Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával"

Átírás

1 Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával * Pannon Egyetem, M szaki Informatikai Kar, Számítástudomány Alkalmazása Tanszék *Kansas State University Manhattan, Department of Chemical Engineering, KS 66506, U.S.A. XXVII. MAGYAR OPERÁCIÓKUTATÁSI KONFERENCIA Balatonöszöd, Június 7-9.

2 Bevezetés Bevezetés Célkit zéseink Tartalomjegyzék Inhomogén lineáris egyenletrendszer elemi megoldásainak tekintjük a változók egy olyan halmazát, ahol a halmazban nem szerepl változók nulla értéke mellett, még az egyenletrendszer megoldható, de a halmazból bármely elemet elhagyva az egyenletrendszer már nem oldható meg úgy, hogy csak a halmazbeli változók nem nulla érték ek Egy lineáris egyenletrendszer elemi megoldásainak kimerít leszámlálása számos gyakorlati feladat megoldásának kulcsa. Ilyen például egy kémiai vagy biokémiai reakció mechanizmusát felépít reakcióutak azonosítása

3 Célkit zéseink Bevezetés Bevezetés Célkit zéseink Tartalomjegyzék Reakcióút azonosítás feladatának megoldására kidolgozott módszerek feltérképezése A különböz megközelítések er sségeit együttesen kihasználó megoldó módszer kidolgozása és implementálása nyílt forrású szoftverek felhasználásával

4 Tartalomjegyzék Bevezetés Célkit zéseink Tartalomjegyzék

5 Reakcióút azonosítás (RPI) Reakcióút azonosítás (RPI) Rakcióút-szintézis nehézségei Szakirodalmi áttekintés A reakcióút jelzi a reakció mechanizmusát Ered reakció reakcióútjának vagy mechanizmusának meghatározása két szakaszból áll az összes lehetséges mechanizmus azonosítása a pontos reakcióút vagy mechanizmus kiválasztása

6 Reakcióút azonosítás (RPI) Rakcióút-szintézis nehézségei Szakirodalmi áttekintés Minden reakcióút elemi reakciók lépéseinek hálózata A reakcióút szintézis feladata, adott sztöchiometriai együtthatókkal, az elemi reakció lépések minden olyan együttm ködését meghatározni, ami az ered reakciót erdményezi

7 Rakcióút-szintézis nehézségei Reakcióút azonosítás (RPI) Rakcióút-szintézis nehézségei Szakirodalmi áttekintés A reakcióút szintézis feladat minden független megoldását (Direct Pathways) pontosan egyszer kell generálni A reagensekt l a végtermékekig vezet reakcióút felépítésében a valószín elemi reakciók bármelyike részt vehet 1 el refelé, 2 fordított irányban vagy 3 egyik irányban sem n valószín elemi reakció esetén a kombinációk száma: 3 n 1 A nehézség forrása a válaszok kombinatorikus robbanása és a hatékony számítógépes megvalósítás bonyolultsága

8 Szakirodalmi áttekintés Reakcióút azonosítás (RPI) Rakcióút-szintézis nehézségei Szakirodalmi áttekintés Lineáris algebrai megközelítés A feladat megfogalmazása Happel és Sellers, Peth, Független utak generálása Happel és Sellers, Konvex elemzés S. Schuster et al., C. H. Schilling et al., Szalkai, Jedlovszky, Bertók és Friedler, 2001.

9 Szakirodalmi áttekintés Reakcióút azonosítás (RPI) Rakcióút-szintézis nehézségei Szakirodalmi áttekintés P-gráf megközelítés P-gráf módszertan F. Friedler és L. T. Fan, '70-es évek P-gráf megközelítés a katalitikus reakcióutak azonosítására L. T. Fan, B. Bertok és F. Friedler, Computers and Chemistry, 26, (2002). P-gráf megközelítés a biokémiai reakcióuatak azonosítására H. Seo, D.-Y. Lee, S. Park, L. T. Fan, S. Shae, B. Bertok és F. Friedler, Biotechnology Letters, 23, (2001).

