A logikai és táblajáték-foglalkozások szerepe a matematikatanításban

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A logikai és táblajáték-foglalkozások szerepe a matematikatanításban"

Átírás

1 K. Nagy Emese PhD A logikai és táblajáték-foglalkozások szerepe a matematikatanításban Az emberiség ősi játékai közé tartoznak a különböző logikai és táblajátékok, amelyek az időtöltésen túl mindig fontos gondolkodásfejlesztő funkciót töltöttek be. A műhelytanulmány azt mutatja be, milyen sokoldalú szerepe lehet a matematikai gondolkodás, az absztrakciós és a szintetizáló képességek fejlesztésében e játékok felhasználásának. A logikai és táblajáték-foglalkozások fő célkitűzése a gyerekek értelmi képességének fejlesztése, a szabadidő igényes, tartalmas eltöltése, a társas élet, a szociabilitás erősítése, a rendszeres megmérettetés, versenyzés és a hagyományápolás. A tömegkultúra jelentős befolyása idején naponta érzékeljük, hogy egyre inkább teret hódít az igénytelenség, ezért szükség van olyan tevékenységekre, amelyek a gyerekek szellemi, lelki fejlődését szolgálják. A homo ludens fogalma régóta ismert: az ember minden korban szeretett játszani, versenyezni, hiszen az izgalom átélése vagy éppen az ellazulás végett mindenkinek szüksége van játékra. A játék élmény, élvezet, az örömszerzésért végzett, önként vállalt tevékenység, amelyben egybeesnek a motívumok és a célok, így a gyerek saját maga szabályozza az örömszerzés mértékét. Jelentős szerepe van a lelki egyensúly kialakításában, fenntartásában. Johann Huizinga szerint az emberi kultúra a játékban, játékként kezdődik és bontakozik ki. Ugyanakkor a játéknak a kultúra fontos részeként társadalmi haszna is van, jelentős szerepet játszik a társas kapcsolatok kialakulásában. Játék közben a fair play, a szabályok betartása, a helytállás fontosabb a győzelemnél, gazdagodik a jellem, kockázatvállalásra és önfegyelemre nevel. Az emberiség legnagyobb szellemi alkotásai közé tartoznak a táblajátékok. 1 Szűkebb értelemben valamilyen téglalap, négyzet, esetleg hatszög alakú, mezőkre vagy pontokra felosztott játéktéren, táblán korongokkal, golyókkal vagy bábukkal játszott játékok. Ilyen például a sakk, tágabb értelemben idesorolhatóak a dominók, a különböző geometriai formákat felhasználó tologatós játékok, mint amilyen a pentominók vagy a tangram. 2 A gyerekek a táblajátékon keresztül képessé válnak a pontos, kitartó, fegyelmezett munkára, törekednek az önellenőrzésre, és képesek lesznek a várható eredmények becslésére. A játéktevékenység szervezése közben mindvégig törekedni kell a gyerekek motiváltságának biztosítására, önállóságuk fejlesztésére. Ebben a törekvésben fontos terület a matematika alkalmazásának, eszközjellegének sokoldalú bemutatása és érvényesítése a tanításban. Nyilvánvaló a táblás játékok szoros kapcsolata a matematikával, hiszen ez a sajátos ismeretszerzési módszer logikus gondolkodásra, következtetésre nevel. A matematikatanítás célja és feladata a tanulók önálló, rendszerezett, logikus gondolkodásának kialakítása, annak megtanítása, hogy a helyes következtetés menetében a premisszák igazsága szükségszerűen maga után vonja a konklúzió igazságát, azaz lehetetlen olyan szituáció, amelyben a premisszák igazak, a konklúzió pedig téves. A logikus gondolkodás kialakítása során fokozatosan kiépítjük a matematika belső struktúráját fogalmak, axiómák, tételek, bizonyítások elsajátításán keresztül, a tanultakat pedig változatos területeken alkalmazzuk. A logika feladata azon feltételek tisztázása, amelyek szükségesek a helyes következtetés szabatos megfogalmazásához, azon eszközök megadása, amelyek segítségével ellenőrizhető,

2 hogy a következtetések valóban helyesek-e. A diszkussziós képesség fejlesztésével, a többféle megoldás keresésével, megtalálásával és megbeszélésével fejleszthető a gondolkodás, a problémamegoldás képessége, amely nélkülözhetetlen az algoritmikus eljárások során és az alkalmazásokban egyaránt. A matematikában a logikai játékok segítségével sikereket lehet elérni a valószínűségszámításban a relatív gyakoriság vagy a kedvező esetek számának meghatározásával vagy a kombinatorika területén a permutációk, variációk, kombinációk megkeresésével. Idetartoznak az algoritmusok, a halmazok, a táblázatok, a nyílt végű feladatok, a divergens problémák, a nyerőstratégiák és még sorolhatnánk, amelyek mind hozzájárulnak a tanulók absztrakciós és szintetizálóképességének fejlesztéséhez. A célszerű, új fogalmak alkotása, az összefüggések felfedezése és az ismeretek feladatokban való alkalmazása fejleszti a kombinatív készséget, a kreativitást, a problémahelyzetek önálló, megfelelő önbizalommal történő megközelítését, megoldását. A logikus gondolkodásra nevelés fejleszti a tanulók modellalkotó tevékenységét, kialakítja a megfogalmazott összefüggések, hipotézisek bizonyításának igényét, megmutatja a matematika hasznosságát, belső szépségét, az emberi kultúrában betöltött szerepét, fejleszti a térbeli tájékozódást és az esztétikai érzéket. Példák a logikai játékok használatáról a matematikatanításban. 1. A tamba az alábbi területeken segíti a matematikai ismeretek elsajátítását: Térlátás: észrevenni a négyes malomállást a különböző irányokban és szinteken. Algoritmikus gondolkodás: megfelelő lépéssorrend előre látása, kiszámítása a különböző helyzetekben. Képzelőerő: tervkészítés az adott állás elemzése után, a lehetőségek figyelembevétele. Absztrahálás: a dugók mint jelhordozók. Az egyenes vonalak (nyerő vonalak) elképzelése a dugók alapján. Analógia: nyerőállás felismerése, felépítése a tapasztalatok alapján. Ismert állások alapján helyzetfelismerés s az ennek megfelelő stratégia, taktika kiválasztása. Modellezés: egyenes négyzetes hasáb, térfogat, pont, egyenes, szakasz, él, átló, számtani sorozat demonstrálása. Terület-, térfogatszámítás modellezése. Összehasonlítás: állások elemzésekor a hasonlóságok és eltérések feltárása (azonos, eltérő jegyek, jellemzők). Lényeglátás: adott állásban a lényeges elválasztása a lényegtelentől (a sok báb közül a számomra fontosak kiválasztása), ez alapján a lehetőségek felismerése. Mit kell felépítenem? Problémaérzékenység: az akadályoztatás ellenére az ellenfél lépéseit kihasználva, ezekre épülve nyerőállás felépítése. Újszerű kérdések felvetésének képessége: pl. átlós irányú, több színkülönbségű tambaállás létezése. Geometriai alakzatok, fogalmak: egyenes, szakasz, pont, átló, téglalap, téglatest, négyzetes oszlop, sík, tér. Térbeli koordinátarendszer: tájékozódás a térbeli 4 x 4 x n-es koordinátarendszerben. Játszmaírás. A téglatest térfogata. Számtani sorozat: annak felismerése, hogy a nyerőállások bábjainak koordinátái valamely tengely irányában számtani sorozatot alkotnak. Lineáris függvény ábrázolásának, tulajdonságainak előkészítése. Lineáris függvények és képeik. Nyerőstratégiák keresése bizonyos helyzetekben (a kombinációk világa, avagy kényszerítő lépések alkalmazása): nyerőalgoritmusok kezdőhelyzetből végállásig. Kombinatorika: Hányféleképpen...? kezdetű kérdések megválaszolása a matematika eszközeivel. 2. A pentominó az alábbi területeken segíti a matematikai ismeretek elsajátítását: Kocka, téglatest hálója. Kombinatorika (például öt négyzet hányféle módon kapcsolódhat egymáshoz az oldalai mentén). Parkettázási feladatok (adott terület lefedése különböző pentaminóelemekkel). Különböző konvex, konkáv síkidomok lefedése. Oszthatóság (a hatvan osztói, téglalap, négyzet területek segítségével). (Mészáros:

