2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 1/22. feladatok megoldásában. Csendes Tibor

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 1/22. feladatok megoldásában. Csendes Tibor"

Átírás

1 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 1/22 Megbízható optimalizálás matematikai feladatok megoldásában Csendes Tibor

2 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 2/22 Pakolási feladatok középkori japán fatáblán Egy japán sangaku az Edo korszakból ( ) körpakolási feladatokkal. Ilyen sangakukat találhatunk buddhista templomokban és sintóista szentélyekben, valószínűleg meditációs célra valók.

3 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 3/22 Sangaku egy japán sziklán

4 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 4/22 Bolyai Farkas javaslatai optimális fatelepítésre.

5 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 5/22 A körpakolási feladat két ekvivalens megfogalmazása Helyezzünk el adott n darab egybevágó kört átlapolás nélkül, maximális sugárral az egységnégyzetben. Helyezzünk el adott n számú pontot az egységnégyzetben úgy, hogy a köztük lévő minimális távolság maximális legyen. max min (x i x j ) 2 + (y i y j ) 2, 1 i =j n ahol 0 x i, y i 1, i = 1, 2,...,n.

6 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 6/22 Naiv intervallum aritmetika [a, b] + [c, d] = [a + c, b + d] [a, b] [c, d] = [a d, b c] [a, b] [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)] [a, b]/[c, d] = [a, b] [1/d, 1/c] ha 0 / [c, d] Példa: az f(x) = x 2 x függvény befoglaló függvénye a [0, 1] intervallumon az [ 1, 1] intervallumot adja, míg az értékkészlet itt [ 0.25, 0.0].

7 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 7/22 Körpakolási feladatok megoldása kör esetén n = 28 n = 29 n = 30 A satírozott körök kis mértékben mozgathatók az optimalitás megtartása mellett (a globális minimumpontok halmaza pozitív mértékű). Két kör érintkezését az összekötő vonalak jelzik.

8 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 8/22 Körpakolási feladatok megoldása részletei Hardver: PC, Pentium IV 1800 MHz, 1 GB RAM. Szoftver: Linux, GNU C/C++, C XSC Toolbox, PROFIL/BIAS. A sugár értékére kapott korlátok: F 28 = [ , ], w , F 29 = [ , ], w , F 30 = [ , ], w A teljes futási idők: 53, 50, illetve 21 óra. A feladatok megoldásához kb. egy millió részintervallum kellett. A verifikált eljárás az optimális pakolás helyében való bizonytalanságot több mint 711, 764, illetve 872 nagyságrenddel csökkentette.

9 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 9/22 Egy vegyipari hálózattervezési feladat F 1 x 1 x 3 A S 1 A S 3 P 1 x 4 P 2 S 4 S 2 F 2 x 2 C P C 3 A feladat a fenti szeparátor-hálózatra annak eldöntése, hogy az x i [0.0, 1.0], (i = 1, 2, 3, 4) megosztók minimális költséget adó értéke mellett van-e anyagáram ciklus.

10 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 10/22 A vegyipari hálózattervezési feladat eredményei A valós függvény-kiértékelésre támaszkodó sztochasztikus, klaszterező algoritmus által adott eredmény: f(x ) x 1 x 2 x 3 x 4 NFE CPU átlag

11 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 11/22 A vegyipari hálózattervezési feladat eredményei 2. Az intervallumos optimalizálási eljárás függvényhívás és 3 perc számítógépidő árán talált megoldást memóriaegységre (egy ilyen egység egy részintervallumot tárolt) támaszkodva: F(X ) = [62.49, 62.69], X = [ , ],[ , ], [ , ],[ , ]

12 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 12/22 A kellemetlen gyár telepítési feladat eredménye

13 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 13/22 Káosz ellenőrzés Hénon differencia-egyenlet rendszerekben Tekintsük a H(x, y) = (1 + y ax 2, bx) Hénon transzformációt az a = 1.4 és b = 0.3 értékekkel. A feladat olyan jellegű relációk ellenőrzése a teljes Q 0 Q 1 kiindulási halmazra, mint: H 7 (Q 0 Q 1 ) R 2 \ E, H 7 (a d) O 2, H 7 (b c) O 1, ahol E, O 1 és O 2 adott halmazok, és a, b, c, d a Q 0 és Q 1 paralelogrammák megfelelő oldalai.