10 Reakcióutak lineáris algebrai leírása Reakcióutak lineáris algebrai leírása A példa lineáris algebrai megoldása Motiváció Reakcióutak P-gráf leírása Kombinatorikusan megengedett megoldásai a példának Jelölések (Jedlovszky, Bertók és Friedler, 2001.) e: elemi reakció vektora E: ered reakció vektora Ered reakció: C 4H 10 C 4H 8 + H 2 Elemi reakciók: 1 C 4H 10 + l C 4H 8l + H 2 2 C 4H 8l C 4H 8 + l 3 C 4H 8l C 4H 6l + H 2 4 C 4H 6l C 4H 6 + l 5 C 4H 10 + l + C 4H 6l 2C 4H 8l

11 Reakcióutak lineáris algebrai leírása Reakcióutak lineáris algebrai leírása A példa lineáris algebrai megoldása Motiváció Reakcióutak P-gráf leírása Kombinatorikusan megengedett megoldásai a példának Bázis transzformációk segítségével keressük az Ax = E lineáris egyenletrendszer elemi megoldásait Keressük az elemi reakcióvektorok (e-knek) mindazon lineáris kombinációit, amelyek az ered reakciót (E-t) eredményezik

12 A példa lineáris algebrai megoldása Reakcióutak lineáris algebrai leírása A példa lineáris algebrai megoldása Motiváció Reakcióutak P-gráf leírása Kombinatorikusan megengedett megoldásai a példának E = e 1 + e 2 Reakcióút: (1 )C 4 H 10 + l C 4 H 8 l + H 2 (2 )C 4 H 8 l C 4 H 8 + l C 4 H 10 C 4 H 8 + H 2

13 Motiváció Bevezetés Reakcióutak lineáris algebrai leírása A példa lineáris algebrai megoldása Motiváció Reakcióutak P-gráf leírása Kombinatorikusan megengedett megoldásai a példának Több száz lehetséges bázis transzformációs sorrend 2 független megoldás Cél:minden megoldást jól meghatározott módon, pontosan egyszer generálni

14 Reakcióutak P-gráf leírása Reakcióutak lineáris algebrai leírása A példa lineáris algebrai megoldása Motiváció Reakcióutak P-gráf leírása Kombinatorikusan megengedett megoldásai a példának L. T. Fan, B. Bertók és F. Friedler, P-gráf: O-típusú csúcsok: elemi reakció lépések M-típusú csúcsok: részecskék Példa Elemi reakciók: (1 )C 4H 10 + l C 4H 8l + H 2 (2 )C 4H 8l C 4H 8 + l Ered reakció: C 4H 10 C 4H 8 + H 2

15 Reakcióutak lineáris algebrai leírása A példa lineáris algebrai megoldása Motiváció Reakcióutak P-gráf leírása Kombinatorikusan megengedett megoldásai a példának Lehetséges reakcióutak kombinatorikus tulajdonságai L. T. Fan, B. Bertók és F. Friedler, (T1) Az ered reakció által el állított minden kémiai részecske (végtermék) szerepel a gráfban. (T2) Az ered reakció által felhasznált minden kémiai részecske (kiindulási reagens) szerepel a gráfban. (T3) Minden O-típusú csúcs a reakcióút-szintézis feladatban deniált elemi reakciólépést reprezentál. (T4) Minden kémiai vagy aktív átmeneti részecskét reprezentáló csúcsból vezet a gráfban út legalább egy végtermékig. (T5) Ha egy M-típusú csúcs része a gráfnak, akkor vezet hozzá él legalább egy O-típusú csúcsból vagy vezet bel le él legalább egy O-típusú csúcsba. (T6) Ha egy M-típusú csúcsba nem vezet él a gráfban, akkor kiindulási reagenst reprezentál. (T7) Egy elemi reakció el re és fordított lépése közül legfeljebb az egyik szerepel a gráfban.

16 PNS algoritmusok Reakcióutak lineáris algebrai leírása A példa lineáris algebrai megoldása Motiváció Reakcióutak P-gráf leírása Kombinatorikusan megengedett megoldásai a példának P-gráf leírásra épül algoritmusok (L. T. Fan, B. Bertók, és F. Friedler, 2002.) RPIMSG algoritmus: kizárja azon elemi reakciókat, melyek egyetlen kombinatorikusan lehetséges struktúrában sem szerepelhetnek RPISSG algoritmus: az összes kombinatorikusan lehetséges struktúrát pontosan egyszer generálja

17 A keresési tér sz kítése Reakcióutak lineáris algebrai leírása A példa lineáris algebrai megoldása Motiváció Reakcióutak P-gráf leírása Kombinatorikusan megengedett megoldásai a példának