3 A problémaérzékenységre, a problémamegoldásra neveléshez elengedhetetlen a matematikai szövegek megfelelő, logikus értelmezése, a tanulók minél gyakoribb önálló tevékenykedése, aktív részvétele a tanítási, tanulási folyamatban. Általános fejlesztési követelmény a megfigyelőképesség, a problémamegoldó gondolkodás alapjainak fejlesztése, a matematikatanulással kapcsolatos tevékenységformák megismerése, szokások kialakítása. Konkrét fejlesztési követelmény a kapcsolatok, összefüggések megfigyelése, leolvasása, halmazok jellemzése állításokkal, számosság megállapítása, a szabályszerűség felfedezése, szóbeli megfogalmazása, sorozatok képzése és folytatása. A valószínűség-számításban és a statisztikában a közös játékok, kísérletek a biztos, a lehetetlen, a lehet, de nem biztos fogalmak megértését segítik. A táblajátékok alkalmazása során mindvégig előtérbe kerül a széles körű tapasztalatszerzés, amely segíti a matematikában való jártasság kialakítását. Az induktív módszer mellett nagy szerepet kapnak a deduktív következtetések. A logikai játékok alkalmazásának segítségével az elsajátítandó tananyagban feltételezések fogalmazódnak meg, amelyek néhány lépésben bizonyíthatók vagy megcáfolhatók. Fontos a bizonyítás iránti igény felkeltése, ezért előtérbe kerül a különféle bizonyítási módszerek megismerése, valamint a fogalmak, szabályok pontos megfogalmazása. Ezzel egy időben alapvető az absztrakciós képesség fejlesztése, a komplex szemléletformálás, az önálló ítéletalkotás, a problémák különböző oldalról történő megközelítése, a gyakorlatorientáltság, a pontosság, az ütemezés és a tervezés fejlesztése. A gyerekek jelentős és tartós javulást érnek el a stratégiai érvelés és a problémamegoldás területein, sőt iskolai eredményük is pozitív irányba változik. Miben ragadható meg a siker szubjektív tartalma? Minden sikernek az iskolai élet bármely területén érték is el az a jellegzetessége, hogy megerősödik a gyerek önmagába vetett hite. Az a tanuló, aki sikert él át, úgy érzi, sok mindenre alkalmas: amikor ötöst kap matematikából, nemcsak azt éli meg, hogy sikeresen hajtotta végre az adott feladatot, hanem úgy érzi, hogy szinte minden feladatot sikeresen meg tud oldani. És ez az igazi motiváció. Az iskola óriási felelőssége az, hogy hogyan fejleszti a gyerek képességeit, hogyan alakítja önértékelését, önbizalmát, viselkedését. A gyereknek hinnie kell abban, hogy az elé állított feladatot meg tudja oldani. Ez pozitívan hat az önbecsülésére, amely a tanulmányi előrehaladás támaszául szolgál. A képességek kibontakoztatásának egyik útja a tantárgyi előrehaladás segítése és ezen keresztül az önbizalom növelése. A cél annak tudatosítása, hogy kitartó munkával növelhető és tartóssá tehető a teljesítmény. Ennek egyik eszköze a különféle versenyeken való megmérettetés. A sikert sok tényező befolyásolhatja, többek között a tanár és a diák jó kapcsolata, együttműködése. Biztosítani kell a sikerhez vezető helyzet megteremtését, lehetőséget adva a gyerekek képességeinek kibontakoztatására. Az iskolai siker és a magatartás nem választható el élesen egymástól, hiszen a tanulási siker, az önbizalom megkönnyítheti a közösségbe való beilleszkedést. Az iskola feladata a szaktárgyi felkészítés mellett a személyiségfejlesztés. A gyerek attól sikeres, hogy átéli, érdemes próbálkoznia, keresnie azt az utat-módot, ahogyan a céljait elérheti, és hinnie kell abban, hogy ezt az utat meg is találja. A személyiségnevelés része a játéktevékenység feltételeit és kereteit alkotó pedagógiai helyzetek kialakítása és a tervezett tevékenységek megvalósítása ezekben a helyzetekben. A tevékenység során magatartási,

4 gondolkodási szabályokat, elvárásokat kell a gyerekek elé állítani, amelyeken keresztül megtanulják értékelni magatartásuk helyességét, és betartják a szabályokat. A normák erőssége, kényszerítő ereje fejlesztő hatású, a szabályok alkalmat adnak a rendszeres visszacsatolásokra, amelyeken keresztül a gyerekek képesek lesznek követni az irányított folyamatokat. Az intellektuális képességek fejlesztése mellett a nevelés feladata a különböző viselkedésformák kialakítása nyerő és vesztő helyzetekben, a kitartás, az elszántság, a célorientáltság, a merészség, a kockázatvállalás és a megfontoltság, a határozottság, a felelősségvállalás vagy a szabályok betartása. Idetartozik a kudarctűrés, türelem, kapcsolatteremtés, empátia, együttműködés, udvariasság, fegyelmezettség, rendszeretet és nem utolsósorban a sikerorientáltság, talpraesettség fejlesztése is. A logikai játékok jól használhatóak a konfliktushelyzet kezelésére a gyerekek között zajló folyamatokban, amelyekben érdekek, értékek, nézetek, szándékok kerülnek egymással szembe nyílt tevékenységekben is megnyilvánuló vagy rejtett tudati, érzelmi szint formában. Segítenek a közösségi normarendszer értékrendjének és ezzel összefüggésben a személyiség kibontakoztatásának, harmonikus fejlődésének optimális fejlesztésében, miközben magatartásuk, a környezetükhöz való viszonyuk harmonikussá válik. Mindennapjaikat átszövi a meggyőződéssé érlelődött ismeret, a pozitív szándék és akarat és a normáknak megfelelő szokások. Segítségükkel megvalósítható a gyerekek tetteinek céltudatos és tervszerű alakítása, illetve mindazoknak a társadalmi, pedagógiai feltételeknek a biztosítása, amelyek lehetővé teszik a személyiség sokoldalú kifejlesztését, képességüknek a lehetőségeik felső határáig történő kiművelését. A készségjellegű cselekvések kiépülése maga után vonja a szokások kialakulását. A gyerekek az ismétlődő játékhelyzetekben erős belső késztetést éreznek arra, hogy az elsajátított módon cselekedjenek, tehát a folyamat lényege a dinamikus sztereotípia. Ha a szokásos cselekvés végrehajtása akadályba ütközik, hiányérzet, nyugtalanság érzete támad, ám ha a gyerekek következetesen helyes viselkedési módokat tanúsítanak, az a helyes magatartáshoz vezet. Ugyanakkor a helyes viselkedés elsajátítása hatással van az alkalmi viselkedésre, befolyásolja, meghatározza azt. A táblajáték alkalmazásának egyik nagy hozadéka a csapatmunkára való alkalmasság kifejlesztése, amelyben elsősorban a kommunikációs és elemzőkészség kap helyet. A logikai és táblás játékok szoros kapcsolatban állnak a matematikán kívül más tantárgyakkal is. A történelem területén a gyerekeknek alkalmuk adódik arra, hogy megismerjék a logikai és táblajátékok keletkezését, felkutassák országok, népek uralkodók, híres emberek szerepét a játékok elterjesztésében, megismerkedjenek a játékok népszerűsítésében szerepet játszó történelmi személyiségekkel. Földrajzórán azzal foglalkoznak, hogyan jelentek meg és terjedtek el a játékok a Föld különböző részein. Irodalomórán szó esik irodalmi nagyjaink játékszenvedélyéről, ének-zene foglalkozásokon említést teszünk Rossiniről, rajzórán Pieter Van Huys, Baugin vagy a magyar Vámosi Tamás nevét hallják, és informatikaórán ezerféle táblajátékra lelnek rá a különböző weboldalakon. A táblajáték-foglalkozások nevelési célja, hogy a gyerekek biztonságos, derűs légkörben egyéni képességeiknek megfelelően fejlődjenek az életkoruknak legmegfelelőbb eszközzel, a játékkal. Emellett konkrét cél, hogy az alapoktatás befejezésével életkoruknak megfelelően önállóak, magabiztosak legyenek, gondolataikat érthetően tudják közölni, megfelelően