14 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 14/22 A kezdő intervallum és a 3 feltétel ellenőrzése a Q 0 Q 1 b c d

15 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 15/22 Az Hénon leképezés 7. iteráltja kaotikussága H 7 (b) E 2 O 1 y 0.1 H 7 (c) E 1 H 7 (d) 1.0 x H 7 (a) O 2

16 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 16/22 A fékezett, kényszererős inga is kaotikus x mg sinx m mg

17 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 17/22 Az igazolt áthaladás x P(Q 0 ) 1 x 2π Q 1 Q 0 Q 1

18 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 18/22 E.M. Wright 50 éves sejtése egy késleltetett differenciálegyenletről z (t) = αz(t 1) (1 + z(t)), megoldása α [1.5, π/2] esetén is nullához tart.

19 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 19/22 A megoldás befoglalása a y y síkon. y y

20 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 20/22 M M log ( m α + 1) M α (e m 1) Computer Aided part Theoretical part m y (upper) (inc,1) y (upper) (dec,n) y (lower) (inc,1) y (upper) (dec,1) y (lower) (dec,1) y (lower) (inc,n)

21 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 21/22 Kapcsolódó közlemények T. Csendes: Optimization methods for process network synthesis a case study, In: Christer Carlsson and Inger Eriksson (eds.): Global & multiple criteria optimization and information systems quality. Abo Academy, Turku, 1998, M.C. Markót and T. Csendes: A new verified optimization technique for the packing circles in a unit square problems. SIAM J. on Optimization 16(2005) M.Cs. Markót and T. Csendes: A reliable area reduction technique for solving circle packing problems. Computing 77 (2006) T. Csendes, B.M. Garay, and B. Bánhelyi: A verified optimization technique to locate chaotic regions of Hénon systems. J. of Global Optimization 35(2006) B. Bánhelyi, T. Csendes, and B.M. Garay: Optimization and the Miranda approach in detecting horseshoe-type chaos by computer. Int. J. Bifurcation and Chaos 17(2007) T. Csendes, B. Bánhelyi, and L. Hatvani: Towards a computer-assisted proof for chaos in a forced damped pendulum equation. J. Computational and Applied Mathematics 199(2007) P.G. Szabó, M.Cs. Markót, T. Csendes, E. Specht, L.G. Casado, and I. García: New Approaches to Circle Packing in a Square With Program Codes. Springer, Berlin, 2007

22 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 22/22 Társszerzők Bánhelyi Balázs, Csallner András Erik, Garay Barna, Hatvani László, Krisztin Tibor, Markót Mihály Csaba, Arnold Neumaier Röst Gergely és Szabó Péter Gábor

Egy intervallum alapú globális optimalizálási módszer és alkalmazása szenzor lokalizálási feladatra

Egy intervallum alapú globális optimalizálási módszer és alkalmazása szenzor lokalizálási feladatra Egy intervallum alapú globális optimalizálási módszer és alkalmazása szenzor lokalizálási feladatra Pál László és Csendes Tibor Kivonat A cikkben egy intervallum alapú optimalizálási módszer egy új implementációját

Részletesebben

Optimalizálás. Módszertani fejlesztések az optimalizálásban. Csendes Tibor

Optimalizálás. Módszertani fejlesztések az optimalizálásban. Csendes Tibor Optimalizálás A Számítógépes Optimalizálás Tanszék ilyen néven 2008 óta szerepel, korábban az Alkalmazott Informatika Tanszék nevet viselte. Ilyen szervezeti egység több is volt, kissé eltérő profillal.

Részletesebben

és alkalmazások, MSc tézis, JATE TTK, Szeged, Témavezető: Dr. Hajnal Péter

és alkalmazások, MSc tézis, JATE TTK, Szeged, Témavezető: Dr. Hajnal Péter Publikációs jegyzék Balogh János Jegyzetek, tézis: [1] Balogh J., Maximális folyamok és minimális költségű cirkulációk; algoritmusok és alkalmazások, MSc tézis, JATE TTK, Szeged, 1994. Témavezető: Dr.