18 Az RPISSG algoritmus lépései Reakcióutak lineáris algebrai leírása A példa lineáris algebrai megoldása Motiváció Reakcióutak P-gráf leírása Kombinatorikusan megengedett megoldásai a példának Példa bután (C 4 H 10 ) dehidrogénezése buténné (C 4 H 8 ) Kombinatorikusan lehetséges reakcióutak generálódnak a 2, 3, 5, 6, 7 lépésben

19 Reakcióutak lineáris algebrai leírása A példa lineáris algebrai megoldása Motiváció Reakcióutak P-gráf leírása Kombinatorikusan megengedett megoldásai a példának Kombinatorikusan megengedett megoldásai a példának

20 Az integrált megoldó módszer Az RPISSG alg. döntési fája a lin. algebrai modell alapján A példa megoldásai Megvalósítás Az eljárás gyakorlati alkalmazhatósága P-gráf alapján keresési fa a lineáris algebrai lépések irányítására: Döntések jól meghatározott sorozata Döntés arról, hogy bevesz vagy kizár egy elemi reakciólépést a felépítés alatt álló struktúrából Egy elemi reakciólépés bevitele a gráfba feltételezi, hogy a megfelel vektor bevihet a bázisba nem-nulla értékkel Egy elemi reakciólépés kivétele a hálózatból feltételezi, hogy a megfelel vektor nem szerepel a bázisban nulla együtthatóval szerepel a bázisban

21 Az integráció bemutatása Az RPISSG alg. döntési fája a lin. algebrai modell alapján A példa megoldásai Megvalósítás Az eljárás gyakorlati alkalmazhatósága Példa bután (C 4 H 10 ) dehidrogénezése buténné (C 4 H 8 )

22 Az integráció bemutatása Az RPISSG alg. döntési fája a lin. algebrai modell alapján A példa megoldásai Megvalósítás Az eljárás gyakorlati alkalmazhatósága A (2 ) lépést bevonjuk a struktúrába a C 4 H 8 el állítására

23 Az integráció bemutatása Az RPISSG alg. döntési fája a lin. algebrai modell alapján A példa megoldásai Megvalósítás Az eljárás gyakorlati alkalmazhatósága A (2 ) lépést bevonjuk a struktúrába a C 4 H 8 el állítására

24 Az RPISSG alg. döntési fája a lin. algebrai modell alapján A példa megoldásai Megvalósítás Az eljárás gyakorlati alkalmazhatósága Az RPISSG alg. döntési fája a lin. algebrai modell alapján Példa bután (C 4 H 10 ) dehidrogénezése buténné (C 4 H 8 ) 2, 5 lépésben független reakcióutak generálódnak 3, 6, 7 lépésben ellentmondás a lineáris algebrai modell alapján

25 A példa megoldásai Az RPISSG alg. döntési fája a lin. algebrai modell alapján A példa megoldásai Megvalósítás Az eljárás gyakorlati alkalmazhatósága A példa egyik lehetséges megoldása: e 1 + e 2

26 A példa megoldásai Az RPISSG alg. döntési fája a lin. algebrai modell alapján A példa megoldásai Megvalósítás Az eljárás gyakorlati alkalmazhatósága A példa másik lehetséges megoldása: e 2 + e 3 + e 5

27 Megvalósítás Bevezetés Az RPISSG alg. döntési fája a lin. algebrai modell alapján A példa megoldásai Megvalósítás Az eljárás gyakorlati alkalmazhatósága A bemutatott algoritmust implementáltuk ANSI ISO C++ nyelven Sablon alapú osztályokkal fordítási id ben ellen rizzük a strukturális leképezéseket tartalmazó kifejezések szemantikai helyességét Singleton pattern tervezési mintát használunk a reakciók és részecskék egyértelm sorszámozásához A feladat betöltéséhez és az eredmények kimentéséhez XML formátumot alkalmazunk, melyhez a XERCES program könyvtárat használjuk

28 Az eljárás gyakorlati alkalmazhatósága Az RPISSG alg. döntési fája a lin. algebrai modell alapján A példa megoldásai Megvalósítás Az eljárás gyakorlati alkalmazhatósága Lineáris algebrai modell: több száz lehetséges bázis transzformáció sorrend Az RPISSG algoritmus alkalmazásával: 5 bázis transzformáció sorrend Mindkét független megoldást pontosan egyszer eredményezi az integrált módszer