5 alkalmazkodjanak a közösség elvárásaihoz, érzelmeiket szocializált formában juttassák kifejezésre, és ami a legfontosabb, legyenek derűsek, bizakodóak és egymást elfogadók. 1 A barlangrajzoktól a display-kig, avagy a táblások ma is köztünk vannak. Játékmező bábuk cél lépésszabály nyitóállás. Röviden táblajáték. Az ember talán legjellemzőbb találmánya, magasabb intelligenciájának egyik kétségbevonhatatlan bizonyítéka. A művészi teljesítmény, az építés, a dalolás, a színjátszás, a munkamegosztás, az otthonteremtés, az örömszerző szeretés, a sport stb. (sőt, pl. a beszéd is), azt hisszük, mindegyik csak az emberre jellemző tevékenység, pedig találhatunk rájuk példákat az állatvilágban is. Ám az absztrakciót feltételező táblajátékra csak a gondolkodó ember képes. Ha létezik a világon emberen kívüli intelligencia, nagyon valószínű, hogy ő is ismer néhány (talán éppen a mi sakkunkhoz hasonlítható) elmejátékot (Nagy László: 2 Ha sakk az opera és a go a koncert, akkor az operetteknek megfelelők közé sorolható pl. az amőba..., ám, a könnyűzenei slágerekéhez hasonlítható népszerűségű logikai játékok nincsenek (Nagy László: A táblajátékok és táblajáték feladványok mellett színesíthetik a palettát a kártyajátékok, keresztrejtvények, sík- és térbeli kirakójátékok, dobókockás játékok és a logikai rejtvények is.

A táblajáték-foglalkozások nevelési célja, hogy biztonságos, derűs légkörben egyéni képességeiknek megfelelően fejlődjenek a gyermekek az

A táblajáték-foglalkozások nevelési célja, hogy biztonságos, derűs légkörben egyéni képességeiknek megfelelően fejlődjenek a gyermekek az Táblajátékok matematikaórán K. Nagy Emese A logikai- és táblajáték-foglalkozások fő célkitűzése a gyerekek értelmi képességének, fejlesztése, a szabadidő igényes, tartalmas eltöltése, a társas élet, a

Részletesebben

Sakk logika Jó gyakorlat

Sakk logika Jó gyakorlat Sakk logika Jó gyakorlat a telki Pipacsvirág Magyar Angol Két Tanítási Nyelvű Általános Iskolában A sakk-logika oktatása a Pipacsvirág Magyar Angol Két Tanítási Nyelvű Általános Iskolában 2001 Megnyílik

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Szakértelem a jövő záloga

Szakértelem a jövő záloga 1211 Budapest, Posztógyár út. LEKTORI VÉLEMÉNY Moduláris tananyagfejlesztés Modul száma, megnevezése: Szerző neve: Lektor neve: Imagine Logo programozás Babos Gábor Újváry Angelika, Szabó Imre Sorszám

Részletesebben

SZERETETTEL KÖSZÖNTÖM A PEDAGÓGIAI ASSZISZTENSEK I. ORSZÁGOS KONFERENCIÁJÁNAK RÉSZTVEVŐIT!

SZERETETTEL KÖSZÖNTÖM A PEDAGÓGIAI ASSZISZTENSEK I. ORSZÁGOS KONFERENCIÁJÁNAK RÉSZTVEVŐIT! Engedj játszani! SZERETETTEL KÖSZÖNTÖM A PEDAGÓGIAI ASSZISZTENSEK I. ORSZÁGOS KONFERENCIÁJÁNAK RÉSZTVEVŐIT! Ha csak lehet, játszik a gyermek. Mert végül a játék komolyodik munkává. Boldog ember, ki a munkájában

Részletesebben

TÁMOP 3.4.3 08/2 Iskolai tehetséggondozás MŰVÉSZETI TEHETSÉGKÖR

TÁMOP 3.4.3 08/2 Iskolai tehetséggondozás MŰVÉSZETI TEHETSÉGKÖR TÁMOP 3.4.3 08/2 MŰVÉSZETI TEHETSÉGKÖR TÁMOP 3.4.3 08/2 TÁMOP 3.4.3 08/2 Elsődleges cél volt a gyermek személyiségét több irányból fejleszteni a kiemelkedő képességeit tovább csiszolni, a testilelki komfortérzetét

Részletesebben

MATEMATIKA C 6. évfolyam 4. modul A KOCKA

MATEMATIKA C 6. évfolyam 4. modul A KOCKA MATEMATIKA C 6. évfolyam 4. modul A KOCKA Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 4. MODUL: A KOCKA TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály A képességfejlesztés fókuszai

Részletesebben

MATEMATIKA HELYI TANTERV Kéttannyelvű magyar-francia előkészítő év számára

MATEMATIKA HELYI TANTERV Kéttannyelvű magyar-francia előkészítő év számára MATEMATIKA HELYI TANTERV Kéttannyelvű magyar-francia előkészítő év számára Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

Tehetségről, a közoktatási törvényben /1993. évi LXXIX. törvény a közoktatásról /

Tehetségről, a közoktatási törvényben /1993. évi LXXIX. törvény a közoktatásról / Tehetségről, a közoktatási törvényben /1993. évi LXXIX. törvény a közoktatásról / A gyermek, a tanuló jogai és kötelességei II. fejezet 10 (3) A gyermeknek tanulónak joga, hogy a) képességeinek, érdeklődésének,