Részletesebben

Beszámoló A T046822 számú OTKA pályázat. zárójelentéséhez

Beszámoló A T046822 számú OTKA pályázat. zárójelentéséhez Beszámoló T046822 Beszámoló A T046822 számú OTKA pályázat zárójelentéséhez A pályázat címében megfogalmazott Globális optimalizálási problémák ellenırzött pontosságú megoldása mérnöki alkalmazásokban téma

Részletesebben

Körfedés és alkalmazása a telekommunikációs hálózatokban

Körfedés és alkalmazása a telekommunikációs hálózatokban Szegedi Tudományegyetem Informatikai Tanszékcsoport Körfedés és alkalmazása a telekommunikációs hálózatokban TDK dolgozat Készítette: Palatinus Endre programtervező informatikus MSc szakos hallgató, 2.

Részletesebben

Alkalmazott Matematikai Lapok 31 (2014),

Alkalmazott Matematikai Lapok 31 (2014), Alkalmazott Matematikai Lapok 31 (2014), 99-108. VÖDRÖK OPTIMÁLIS PAKOLÁSA RAKLAPOKRA CSENDES TIBOR ÉS KOZMA ATTILA1 Egy nyomdaipari szállítási problémából kiindulva a raklapra való körpakolás feladatára

Részletesebben

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

Bolyai János Matematikai Társulat

Bolyai János Matematikai Társulat Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 007/008-as tanév első (iskolai) forduló haladók II.

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

Globális optimalizálási algoritmusok intervallum korlátos feladatokra

Globális optimalizálási algoritmusok intervallum korlátos feladatokra Globális optimalizálási algoritmusok intervallum korlátos feladatokra Doktori értekezés tézisei Pál László Témavezet : Dr. Csendes Tibor egyetemi tanár Szegedi Tudományegyetem Informatika Doktori Iskola

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x. Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket

Részletesebben

Dinamikai rendszerek kaotikusságának és stabilitásának vizsgálata megbízható számítógépes módszerekkel

Dinamikai rendszerek kaotikusságának és stabilitásának vizsgálata megbízható számítógépes módszerekkel Dinamikai rendszerek kaotikusságának és stabilitásának vizsgálata megbízható számítógépes módszerekkel Doktori értekezés Bánhelyi Balázs Témavezető: Dr. Csendes Tibor egyetemi docens Szegedi Tudományegyetem

Részletesebben

Intervallum Módszerek Alkalmazása Vegyészmérnöki Számításokban. Tézisfüzet

Intervallum Módszerek Alkalmazása Vegyészmérnöki Számításokban. Tézisfüzet BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VEGYÉSZMÉRNÖKI ÉS BIOMÉRNÖKI KAR OLÁH GYÖRGY DOKTORI ISKOLA Intervallum Módszerek Alkalmazása Vegyészmérnöki Számításokban Tézisfüzet Szerzı: Baharev Ali,

Részletesebben

Drótposta: kovacsea@math.bme.hu ; edith_kovacs@yahoo.com ; Honlapom: http://www.math.bme.hu/diffe/staff/kovacse.shtml

Drótposta: kovacsea@math.bme.hu ; edith_kovacs@yahoo.com ; Honlapom: http://www.math.bme.hu/diffe/staff/kovacse.shtml Szakmai önéletrajz 1.1 Személyes adatok: Nevem: Kovács Edith Alice Születési idő, hely: 1971.05.18, Arad Drótposta: kovacsea@math.bme.hu ; edith_kovacs@yahoo.com ; Honlapom: http://www.math.bme.hu/diffe/staff/kovacse.shtml

Részletesebben

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x = 2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2007/2008-as tanév 2. forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2007/2008-as tanév 2. forduló haladók I. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 007/008-as tanév. forduló haladók I. kategória Megoldások

Részletesebben

MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 2012

MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 2012 MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 0 KONFERENCIA ELŐADÁSAI Szolnok 0. május 0. Szerkesztette: Edited by Pokorádi László Kiadja: Debreceni Akadémiai Bizottság Műszaki Szakbizottsága

Részletesebben

Számítógép architektúrák

Számítógép architektúrák Számítógép architektúrák Számítógépek felépítése Digitális adatábrázolás Digitális logikai szint Mikroarchitektúra szint Gépi utasítás szint Operációs rendszer szint Assembly nyelvi szint Probléma orientált

Részletesebben

1/ gyakorlat. Hiperbolikus programozási feladat megoldása. Pécsi Tudományegyetem PTI

