Végeselem modellezés. Bevezetés

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Végeselem modellezés. Bevezetés 2012.02.20."

Átírás

1 Végeselem modellezés Bevezetés

2 Számítógéppel segített szerkezettervezés Szerkezetmegdás, CAD rjzolás dtbevitel módosítás Méretezés, tervezés VEM dtbevitel ellenőrzés Részletek kidolgozás AutoCAD (műszki rjzok) ArchiCAD (építészet) Komplex tervezőrendszerek: AxisVM (áltlános VEM) ConSteel (cél méretezése) Ansys Abqus Vbexpress (vslásszerkesztő) Tekl Structures (cél szerkesztése) Nemetschek (műszki rjzok + építészet + áltlános VE + vslásszerkesztés) Fem Design (műszki rjzok + áltlános VE + vslásszerkesztés)

3 Bevezetés Az utóbbi évtizedek ngy htékonyságú számítástechniki módszere z ún végeselem-módszer = finite element method VEM (FEM) Az építőmérnöki gykorlton kívül más műszki és tudományos területen is lklmzzák A végeselemek módszere bonyolult feldtok megoldását teszi lehetővé Végeselem progrmok: Axis VM Ansys (Multiphysics, Structurl Mechnics, Fluid Dynmics, Explicit Dynmics, Electromgnetics) Abqus FEM design StruSoft NGSolve PAXIS Finite Element Code for Soil nd Rock Anlys Osys GSA ConSteel Nemetschek Allpln 21222

4 A végeselem módszer A végeselem módszerben vizsgált szerkezetet véges méretű részekre osztjuk elemek A feldt típusától és dimenzió számától függően többféle elemet hsználhtunk Az elemek lkját mindig srokpontji, csomópontji htározzák meg rúd (BAR) elem: 6 szbdságfok

5 Példák

6 Egyéb lklmzási példák

7 A sttiki számítás: modelllkotás + számítás A sttiki váz megválsztás, úgy, hogy z legjobbn közelítse tényleges szerkezetet A terhek és htások figyelembevétele A sttiki váz megoldás mértékdó teherállásokr Eredmények: igénybevételek és lkváltozások A kpott eredmények kiértékelése Méretezés, ellenőrzés 7 Szükség esetén új méretfelvétel 21222

8 Modelllkotás A számítási modell meglkotását két, ellentétes kívánlom teljesítése befolyásolj: 1 modell minél jobbn helyettesítse vlóságos testet és nnk körülményeit; 2 mechniki jellemzők lehetőleg kevés időráfordítássl jó közelítéssel meghtározhtók legyenek A szerkezet vizsgált során közelítésekkel élünk = modellezünk Pl cél gerendrács modellje: áltlábn tengelyvonl geometrii és szilárdsági jellemzőkkel vló felruházás Tljr helyezett gerendrács esetén fenti modell elhnygolást jelent Elhnygolás: h gerendák tengelyvonlát ruházzuk fel geometrii és szilárdsági tuljdonságokkl, tlpfeszültség számításánál ténylegesnél ngyobb tlpfelületet vennénk számításb

9 Számítás A szerkezeti modell lehet Folytonos (kontinuum) nlitikus megoldás Nem folytonos (diszkrét) numerikus megoldás (mátrixlgebr) Sttiki szerkezetek vizsgáltár két lpvető módszer: Erőmódszer Elmozdulás módszer Sttiki modell véges méretű, illeszkedő elemekre bontás Átvágási helyeken folytonosság biztosítás folytonossági követelményeket trtlmzó egyenletrendszer

10 Végeselem módszer (VEM) Finite Element Method (FEM) A vizsgált szerkezetet véges méretű, illeszkedő elemre bontjuk Az egyes elemek tuljdonságit z nlízis eszközeivel, z elemre vontkozón htározzuk meg A kpcsolási pontokon ( csomópontokon) értelmezett prméterekkel fejezzük ki Az elemek rendszerének kpcsoltát csomóponti mennyiségek zonosságánk előírásávl biztosítjuk

11 Mtemtiki lpok MÁTRIXOK - Alpfoglmk

12 Mtemtiki lpok - Mátrixlgebr A mátrix definíciój: Az m nméretű mátrixnk m sor és n oszlop vn A = m m2 1 2 m 1n 2n n mn = [ ] ij i= 1, 2,,, n j= 1, 2,,, m

13 Mtemtiki lpok - Mátrixlgebr Például: Adott egy ismeretlenes lineáris egyenletrendszer 11 x x x = 21 x x x = 1 x x 2 + x = hol x i = ismeretlenek ij =ismeretlenek együtthtói A = együtthtó mátrix