Részletesebben

TANULÁSMÓDSZERTAN 5. évfolyam 36 óra

TANULÁSMÓDSZERTAN 5. évfolyam 36 óra TANULÁSMÓDSZERTAN 5. évfolyam 36 óra A tanulási folyamat születésünktől kezdve egész életünket végigkíséri, melynek környezete és körülményei életünk során gyakran változnak. A tanuláson a mindennapi életben

Részletesebben

Matematika (alsó tagozat)

Matematika (alsó tagozat) Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára

Részletesebben

Kontrollcsoportok (viszonyítás): Gyermek standard (saját életkornak megfelelıen) Felnıtt standard

Kontrollcsoportok (viszonyítás): Gyermek standard (saját életkornak megfelelıen) Felnıtt standard Grafológiai elemzés összefoglaló A vizsgálat célja: achondropláziás ek és gyermekek mentális képességének vizsgálata, az esetleges tartalmi és/vagy fejlıdési sajátságok feltárása Vizsgálat körülményei:

Részletesebben

www.dinasztia.hu Egyedülálló, játékos készségfejlesztő rendszer Képességfejlesztő játék csoportos foglalkozásokra, de akár egyéni fejlesztésre is!

www.dinasztia.hu Egyedülálló, játékos készségfejlesztő rendszer Képességfejlesztő játék csoportos foglalkozásokra, de akár egyéni fejlesztésre is! Egyedülálló, játékos készségfejlesztő rendszer átfogó, komplex sorozat, mely az iskolaérettség szempontjából lényeges, összes képességet fejleszti: megfigyelés, összpontosítás, kitartás, problémamegoldó

Részletesebben

Az e-portfólió dokumentumai és a védés alapján

Az e-portfólió dokumentumai és a védés alapján 1. kompetencia: Szakmai feladatok, szaktudományos, szaktárgyi, tantervi tudás 1.1. Alapos, átfogó és korszerű szaktudományos és szaktárgyi tudással rendelkezik. 1.2. Rendelkezik a szaktárgy tanításához

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

MATEMATIKA. 9-10. évfolyam. Célok és feladatok

MATEMATIKA. 9-10. évfolyam. Célok és feladatok MATEMATIKA 9-10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerő, alkalmazásra képes matematikai mőveltségét, biztosítsa a többi tantárgy

Részletesebben

KREATÍV TEVÉKENYSÉGEKRE ÉPÍTETT

KREATÍV TEVÉKENYSÉGEKRE ÉPÍTETT KREATÍV TEVÉKENYSÉGEKRE ÉPÍTETT MATEMATIKATANÍTÁSI KÍSÉRLETEK MASCIL PROJEKT http://www.mascil-project.eu MASCIL Constructing with Non-Standard Bricks, Australian Mathematics Teacher, 68(2012):4, 23-29

Részletesebben

Megjegyzések a gyakorlati oktatási kézikönyvhöz

Megjegyzések a gyakorlati oktatási kézikönyvhöz Megjegyzések a gyakorlati oktatási kézikönyvhöz Oktatás - Gyakorlat - Innováció TÁMOP-4.1.1.F-13/1-2013-0009 Soós Gabriella - Dr. Kádek István Eger, 2015. január 22. Alapelvek A kézikönyv a gyakorlati

Részletesebben

MŰVELTSÉGTERÜLET OKTATÁSA TANTÁRGYI BONTÁS NÉLKÜL AZ ILLYÉS GYULA ÁLTALÁNOS ISKOLA 5. A OSZTÁLYÁBAN

MŰVELTSÉGTERÜLET OKTATÁSA TANTÁRGYI BONTÁS NÉLKÜL AZ ILLYÉS GYULA ÁLTALÁNOS ISKOLA 5. A OSZTÁLYÁBAN MŰVELTSÉGTERÜLET OKTATÁSA TANTÁRGYI BONTÁS NÉLKÜL AZ ILLYÉS GYULA ÁLTALÁNOS ISKOLA 5. A OSZTÁLYÁBAN Készítette: Adorjánné Tihanyi Rita Innováció fő célja: A magyar irodalom és nyelvtan tantárgyak oktatása

Részletesebben

TERÜLETMÉRÉS ALKALMI EGYSÉGGEL Mennyit ér a kézfogásod?

TERÜLETMÉRÉS ALKALMI EGYSÉGGEL Mennyit ér a kézfogásod? MATEMATIKA B 2. ÉVFOLYAM EMBER A TERMÉSZETBEN 10. modul TERÜLETMÉRÉS ALKALMI EGYSÉGGEL Mennyit ér a kézfogásod? Készítette: Schmittinger Judit MATEMATIKA B 2. ÉVFOLYAM EMBER A TERMÉSZETBEN 10. modul: TERÜLETMÉRÉS

Részletesebben

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 2. TANANYAGBEOSZTÁS, KÖVETELMÉNYEK KOMPETENCIÁK, FEJLESZTÉSI FELADATOK

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 2. TANANYAGBEOSZTÁS, KÖVETELMÉNYEK KOMPETENCIÁK, FEJLESZTÉSI FELADATOK Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 2. TANANYAGBEOSZTÁS, KÖVETELMÉNYEK KOMPETENCIÁK, FEJLESZTÉSI FELADATOK TANANYAGBEOSZTÁS, KÖVETELMÉNYEK A tanmenetet három lehetséges

Részletesebben

Modalitások-Tevékenységek- Tehetség-rehabilitáció

Modalitások-Tevékenységek- Tehetség-rehabilitáció Modalitások-Tevékenységek- Tehetség-rehabilitáció. BEMUTATÁS Képességeinek legnagyobb részét az ember sohasem realizálja, s ezek mindaddig ki sem bontakozhatnak, amíg jobban meg nem értjük természetüket.

Részletesebben

Helyi tanterv. Ciszterci Rend Nagy Lajos Gimnáziuma és Kollégiuma. Matematika Munkaközösség 2013.05.20 1

Helyi tanterv. Ciszterci Rend Nagy Lajos Gimnáziuma és Kollégiuma. Matematika Munkaközösség 2013.05.20 1 Helyi tanterv Matematika Munkaközösség 2013.05.20 1 Tartalomjegyzék Bevezető... 3 7 8. évfolyam... 5 9 12. évfolyam, speciális tagozat, emelt szintű felkészítés... 6 9 10. évfolyam... 9 11 12. évfolyam...

Részletesebben

M5004 FELADATOK. f) elegendő előny esetén meg tudja kezdeni a program előkészítését, és a feltételek megteremtését ISMERETEK

M5004 FELADATOK. f) elegendő előny esetén meg tudja kezdeni a program előkészítését, és a feltételek megteremtését ISMERETEK M5004 FELDTOK Felnőttoktatási és képzési tevékenysége során alkotó módon alkalmazza a felnőttek tanulásának lélektani 4 törvényszerűségeit a) a felnőtt tanuló motiválására formális tanulmányai 5 során

Részletesebben

A nyelvi kompetenciák fejlesztése az egyik alapvető feladata a tanodának.