1/ gyakorlat. Hiperbolikus programozási feladat megoldása. Pécsi Tudományegyetem PTI 1/12 Operációkutatás 5. gyakorlat Hiperbolikus programozási feladat megoldása Pécsi Tudományegyetem PTI 2/12 Ha az Hiperbolikus programozási feladat feltételek teljesülése mellett a A x b x 0 z(x) = c

Részletesebben

Név KP Blokk neve KP. Logisztika I. 6 LOG 12 Dr. Kovács Zoltán Logisztika II. 6 Logisztika Dr. Kovács Zoltán

Név KP Blokk neve KP. Logisztika I. 6 LOG 12 Dr. Kovács Zoltán Logisztika II. 6 Logisztika Dr. Kovács Zoltán Név KP Blokk neve KP Felelıs vizsgáztató Kombinatorikus módszerek és algoritmusok 5 MAT 10 Dr. Tuza Zsolt Diszkrét és folytonos dinamikai rendszerek matematikai alapjai 5 Matematika Dr. Hartung Ferenc

Részletesebben

Dinamikus programozás alapú szivattyú üzemvitel optimalizálási technikák (főként) kombinatorikus vízműhálózatokra

Dinamikus programozás alapú szivattyú üzemvitel optimalizálási technikák (főként) kombinatorikus vízműhálózatokra Systeemitekniikan Laboratorio Dinamikus programozás alapú szivattyú üzemvitel optimalizálási technikák (főként) kombinatorikus vízműhálózatokra Bene József HDR, Dr. Hős Csaba HDR, Dr. Enso Ikonen SYTE,

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Süle Zoltán publikációs listája

Süle Zoltán publikációs listája Süle Zoltán publikációs listája Statisztikai összegzés Referált nemzetközi folyóiratcikkeim száma: 3 (+1) Nemzetközi konferenciakiadványban megjelent publikációim száma: 14 Hazai konferenciakiadványban

Részletesebben

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

SZAKDOLGOZAT. Egybevágó körök pakolásai négyzetekbe

SZAKDOLGOZAT. Egybevágó körök pakolásai négyzetekbe SZAKDOLGOZAT Egybevágó körök pakolásai négyzetekbe Szeidl Rita Betti matematika szakos hallgató Témavezető: Dr. Hujter Mihály docens BME Matematika Intézet, Differenciálegyenletek Tanszék 2011 Tartalomjegyzék

Részletesebben

Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz

Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz Dátum Téma beadandó Feb 12Cs Konvolúció (normális, Cauchy,

Részletesebben

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1 Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az

Részletesebben

Publikációs lista. Dr. Molnárka-Miletics Edit Széchenyi István Egyetem Matematika és Számítástudományi Tanszék

Publikációs lista. Dr. Molnárka-Miletics Edit Széchenyi István Egyetem Matematika és Számítástudományi Tanszék Publikációs lista Dr. Molnárka-Miletics Edit Széchenyi István Egyetem Matematika és Számítástudományi Tanszék Folyóirat cikkek: E. Miletics: Energy conservative algorithm for numerical solution of ODEs

Részletesebben

A szimplex algoritmus

A szimplex algoritmus A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás

Részletesebben

Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával

Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával * Pannon Egyetem, M szaki Informatikai Kar, Számítástudomány

Részletesebben

VALÓS HULLÁMFRONT ELŐÁLLÍTÁSA A SZÁMÍTÓGÉPES ÉS A DIGITÁLIS HOLOGRÁFIÁBAN PhD tézisfüzet

VALÓS HULLÁMFRONT ELŐÁLLÍTÁSA A SZÁMÍTÓGÉPES ÉS A DIGITÁLIS HOLOGRÁFIÁBAN PhD tézisfüzet VALÓS HULLÁMFRONT ELŐÁLLÍTÁSA A SZÁMÍTÓGÉPES ÉS A DIGITÁLIS HOLOGRÁFIÁBAN PhD tézisfüzet PAPP ZSOLT Budapesti Műszaki és Gazdaságtudományi Egyetem Fizika Tanszék 2003 1 Bevezetés A lézerek megjelenését

Részletesebben

1. Katona János publikációs jegyzéke

1. Katona János publikációs jegyzéke 1. Katona János publikációs jegyzéke 1.1. Referált, angol nyelvű, nyomtatott publikációk [1] J.KATONA-E.MOLNÁR: Visibility of the higher-dimensional central projection into the projective sphere Típus:

Részletesebben

OTKA Zárójelentés 2006-2010. Publikációk 2009-2010.