14 Mtemtiki lpok - Mátrixlgebr Például: Adott egy ismeretlenes lineáris egyenletrendszer 9 x x 2 5 x = hol x i = ismeretlenek 7 x 1 2 x x = ij =ismeretlenek -15 x 1 + x x = együtthtói A = x-s együtthtó mátrix

15 Nevezetes mátrixok A sorok és z oszlopok felcserélésével kpott mátrix z eredeti trnszponáltj A = A T =

16 Nevezetes mátrixok Az egydimenziós mátrix neve vektor = m 1 Alphelyzetben vektor oszlopvektort jelöl, sorvektort (neki megfelelő) oszlopvektor trnszponáltjként értelmezzük 1 T = [ ] m

17 Nevezetes mátrixok Kvdrtikus (négyzetes) mátrix: h mátrix sorink és oszlopink szám megegyezik A kvdrtikus mátrix sorink ill oszlopink szám mátrix rendje Például: nxn = x-s kvdrtikus mátrix: A =

18 Nevezetes mátrixok Kvdrtikus (négyzetes) mátrix: h mátrix sorink és oszlopink szám megegyezik A kvdrtikus mátrix sorink ill oszlopink szám mátrix rendje Például: nxn = x-s kvdrtikus mátrix: A = FŐÁTÓ

19 Nevezetes mátrixok Kvdrtikus (négyzetes) mátrix: h mátrix sorink és oszlopink szám megegyezik A kvdrtikus mátrix sorink ill oszlopink szám mátrix rendje Például: nxn = x-s kvdrtikus mátrix: A = MEÉKÁTÓ

20 Nevezetes mátrixok Digonális mátrix: h kvdrtikus mátrixnk csk főátlójábn vn zérustól különböző elem Például: 2 A = A = nn = [ ] ij 21222

21 Nevezetes mátrixok Egységmátrix: h mátrix főátlójánk minden eleme 1, z összes többi zérus Ezzel szorozv szorzt mátrix z eredeti tényező-mátrixot dj vissz) [ ] = = E Például: E = [ ] 1 1 = = E

22 = Egyszerű mátrixműveletek Összedás-kivonás: műveleteket rendre megfelelő elemeken kell végrehjtni! Csk zonos méretű mátrixok vonhtók össze! A±B=C [ ij ] ± [ b ij ] = [ c ij ] b b b b = 11 + b b 21 + b b Mátrix szorzás konstnssl: konstnssl minden elem külön-külön szorzndó k D = [k d ij ] 2 Pl: 4 =

23 Egyszerű mátrixműveletek Két mátrix szorzt: A mátrix-szorzásbn tényezők nem felcserélhetők! A szorzás csk kkor értelmezhető, h z első tényező oszlopink és második tényező sorink szám megegyezik Ilyenkor szorztmátrix ij indexű eleme z első tényező i-ik soránk (mint sorvektornk) és második tényező j-ik oszlopánk (mint oszlopvektornk) skláris szorzt r A B = C c kl =Σ( kj b jl ) (m,r) (r,n) (m,n) j=

24 Egyszerű mátrixműveletek Sor és oszlopvektor szorzt: Egy sor- és egy oszlopvektor kkor szorozhtó össze, h elemszámuk megegyezik Ilyenkor (sklár)szorztuk eredménye egy SZÁM (1,n) Σ n (n,1) (1,1) i=1 T b = c hol c = Σ ( i b i ) c

25 Egyszerű mátrixműveletek Oszlop- és sorvektor szorzt: Egy oszlop- és egy sorvektor mindenképp összeszorozhtó, szorzt egy MÁTRIX, melyben sorok szám z első tényező elemszámávl, z oszlopok szám második tényező elemszámávl egyezik meg b T = C hol c i,j = i b j (m,1) (1,n) (m,n)

26 Inverzmátrix Mátrixokt osztni nem lehet inverzmátrix: A -1 Csk kvdrtikus mátrixnk vn inverze H mátrix determináns nem zérus: reguláris mátrix létezik mátrix inverze H mátrix determináns zérus: szinguláris mátrix nem létezik inverzmátrix z inverzmátrixnk z eredeti mátrixszl képzett szorzt z egységmátrix: A A -1 = A -1 A = E