A nyelvi kompetenciák fejlesztése az egyik alapvető feladata a tanodának. Magyar nyelv és irodalom A nyelvi kompetenciák fejlesztése az egyik alapvető feladata a tanodának. A magyar nyelv sokoldalú, - árnyalt és reflexív ismerete a társadalmi kommunikáció alapja. A nyelv kultúrát

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Egyéni Fejlesztési Terv (Egyéni Előrehaladási Terv)

Egyéni Fejlesztési Terv (Egyéni Előrehaladási Terv) Egyéni Fejlesztési Terv (Egyéni Előrehaladási Terv) Mentor neve: Mentor azonosítója: Tanuló neve: Tanuló azonosítója: Az Egyéni Fejlesztési Terv egy folyamatosan változó, a tanuló fejlődését regisztráló,

Részletesebben

OKTATÁSI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA KÖZÉPSZINTŰ VIZSGA

OKTATÁSI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA KÖZÉPSZINTŰ VIZSGA A vizsga részei OKTATÁSI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA Középszint Emelt szint Írásbeli vizsga Szóbeli vizsga Írásbeli vizsga Szóbeli vizsga 180 perc 15 perc 180 perc 20 perc 100 pont

Részletesebben

Ezért a követekező módszereket alkalmazzuk a tanodai nevelés területén.

Ezért a követekező módszereket alkalmazzuk a tanodai nevelés területén. A Tanoda pedagógiai módszertana: az egyéni személyiségfejlesztés, a tanulásban jelentkező differenciálási lehetőségek, a projektmódszer, és a kooperatív tanulás technikája. A gyermekeink közötti különbségek

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

Hozd ki belőle a legtöbbet fiatalok egyéni támogatása coaching technikával

Hozd ki belőle a legtöbbet fiatalok egyéni támogatása coaching technikával Hozd ki belőle a legtöbbet fiatalok egyéni támogatása coaching technikával Szuhai Nóra ügyvezető, coach, tréner mentor Legjobb vagyok Kiemelten Közhasznú Nonprofit Kft. MUTASS UTAT! Európai hálózatok a

Részletesebben

Polgár Judit. Heti bontású tanmenetjavaslat a Sakkpalota sorozat 1. osztályos elemeihez

Polgár Judit. Heti bontású tanmenetjavaslat a Sakkpalota sorozat 1. osztályos elemeihez Polgár Judit Heti bontású tanmenetjavaslat a Sakkpalota sorozat 1. osztályos elemeihez 80471 Sakkpalota 1. Képességfejlesztő sakktankönyv 80471/M Sakkpalota 1. Munkafüzet Polgár Judit, Nemzedékek Tudása

Részletesebben

SZOCIALIZÁCIÓ - IDENTITÁS

SZOCIALIZÁCIÓ - IDENTITÁS SZOCIALIZÁCIÓ - IDENTITÁS Szocializáció A gyermekből a társas interakciók révén identitással rendelkező személy, egy társadalom tagja lesz Ebben fontos a család, a kortárscsoportok, az iskola, a munkahelyi,

Részletesebben

AZ AGRESSZÍV ÉS A SEGÍTŐ VISELKEDÉS ALAKULÁSA ÓVODÁS KORBAN. Zsolnai Anikó SZTE BTK Neveléstudományi Intézet zsolnai@edpsy.u-szeged.

AZ AGRESSZÍV ÉS A SEGÍTŐ VISELKEDÉS ALAKULÁSA ÓVODÁS KORBAN. Zsolnai Anikó SZTE BTK Neveléstudományi Intézet zsolnai@edpsy.u-szeged. AZ AGRESSZÍV ÉS A SEGÍTŐ VISELKEDÉS ALAKULÁSA ÓVODÁS KORBAN Zsolnai Anikó SZTE BTK Neveléstudományi Intézet zsolnai@edpsy.u-szeged.hu Szociális kompetencia társas viselkedés Nagy József (2000): A szociális

Részletesebben

Állati Móka Egyhetes projekt

Állati Móka Egyhetes projekt Állati Móka Egyhetes projekt Megvalósítás helye: Sugovica Általános Iskola Projekt felelős: Pásztor Judit Ideje: 2014. október 14 október 18. Bevont tanulók köre: 4. osztály, alkalomszerűen az alsós napközis

Részletesebben

A tanuló személyiségének fejlesztése, az egyéni bánásmód érvényesítése

A tanuló személyiségének fejlesztése, az egyéni bánásmód érvényesítése Kaposi József A szempontok felsorolása a 8/2013. (I. 30.) EMMI rendelet( a tanári felkészítés közös követelményeiről és az egyes tanárszakok képzési és kimeneti követelményeiről) 2. számú mellékletéből

Részletesebben

7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015

7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015 7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015 Évi óraszá: 108 óra Heti óraszá: 3 óra 1. téa: Racionális száok, hatványozás 11 óra 2. téa: Algebrai kifejezések 12 óra 1. téazáró dolgozat 3. téa: Egyenletek,

Részletesebben

Tisztelt Intézményvezető!

Tisztelt Intézményvezető! Tisztelt Intézményvezető! A TÁMOP- 3.1.4.C-14 Innovatív iskolák fejlesztése 2. ütem c. pályázati felhívás keretében lehetőség van innovatív oktatási programok megvalósításra, a programok megvalósításához

Részletesebben

A 2013-as kompetenciamérés eredményeinek elemzése FI T-jelentés alapján

A 2013-as kompetenciamérés eredményeinek elemzése FI T-jelentés alapján A 2013-as kompetenciamérés eredményeinek elemzése FI T-jelentés alapján A sikeres életvitelhez, a társadalmi folyamatokba való beilleszkedéshez is folyamatosan megújuló tudásra van szükség. Tudásunk egy

Részletesebben

Helyi tanterv a Tanulásmódszertan oktatásához

Helyi tanterv a Tanulásmódszertan oktatásához Helyi tanterv a Tanulásmódszertan oktatásához A Tanulásmódszertan az iskolai tantárgyak között sajátos helyet foglal el, hiszen nem hagyományos értelemben vett iskolai tantárgy. Inkább a képességeket felmérő

Részletesebben

Érzelmeink fogságában Dr. József István okl. szakpszichológus egyetemi docens Érzelmi intelligencia Emotional Intelligence Az érzelmi intelligencia az érzelmekkel való bánás képessége, az a képesség, amivel

Részletesebben

A kreativitás fejlesztése a természettudományi foglalkozásokon

A kreativitás fejlesztése a természettudományi foglalkozásokon A kreativitás fejlesztése a természettudományi foglalkozásokon Fekete Csilla Nyíregyházi Főiskola Apáczai Csere János Gyakorló Általános Iskolája és AMI OMiért éppen a kreativitás? OHol és hogyan fejleszthető?

