Hapsi. Hányat kell ugrania Tapsinak, ha Hapsi 32 ugrással ér oda? A) 16 B) 32 C) 64 D) 50 E) egyik sem

7 2. Egy kétliteres lábasban 17 dl tej van. Öntsünk hozzá még fél litert! Mennyi tej lesz a lábasban? A) 17 és fél dl B) 22 dl C) 22 l D) 2 dl E) egyik sem 3. Lilinek most van a 15. születésnapja. Hány év múlva lesz négyszer annyi idős, mint most? A) 4 B) 8 C) 45 D) 60 E) egyik sem 4. Gondoltam egy kétjegyű számra. Kilencet hozzáadva háromjegyű számot kaptam. Hányféle lehet a gondolt szám? A) 8 B) 9 C) 10 D) 90 E) egyik sem 5. Hány oldalt olvastam el egy 254 oldalas könyvből, ha még több van hátra a felénél? A) 127 B) 127-et, vagy annál többet C) 127-t, vagy annál kevesebbet D) 127-nél kevesebbet E) egyik sem 6. Az iskolai sportnapon az osztályból 12-en indultak az akadályversenyen, huszonhárman a kötélhúzásban. Öten mindkét helyen ott voltak, hárman pedig egyiken sem vettek részt. Mennyi az osztálylétszám? A) 33 B) 32 C) 30 D) 35 E) egyik sem 7. Melyik állítás hamis az alábbiak közül? A) 50 tizedrésze nem nagyobb, mint 5 B) 50 tizedrésze nagyobb, mint 5 C) 50 tizedrésze nem kisebb, mint 5 D) 50 tizedrésze kisebb, mint 50 tízszerese E) 50 tizedrésze egyenlő 5-tel 8. Micimackó 5 zsák diót rakott el télre. Mindegyikben 15 kg dió volt. Malacka már tízszer is kért tőle 40 dkg-ot süteménykészítéshez, és a jószívű mackó mindig adott is neki. Mennyi diója van még Micimackónak? A) 4 kg B) 11 kg C) 71 kg D) 75 kg E) 79 kg

8 9. Hány olyan háromjegyű páratlan szám van, amelynek minden számjegye 6-nál nagyobb páros szám? A) 0 B) 1 C) 3 D) 6 E) Julcsi babájának háromféle (piros, kék és sárga) szoknyája, kétféle (zöld és fehér) blúza, és háromféle (kék, fehér és piros) masnija van. Hányféleképp öltöztetheti fel Julcsi a babát, ha egyszerre nem ad rá kék és zöld holmit? A) 3 B) 5 C) 6 D) 10 E) Hányféleképp juthatunk el az A pontból a B pontba a rácsvonalak mentén, ha csak felfelé és jobbra haladhatunk? A) 15 B) 25 C) 30 D) 35 E) A 3. b osztály tanulói két tortát nyertek egy sportvetélkedőn. Egy-egy torta 18 szeletből állt. Miután mindenki kapott egy-egy szeletet, megmaradt fél torta. Hányan voltak az osztályban? A) 9 B) 18 C) 20 D) 27 E) egyik sem 13. Milyen szám kerül a helyére a számsorban? A) 14 B) 17 C) 21 D) 27 E) az alábbiak közül egyik sem 14. Hányféle zászlót készíthetünk piros, kék és sárga színekből, ha egy szín többször is szerepelhet egy zászlón, de egymás mellett nem lehet két egyforma szín? A) 3 B) 6 C) 9 D) 10 E) Az alábbiak közül az egyik állítás hamis. Melyik az? A)Egy szám hatszorosának a fele egyenlő a szám háromszorosával.

9 B)Ha egy szám nyolcszorosát elosztjuk a szám négyszeresével, akkor a szám négyszeresét kapjuk. C)Egy szám háromszorosa lehet páros szám is. D)Ha egy szám nem osztható kettővel, akkor a szám hétszerese páratlan. E)Ha egy szám kétszeresét megszorozzuk néggyel, és elosztjuk kettővel, akkor a szám négyszeresét kapjuk. 16. A gyerekek az iskolában megunt játékaikat cserélgetik. Abban egyeztek meg, hogy 2 plüssállatért adnak egy könyvet, 1 babát pedig 1 könyvre és 3 plüssállatra lehet cserélni. Borinak 2 babája van. Hány plüssállatot kap értük? A) 3 B) 5 C) 6 D) 10 E) Egy dobozban különböző színű golyók vannak: 4 piros, 6 zöld, 10 sárga és 12 kék. A golyók lehetnek simák vagy pöttyösek. Egy színen belül ugyanannyi a pöttyös golyók száma, mint a simáké. Legkevesebb hány golyót kell kihúznunk csukott szemmel, hogy biztosan legyen közöttük legalább 1 pöttyös? A) 1 B) 13 C) 16 D) 17 E) Az 1; 2; 5 és 8 számjegyekből az összes lehetséges módon négyjegyű számokat képezünk, és ezeket leírjuk egymás alá növekvő sorrendben. Hányadik szám ebben a sorban az 5281? A) 10 B) 13 C) 15 D) 16 E) egyik sem 19. Egy tálon levő narancsok száma nem kevesebb, mint öt, de nem több, mint 10 fele. Hány narancs van a tálban? A) 3 B) 5 C) 10 D) több megoldás van E) nincs megoldás 20. Pali a következőszabály alapján ír le négy számot egymás után: leírja az első számot. Azt 3-mal megszorozza, majd 2-vel elosztja és végül hozzáad 3-at, és leírja az így kapott számot is. Minden leírt számmal végrehajtja ugyanezt a műveletsort. A 21-es számot írja le negyediknek. Melyik számot írta le először? A) 1 B) 2 C) 6 D) 9 E) Anna és Bori könyveket rakosgat a polcokra. Az elsőre 1-et, a másodikra 2-t, a harmadikra 3-at és mindegyikre mindig 1-gyel többet. Összesen 20 polcra pakoltak. Melyikük rakott fel több könyvet és mennyivel, ha Anna rakodott az első 10 polcra, Bori pedig a második 10-re? A) Anna 55-tel B) Anna 100-zal C) Bori 155-tel