OTKA Zárójelentés 2006-2010. Publikációk 2009-2010. OTKA Zárójelentés 2006-2010. Publikációk 2009-2010. ZÁRÓJELENTÉS szakmai beszámoló OTKA-azonosító: 63591 Típus: K Szakmai jelentés: 2010. 04. 02. Vezető kutató: Illés Béla Kutatóhely: Anyagmozgatási és

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév első (iskolai) forduló Haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév első (iskolai) forduló Haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 016/017-es tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. A k valós paraméter értékétől függően

Részletesebben

Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time)

Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time) Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time) (specializáció választás a 4. félévben, specializációra lépés feltétele: az egyik szigorlat

Részletesebben

Ez egy program. De ki tudja végrehajtani?

Ez egy program. De ki tudja végrehajtani? Császármorzsa Keverj össze 25 dkg grízt 1 mokkás kanál sóval, 4 evőkanál cukorral és egy csomag vaníliás cukorral! Adj hozzá két evőkanál olajat és két tojást, jól dolgozd el! Folyamatos keverés közben

Részletesebben

A szimplex tábla. p. 1

A szimplex tábla. p. 1 A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex

Részletesebben

A logaritmusfüggvény definíciója, grafikonja, jellemzői MATEMATIKA 11. évfolyam középszint

A logaritmusfüggvény definíciója, grafikonja, jellemzői MATEMATIKA 11. évfolyam középszint TÁMOP-..4-08/2-2009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben A logaritmusfüggvény definíciója, grafikonja, jellemzői MATEMATIKA. évfolyam középszint

Részletesebben

Módszer köztes tárolókat nem tartalmazó szakaszos működésű rendszerek ütemezésére

Módszer köztes tárolókat nem tartalmazó szakaszos működésű rendszerek ütemezésére Módszer köztes tárolókat nem tartalmazó szakaszos működésű rendszerek ütemezésére Doktori (PhD) értekezés tézisei Holczinger Tibor Témavezető: Dr. Friedler Ferenc Veszprémi Egyetem Műszaki Informatikai

Részletesebben

Nemzeti versenyek 11 12. évfolyam

Nemzeti versenyek 11 12. évfolyam Nemzeti versenyek 11 12. évfolyam Szerkesztette: I. N. Szergejeva 2015. február 2. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/013-as tanév kezdők I II. kategória II. forduló kezdők III. kategória I. forduló Megoldások és javítási útmutató 1. Egy osztályban

Részletesebben

Természetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5

Természetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5 1. Valós számok (ismétlés) Természetes számok: a legegyszerűbb halmazok elemeinek megszámlálására használjuk őket: N := {1, 2, 3,...,n,...} Például, egy zsák bab felhasználásával babszemekből halmazokat

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

http://www.ms.sapientia.ro/~kasa/formalis.htm

http://www.ms.sapientia.ro/~kasa/formalis.htm Formális nyelvek és fordítóprogramok http://www.ms.sapientia.ro/~kasa/formalis.htm Könyvészet 1. Csörnyei Zoltán, Kása Zoltán, Formális nyelvek és fordítóprogramok, Kolozsvári Egyetemi Kiadó, 2007. 2.

Részletesebben

IT biztonság és szerepe az információbiztonság területén

IT biztonság és szerepe az információbiztonság területén Óbuda University e Bulletin Vol. 1, No. 1, 2010 IT biztonság és szerepe az információbiztonság területén Tóth Georgina Nóra Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Mérnöki Kar Anyag és

Részletesebben

1. Fejezet: Számítógép rendszerek

1. Fejezet: Számítógép rendszerek 1. Fejezet: Számítógép The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda

Részletesebben

Mérnök informatikus mesterszak mintatanterve (GE-MI) nappali tagozat/ MSc in, full time Érvényes: 2011/2012. tanév 1. félévétől, felmenő rendszerben