27 Mátrix összedásánk és szorzásánk tuljdonsági: A mátrixok szorzás nem kommuttív! A B B A A mátrixok szorzás sszocitív, h műveletek mindkét oldlon elvégezhetők! (A B) C = A (B C ) A mátrixok szorzás disztributív: (A+B) C = A C+B C D (A+B) = DA + DB

28 ineáris egyenletrendszerek mátrixlpú megoldás: ineáris egyenletrendszerek mátrixlpú megoldás: 11 x x x = b 1 21 x x x = b 2 1 x x 2 + x = b A x = b A -1 A x = A -1 b E E x = A -1 b x = A -1 b

29 Rúdelemek modellezése A végeselem módszer lépései

30 A végeselemmódszer lépései: 1 A vizsgált trtomány elemekre osztás (geometrii finitizálás), kitüntetett pontok (csomópontok) számozás Az elemekhez lokális koordinát-rendszer válsztás, z elem csomópontjink lokális számozás 2 Az elemek k i merevségi mátrixánk előállítás lokális rendszerben, trnszformálás globális rendszerbe Az elemekre htó terhek redukálás z elem kitüntetett pontjár lokális rendszerben, trnszformálás globális rendszerbe 21222

31 A végeselemmódszer lépései: 4 A szerkezet merevségi mátrixánk (K) előállítás z elemek merevségi mátrixából megtámsztások (peremfeltételek) figyelembevételével 5 A szerkezet kitüntetett pontjir redukált teher vektoránk (q) összeállítás 6 A Kv = q lineáris egyenletrendszer megoldás 7 A szerkezet csomópontjink elmozdulási (v) ismeretében elemenként másodlgos ismeretlenek meghtározás

32 Az egyensúlyi feltételt biztosító mátrix egyenletrendszer Végeselem módszer lklmzáskor csomóponti elmozdulásokt potenciális energi szélsőérték tétele lpján htározzuk meg q terhelő erő [kn] k rugó merevsége [kn/m] e q htásár keletkező összenyomódás (elmozdulás)

33 Az egyensúlyi feltételt biztosító mátrix egyenletrendszer A rugóbn felhlmozott belső energi: A q terhelő erő helyzeti energiánk csökkenése: A teljes potenciális energifüggvény: 21222

34 Az egyensúlyi feltételt biztosító mátrix egyenletrendszer Minden folymt z energi minimális szintjének elérésére irányul: Szerkezet esetén: K e = q K v = q e = K -1 q v = K -1 q

35 1 lépés geometrii finitizálás A szerkezet jellegének megfelelő elemekre bontás! A csomópontokt elfordulás és eltolódás ellen rögzítjük A támszok kezelése szempontjából kétféleképpen vehetjük fel trtó modelljét

36 Szerkezetek számítási modelljei ) A támszcsomópontokt is besoroljuk csomópontok közé (csk befogott rúdelemek) b) A támszcsomópontok külső csomópontként kezelendők, melyek nem vesznek részt számításbn (z ide cstlkozó rudkt kényszerkpcsoltuknk megfelelően kpcsoljuk külső csomóponthoz) Hátrány: bonyolult számítási lgoritmus, Előny: csomópontok szám kevesebb ismeretlenek szám is kisebb

37 Szerkezetek számítási modelljei Mindkét modellnél betrtndó, hogy minden belső csomóponthoz leglább egy rúdnk mereven kell kpcsolódni, kkor is, h csomópontbn rudk csuklóbn tlálkoznk A csomópontr rjzolt üres négyzetek z elfordulás és eltolódás elleni rögzítést jelentik (befogás) Minden belső csomópont szerepel számításbn, z ismeretlenek ezek elmozdulás-komponensei (v) Rúdelemek modelljei: befogott-befogott, befogott-csuklós, csuklósbefogott, csuklós-csuklós Konzol: terhet cstlkozó csomópontr redukáljuk

38 A csomópontok számozás A csomópontok sorszámozás meghtározz teljes számítási folymtot A rudk számozás: célszerű z áltluk összekötött csomópontok számivl jellemezni őket Globális koordinát rendszer: xyz okális koordinát rendszer: ξη A lokális koordinátrendszer origój rúd kisebbik sorszámú végén lévő km súlypontjábn vn A ξ tengely egybeesik rúd tengelyével, és ngyobb sorszámú csp felé mutt