10 D) Bori 100-zal E) mindketten ugyanannyit raktak fel 22. A róka, a farkas és a medve beszélgetnek, hogy kinek a legnagyobb a téglalap alakú vadászterülete. Róka: Az enyém 630 dm hosszú és fél km széles. Farkas: Az enyém 1532 dm hosszú és 45 m széles. Medve: Az enyém 1000 m hosszú és 31 m és 50 cm széles A) róka B) medve C) farkas D) mindhárom egyforma E) egyik válasz sem helyes 23. Melyik állítás a hamis az alábbiak közül? A) Nincs két olyan páros szám, amelyek összege páratlan. B) Két páratlan szám összege mindig páros. C) Van olyan egész szám, amellyel egy páros számot megszorozva páratlan számot kapunk. D) Van olyan egész szám, amellyel egy páratlan számot megszorozva páros számot kapunk. E) Egy páros és egy páratlan szám összege mindig páratlan. 24. Két apa, két fiú, egy nagypapa és egy unoka halászni ment. Mind-annyian ugyanannyi halat fogtak, így összesen 9 db halat vihettek haza. Hányat fogtak külön-külön? A) 3 B) 2 C) 4 D) 1 E) a feladatnak nincs megoldása 25. ZG a barátait várja vendégségbe. 36 fánkot négy tálra rendez. Mindegyikre ugyanannyit tesz. A torkos kisöccse az egyik tálról négy darabot idő előtt megeszik. Hány fánk marad ezen a tálon? A) 5 B) 8 C) 9 D) 34 E) egyik sem 26. Malacka és Micimackó megbeszéli, hogy az egymás mellett levő kertjeiket közös kerítéssel kerítik körbe, a közös részt pedig szabadon hagyják. Mindkettőjüknek négyzet alakú kertje van, Malacké 340 dm, Micimackóé pedig 5600 cm oldalhosszúságú. Hány m drótot vegyenek? A) 270 B) 292 C) 360 D) 2700 E) egyik sem

11 27. A vadaspark egyik részében karámokban lovakat tartanak. A lovakkal a karámban lovászok foglalkoznak. Egyik nap elmentem a vadasparkba, hogy megnézzem a lovakat. Az egyik karámban 6 fejet és 18 lábat számoltam. Hány lovász volt benn ebben a karámban az állatokkal? A) 3 B) 1 C) 2 D) 0 E) egyik sem 28. Jancsi 2 kg-mal nehezebb, mint Tomi. Tomi 4 kg-mal nehezebb, mint Sári. Legfeljebb hány kg-os lehet Jancsi, ha hárman egyszerre beszállhatnak a játszótéren egy 160 kg teherbírású hajóhintába? A) 48 B) 50 C) 52 D) 56 E) semmiképp sem szállhatnak be a hajóhintába 29. Melyik állítás az igaz az alábbiak közül? A) Két egyjegyű szám összege mindig egyjegyű. B) Van olyan egyjegyű szám, amelyet egy egyjegyűszámmal megszorozva háromjegyű számot kapunk. C) Van olyan egyjegyű szám, amelyet egy egyjegyű számmal megszorozva egyjegyű számot kapunk. D) Nincs két olyan kétjegyűszám, amelyek összege kétjegyű. E) Egy egyjegyűés egy kétjegyű szám összege mindig kétjegyű. 30. A 8x8-as sakktábla B3 mezőjén álló lóval hányféle módon juthatunk el D5 mezőre úgy, hogy útközben minden mezőt pontosan egyszer érintünk? A) 64 B) 8 C) 1 D) végtelen sok E) egyetlen módon sem 31. Melyik a legkisebb érték az alábbiak közül? A )a 3 fele B) a 3 harmada C) a 3 negyede D) a 3 kétszeresének fele E) a 3 kétszeresének negyede 32. Amíg egy nagymacska megiszik egy tál tejet, addig három kismacska közösen megiszik két tál tejet. Ha a macskacsalád (egy nagymacska és három kismacska) 5 perc alatt iszik meg három tál tejet, akkor hány perc alatt issza meg a három tál tejet a nagymacska?

12 A) 2 B) 5 C) 8 D) 10 E) Melyik az a szám, amelyik a legnagyobb háromjegyű páros szám és a legkisebb kétjegyű páros szám összegének a harmada? A) 336 B) 504 C) 1008 D) 1010 E) egyik sem 34. Az iskolában Pali és Éva beszélgetnek: Pali: - Ha adnál nekem 5 forintot, akkor ugyanannyi pénzünk lenne. Éva: - Nem tudok adni, nekem is kellene még 18 Ft, hogy meg tudjam venni a 250 Ftos mozijegyet. Mennyi pénze van a két gyereknek összesen? A) 222 B) 227 C) 454 D) 459 E) egyik sem 35. Piripócsról Bakfalvára el lehet jutni busszal és vonattal. Bakfalvából Böröckbe busszal, vonattal és hajóval. Piripócs és Böröck között nincs közvetlen járat. Hányféleképpen juthatunk el Piripócsról Böröckre? A) 1 B) 5 C) 6 D) 8 E) egyik sem 36. Ha az alábbi prímszámok közül hármat kiválasztasz, összegük 20 lesz. E három prímszám közül melyik a legkisebb? A) 2 B) 3 C) 5 D) 7 E) Pisti az édességek dobozáról a következőket állítja: A dobozban van csoki. A dobozban nincs cukorka. A dobozban csoki és cukorka is van. Mi igaz valójában Pisti édességes dobozára, ha az állításai közül kettő pontosan hamis és egy igaz? A) A dobozban csak csoki van. B) A dobozban csak cukorka van. C) A dobozban csoki és cukorka is van. D) A dobozban nincs se csoki, se cukor. E) Ezekből az adatokból nem lehet meghatározni. 38. A piacon három csibéért egy tyúkot kapunk, egy tyúkért és egy csibéért pedig egy nyulat. Hány tyúkért kapunk három nyulat? A) 2 B) 4 C) 6 D) 10 E) 12