29 Bevezetés További információk a P-gráf módszertanról Bemutattam a reakcióút szintézis P-gráf leírásra és lineáris algebrai modellre épül megoldásait A két módszert integráltuk Olyan módszert dolgoztunk ki, mely a P-gráf leírásra épül algoritmusoknak köszönhet en a feladat minden lineáris algebrai eszközökkel generálható független megoldását pontosan egyszer eredményezi

30 További információk a P-gráf módszertanról További információk a P-gráf módszertanról

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási

Részletesebben

Folyamatoptimalizálás: a felhőalapú modernizáció kiindulópontja. Bertók Botond Pannon Egyetem, Műszaki Informatikai Kar

Folyamatoptimalizálás: a felhőalapú modernizáció kiindulópontja. Bertók Botond Pannon Egyetem, Műszaki Informatikai Kar Folyamatoptimalizálás: a felhőalapú modernizáció kiindulópontja Bertók Botond Pannon Egyetem, Műszaki Informatikai Kar Tartalom Felhőalapú szolgáltatások Kihívások Módszertan Kutatás Projektek 2 Felső

Részletesebben

Módszer köztes tárolókat nem tartalmazó szakaszos működésű rendszerek ütemezésére

Módszer köztes tárolókat nem tartalmazó szakaszos működésű rendszerek ütemezésére Módszer köztes tárolókat nem tartalmazó szakaszos működésű rendszerek ütemezésére Doktori (PhD) értekezés tézisei Holczinger Tibor Témavezető: Dr. Friedler Ferenc Veszprémi Egyetem Műszaki Informatikai

Részletesebben

ALGORITMIKUS SZINTÉZISE

ALGORITMIKUS SZINTÉZISE FOLYAMATHÁLÓZATOK STRUKTÚRÁINAK ALGORITMIKUS SZINTÉZISE DOKTORI (PhD) ÉRTEKEZÉS Bertók Botond témavezető: Dr. Friedler Ferenc Veszprémi Egyetem Műszaki Informatikai Kar Informatikai Tudományok Doktori

Részletesebben

Név KP Blokk neve KP. Logisztika I. 6 LOG 12 Dr. Kovács Zoltán Logisztika II. 6 Logisztika Dr. Kovács Zoltán

Név KP Blokk neve KP. Logisztika I. 6 LOG 12 Dr. Kovács Zoltán Logisztika II. 6 Logisztika Dr. Kovács Zoltán Név KP Blokk neve KP Felelıs vizsgáztató Kombinatorikus módszerek és algoritmusok 5 MAT 10 Dr. Tuza Zsolt Diszkrét és folytonos dinamikai rendszerek matematikai alapjai 5 Matematika Dr. Hartung Ferenc

Részletesebben

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

ALGEBRAI KIFEJEZÉSEK, EGYENLETEK

ALGEBRAI KIFEJEZÉSEK, EGYENLETEK ALGEBRAI KIFEJEZÉSEK, EGYENLETEK AZ ALGEBRAI KIFEJEZÉS FOGALMÁNAK KIALAKÍTÁSA (7-9. OSZTÁLY) Racionális algebrai kifejezés (betűs kifejezés): betűket és számokat a négy alapművelet véges sokszori alkalmazásával

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Operációkutatás. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Operációkutatás. tanulmányokhoz II. évfolyam szakirány BA TANTÁRGYI ÚTMUTATÓ Operációkutatás tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Operációkutatás Tanszék: BGF Módszertani Intézeti

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz)

Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz) Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz) A házi feladatokkal kapcsolatos követelményekről Kapcsolódó határidők: választás: 6. oktatási hét csütörtöki

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

A szimplex algoritmus

A szimplex algoritmus A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás

Részletesebben

Gauss elimináció, LU felbontás

Gauss elimináció, LU felbontás Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév 9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek

Részletesebben

Parametrikus tervezés

Parametrikus tervezés 2012.03.31. Statikus modell Dinamikus modell Parametrikus tervezés Módosítások a tervezés folyamán Konstrukciós variánsok (termékcsaládok) Parametrikus Modell Parametrikus tervezés Paraméterek (változók

Részletesebben

1. Számoljuk meg egy számokat tartalmazó mátrixban a nulla elemeket!

1. Számoljuk meg egy számokat tartalmazó mátrixban a nulla elemeket! ELTE IK, Programozás, Gyakorló feladatok a 3. zárthelyihez. Mátrix elemeinek felsorolása: 1. Számoljuk meg egy számokat tartalmazó mátrixban a nulla elemeket! 2. Igaz-e, hogy sorfolytonosan végigolvasva

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Nagy bonyolultságú rendszerek fejlesztőeszközei

Nagy bonyolultságú rendszerek fejlesztőeszközei Nagy bonyolultságú rendszerek fejlesztőeszközei Balogh András balogh@optxware.com A cég A BME spin-off-ja A Hibatűrő Rendszerek Kutatócsoport tagjai alapították Tisztán magánkézben Szakmai háttér Hibatűrő

Részletesebben

SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.

SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb. SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.hu Mesterséges intelligencia oktatás a DE Informatikai

Részletesebben

Bázistranszformáció és alkalmazásai 2.

Bázistranszformáció és alkalmazásai 2. Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja

Részletesebben

A számítástudomány alapjai

A számítástudomány alapjai A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2. TARTALOMJEGYZÉK Polinomok konvolúviója A DFT és a maradékos osztás Gyűrűk támogatás nélkül Második nekifutás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. október 2. TARTALOMJEGYZÉK Polinomok

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

Kódelméleti és kriptográai alkalmazások

Kódelméleti és kriptográai alkalmazások Kódelméleti és kriptográai alkalmazások Wettl Ferenc 2015. május 14. Wettl Ferenc Kódelméleti és kriptográai alkalmazások 2015. május 14. 1 / 11 1 Hibajavító kódok 2 Általánosított ReedSolomon-kód Wettl

Részletesebben

Irányításelmélet és technika II.

Irányításelmélet és technika II. Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november

Részletesebben

Kiterjesztések sek szemantikája

Kiterjesztések sek szemantikája Kiterjesztések sek szemantikája Példa D Integer = {..., -1,0,1,... }; D Boolean = { true, false } D T1... T n T = D T 1... D Tn D T Az összes függvf ggvény halmaza, amelyek a D T1,..., D Tn halmazokból

Részletesebben

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra) MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Szétválasztási hálózatok szintézise: Különböző tulajdonságokon alapuló szétválasztó módszerek egyidejű alkalmazása. Heckl István

Szétválasztási hálózatok szintézise: Különböző tulajdonságokon alapuló szétválasztó módszerek egyidejű alkalmazása. Heckl István Szétválasztási hálózatok szintézise: Különböző tulajdonságokon alapuló szétválasztó módszerek egyidejű alkalmazása Doktori (PhD) értekezés Heckl István témavezető: Dr. Friedler Ferenc Pannon Egyetem Műszaki

Részletesebben

Óbudai Egyetem Neumann János Informatikai Kar. Intelligens Mérnöki Rendszerek Intézet

Óbudai Egyetem Neumann János Informatikai Kar. Intelligens Mérnöki Rendszerek Intézet Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet 1034 Budapest, Bécsi út 96/B Tel., Fax:1/666-5544,1/666-5545 http://nik.uni-obuda.hu/imri Az 2004-ben alakult IMRI (BMF)

Részletesebben

Süle Zoltán publikációs listája

Süle Zoltán publikációs listája Süle Zoltán publikációs listája Statisztikai összegzés Referált nemzetközi folyóiratcikkeim száma: 3 (+1) Nemzetközi konferenciakiadványban megjelent publikációim száma: 14 Hazai konferenciakiadványban

Részletesebben

A könyvvizsgálat színvonalának növelése a minőségellenőrzésen keresztül

A könyvvizsgálat színvonalának növelése a minőségellenőrzésen keresztül XXIII. Országos Könyvvizsgálói Konferencia Visegrád 2015. Szeptember 4-5. A könyvvizsgálat színvonalának növelése a minőségellenőrzésen keresztül Szabó Zsuzsanna & Mádi-Szabó Zoltán Minőségellenőrzési

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

Shor kvantum-algoritmusa diszkrét logaritmusra

Shor kvantum-algoritmusa diszkrét logaritmusra Ivanyos Gábor MTA SZTAKI Debrecen, 20 január 2. Tartalom és kvantum-áramkörök 2 A diszkrét log probléma Kvantum bit Állapot: a B = C 2 komplex euklideszi tér egy egységvektora: az a 0 + b szuperpozíció