39 2 lépés: Az elemek k ij merevségi mátrixánk előállítás A szerkezet (elem) merevsége mindig egy elmozdulás/elmozdítás nyomán keletkező belső erőt, igénybevételt jelent ( merevség szerkezet ellenállás z elmozdítássl szemben) A merevségi mátrix két rúdvégen beiktthtó három-három elmozdulás-komponensből ébred(het)ő három-három belső dinámot trtlmzz, zz egy 6 6 méretű mátrix k ij k k k ii ij ij ij = ji jj ij k ij (négy -s méretű blokk z egyes rúdvégeken ébredő erőket dj meg, sját ill másik vég lehetséges elmozdulási htásár) A háromféle típusú trtóelem megoldás erőmódszer szerint vn végrehjtv (támszelmozd) (TS: csomóponti erők, VEM: rúdvégi e)

40 Mindkét végén befogott rúd merevségi rekciói A rúdvégek egységnyi elmozdítás során ébredő rúdvégi erők és nyomtékok: i EA/ u iη =1 η EA 12 / 6 / 2 6 / 2-12 / j ξ -EA/ i -EA/ EA -6 / 2 u jξ =1 j EA/ u jη =1-12 / 12 / -6 / 2 ϑ i =1 4 / 6 / 2 2 / u iξ =1-6 / 2 6 / 2 2 / -6 / 2 ϑ j =1 4 / 4

41 Egy síkbeli rúdelem merevségi mátrix A mindkét végén befogott rúdelem merevségi mátrix: EA EA = EA EA k ij

42 i A csuklós-befogott végű rúd merevségi rekciói A rúdvégek egységnyi elmozdítás során ébredő rúdvégi erők és nyomtékok: u iξ =1 η EA j ξ i EA u jξ =1 EA/ -EA/ -EA/ EA/ u / 2 iη =1 - / / ϑ i 1 EI EI j u jη =1 - / / - / 2 / 2 EI EI ϑ j =1 / 42 - / 2

43 A kezdőpontbn csuklós, végpontbn befogott rúdelem merevségi mátrix: EA EA 2 Egy síkbeli rúdelem merevségi mátrix = EA EA k ij

44 A befogott-csuklós végű rúd merevségi rekciói A rúdvégek egységnyi elmozdítás során ébredő rúdvégi erők és nyomtékok i u iξ =1 η EA j ξ i EA u jξ =1 EA/ -EA/ -EA/ EA/ u iη =1 / 2 ϑ i 1 / 44 / / 2 - / - / 2 - / 2 - / / j u jη =1 ϑ j =1

45 A kezdőpontbn befogott, végpontbn csuklós rúdelem merevségi mátrix: 2 EA EA Egy síkbeli rúdelem merevségi mátrix 45 = EA EA k ij

46 A mindkét végén csuklós rúdelem merevségi mátrix: EA EA Egy síkbeli rúdelem merevségi mátrix 46 = EA EA k ij

47 A szerkezet K merevségi mátrix A teljes szerkezet merevségi K mátrixát csomópontok egységnyi elmozdulásiból keletkező csomóponti erők lkotják A teljes szerkezet merevségi mátrix z egyes rúdelemek merevségi mátrixiból tevődik össze A szerkezet merevségi mátrix összeállítás előtt z egyes rúdelemek lokális merevségi mátrixit globális koordinát-rendszerbe kell trnszformálni koordináttrnszformáció 47

48 4 lépés: A szerkezet K merevségi mátrixánk előállítás A teljes szerkezet merevségi mátrix z egyes rúdelemek merevségi mátrixiból tevődik össze A főátlóbn hely és z ok zonos, tehát itt csomópontb befutó rudk számávl megegyező számú rudnkénti merevségi mátrix blokk összege dj teljes merevségi mátrix elemet (blokkot) A többi (hiper)mátrixelem esetében hely és z ok nem zonos, tehát vizsgált helyen (csomópontbn) ébredő htás egy másik csomóponti elmozdulás mitt keletkezik h z illető pontpár között nincs rúd zéruselemek h z illető pontpár között vn rúd k ij 48

49 4 lépés: A szerkezet K merevségi mátrixánk előállítás A főátlóbn lévő hipermátrix-elemek mindig leglább két blokk összegeként jelennek meg, többi elem pedig vgy zérus, vgy egyetlen blokk ( csomópontok közötti vlós kpcsolt lététől függően) K = Σk 11 k12 k 1 k 21 Σk 22 k 2 k 1 k 2 Σk k n1 k n2 k n k1n k k Σk 2n n nn 49

50 lépés: terhek csomópontr redukálás A csomópontokr htó erők következők lehetnek: közvetlen csomóponti erő közvetlen csomóponti nyomték rúdról (rudkról) csomópontr átdódó erő (ez szármzht rúd erőterheléséből, rúd kinemtiki terheléséből) rúdról (rudkról) csomópontr átdódó nyomték (ez szármzht rúd erőterheléséből, rúd kinemtiki terheléséből) 5