13 39. Hányféleképpen színezhető ki az alábbi zászló piros, kék és zöld színnel? (Mindhárom színnek szerepelnie kell!) A) 5 B) 6 C) 7 D) 10 E) Andi egy 1630 Ft-os CD-lemezt szeretne venni. Így sóhajt fel: ha kétszer annyi pénzem lenne, mint most, akkor már csak 150 Ft-om hiányozna a vásárláshoz. Hány forintja van Andinak? A) 815 Ft B) 890 Ft C) 1480 Ft D) 740 Ft E) 665 Ft 41. Az alábbi számokat leírtuk számjegyekkel: ezeregy, ezeregyszáztíz, tízezer-egyszáz, ezeregyszáztizenegy, tizenegyezer-egy Hány számban szerepel pontosan három nulla? A) 0 B) 1 C) 2 D) 3 E) A tanító néni egy zacskó cukrot oszt szét Anna, Bea, Csilla és Dani között. Anna 5-tel többet kap, mint Bea, Bea 4-gyel többet, mint Csilla. Daninak 5 szem cukor maradt, 3- mal kevesebb, mint amit Csilla kapott. Hány szem cukor volt a zacskóban? A) 5 B) 20 C) 30 D) 42 E) Pistától megkérdezik, mikor van a születésnapja. Ô erre így felel: - Ha tegnapelőtt vasárnap volt, akkor mához négy napra. A hét melyik napján van Pista születésnapja, ha tegnapelőtt vasárnap volt? A) szerda B) csütörtök C) péntek D) szombat E) vasárnap 44. Egy ünnepségen körtáncot táncoltak. Az egyik táncos megszámolta, hányan vannak, és észrevette, hogy jobbról is, és balról is 11-en álltak mellette. Hányan táncolták a körtáncot?

14 A) 11-en B) 12-en C) 22-en D) 23-an E) 33-an 45. Egy amőba minden nap kétszeresére nő. A 30. napon ellepi az egész petricsészét, amelyben nevelkedik. Hányadik napon növi be a felét? A) 8 B) 4 C) 12 D) 29 E) Néhány gyerek elment moziba. Legalább hányan vannak, ha tudjuk, hogy biztosan van köztük kettő, akinek születési hónapja ugyanarra a betűre végződik? A) 3 B) 5 C) 12 D) 13 E) Legfeljebb hány részre oszthatunk egy négyszöget két egyenessel? A) 6 B) 5 C) 4 D) 3 E) Egy családban a négy gyerek életkorának összege most 20 év. Mennyi lesz az életkoruk összege 3 év múlva? A) 17 B) 20 C) 23 D) 29 E) Mi lehet a számsorozatban a következő szám? 82, 85, 84, 87, 86,... A) 84 B) 85 C) 86 D) 88 E) Balek Béla az egyik feladat megoldásaként 45-öt kapott. Később rájött, hogy az utolsó műveletben 5-öt hozzáadott az 5 kivonása helyett, az utolsó előtti műveletben pedig 10-et kivont a 10 hozzáadása helyett. Mennyi a feladat valódi megoldása? A) 45 B) 55 C) 65 D) 70 E) A felsoroltak közül melyik lehet jó válasz az alábbi kérdésre: Mi a több és mennyivel: 2 kg 1 forintos, vagy 1 kg 2 forintos? A) 2 kg 1 forintos 2 kg-mal B) 2 kg 1 forintos 1 kg-mal C) 1 kg 2 forintos 2 kg-mal D) 1 kg 2 forintos 1 kg-mal E) Ugyanannyi 52. Anna, Béla és Cili egyenként mérlegre álltak. Béla a mérési eredményeket feljegyezte, és ennek alapján ezeket mondta:

15 - Annánál 3 kg-mal nehezebb vagyok, Cilinél viszont 3 kg-mal könnyebb. Hárman együtt 1 híján 100 kg-ot nyomunk. Milyen nehéz Anna? A) 28 B) 29 C) 30 D) 33 E) A gyerekek locsoláskor kapott piros tojást, hímes tojást, cukrot és csokoládét cserélgetnek. Két piros tojásért adnak egy csokit, egy csokiért egy hímes tojást és két cukrot, hat cukorért egy piros tojást. Hány cukrot ér egy hímes tojás? A) 6 B) 8 C) 10 D) 12 E) Három autó egy-egy rendszámtábláját leszerelik. Hányféleképpen lehet úgy visszarakni mind a hármat, hogy pontosan egy tábla kerül-jön az eredeti helyére? A) 1 B) 3 C) 6 D) 10 E) Hányszor kell a legnagyobb egyjegyű számhoz hozzáadni 5-öt, hogy 54-et kapjunk? A) 9-szer B) 11-szer C) 99-szer D) 100-szor E) 999-szer 56. Hány pöttye és lába van összesen hét hétpöttyös katicának, ha minden bogárnak 6 lába van? A) 42 B) 49 C) 55 D) 91 E) Mi kerülhet az x helyére a 7 dkg + x = 1 kg nyitott mondatban? A) 3 dkg B) 30 g C) 30 dkg D) 93 dkg E) 930 dkg 58. Melyik állítás hamis az alábbiak közül? A) 10 tízes + 2 százas + 8 egyes = 308 B) 12 egyes + 8 tízes + 3 százas = 842 C) 3 egyes + 5 százas + 7 tízes = 573 D) 6 százas + 7 egyes + 9 tízes = 697 E) 13 tízes + 15 egyes + 1 százas = A négyzetekbe az 1, 2 és 3 számokat kell beírni úgy, hogy sem egy oszlopban, sem egy sorban, sem a megkezdett átlóban nem lehet két egyforma szám. Mi lesz az x-szel jelölt számok szorzata?

16 X 2 X 1 A) 2 B) 3 C) 6 D) 9 E) ezekből az adatokból nem lehet meghatározni 60. András, Ádám, Béla, Csaba és Dani testvérek. Mindegyiküknek van pontosan egy lánytestvére. Hány gyerek van összesen? A) 6 B) 7 C) 8 D) 10 E) Melyik háromjegyű számra gondoltam, ha a tippek és a válaszok a következők? A) 835 B) 154 C) 218 D) 248 E) Anna és Ági között 15 év korkülönbség van. Két évvel ezelőtt Ági pontosan 6-szor olyan idõs volt, mint Anna. Hány éves most Anna? A) 3 B) 4 C) 5 D) 18 E) Egy osztályban Kati benne van a 10 legidősebb és a 10 legfiatalabb gyerek csoportjában is. Legfeljebb hány gyerek van az osztályban? A) 10 B) 19 C) 20 D) 21 E) ezekből az adatokból nem lehet meghatározni 5-6. osztály 1. Az összes négyjegyű számot leírtuk egymás alá növekvő sorrendben. Hányadik sorba került az 1999?