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

I.3 ELOSZTOTT FOLYAMATSZINTÉZIS BERTÓK BOTOND. Témavezetői beszámoló

I.3 ELOSZTOTT FOLYAMATSZINTÉZIS BERTÓK BOTOND. Témavezetői beszámoló infokommunikációs technológiák infokommunikációs technológiák I.3 ELOSZTOTT FOLYAMATSZINTÉZIS BERTÓK BOTOND Témavezetői beszámoló Pannon Egyetem 2015. január 7. A KUTATÁSI TERÜLET RÖVID MEGFOGALMAZÁSA

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények

MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,

Részletesebben

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége LINEÁRIS VEKTORTÉR Kiegészítő anyag (Bércesné Noák Ágnes előadása) Vektorok függetlensége, függősége Vektortér V 0 Halmaz T test : + ; + ; Abel csoport V elemeit ektoroknak neezzük. Abel - csoport Abel

Részletesebben

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága 7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása

Részletesebben

Matematika 9. nyelvi előkészítő évfolyam. 1 óra/hét (37 óra) Kiselőadások tartása, interjúk készítése (matematikatörténeti

Matematika 9. nyelvi előkészítő évfolyam. 1 óra/hét (37 óra) Kiselőadások tartása, interjúk készítése (matematikatörténeti Matematika 9. nyelvi előkészítő évfolyam Témakörök Gondolkodási és megismerési módszerek Számtan, algebra Összefüggések, függvények, sorozatok Geometria, mérés Statisztika, valószínűség Év végi összefoglaló

Részletesebben

Regressziós játékok. Pintér Miklós. XXVII. OPKUT Konferencia 2007, június 7-9. Balatonöszöd. Budapesti Corvinus Egyetem Matematika Tanszék

Regressziós játékok. Pintér Miklós. XXVII. OPKUT Konferencia 2007, június 7-9. Balatonöszöd. Budapesti Corvinus Egyetem Matematika Tanszék Budapesti Corvinus Egyetem Matematika Tanszék XXVII. OPKUT Konferencia 2007, június 7-9. Balatonöszöd Tartalomjegyzék 1 2 3 Statisztikus játék Legyen (Ω, M, P) valószínűségi mező rögzítet, v : Ω P(N) R

Részletesebben

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága 7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

Modellkiválasztás és struktúrák tanulása

Modellkiválasztás és struktúrák tanulása Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális

Részletesebben

INFORMATIKAI ALAPISMERETEK

INFORMATIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2005. május 20. INFORMATIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Megoldási útmutató I.

Részletesebben

Intelligens partner rendszer virtuális kórházi osztály megvalósításához

Intelligens partner rendszer virtuális kórházi osztály megvalósításához Intelligens partner rendszer virtuális kórházi osztály megvalósításához 1. Célkitűzések A pályázat célja egy virtuális immunológiai osztály kialakítása, amelynek segítségével a különböző betegségekkel

Részletesebben

Idegen atomok hatása a grafén vezet képességére

Idegen atomok hatása a grafén vezet képességére hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség

Részletesebben

ÁLTALÁNOS SABLON AZ EL ZETES MEGVALÓSÍTHATÓSÁGI TANULMÁNY ELKÉSZÍTÉSÉHEZ

ÁLTALÁNOS SABLON AZ EL ZETES MEGVALÓSÍTHATÓSÁGI TANULMÁNY ELKÉSZÍTÉSÉHEZ ÁLTALÁNOS SABLON AZ EL ZETES MEGVALÓSÍTHATÓSÁGI TANULMÁNY ELKÉSZÍTÉSÉHEZ A projektek az Európai Unió támogatásával, az Európai Regionális Fejlesztési Alap társfinanszírozásával valósulnak meg. TARTALOMJEGYZÉK

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

SZENZOROKRA ÉPÜLŐ ADAPTÍV RENDSZERMODELL

SZENZOROKRA ÉPÜLŐ ADAPTÍV RENDSZERMODELL infokommunikációs technológiák SZENZOROKRA ÉPÜLŐ ADAPTÍV RENDSZERMODELL Dr. Jaskó Szilárd Pannon Egyetem, MIK, Nagykanizsai kampusz Kanizsa Felsőoktatásáért Alapítvány 2015 VIRTUÁLIS STRUKTÚRA 2 VIRTUÁLIS

Részletesebben

Gyártórendszerek modellezése: MILP modell PNS feladatokhoz

Gyártórendszerek modellezése: MILP modell PNS feladatokhoz Gyártórendszerek modellezése MILP modell PNS feladatokhoz 1 Pannon Egyetem M szaki Informatikai Kar Számítástudomány Alkalmazása Tanszék Utolsó frissítés: 2008. november 16. 1 hegyhati@dcs.uni-pannon.hu