Részletesebben

Ökomatek tehetséggondozás

Ökomatek tehetséggondozás Ökomatek tehetséggondozás Időpontja: szerda 6. óra Tehetséggondozó tanár: Németh Zoltánné A tehetséggondozó foglalkozásokba 8-14 év közötti gyerekeket vonok be. Érdekes és változatos programokkal szeretném

Részletesebben

A stressz és az érzelmi intelligencia Készítette: Géróné Törzsök Enikő

A stressz és az érzelmi intelligencia Készítette: Géróné Törzsök Enikő A stressz és az érzelmi intelligencia Készítette: Géróné Törzsök Enikő A lelki egészség a WHO szerint Mentális egészség: A jóllét állapota, amelyben az egyén meg tudja valósítani képességeit, meg tud birkózni

Részletesebben

A dinamó felfedezésének nyomában Óravázlat Készült: Filep Otília óravázlatának alapján

A dinamó felfedezésének nyomában Óravázlat Készült: Filep Otília óravázlatának alapján A dinamó felfedezésének nyomában Óravázlat Készült: Filep Otília óravázlatának alapján A) Adatok Iskolatípus: általános iskola / felső tagozat Korosztály: 14 év Tantárgy: fizika Téma: Elektromágneses Indukció,

Részletesebben

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

COMINN Innovációs Kompetencia a fémipari szektorban TANULÁSI KIMENET DEFINÍCIÓ

COMINN Innovációs Kompetencia a fémipari szektorban TANULÁSI KIMENET DEFINÍCIÓ COMINN Innovációs Kompetencia a fémipari szektorban Ország: Vállalat: SPANYOLORSZÁG FONDO FORMACIÓN EUSKADI Képesítés: Az innováció fejlesztői és elősegítői a fémipari KKV-k munkacsoportjaiban EQF szint:

Részletesebben

Az osztályozó vizsgák tematikája matematikából

Az osztályozó vizsgák tematikája matematikából Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama

Részletesebben

É R T É K E L É S. a program szóbeli interjúján résztvevő személyről. K é p e s s é g e k, f e j l e s z t h e tőségek, készségek

É R T É K E L É S. a program szóbeli interjúján résztvevő személyről. K é p e s s é g e k, f e j l e s z t h e tőségek, készségek É R T É K E L É S a program szóbeli interjúján résztvevő személyről K é p e s s é g e k, f e j l e s z t h e tőségek, készségek Értékelés: A terület pontozása 1-5 tartó skálán, ahol az egyes pontszám a

Részletesebben

Egyéni és csoportos foglalkozások a gyerek és iskolai könyvtárban

Egyéni és csoportos foglalkozások a gyerek és iskolai könyvtárban Egyéni és csoportos foglalkozások a gyerek és iskolai könyvtárban Egyéni foglalkozások egyszerre csak egy gyerek mindig egyénre szabott egyéni értelmi és érzelmi szint dominál a személyesség, a meghittség

Részletesebben

MATEMATIKA HELYI TANTERV 9/AJTP évfolyam

MATEMATIKA HELYI TANTERV 9/AJTP évfolyam MATEMATIKA HELYI TANTERV 9/AJTP évfolyam Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi

Részletesebben

TI és ÉN = MI Társas Ismeretek és Érzelmi Nevelés Mindannyiunkért Érték- és értelemközpontú kísérleti program kisiskolásoknak 1 PATAKY KRISZTINA iskolapszichológus, logoterápiai tanácsadó és személyiségfejlesztő,

Részletesebben

Akkor a legkomolyabbak, amikor játszanak. Olyankor tanulják, hogy mi is az élet.

Akkor a legkomolyabbak, amikor játszanak. Olyankor tanulják, hogy mi is az élet. Csapatépítés * Kalandpedagógia Tevékenység-központú pedagógia Animátorképzés * Kisgyerekkori fejlesztés * Multikulturális pedagógia * Agressziómegelőzés * Vezetői tréning * Akkor a legkomolyabbak, amikor

Részletesebben

Óra-megfigyelési szempontok

Óra-megfigyelési szempontok Óra-megfigyelési szempontok Pedagógus kompetenciaterületekre épülő megfigyelési szempont gyűjtemény óralátogatáshoz Pedagógus kompetenciaterületek Megfigyelési szempontok (tanár munkakör) A pedagógus alapos,

Részletesebben

A kompetencia terület neve: Esztétikai-művészeti tudatosság kulcskompetencia; szociális, életviteli kompetencia. A modul címe:

A kompetencia terület neve: Esztétikai-művészeti tudatosság kulcskompetencia; szociális, életviteli kompetencia. A modul címe: Pomáz Város Önkormányzata TÁMOP 3.1.4/08-1-2008-0024 A kompetencia terület neve: Esztétikai-művészeti tudatosság kulcskompetencia; szociális, életviteli kompetencia A modul címe: A reneszánsztánc, mint

Részletesebben

1 tanóra hetente, összesen 33 óra

1 tanóra hetente, összesen 33 óra Művelődési terület Tantárgy Óraszám Évfolyam Ember és társadalom Regionális nevelés 1 tanóra hetente, összesen 33 óra nyolcadik Iskolai végzettség ISCED 2 Tanítási nyelv Ez a tanmenet a Szlovák Köztársaság

Részletesebben

MATEMATIKA 5-6. Motiváció és közelítés a mindennapokhoz az OFI kísérleti tankönyveiben

MATEMATIKA 5-6. Motiváció és közelítés a mindennapokhoz az OFI kísérleti tankönyveiben A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 MATEMATIKA 5-6. Motiváció és közelítés a mindennapokhoz az OFI kísérleti

Részletesebben

RENDÉSZETI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA

RENDÉSZETI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA A vizsga részei RENDÉSZETI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA Középszint Emelt szint Írásbeli vizsga Szóbeli vizsga Írásbeli vizsga Szóbeli vizsga 180 perc 15 perc 240 perc 20 perc 100

Részletesebben

- a szakmai tantárgyak alapozó ismereteinek megszerzését; - az általános műszaki műveltség folyamatos fejlesztését;

- a szakmai tantárgyak alapozó ismereteinek megszerzését; - az általános műszaki műveltség folyamatos fejlesztését; MŰSZAKI ÁBRÁZOLÁS A műszaki ábrázolás tantárgy tanításának általános célja a gimnáziumi képzésben, mint szabadon választott tantárgyként a szakképzést választók azt az általános vizuális kultúrát és térszemléletet,

Részletesebben

Oktatási környezetek vizsgálata a programozás tanításához

Oktatási környezetek vizsgálata a programozás tanításához Oktatási környezetek vizsgálata a programozás tanításához Horváth Győző, Menyhárt László Gábor Zamárdi, 2014.11.21. Készült az "Országos koordinációval a pedagógusképzés megújításáért című TÁMOP- Tartalom

Részletesebben

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30

Részletesebben

Együttműködés szociális kompetenciák fejlesztéséhez kapcsolható rendezvényekkel, a felső tagozatos diákok kompetencia alapú oktatása érdekében

Együttműködés szociális kompetenciák fejlesztéséhez kapcsolható rendezvényekkel, a felső tagozatos diákok kompetencia alapú oktatása érdekében Együttműködés szociális kompetenciák fejlesztéséhez kapcsolható rendezvényekkel, a felső tagozatos diákok kompetencia alapú oktatása érdekében Készítette: Jenei Marianna Széky Tamás Lászlóné 1 Célok és

Részletesebben

Legújabb képzésünk! Fegyvertelen Játszótárs

Legújabb képzésünk! Fegyvertelen Játszótárs Csapatépítés * Kalandpedagógia Tevékenység-központú pedagógia Animátorképzés * Kisgyerekkori fejlesztés * Multikulturális pedagógia * Agressziómegelőzés * Vezetői tréning * Legújabb képzésünk! Fegyvertelen

Részletesebben

DR. TÓTH PÉTER BÉKY GYULÁNÉ. A tanulás eredményességét befolyásoló tényezők vizsgálata budapesti középiskolás tanulók körében