17 A) 999 B) 1000 C) 1001 D) 1999 E) egyik sem 2. A Bendegúz levelező matematika versenyre az idei tanévben másfélszer annyi, 324- gyel több nyolcadikos jelentkezett, mint tavaly. Hány nyolcadikos versenyzett a tavalyi évben? A) 324 B) 486 C) 648 D) 972 E) egyik sem 3. Egy ládában egyforma méretű fekete és fehér golyók vannak. Legalább hatot kell kivennem belőle ahhoz, hogy biztosan legyen a kihúzottak között fekete golyó és legalább hetet ahhoz, hogy biztosan legyen fehér golyónk. Hány golyó van a ládában összesen? A) 5 B) 6 C) 11 D) 13 E) egyik sem 4. Adrienn a tombolán egy doboz bonbont nyert. A felét barátnőjének adta, akivel közösen vették a szelvényt. A maradék felét egy másik barátnőjének ajándékozta. A maradék felével testvérét kínálta meg, így neki csak 3 szem maradt. Hány bonbon volt a dobozban eredetileg? A) 12 B) 15 C) 18 D) 24 E) egyik sem 5. Az ábrán látható négyzet oldalának hossza 16 cm. Mekkora a bevonalkázott részek területének összege? A) 32 cm2 B) 128 cm2 C) 192 cm2 D) 256 cm2 E) nem lehet egyértelműen megállapítani 6. Véletlenül úgy alakult, hogy egy osztályban ugyanannyi (12) az olasz, a matematika és a számítástechnika szakköre járók száma. Öten olaszra és matekra is járnak, hárman olaszra és számítástechnikára is, hatan pedig matekra és számítástechnikára is. Ketten

18 mindhárom szakkörben részt vesznek, ketten viszont egyikben sem. Mennyi az osztálylétszám? A) 26 B) 36 C) 24 D) 29 E) egyik sem 7. Hány olyan háromjegyű szám van, amelynek minden számjegye 6-nál nem nagyobb páros szám? A) 0 B) 48 C) 64 D) 900 E) egyik sem 8. Hányféleképpen lehet felváltani egy százforintost 50, 20 és 10 forintosokra? A) 7 B) 10 C) 11 D) 14 E) egyik sem 9. Hány olyan négyjegyű szám van, amelyben a számjegyek összege 3? A) 0 B) 2 C) 3 D) 6 E) egyik sem 10. Egy négyzet oldala négy egység. Minden oldalát 4 egyenlő részre osztjuk és az osztópontokat az ábrán látható módon összekötjük. Hány területegység a szürkével jelölt síkidom területe? A) 10 B) 12 C) 14 D) 16 E) egyik sem 11. Az ötödik osztály tanulói 32-en buszt béreltek az osztálykirándulásukhoz. Kiszámolták, hogy az egy főre eső bérleti díj mennyibe fog kerülni. Ketten megbetegedtek, nem jöttek el, így a kirándulóknak fejenként 60 Ft-tal többet kellett fizetniük a buszért. Mennyi volt a busz bérleti díja? A) Ft B) Ft C) 920 Ft D) 7000 Ft E) nem lehet megállapítani

19 12. Hányféleképp juthatunk el az A pontból a B pontba a rácsvonalak mentén, ha csak felfelé és csak jobbra haladhatunk? A) 9 B) 20 C) 120 D) 126 E) egyik sem 13. Milyen szám kerül a helyére a számsorban? A) 10 B) 11 C) 6 D) 17 E) egyik sem 14. Hányféle háromjegyű számot készíthetünk az 1, 2, 3 számjegyekből, ha egy-egy szám többször is szerepelhet, de egymás mellett két egyforma számjegy nem állhat? A) 15 B) 10 C) 27 D) 12 E) egyik sem 15. Viki elvállalta az osztályban a viráglocsolást a hónap napjai közül az olyan sorszámúakon, amely számok megegyeznek a valódi osztóik számával. Havonta hány napon kell locsolnia? (Valódi osztó: a számnak önmagán és az 1-en kívüli osztója) A) 0 B) 8 C) 9 D) ez attól függ, hány napos a hónap E) egyik sem 16. Marikáék téglalap alakú kertjének bekerítéséhez 216 m drótra van szükség. A kert egyik oldala ötször olyan hosszú, mint a másik. Hány méter a rövidebbik oldal? A) 12 B) 18 C) 24 D) 36 E) egyik sem 17. A karácsonyi vásárban akciót hirdettek. Aki egyszerre 20 szaloncukornál többet vásárolt, az a 20 feletti mennyiségnél cukronként 3 Ft kedvezményt kapott, azaz 10 Ft-t fizetett a húszon felüli mennyiség darabjáért. Hány szaloncukrot vett az, aki összesen 310 Ft-t fizetett? A) 18 B) 22 C) 23 D) 25 E) egyik sem

20 18. A KATI szó betűből minden lehetséges módon nem feltétlenül értelmes szavakat alkottunk és leírjuk a szavakat névsorban egymás alá. Hányadik ebben a sorban az KITA szó? A) 3 B) 9 C) 15 D) 16 E) egyik sem 19. Egy téglatest éleinek összege 184 cm, az egy csúcsból kiinduló három éle közül az egyik 2,4 dm, a másik 100 mm hosszú. Hány cm az ebből a csúcsból kiinduló harmadik él hossza? A) 5 B) 10 C) 12 D) 24 E) a felsoroltak közül egyik sem 20. Mennyi a következő szorzat eredményében a számjegyek összege: 16*625*32*125*25? A) 1 B) 2 C) 6 D) 8 E) a felsoroltak közül egyik sem 21. Az alábbiak közül az egyik állítás hamis. Melyik az? A) Minden háromszögnek legfeljebb egy derékszöge van. B) Nem minden háromszögnek van legalább egy derékszöge. C) Nincs olyan háromszög, amelynek két derékszöge van. D) Van olyan háromszög, amelynek legalább egy derékszöge van. E) Nincs olyan háromszög, amelynek nincs legalább egy derékszöge. 22. Marika születésnapját ünnepelte a család: szülei és 3 testvére. A süteményes tálon nem kevesebb, mint tíz, de nem több, mint tizenhat sütemény volt. Miután mindenki ugyanannyi sütit kivett magának, üres lett a tál. Hány sütemény volt a tálon? A) 1 B) 2 C) 6 D) 8 E) a felsoroltak közül egyik sem 23. Juli most harmincnyolc éves. Amikor Juli háromszor olyan idős lesz, mint Kati, akkor kettőjük életkorának összege 56 év. Hány éves most Kati? A) 10 B) 12 C) 14 D) 28 E) egyik sem 24. Mit mondhatunk az 1184 és 1210 számokról? A)Egymás abszolút értékei B)barátságos számok C)tökéletes számok D)kedves számok E)semmit