Mérnök informatikus mesterszak mintatanterve (GE-MI) nappali tagozat/ MSc in, full time Érvényes: 2011/2012. tanév 1. félévétől, felmenő rendszerben Mérnök informatikus mesterszak mintatanterve (GE-MI) nappali tagozat/ MSc in, full time Érvényes: 2011/2012. tanév 1. félévétől, felmenő rendszerben Tantárgy Tárgykód I. félév ősz II. félév tavasz Algoritmusok

Részletesebben

Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek

Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Ebben a fejezetben megadottnak feltételezzük az abszolút tér egy síkját és tételeink mindig ebben a síkban értendők. T1 (merőleges

Részletesebben

I.3 ELOSZTOTT FOLYAMATSZINTÉZIS BERTÓK BOTOND. Témavezetői beszámoló

I.3 ELOSZTOTT FOLYAMATSZINTÉZIS BERTÓK BOTOND. Témavezetői beszámoló infokommunikációs technológiák infokommunikációs technológiák I.3 ELOSZTOTT FOLYAMATSZINTÉZIS BERTÓK BOTOND Témavezetői beszámoló Pannon Egyetem 2015. január 7. A KUTATÁSI TERÜLET RÖVID MEGFOGALMAZÁSA

Részletesebben

Ismeretanyag Záróvizsgára való felkészüléshez

Ismeretanyag Záróvizsgára való felkészüléshez Ismeretanyag Záróvizsgára való felkészüléshez 1. Információmenedzsment az információmenedzsment értelmezése, feladatok különböző megközelítésekben informatikai szerepek, informatikai szervezet, kapcsolat

Részletesebben

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben

Elsőfokú egyenletek...

Elsőfokú egyenletek... 1. Hozza egyszerűbb alakra a következő kifejezést: 1967. N 1. Elsőfokú egyenletek... I. sorozat ( 1 a 1 + 1 ) ( 1 : a+1 a 1 1 ). a+1 2. Oldja meg a következő egyenletet: 1981. G 1. 3x 1 2x 6 + 5 2 = 3x+1

Részletesebben

Szétválasztási hálózatok szintézise: Különböző tulajdonságokon alapuló szétválasztó módszerek egyidejű alkalmazása. Heckl István

Szétválasztási hálózatok szintézise: Különböző tulajdonságokon alapuló szétválasztó módszerek egyidejű alkalmazása. Heckl István Szétválasztási hálózatok szintézise: Különböző tulajdonságokon alapuló szétválasztó módszerek egyidejű alkalmazása Doktori (PhD) értekezés Heckl István témavezető: Dr. Friedler Ferenc Pannon Egyetem Műszaki

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk

Részletesebben

Matematika alapszak (BSc) 2015-től

Matematika alapszak (BSc) 2015-től Matematika alapszak (BSc) 2015-től módosítva 2015. 08. 12. Nappali tagozatos képzés A képzési terv tartalmaz mindenki számára kötelező tárgyelemeket (MK1-3), valamint választható tárgyakat. MK1. Alapozó

Részletesebben

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS

Részletesebben

Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.)

Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.) Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.) Bizonytalanságkezelés: Az eddig vizsgáltakhoz képest teljesen más világ. A korábbi problémák nagy része logikai,

Részletesebben

Óbudai Egyetem Neumann János Informatikai Kar. Intelligens Mérnöki Rendszerek Intézet

Óbudai Egyetem Neumann János Informatikai Kar. Intelligens Mérnöki Rendszerek Intézet Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet 1034 Budapest, Bécsi út 96/B Tel., Fax:1/666-5544,1/666-5545 http://nik.uni-obuda.hu/imri Az 2004-ben alakult IMRI (BMF)

Részletesebben

Nevezetes függvények

Nevezetes függvények Nevezetes függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt

Részletesebben

Az úttervezés szabályozásának változása: jogszabály és KTSZ

Az úttervezés szabályozásának változása: jogszabály és KTSZ Az úttervezés szabályozásának változása: jogszabály és KTSZ Barna Zsolt MAÚT BME Út és Vasútépítési Tanszék A feladat Rendelet a közutak tervezéséről Új KTSZ A KÖZOP-projekt keretében elvégzett további

Részletesebben

VLIW processzorok (Működési elvük, jellemzőik, előnyeik, hátrányaik, kereskedelmi rendszerek)