Részletesebben

Adatbázis rendszerek 6.. 6. 1.1. Definíciók:

Adatbázis rendszerek 6.. 6. 1.1. Definíciók: Adatbázis Rendszerek Budapesti Műszaki és Gazdaságtudományi Egyetem Fotogrammetria és Térinformatika 6.1. Egyed relációs modell lényegi jellemzői 6.2. Egyed relációs ábrázolás 6.3. Az egyedtípus 6.4. A

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

A szoftver-folyamat. Szoftver életciklus modellek. Szoftver-technológia I. Irodalom

A szoftver-folyamat. Szoftver életciklus modellek. Szoftver-technológia I. Irodalom A szoftver-folyamat Szoftver életciklus modellek Irodalom Ian Sommerville: Software Engineering, 7th e. chapter 4. Roger S. Pressman: Software Engineering, 5th e. chapter 2. 2 A szoftver-folyamat Szoftver

Részletesebben

Gépi tanulás a gyakorlatban. Bevezetés

Gépi tanulás a gyakorlatban. Bevezetés Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis

Részletesebben

11. modul: LINEÁRIS FÜGGVÉNYEK

11. modul: LINEÁRIS FÜGGVÉNYEK MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12

Részletesebben

Matematika. Specializáció. 11 12. évfolyam

Matematika. Specializáció. 11 12. évfolyam Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes

Részletesebben

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27. Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Matematika pótvizsga témakörök 9. V

Matematika pótvizsga témakörök 9. V Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális

Részletesebben

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 ) Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor

Részletesebben

Zárójelentés 2003-2005

Zárójelentés 2003-2005 Zárójelentés 2003-2005 A kutatási programban nemlineáris rendszerek ún. lineáris, paraméter-változós (LPV) modellezésével és rendszer elméleti tulajdonságainak kidolgozásával foglalkoztunk. Az LPV modellosztály

Részletesebben

Országos Területrendezési Terv térképi mel ékleteinek WMS szolgáltatással történő elérése, Quantum GIS program alkalmazásával Útmutató 2010.

Országos Területrendezési Terv térképi mel ékleteinek WMS szolgáltatással történő elérése, Quantum GIS program alkalmazásával Útmutató 2010. Országos Területrendezési Terv térképi mellékleteinek WMS szolgáltatással történő elérése, Quantum GIS program alkalmazásával Útmutató 2010. május 1. BEVEZETÉS Az útmutató célja az Országos Területrendezési

Részletesebben

Mesterséges Intelligencia Elektronikus Almanach

Mesterséges Intelligencia Elektronikus Almanach Mesterséges Intelligencia Elektronikus Almanach Dobrowiecki Tadeusz, Mészáros Tamás Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék MI Almanach a projekt

Részletesebben

Programozás I. - 11. gyakorlat

Programozás I. - 11. gyakorlat Programozás I. - 11. gyakorlat Struktúrák, gyakorlás Tar Péter 1 Pannon Egyetem M szaki Informatikai Kar Rendszer- és Számítástudományi Tanszék Utolsó frissítés: November 16, 2009 1 tar@dcs.vein.hu Tar

Részletesebben

Műszaki Informatikai Kar: Oktató-Kutató-Fejlesztő Központ a Pannon Egyetemen

Műszaki Informatikai Kar: Oktató-Kutató-Fejlesztő Központ a Pannon Egyetemen Műszaki Informatikai Kar: Oktató-Kutató-Fejlesztő Központ a Pannon Egyetemen Dr. Friedler Ferenc dékán Veszprém, 2006. május 31. Tartalom Pannon Egyetem története Kar mint szervezet Kar tevékenysége: K+O+F

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36 Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás

Részletesebben

Bázistranszformáció és alkalmazásai

Bázistranszformáció és alkalmazásai Bázistranszformáció és alkalmazásai Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Elmélet Gyakorlati végrehajtás 2 Vektor bevitele a bázisba Rangszámítás Lineáris egyenletrendszer

Részletesebben

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

Mechatronika alapjai órai jegyzet

Mechatronika alapjai órai jegyzet - 1969-ben alakult ki a szó - Rendszerek és folyamatok, rendszertechnika - Automatika, szabályozás - számítástechnika Cd olvasó: Dia Mechatronika alapjai órai jegyzet Minden mechatronikai rendszer alapstruktúrája