21 25. Mit mondhatunk a 496 és 8128 számokról? A)relatív prímek B)barátságos számok C)tökéletes számok D)kedves számok E)semmit 26. Melyik állítás az igaz az alábbiak közül? A)Nincs két olyan páros szám, amelyek összege osztható öttel. B)Van olyan egész szám, amelyet öttel megszorozva öttel nem osztható számot kapunk. C)Egy öttel osztható szám és egy nullára végződő szám összege mindig osztható tízzel. D)Van olyan egész szám, amelyet hárommal megszorozva öttel osztható számot kapunk. E)Egy öttel osztható szám és egy nullára végződő szám összege nem mindig osztható öttel. 27. A vadaspark egyik részében 4 karámban lovakat tartanak. A lovakkal a karámban lovászok foglalkoznak. Egyik nap elmentem a vadasparkba, hogy megnézzem a lovakat. Az első karámban 4 fejet és 16 lábat láttam. A második karámban 6 fejet és 18 lábat számoltam. A harmadik karámban jelenlévőknek 5 feje és 18 lába volt. A negyedik karámban 6 fejet és 20 lábat láttam. Hány lovász foglalkozott aznap az állatokkal? A)6 B)10 C)12 D)15 E)ezekből az adatokból nem lehet megállapítani 28. Mekkora az a/b tört legnagyobb értéke, ha 50 b 100 és 200 a 800? A) 2 B) 4 C) 8 D) 16 E) egyik sem 29. Hány db néggyel osztható hatjegyű szám képezhető 3 db egyes és 3 db nullás számjegy felhasználásával? A) egy sem B) 1 C) 3 D) 6 E) egyik sem 30. A 8x8-as sakktábla A2 mezőjén álló lóval hányféle módon juthatunk el F7 mezőre úgy, hogy útközben minden mezőt pontosan egyszer érintünk? 31. Az iskolában Pali és Éva beszélgetnek:

MATEMATIKA VERSENY --------------------

MATEMATIKA VERSENY -------------------- Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály IV. osztály 1. feladat. Ha leejtünk egy labdát, akkor az feleakkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödször 10 cm magasra pattant fel? 2. feladat.

Részletesebben

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály)

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály) MEGOLDÓKULCSOK 1. feladatsor (1. osztály) 1. feladat 8 9 10 14 15 16 10 11 12 18 19 20 1. pontdoboz: Hibátlan számszomszédok írása 1 pont, hiba 0 pont. 2. feladat 20 17 14 11 8 5 2 2. pontdoboz: Szabályfelismerésért

Részletesebben

Felkészülés a Versenyvizsgára

Felkészülés a Versenyvizsgára Felkészülés a Versenyvizsgára Feladatok 6. osztályosoknak 1. Ha egy tégla 2 kg meg egy fél tégla, akkor hány kg két tégla? 2. Elköltöttem a pénzem felét, maradt 100 Ft-om. Mennyi pénzem volt eredetileg?

Részletesebben

PYTAGORIÁDA A járási forduló feladatai 34. évfolyam, 2012/2013-as tanév KATEGÓRIA P3

PYTAGORIÁDA A járási forduló feladatai 34. évfolyam, 2012/2013-as tanév KATEGÓRIA P3 KATEGÓRIA P3 1. Két kalácsért 32 centet fizetnénk. Hány centet fizet Peti, ha saját magának és három testvérének is vesz egy-egy kalácsot? 2. Írjátok le egy szóval, hogy milyen műveleti jelet kell a példában

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály 40 rózsát el lehet-e osztani 5 lány között úgy, hogy mindegyik lánynak páratlan számú rózsa jusson? Nem lehet.(1 pont) Öt darab páratlan szám összege páratlan, a 40 páros (1 pont). Hogyan tudnátok

Részletesebben

Felkészülés a Versenyvizsgára

Felkészülés a Versenyvizsgára Felkészülés a Versenyvizsgára Feladatok 5. osztályosoknak 1. Mennyi a -10, -9, -8,..., 9, 10 számok összege? 2. Mennyi a -10, -9, -8,..., 9, 10 számok szorzata? 3. Mennyi az öt legkisebb természetes szám

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Hány olyan háromjegyű szám létezik, amelyben a számjegyek összege 5? 15 darab ilyen szám van. 5 = 5+0+0 = 4+1+0 = 3+2+0 = 3+1+1=2+2+1 A keresett számok: 500, 401, 410, 104, 140, 302, 320,203,

Részletesebben

Ismétlő feladatsor: 10.A/I.

Ismétlő feladatsor: 10.A/I. Ismétlő feladatsor: 0.A/I. Harasztos Barnabás 205. január. Feladat Mekkora az alábbi ábrán (szürkével) jelölt síkidom összterülete? A terület egységének a négyzetrács egy négyzetének területét tekintjük!

Részletesebben

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

3) András és Béla életkorának összege 23 év. Mennyi lesz az életkoruk összege 15 év múlva?

3) András és Béla életkorának összege 23 év. Mennyi lesz az életkoruk összege 15 év múlva? PANNONHALMA TKT RADNÓTI MIKLÓS ÁLTALÁNOS ISKOLA, ÓVODA ÉS ALAPFOKÚ MŐVÉSZETOKTATÁSI INTÉZMÉNY Akik vonzódnak a matematikához, azokat izgalomba hozza a feladat, akiknek nincs érzékük hozzá, azokat elriasztja.

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 17. lecke: Kombinatorika (vegyes feladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.

Részletesebben

Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012.

Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012. Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012. A feladatokat írta: Kozma Lászlóné, Sajószentpéter Tóth Jánosné, Szolnok Lektorálta: Fodor Csaba, Szeged Név:..... Iskola:. Beküldési határidő:

Részletesebben

Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan

Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan TOLLAL DOLGOZZ, SZÁMOLÓGÉPET NEM HASZNÁLHATSZ, A LAPRA SZÁMOLJ! 1. A következő ábrán egy

Részletesebben

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013 Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó Második félév Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 0 SZORZÁS ÉS OSZTÁS -VEL Mesélj a képrõl! Hány kerékpár és kerék van a képen?