VLIW processzorok (Működési elvük, jellemzőik, előnyeik, hátrányaik, kereskedelmi rendszerek) SzA35. VLIW processzorok (Működési elvük, jellemzőik, előnyeik, hátrányaik, kereskedelmi rendszerek) Működési elvük: Jellemzőik: -függőségek kezelése statikusan, compiler által -hátránya: a compiler erősen

Részletesebben

Bánhelyi Balázs, Csendes Tibor, Palatinus Endre és Lévai. Szeptember 28-30, 2011, Balatonöszöd, Hungary

Bánhelyi Balázs, Csendes Tibor, Palatinus Endre és Lévai. Szeptember 28-30, 2011, Balatonöszöd, Hungary optimalizáló eljárás, Csendes Tibor, Palatinus Endre és Lévai Balázs László Szegedi Tudományegyetem Szeptember 28-30, 2011, Balatonöszöd, Hungary Közmegvilágítási feladat Adott egy megvilágítandó terület,

Részletesebben

Irányítási struktúrák összehasonlító vizsgálata. Tóth László Richárd. Pannon Egyetem Vegyészmérnöki és Anyagtudományok Doktori Iskola

Irányítási struktúrák összehasonlító vizsgálata. Tóth László Richárd. Pannon Egyetem Vegyészmérnöki és Anyagtudományok Doktori Iskola Doktori (PhD) értekezés tézisei Irányítási struktúrák összehasonlító vizsgálata Tóth László Richárd Pannon Egyetem Vegyészmérnöki és Anyagtudományok Doktori Iskola Témavezetők: Dr. Szeifert Ferenc Dr.

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

A KUTATÁS EREDMÉNYEI ZÁRÓJELENTÉS 2004-2006.

A KUTATÁS EREDMÉNYEI ZÁRÓJELENTÉS 2004-2006. ÖNELLENŐRZÉS ÉS FUTÁSIDEJŰ VERIFIKÁCIÓ SZÁMÍTÓGÉPES PROGRAMOKBAN OTKA T-046527 A KUTATÁS EREDMÉNYEI ZÁRÓJELENTÉS 2004-2006. Témavezető: dr. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 1. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! a) b) 7 c) 5 d) 5 1 e) 6 1 6 f) ( 81 16 ) g) 0,00001 5. Írjuk fel gyökjelekkel a következő hatványokat!

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

Szakdolgozat, diplomamunka és TDK témák (2008. 09. 01-2012. 01. 04.)

Szakdolgozat, diplomamunka és TDK témák (2008. 09. 01-2012. 01. 04.) Szakdolgozat, diplomamunka és TDK témák (2008. 09. 01-2012. 01. 04.) Felvehető szakdolgozat, diplomamunka és TDK témák (2012. 01. 04.) 1. Vezérlés, számolás és képfeldolgozás FPGA-n és/vagy GPU-val (BsC,

Részletesebben

AZ OPTIMALIZÁLÁS ALKALMAZÁSAI

AZ OPTIMALIZÁLÁS ALKALMAZÁSAI AZ OPTIMALIZÁLÁS ALKALMAZÁSAI Csendes Tibor előkészületben Szeged, 2006. A jegyzet jelen változata a félév során még gyakran fog változni, akár visszamenőleg is. Ezért érdemes mindig a legújabb változatot

Részletesebben

INFORMATIKA E42-101 I. előadás Facskó Ferenc egyetemi adjunktus Adat Információ Adat: a világ állapotát leíró jel Információ: adat értelmezési környezetben (dimenzió, viszonyítás) Tudás: felhalmozott,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Bevezetés az operációkutatásba A lineáris programozás alapjai

Bevezetés az operációkutatásba A lineáris programozás alapjai Bevezetés az operációkutatásba A lineáris programozás alapjai Alkalmazott operációkutatás 1. elıadás 2008/2009. tanév 2008. szeptember 12. Mi az operációkutatás (operations research)? Kialakulása: II.