Részletesebben

GENERIKUS PROGRAMOZÁS Osztálysablonok, Általános felépítésű függvények, Függvénynevek túlterhelése és. Függvénysablonok

GENERIKUS PROGRAMOZÁS Osztálysablonok, Általános felépítésű függvények, Függvénynevek túlterhelése és. Függvénysablonok GENERIKUS PROGRAMOZÁS Osztálysablonok, Általános felépítésű függvények, Függvénynevek túlterhelése és Függvénysablonok Gyakorlatorientált szoftverfejlesztés C++ nyelven Visual Studio Community fejlesztőkörnyezetben

Részletesebben

Folyamatmodellezés és eszközei. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

Folyamatmodellezés és eszközei. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Folyamatmodellezés és eszközei Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Folyamat, munkafolyamat Munkafolyamat (Workflow): azoknak a lépéseknek a sorozata,

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

Zárójelentés a Sonogashira reakció vizsgálata című 48657sz. OTKA Posztdoktori pályázathoz. Novák Zoltán, PhD.

Zárójelentés a Sonogashira reakció vizsgálata című 48657sz. OTKA Posztdoktori pályázathoz. Novák Zoltán, PhD. Zárójelentés a Sonogashira reakció vizsgálata című 48657sz. OTKA Posztdoktori pályázathoz Novák Zoltán, PhD. A Sonogashira reakciót széles körben alkalmazzák szerves szintézisekben acetilénszármazékok

Részletesebben

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

Technikai áttekintés SimDay 2013. H. Tóth Zsolt FEA üzletág igazgató

Technikai áttekintés SimDay 2013. H. Tóth Zsolt FEA üzletág igazgató Technikai áttekintés SimDay 2013 H. Tóth Zsolt FEA üzletág igazgató Next Limit Technologies Alapítva 1998, Madrid Számítógépes grafika Tudományos- és mérnöki szimulációk Mottó: Innováció 2 Kihívás Technikai

Részletesebben

Opkut deníciók és tételek

Opkut deníciók és tételek Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét

Részletesebben

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013 UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS

Részletesebben

2. gyakorlat. A polárkoordináta-rendszer

2. gyakorlat. A polárkoordináta-rendszer . gyakorlat A polárkoordináta-rendszer Az 1. gyakorlaton megismerkedtünk a descartesi koordináta-rendszerrel. Síkvektorokat gyakran kényelmes ún. polárkoordinátákkal megadni: az r hosszúsággal és a φ irányszöggel

Részletesebben

IV.3. MODELL-ALAPÚ MÓDSZER KIDOLGOZÁSA IT INFRASTRUKTÚRÁK ROBOSZTUSSÁGÁNAK ELEMZÉSÉHEZ KOCSIS-MAGYAR MELINDA

IV.3. MODELL-ALAPÚ MÓDSZER KIDOLGOZÁSA IT INFRASTRUKTÚRÁK ROBOSZTUSSÁGÁNAK ELEMZÉSÉHEZ KOCSIS-MAGYAR MELINDA infokommunikációs technológiák IV.3. MODELL-ALAPÚ MÓDSZER KIDOLGOZÁSA IT INFRASTRUKTÚRÁK ROBOSZTUSSÁGÁNAK ELEMZÉSÉHEZ KOCSIS-MAGYAR MELINDA MODELL ALAPÚ MÓDSZER KIDOLGOZÁSA IT INFRASTRUKTÚRÁK ROBOSZTUSSÁGÁNAK

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell

Részletesebben

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0 Tantárgy neve Lineáris algebra I Tantárgy kódja MTB1004 Meghirdetés féléve 2 Kreditpont 3k Összóraszám elm+gyak 2+0 Számonkérés módja kollokvium Előfeltétel tantárgyi kód MTB1003 Tantárgyfelelős neve Kurdics

Részletesebben

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005 2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus

Részletesebben

Számítógéppel segített folyamatmodellezés p. 1/20

Számítógéppel segített folyamatmodellezés p. 1/20 Számítógéppel segített folyamatmodellezés Piglerné Lakner Rozália Számítástudomány Alkalmazása Tanszék Pannon Egyetem Számítógéppel segített folyamatmodellezés p. 1/20 Tartalom Modellező rendszerektől

Részletesebben