Részletesebben

Feladatgyűjtemény matematikából

Feladatgyűjtemény matematikából Feladatgyűjtemény matematikából 1. Pótold a számok között a hiányzó jelet: 123: 6 a 45:9.10 2. Melyik az a kifejezés, amelyik 2c-7 tel nagyobb, mint a 3c+7 kifejezés? 3. Határozd meg azt a legnagyobb természetes

Részletesebben

Tehetséggondozás az általános iskola 4-6. osztályában Dr. Csóka Géza, Győr

Tehetséggondozás az általános iskola 4-6. osztályában Dr. Csóka Géza, Győr Dr. Csóka Géza: Tehetséggondozás az általános iskola 4-6. osztályában Tehetséggondozás az általános iskola 4-6. osztályában Dr. Csóka Géza, Győr Kilencedik éve vezetek győri és Győr környéki gyerekeknek

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály 5. osztály Józsi bácsi egy farkassal, egy kecskével és egy fej káposztával egy folyóhoz érkezik, amin át szeretne kelni. Csak egy olyan csónak áll rendelkezésére, amellyel a felsoroltak közül csak egyet

Részletesebben

Számok és műveletek 10-től 20-ig

Számok és műveletek 10-től 20-ig Számok és műveletek től 20ig. Hány gyerek vesz részt a síversenyen? 2. Hányas számú versenyző áll a 4. helyen, 3. helyen,. helyen? A versenyzők közül hányadik helyen áll a 4es számú, 3as számú, es számú?

Részletesebben

VERSENYFELADATOK 5 12. évfolyam részére I. FELADATSOR

VERSENYFELADATOK 5 12. évfolyam részére I. FELADATSOR VERSENYFELADATOK 5 12. évfolyam részére I. FELADATSOR 5. osztály 1. Az ötödik osztályban 13 fiúból négy szemüveges. A lányok harmada visel szemüveget. Összesen nyolc szemüveges van az osztályban. Mennyi

Részletesebben

Valószínűség számítás

Valószínűség számítás Valószínűség számítás 1. Mennyi annak a valószínűsége, hogy szabályos játékkockával páratlan számot dobunk? 2. Egy dobozban 7 piros és 13 zöld golyó van. Ha találomra kihúzunk egyet közülük, akkor mekkora

Részletesebben

Törd a fejed. Jani kisebb, mint Péter. Matyi nagyobb, mint Péter. Marci kisebb, mint Jani. Melyik fiú a legkisebb?

Törd a fejed. Jani kisebb, mint Péter. Matyi nagyobb, mint Péter. Marci kisebb, mint Jani. Melyik fiú a legkisebb? Bővítsük közösen! Küldjétek el ötleteiteket! A legkisebb Törd a fejed Jani kisebb, mint Péter. Matyi nagyobb, mint Péter. Marci kisebb, mint Jani. Melyik fiú a legkisebb? A legalacsonyabb Anikó alacsonyabb,

Részletesebben

2013. május 16. MINIVERSENY Csapatnév:

2013. május 16. MINIVERSENY Csapatnév: 1. Az ábrán látható ötszög belsejében helyezzetek el 3 pontot úgy, hogy az ötszög bármely három csúcsa által meghatározott háromszög belsejébe pontosan egy pont kerüljön! El lehet-e helyezni 4 pontot ugyanígy?

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k. Az 1,, 3,, elemeknek hány permutációja van, amelynek harmadik jegye 1- es? Írjuk fel őket! Annyi ahányféleképpen

Részletesebben

Matematika (alsó tagozat)

Matematika (alsó tagozat) Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára

Részletesebben

V. osztály. Matematikai tehetségnap 2013. október 12. Megoldások

V. osztály. Matematikai tehetségnap 2013. október 12. Megoldások V. osztály 1. feladat. Ha leejtünk egy labdát, akkor az fele akkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödik alkalommal 10cm magasra pattant fel?

Részletesebben

50. modul 1. melléklet 2. évfolyam tanítói fólia

50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 2. melléklet 2. évfolyam tanítói fólia 50. modul 3. melléklet 2. évfolyam tanítói fólia 50. modul 4. melléklet 2. évfolyam tanítói fólia és csoport

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

Róka Sándor. 137 számrejtvény. Megoldások

Róka Sándor. 137 számrejtvény. Megoldások Róka Sándor számrejtvény Megoldások Budapest, 008 A könyv megjelenését a Varga Tamás Tanítványainak Közhasznú Emlékalapítványa támogatta. Róka Sándor, Typotex, 008 ISBN 98 9 9 89 0 Témakör: matematika

Részletesebben

1.1. Halmazok. 2. Minta - 5. feladat (2 pont) Adott két halmaz:

1.1. Halmazok. 2. Minta - 5. feladat (2 pont) Adott két halmaz: 1.1. Halmazok 2009. május id. - 11. feladat (3 pont) A H halmaz elemei legyenek a KATALINKA szó betűi, a G halmaz elemei pedig a BICEBÓCA szó betűi. Írja fel a H U G halmaz elemeit! 2010. október - 1.

Részletesebben

Írd le, a megoldások gondolatmenetét, indoklását is!

Írd le, a megoldások gondolatmenetét, indoklását is! 0 Budapest VIII., Bródy Sándor u.. Postacím: Budapest, Pf. 7 Telefon: 7-900 Fax: 7-90. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ 0. április. HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Írd le,

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Érettségi feladatok: Halmazok, logika

Érettségi feladatok: Halmazok, logika Érettségi feladatok: Halmazok, logika 2005. május 10 18. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK Telefon: 37-8900 Fax: 37-8901 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. 1. Egy osztási műveletben az osztandó és az osztó összege 89.