DR. TÓTH PÉTER BÉKY GYULÁNÉ. A tanulás eredményességét befolyásoló tényezők vizsgálata budapesti középiskolás tanulók körében DR. TÓTH PÉTER BÉKY GYULÁNÉ A tanulás eredményességét befolyásoló tényezők vizsgálata budapesti középiskolás tanulók körében A tanulói különbségek mérhető komponensei Meglévő tudás Képességek (pl. intellektuális

Részletesebben

KÖZHASZNÚSÁGI BESZÁMOLÓ 2012

KÖZHASZNÚSÁGI BESZÁMOLÓ 2012 KÖZHASZNÚSÁGI BESZÁMOLÓ 2012 GENIUS TEHETSÉGGONDOZÓ ALAPÍTVÁNY Budapest, 2013. április 30. TARTALOM 1. Egyszerűsített éves beszámoló 2. Kiegészítő melléklet 3. Közhasznúsági melléklet KÖZHASZNÚSÁGI MELLÉKLET

Részletesebben

A BIOLÓGIAÉRETTSÉGI VIZSGA MÓDOSÍTÁSAI

A BIOLÓGIAÉRETTSÉGI VIZSGA MÓDOSÍTÁSAI XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 A BIOLÓGIAÉRETTSÉGI VIZSGA MÓDOSÍTÁSAI Biológiaérettségi vizsga 2015 A biológia érettségi vizsga a nemzeti alaptantervben

Részletesebben

Modul bevezetése. Matematika 5. osztály 2009-2010. A negatív számok 0541. modul

Modul bevezetése. Matematika 5. osztály 2009-2010. A negatív számok 0541. modul Modul bevezetése Matematika 5. osztály 2009-2010 A negatív számok 0541. modul MODULLEÍRÁS A modul célja Időkeret Korosztály Modulkapcsolódási pontok A képességfejlesztés fókuszai Számfogalom bővítése.

Részletesebben

Kompetenciák fejlesztése a pedagógusképzésben. IKT kompetenciák. Farkas András f_andras@bdf.hu

Kompetenciák fejlesztése a pedagógusképzésben. IKT kompetenciák. Farkas András f_andras@bdf.hu Kompetenciák fejlesztése a pedagógusképzésben IKT kompetenciák Farkas András f_andras@bdf.hu A tanítás holisztikus folyamat, összekapcsolja a nézeteket, a tantárgyakat egymással és a tanulók személyes

Részletesebben

Az oktatás stratégiái

Az oktatás stratégiái Az oktatás stratégiái Pedagógia I. Neveléselméleti és didaktikai alapok NBÁA-003 Falus Iván (2003): Az oktatás stratégiái és módszerei. In: Falus Iván (szerk.): Didaktika. Elméleti alapok a tanítás tanulásához.

Részletesebben

Módszerek, szervezési módok: Magyarázat, szemléltetés, beszélgetés, játéktevékenység, rajz Frontális, differenciált, páros

Módszerek, szervezési módok: Magyarázat, szemléltetés, beszélgetés, játéktevékenység, rajz Frontális, differenciált, páros Az óra címe: Sokszögek építése poliminókból, a sokszögek területe Ajánlott évfolyamok: 3., 4., 5. ( Nagylaci elsősöknek is ajánlható kiemelései kékkel) Ajánlott időtartam: két tanítási óra lehetőleg egymás

Részletesebben

OKTATÁSI ALAPISMERETEK

OKTATÁSI ALAPISMERETEK Oktatási középszint alapismeretek középszint 1311 ÉRETTSÉGI VIZSGA 2013. október 14. OKTATÁSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

Záróvizsga tételek Anyanyelvi tantárgypedagógiából 2013.

Záróvizsga tételek Anyanyelvi tantárgypedagógiából 2013. Anyanyelvi tantárgypedagógiából 1. Az anyanyelvi nevelés feladata- és tevékenységrendszere, mint a személyiségfejlesztés egyik eszköze. A kulcskompetenciák fejlesztése. A Nemzeti alaptanterv kiemelt fejlesztési

Részletesebben

ÉLETMŰHELY. Mi a program célja?

ÉLETMŰHELY. Mi a program célja? ÉLETMŰHELY Mi a program célja? A kreatív gondolkodás és a kreatív cselekvés fejlesztése, a személyes hatékonyság növelése a fiatalok és fiatal felnőttek körében, hogy megtalálják helyüket a világban, életük

Részletesebben

A Tatabányai Árpád Gimnázium beiskolázási tájékoztatója a 2014/15-ös tanévre

A Tatabányai Árpád Gimnázium beiskolázási tájékoztatója a 2014/15-ös tanévre A Tatabányai Árpád Gimnázium beiskolázási tájékoztatója a 2014/15-ös tanévre OM azonosító: 031936 Székhely/telephely kódja: 001 Igazgató: Kovács Miklós Pályaválasztási felelős: Polyóka Tamás igazgatóhelyettes

Részletesebben

1. PEDAGÓGIAI MÓDSZERTANI FELKÉSZÜLTSÉG

1. PEDAGÓGIAI MÓDSZERTANI FELKÉSZÜLTSÉG 1. PEDAGÓGIAI MÓDSZERTANI FELKÉSZÜLTSÉG Inézményi elvárások: Alapos, átfogó és korszerű szaktudományos és szaktárgyi tudással rendelkezik. A szaktárgynak és a tanítási helyzetnek megfelelő, változatos

Részletesebben

Óra Téma Didaktikai feladatok Fejlesztési területek Munkaformák, szemléltetés, eszközök

Óra Téma Didaktikai feladatok Fejlesztési területek Munkaformák, szemléltetés, eszközök TANMENET 2014/2015. TANÉV Tantárgy: OSZTÁLYFŐNÖKI Osztály: 9KNy/A Veszprém Készítette: nna Vetési Albert Gimnázium, Heti óraszám 1 Éves óraszám 40 (36 X 1 + 4 óra évkezdés) Tankönyv -------- Óra Téma Didaktikai

Részletesebben

OM azonosító: 201573 GIMNÁZIUMI OSZTÁLYOK. angol, német, Emelt óraszámban angol nyelv oktatása. 20

OM azonosító: 201573 GIMNÁZIUMI OSZTÁLYOK. angol, német, Emelt óraszámban angol nyelv oktatása. 20 Az iskola neve: Bercsényi Miklós Katolikus Gimnázium és Kollégium, Általános Iskola, Óvoda Címe: 5200 Törökszentmiklós, Almásy út 1. Telefon/fax: 06-56/390-002 E-mail: tmbercsenyi@gmail.com Igazgató: Kocsis

Részletesebben

Miskolci Magister Gimnázium

Miskolci Magister Gimnázium Miskolci Magister Gimnázium matematika 12. évfolyam 2013/2014 110/2012./VI.4./Kormányrendelet, és az 51/2012/XII.21./ EMMI kerettanterv alapján Készítette: Literáti Márta Helyi tanterv Jelen helyi tanterv

Részletesebben

Változatok: órakeret A Ábrahám története 2 óra. 1 óra. Archaikus népi imák Erdélyi Zsuzsanna gyűjtéséből

Változatok: órakeret A Ábrahám története 2 óra. 1 óra. Archaikus népi imák Erdélyi Zsuzsanna gyűjtéséből Projektterv a bibliai ismeretek és az iskolai ethos összekapcsolási lehetőségeiről a tanítási gyakorlatban Gelniczkyné Teiszler Mária Bibliai ismeretek Cél: a bizalomjáték által érzelmileg átéljék a vezető