Részletesebben

Gyorskalauz SUSE Linux Enterprise Desktop 11

Gyorskalauz SUSE Linux Enterprise Desktop 11 Gyorskalauz SUSE Linux Enterprise Desktop 11 NOVELL GYORSKALAUZ KÁRTYA A SUSE Linux Enterprise Desktop 11 új verziójának telepítéséhez a következő műveletsorokat kell végrehajtani. A jelen dokumentum áttekintést

Részletesebben

2. Függvények. I. Feladatok

2. Függvények. I. Feladatok . Függvények I. Feladatok 1. Az y = x 1 + x + 1 függvény grafikonja és az y = c egyenletű egyenes által közrezárt síkidom területe 30. Mekkora a c állandó értéke?. Hány zérushelye van az a paramétertől

Részletesebben

1. Feladatsor. I. rész

1. Feladatsor. I. rész . feladatsor. Feladatsor I. rész. Mely x valós számokra lesz ebben a sorrendben a cos x, a sinx és a tg x egy mértani sorozat három egymást követő tagja?... (). Egy rombusz egyik átlója 0 cm, beírható

Részletesebben

"A tízezer mérföldes utazás is egyetlen lépéssel kezdődik."

A tízezer mérföldes utazás is egyetlen lépéssel kezdődik. "A tízezert mérföldes utazás is egyetlen lépéssel kezdődik dik." A BINB INSYS Előadók: Kornafeld Ádám SYS PROJEKT Ádám MTA SZTAKI kadam@sztaki.hu Kovács Attila ELTE IK attila@compalg.inf.elte.hu Társszerzők:

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

Multimédia hardver szabványok

Multimédia hardver szabványok Multimédia hardver szabványok HEFOP 3.5.1 Korszerű felnőttképzési módszerek kifejlesztése és alkalmazása EMIR azonosító: HEFOP-3.5.1-K-2004-10-0001/2.0 Tananyagfejlesztő: Máté István Lektorálta: Brückler

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában 9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában Bevezet : A témakörben els - és másodfokú egyenl tlenségek megoldásának

Részletesebben

Többváltozós függvények Feladatok

Többváltozós függvények Feladatok Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. Biró Zsolt. 1. Célkit zések Általános követelmények 1

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. Biró Zsolt. 1. Célkit zések Általános követelmények 1 Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 2 4. Oktatási módszer 2 5. Követelmények, pótlások 2 6. Tematika 2 6.1. Alapfogalmak, matematikai

Részletesebben

Élpont osztályozáson alapuló robusztus tekintetkövetés

Élpont osztályozáson alapuló robusztus tekintetkövetés KÉPFELDOLGOZÁS Élpont osztályozáson alapuló robusztus tekintetkövetés HELFENBEIN TAMÁS Ipari Kommunikációs Technológiai Intézet, Bay Zoltán Alkalmazott Kutatási Közalapítvány helfenbein@ikti.hu Lektorált

Részletesebben

Digitális címke nyomtató és kiszerelő állomás

Digitális címke nyomtató és kiszerelő állomás Digitális címke nyomtató és kiszerelő állomás www.primeralabel.eu Digitális címke nyomtatás Használja a megbízható és költséghatékony Primera CX1200e-s színes címke nyomtatót lehetőségeinek, bevételeinek

Részletesebben

SZOFTVEREK A SORBANÁLLÁSI ELMÉLET OKTATÁSÁBAN

SZOFTVEREK A SORBANÁLLÁSI ELMÉLET OKTATÁSÁBAN SZOFTVEREK A SORBANÁLLÁSI ELMÉLET OKTATÁSÁBAN Almási Béla, almasi@math.klte.hu Sztrik János, jsztrik@math.klte.hu KLTE Matematikai és Informatikai Intézet Abstract This paper gives a short review on software

Részletesebben

Opkut deníciók és tételek

Opkut deníciók és tételek Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 00/0-es tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató.

Részletesebben

Beregszászi István Programozási példatár

Beregszászi István Programozási példatár Beregszászi István Programozási példatár 2 1. fejezet 1. laboratóriumi munka 1.1. Matematikai kifejezések Írja fel algoritmikus nyelven a megadott kifejezést megfelelő típusú változók segítségével! Figyeljen

Részletesebben

Magas szintű optimalizálás

Magas szintű optimalizálás Magas szintű optimalizálás Soros kód párhuzamosítása Mennyi a várható teljesítmény növekedés? Erős skálázódás (Amdahl törvény) Mennyire lineáris a skálázódás a párhuzamosítás növelésével? S 1 P 1 P N GPGPU

Részletesebben

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell

Részletesebben