Részletesebben

JAVÍTÓKULCS 6. osztályosok számára B-2 feladatlap

JAVÍTÓKULCS 6. osztályosok számára B-2 feladatlap JAVÍTÓKULCS 6. osztályosok számára B-2 feladatlap 2001. február 7. 1. A jéghegyeknek csak 1/9 része van a vízfelszín felett. Hány tonnás az a jéghegy, amelynek víz alatti része 96 tonna tömegű? A válasz:

Részletesebben

(6/1) Valószínűségszámítás

(6/1) Valószínűségszámítás (6/1) Valószínűségszámítás 1) Mekkora annak a valószínűsége, hogy szabályos játékkockával páratlan számot dobunk? 2) Egy dobozban 7 piros és 13 zöld golyó van. Ha találomra kihúzunk egyet közülük, akkor

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Részletesebben

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT MATMATIKA ÉRTTSÉGI 011. május 3. KÖZÉPSZINT 1) gyszerűsítse a következő törtet, ahol b 6 b b 36 6 I. Az egyszerűsítés utáni alak: b 6 Összesen: pont ) A, 4 és 5 számjegyek mindegyikének felhasználásával

Részletesebben

Matematika kisérettségi

Matematika kisérettségi Matematika kisérettségi 2010. május 11. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3.

Részletesebben

A fordított út módszere és a gráfok

A fordított út módszere és a gráfok A fordított út módszere és a gráfok 1. feladat: Ilonka az els nap elköltötte pénzének felét, a második nap a meglév pénzének egyharmadát, a harmadik nap a meglév pénz felét, negyedik nap a meglév pénz

Részletesebben

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK I. Témakör: feladatok 1 Huszk@ Jenő IX.TÉMAKÖR I.TÉMAKÖR HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK Téma A halmaz fogalma, alapfogalmak, elemek száma, üres halmaz, egyenlő halmazok, ábrázolás Venn-diagrammal

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

Ismétlés nélküli permutáció

Ismétlés nélküli permutáció Ismétlés nélküli permutáció Hányféleképpen lehet sorba rendezni n különböz elemet úgy, hogy a sorrend számít? (Ezt n elem ismétlés nélküli permutációjának nevezzük.) Például hány féleképpen lehet sorba

Részletesebben

oldalhoz van közelebb. Igazold, hogy a BDE és EDC szögek egyenlők!

oldalhoz van közelebb. Igazold, hogy a BDE és EDC szögek egyenlők! 1980. évi verseny 1. Kilenc egyforma könyv még nem kerül 100 Ft-nál többe, de tíz ilyen könyv már 110 Ft-nál is többe kerül. Mennyi az ára egy könyvnek? (A könyvek árát 10 fillérre kerekítve adják meg.)

Részletesebben

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

54. Mit nevezünk rombusznak? A rombusz olyan négyszög, 52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

SZÁMELMÉLET FELADATSOR

SZÁMELMÉLET FELADATSOR SZÁMELMÉLET FELADATSOR Oszthatóság 1. Az 123x4 számban milyen számjegy állhat x helyén, ha a szám osztható a) 3-mal; e) 6-tal; b) 9-cel; f) 24-gyel; c) 4-gyel; g) 36-tal; d) 8-cal; h) 72-vel? 2. Határozd

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Halmazműveletek feladatok

Halmazműveletek feladatok Halmazműveletek feladatok Soroljuk fel a {a; b; c} halmaz összes részhalmazát! Határozza meg az A és B halmazokat, ha tudja, hogy A B ={1;2;3;4;5}; A B ={3;5}; A\B={1}; B\A={2;4 A={-1; 0; 1; 2; 5; 7; 8}

Részletesebben

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont 2012. január 28. 8. évfolyam TMat1 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat1 A javítókulcsban feltüntetett válaszokra a megadott

Részletesebben

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I. ) Mely valós számokra igaz, hogy 7 7 MATEMATIKA ÉRETTSÉGI 005. május 8. KÖZÉPSZINT I. 7? Összesen: pont ) Egy 40 000 Ft-os télikabátot a tavaszi árleszállításkor 0%-kal olcsóbban lehet megvenni. Mennyi

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

Tanárverseny 2012. Megoldásvázlatok

Tanárverseny 2012. Megoldásvázlatok Tanárverseny 0 középiskolában tanító tanároknak vázlatok Kidolgozta: Csordásné Szécsi Jolán, Csordás Péter A verseny támogatói: Typotex Kiadó Maxim Kiadó MATEGYE Alapítvány . Mennyivel egyenlő a K E D

Részletesebben

3. MINTAFELADATSOR KÖZÉPSZINT

3. MINTAFELADATSOR KÖZÉPSZINT Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató

Részletesebben

SKATULYA-ELV. Sava Grozdev

SKATULYA-ELV. Sava Grozdev SKATULYA-ELV Sava Grozdev Ha 3 apró labdát akarunk elhelyezni a nadrágunk 2 zsebébe, akkor kétség sem férhet hozzá, hogy legalább 2 labda azonos zsebbe fog kerülni. Hasonlóan, ha 4 kicsi dobozt akarunk

Részletesebben

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam eszközök diákok és csoportok részére 1. félév A kiadvány KHF/4632-14/2008. engedélyszámon 2008.12.16. időponttól tankönyvi engedélyt kapott Educatio

Részletesebben

12. Trigonometria I.

12. Trigonometria I. Trigonometria I I Elméleti összefoglaló Szögmérés A szög mérésének két gyakran használt módja van: fokban, illetve radiánban (ívmértékben) mérünk A teljesszög 0, ennek a 0-ad része az A szög nagyságát

Részletesebben

Arányossággal kapcsolatos feladatok

Arányossággal kapcsolatos feladatok Arányossággal kapcsolatos feladatok 1. Egy régi óra 4 óra alatt 8 percet késik. Mennyivel kell elrevidd az órát este 10 órakor, ha reggel pontosan 7-kor akarsz ébredni?. 6 munkás egy munkát 1 nap alatt

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK MEGOLDÁSI KÖZÉP SZINT Halmazok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

1. osztályosok. 4. Hányféle sorrendben gombolható be a blúz 4 gombja, ha egymás után mindig egymás melletti gombot gombolunk be?

1. osztályosok. 4. Hányféle sorrendben gombolható be a blúz 4 gombja, ha egymás után mindig egymás melletti gombot gombolunk be? 1. osztályosok 1. Anya szeretne Zsófi kabátjára 3 gombot felvarrni. Ha zöld és kék színű gombokból válogat, akkor a kabáton hányféleképp alakulhat a színek sorrendje? 2. Zsófi blúzára anya 4 gombot varr,

Részletesebben

KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 5. ÉVFOLYAM MEGOLDÁSOK

KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 5. ÉVFOLYAM MEGOLDÁSOK KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 5. ÉVFOLYAM MEGOLDÁSOK 1. a) I; b) H; c) I; d) I; e) I.. a) I; b) I; c) H; d) I; e) H. Természetes számok. 5555 < 7788< 7878< 7887< 8787< 8877< 8888. 4.