Részletesebben

Az oktatási módszerek csoportosítása

Az oktatási módszerek csoportosítása 1 Az oktatási módszerek csoportosítása 1. A didaktikai feladatok szerint: Új ismeretek tanításának/tanulásának módszere A képességek tanításának/tanulásának módszere Az alkalmazás tanításának/tanulásának

Részletesebben

TÁMOP 5.3.1 Munkába lépés Zárókonferencia Tréningek, klubfoglalkozások a projektben

TÁMOP 5.3.1 Munkába lépés Zárókonferencia Tréningek, klubfoglalkozások a projektben TÁMOP 5.3.1 Munkába lépés Zárókonferencia Tréningek, klubfoglalkozások a projektben 2011. január 27. Kommunikációs és csoportépítő tréning 3x6 óra Célok: - a csoporttagok beilleszkedésének csoportba és

Részletesebben

A tehetség elméleti alapjai

A tehetség elméleti alapjai EMELJÜK A SZINTET A tehetség elméleti alapjai Révész László Tehetség meghatározások Általános tehetségmodellek A tehetség összetevői A kreativitás szerepe Eltérő vélemények a (sport)tehetségről. Sportáganként

Részletesebben

TÁMOP-5.6.1.A-11/4-2011-0002

TÁMOP-5.6.1.A-11/4-2011-0002 Vissza a jövőbe TÁMOP-5.6.1.A-11/4-2011-0002 Speciális integrációs és reintegrációs foglalkozások fogvatartottak, pártfogó felügyelet alatt állók, javítóintézeti neveltek számára 2012. május 31. Az Országos

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

Fejlesztőpedagógia alapjai A DIFFERENCIÁLÁS NEVELÉSELMÉLETI KÉRDÉSEI AZ ÓVODÁBAN

Fejlesztőpedagógia alapjai A DIFFERENCIÁLÁS NEVELÉSELMÉLETI KÉRDÉSEI AZ ÓVODÁBAN Fejlesztőpedagógia alapjai A DIFFERENCIÁLÁS NEVELÉSELMÉLETI KÉRDÉSEI AZ ÓVODÁBAN Az előadás vázlata A közoktatás egyik legnehezebb, megoldásra váró problémája A differenciálás Az egyének differenciált

Részletesebben

Melléklet a Matematika című részhez

Melléklet a Matematika című részhez Melléklet a Matematika című részhez Az arányosság bemutatása Az első könyvsorozatban 7. osztály, Tk-2 és Tk-3-ban 6. osztály, Tk-3b-ben 5. osztály(!), Tk-4-ben ismét 6. osztály, és végül Tk-4b-ben 5-6.

Részletesebben

Barkaág Tavaszváró Három hetet meghaladó projekt

Barkaág Tavaszváró Három hetet meghaladó projekt Barkaág Tavaszváró Három hetet meghaladó projekt Megvalósítás helye: Sugovica Általános Iskola Kiscsávoly Projekt felelős: Ideje: 2014. március 26. április 16. Foglalkozások száma: 33 Bevont tanulók köre:

Részletesebben

2008.01.19. Fővárosi Diákönkormányzati. A Diákakadémia célja. A tanulási folyamat

2008.01.19. Fővárosi Diákönkormányzati. A Diákakadémia célja. A tanulási folyamat Fővárosi Diákönkormányzati Akadémia Hotel Római, 2008. január 18. A Diákakadémia célja hogy a hallgatók megszerezzék mindazokat az ismereteket, készségeket és attitűdöt, amelyek szükségesek ahhoz, hogy

Részletesebben

A sportpedagógia alapjai

A sportpedagógia alapjai Triatlon-edzők szakmai továbbképzése Balatonboglár, 2015. április 16-19. A sportpedagógia alapjai Dr. Poór Zoltán a neveléstudomány kandidátusa A sportpedagógia fogalma Tágabb értelemben: A sportpedagógia

Részletesebben

Játékok oktatása. Módszertan

Játékok oktatása. Módszertan Játékok oktatása Módszertan Képzési filozófia A képzési filozófia alapja az, hogy a labdarúgás 2, 3, esetleg 4 játékos együttműködéséből áll a pálya különböző részein. A csapat sikerét a játékosok egyéni

Részletesebben

Nevelési-oktatási stratégia Módszerek Tanulói munkaformák Eszközök Problémafelvetés. különböző Mi a dokumentum/információhordozó?

Nevelési-oktatási stratégia Módszerek Tanulói munkaformák Eszközök Problémafelvetés. különböző Mi a dokumentum/információhordozó? ÓRATERV A pedagógus neve Iványiné Nagy Kinga Műveltségi terület Informatika Tantárgy Könyvtárhasználat Osztály 6. évfolyam Az óra témája A dokumentumok típusai: Információhordozók a könyvtárban Az óra

Részletesebben

SZOCIALIZÁCIÓ - IDENTITÁS

SZOCIALIZÁCIÓ - IDENTITÁS SZOCIALIZÁCIÓ - IDENTITÁS Szocializáció Az újszülött gyermekből a társas interakciók révén identitással rendelkező személy, egy adott társadalom tagja lesz Ebben fontos a család, a kortárscsoportok, az

Részletesebben

SYLLABUS. A tantárgy típusa DF DD DS DC X II. Tantárgy felépítése (heti óraszám) Szemeszter. Beveztés a pszichológiába

SYLLABUS. A tantárgy típusa DF DD DS DC X II. Tantárgy felépítése (heti óraszám) Szemeszter. Beveztés a pszichológiába SYLLABUS I. Intézmény neve Partiumi Keresztény Egyetem, Nagyvárad Kar Bölcsészettudományi Kar - Tanárképző Intézet Szak Az óvodai és elemi oktatás pedagógiája Tantárgy megnevezése Beveztés a pszichológiába

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

Fekete István Iskola felkészül a referencia intézményi feladatokra. Továbbképzési emlékeztető:

Fekete István Iskola felkészül a referencia intézményi feladatokra. Továbbképzési emlékeztető: TÁMOP-3.1.7-11/2-2011-0524 Fekete István Iskola felkészül a referencia intézményi feladatokra Projekt kezdete: 2012 aug. 1 Projekt vége 2012. május 31. Továbbképzési emlékeztető: 1. Változásmenedzselés

Részletesebben

OSZTÁLYFŐNÖKI TANMENET

OSZTÁLYFŐNÖKI TANMENET Miskolci Magister Gimnázium OSZTÁLYFŐNÖKI TANMENET 2013/2014-es tanév 11. osztály Készítette : Berecz Mária OSZTÁLYFŐNÖKI MUNKATERV Az osztályfőnöki órák tematikája illeszkedik iskolánk nevelési koncepciójába

Részletesebben

EGÉSZSÉGNEVELÉSI PROGRAM

EGÉSZSÉGNEVELÉSI PROGRAM EGÉSZSÉGNEVELÉSI PROGRAM Szeresd az egészséged, mert ez a jelen. Védd a kisgyermeket, mert ő a jövő. őrizd a szüleid egészségét! merta múlton épül föl a jelen és a jövő. Bárczy Gusztáv 2 Tartalom 1. Egészséges

Részletesebben