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 ÉRETTSÉGI VIZSGA 005. május 9. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET C

MATEMATIKAI KOMPETENCIATERÜLET C MATEMATIKAI KOMPETENCIATERÜLET C Matematika 5. évfolyam tanulói ESZKÖZÖK Matematika C 5. évfolyam 1. modul 1. melléklet/1. Matematika C 5. évfolyam 1. modul 1. melléklet/2. Matematika C 5. évfolyam 1.

Részletesebben

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel 6.osztály 1.foglalkozás 6.osztály 2.foglalkozás kocka kockafal :db minta Készítsd el ezt a mintát! A minta hosszú oldala 60 a rövid oldala 40 egység hosszú. A hosszú oldal harmada a négyzet oldala! A háromszög

Részletesebben

A sakk feltalálója. A megfizethetetlen találmány. Számítsuk ki, mennyi is ez? Egy ötlet a számításhoz: az úgynevezett Teve szabály

A sakk feltalálója. A megfizethetetlen találmány. Számítsuk ki, mennyi is ez? Egy ötlet a számításhoz: az úgynevezett Teve szabály A sakk feltalálója Kevés játéknak van olyan regényes története, mint a sakknak. A tudomány mindmáig nem volt képes hitelt érdemlően feltárni eredetét, a körülötte terjengő legendákból viszont már évszázadokkal

Részletesebben

Szóbeli logikai feladatok

Szóbeli logikai feladatok Szóbeli logikai feladatok 1. a.) Döntsük el, melyik mondat igaz: (i) Minden szürke lap nagy. (ii) Minden nagy lap szürke. (iii) Amelyik lap fekete, az háromszög alakú. (iv) Az összes háromszög alakú lap

Részletesebben

Skatulya-elv. Sava Grozdev

Skatulya-elv. Sava Grozdev Skatulya-elv Sava Grozdev Egy alapvető szabály, azaz elv azt állítja, hogy: ha m testet szétosztunk n csoportba és m > n, akkor legalább két test azonos csoportba fog kerülni. Ezt az elvet különböző országokban

Részletesebben

Mozgással kapcsolatos feladatok

Mozgással kapcsolatos feladatok Mozgással kapcsolatos feladatok Olyan feladatok, amelyekben az út, id és a sebesség szerepel. Az egyenes vonalú egyenletes mozgás esetén jelölje s= a megtett utat, v= a sebességet, t= az id t. Ekkor érvényesek

Részletesebben

Egyenletekkel megoldható szöveges feladatok

Egyenletekkel megoldható szöveges feladatok Egyenletekkel megoldható szöveges feladatok Gyakran találkozhatunk olyan szöveges feladattal, amelyet els fokú egyenletek segítségével tudunk megoldani. A megoldás során érdemes a következ sorrendet betartani:

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba

Részletesebben

MEGOLDÁS ÉS PONTOZÁSI ÚTMUTATÓ

MEGOLDÁS ÉS PONTOZÁSI ÚTMUTATÓ 5. osztály Jelölje a 20-as és az 50-es közötti számokat a és b, a 20-as és a 80-as közöttieket c és d, az 50-es és a 80- as közöttieket pedig e és f. Ekkor tudjuk, hogy a+ b= 130, c+ d = 100 és e+ f =

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

MATEMATIKA FELADATLAP a 4. évfolyamosok számára

MATEMATIKA FELADATLAP a 4. évfolyamosok számára 4. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 4. évfolymosok számár 2014. jnuár 23. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 091 ÉRETTSÉGI VIZSGA 011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Megoldások 4. osztály

Megoldások 4. osztály Brenyó Mihály Pontszerző Matematikaverseny Megyei döntő 2015. február 14. Megoldások 4. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől,

Részletesebben

HALMAZOK 2. Feladat Év Kész Nem ment. 1) Egy osztály tanulói valamennyien vettek. 2) Egy 10 tagú csoportban mindenki beszéli az

HALMAZOK 2. Feladat Év Kész Nem ment. 1) Egy osztály tanulói valamennyien vettek. 2) Egy 10 tagú csoportban mindenki beszéli az HALMAZOK 2 Feladat Év Kész Nem ment 1) Egy osztály tanulói valamennyien vettek színházjegyet. Kétféle előadásra rendeltek jegyeket: az elsőre 18-at, a másodikra 24-et. 16 tanuló csak a második előadásra

Részletesebben

ZIPERNOWSKY MATEMATIKA KUPA

ZIPERNOWSKY MATEMATIKA KUPA ZIPERNOWSKY MATEMATIKA KUPA VERSENY 99 0 KÉSZÜLT A ZIPERNOWSKY KÁROLY MŰSZAKI SZAKKÖZÉPISKOLA FENNÁLLÁSÁNAK 00. ÉVFORDULÓJA ALKALMÁBÓL A FELADATSOROKAT ÖSSZEÁLLÍTOTTA: GOMBOCZ ERNŐ SZERKESZTETTE: KISS

Részletesebben

PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT

PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT 1. FELADATSOR Felhasználható idő: 40 perc I. rész 1.1.) Oldja meg grafikusan az alábbi egyenlőtlenséget! x + 1 + 1 x + x + 11 1..) Mekkora legyen az x valós szám értéke, hogy az alábbi három mennyiség

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 01. május 7. KÖZÉPSZINT 1) Az A és B halmazokról tudjuk, hogy B\ A 1; ; 4; 7. Elemeinek felsorolásával adja meg az A halmazt! A ; 5; 6; 8; 9 I. AB 1; ; ; 4; 5; 6; 7; 8; 9 és ) Egy

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

Százalék, ötvözet, keverék számolás

Százalék, ötvözet, keverék számolás Százalék, ötvözet, keverék számolás 1) Egy pár cipő ára 270 Lei. Mivel nagyon fogyott, megemelték az árát 20%-kal. De így már nem fogyott annyira és úgy döntöttek, hogy leszállítják az árát 20%-kal. Mennyi

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

Év végi ismétlés 9. - Érettségi feladatok

Év végi ismétlés 9. - Érettségi feladatok Halmazok, logika Év végi ismétlés 9. - Érettségi feladatok 1. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először

Részletesebben