51 lépés: terhek csomópontr redukálás Áltlános (térbeli) esetben csomópontr működő erőhtások és csomópont elmozdulási ( csomópont elmozdulási szbdságfokánk megfelelően) htfélék lesznek: F ix, F iy, F iz, M ix, M iy, M iz, ill e ix, e iy, e iz, φ ix, φ iy, φ iz Síkbeli (pl xy síkbeli) szerkezet esetében csomóponti erők-elmozdulások következők: F ix, F iy, M iz, ill e ix, e iy, φ iz Ezek z erő- ill elmozdulás-összetevők vektorokb rendezhetők erő- és elmozdulás vektorok 51

52 lépés: terhek csomópontr redukálás A rúdelemekre közvetlenül htó terheket rúd két végpontjár koncentráljuk, kár erő, kár elmozdulás, vgy lkváltozás jellegű teherről vn szól Adott esetben rúdelem tehervektorit teljes tehervektorb vló beillesztés előtt trnszformálni kell 52

53 lépés: terhek csomópontr redukálás A csomóponti terhek vektor: q, mely z egyes csomópontokhoz trtozó q i tehervektorból tevődik össze: q1 q2 q = qi qn hol q i F = F M ix = iy iz Adott esetben rúdelem tehervektorit teljes tehervektorb vló beillesztés előtt trnszformálni kell 5

54 5 lépés: redukált tehervektor (q) összeállítás Az elmozdulás-mentesnek feltételezett csomópontokr összegzett erők és nyomtékok szolgálttják csomóponti kiegyensúlyoztln dinámok vektorát, zz tehervektort q = q 1 q2 qi qn q i = F F M ix iy iz 54 Trtók Sttikáj I

55 6 lépés: A Kv = q lineáris egyenletrendszer megoldás A tehervektor és merevségi mátrix ismeretében felírhtó mátrix feltételi egyenletrendszer: K: globális merevségi mátrix K v = q v: ismeretlen csomóponti elmozdulások q: csomópontokr redukált terhek vektor v = K -1 q (A megoldási módszerek számos változtát dolgozták már ki) A v megoldásvektor elemei z egyensúlyi állpothoz trtozó csomóponti elmozdulás-összetevők lesznek 55

56 7 lépés: Igénybevételek, rekcióerők számítás A v elmozdulások ismeretében kiszámíthtó rúdelemek S igénybevételei és rekcióerői Ez rúdelemek k ij merevségi mátrixink felhsználásávl történik: S = k ij v Ehhez dott esetben csomópontok v elmozdulás-vektorit globális rendszerből lokálisb kell trnszformálni 56

2014/2015-ös tanév II. féléves tematika

2014/2015-ös tanév II. féléves tematika Dr Vincze Szilvi 24/25-ös tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási módszereik

Részletesebben

2010/2011 es tanév II. féléves tematika

2010/2011 es tanév II. féléves tematika 2 február 9 Dr Vincze Szilvi 2/2 es tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Lineáris egyenletrendszerek Összeállított: dr. Leitold Adrien egyetemi docens 2008.09.08. Leontieff-modellek Leontieff-modellek: input-output modellek gzdság leírásár legyen n féle, egymássl összefüggésben

Részletesebben

Néhány szó a mátrixokról

Néhány szó a mátrixokról VE 1 Az Néhány szó mátrixokról A : 11 1 m1 1 : m......... 1n n : mn tábláztot, hol ij H (i1,,m, j1,,n) H elemeiből képzett m n típusú vlós mátrixnk nevezzük. Továbbá zt mondjuk, hogy A-nk m sor és n oszlop

Részletesebben

Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.)

Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.) Dr. Vincze Szilvi Trtlomjegyzék.) Vektortér foglm.) Lineáris kombináció, lineáris függetlenség és lineáris függőség foglm 3.) Generátorrendszer, dimenzió, bázis 4.) Altér, rng, komptibilitás Vektortér

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés 1_5. Bevezetés Végeselem-módszer Végeselem-módszer 1. A geometriai tartomány (szerkezet) felosztása (véges)elemekre.. Lokális koordináta-rendszer felvétele, kapcsolat a lokális és globális koordinátarendszerek

Részletesebben

időpont? ütemterv számonkérés segédanyagok

időpont? ütemterv számonkérés segédanyagok időpont? ütemterv számonkérés segédanyagok 1. Bevezetés Végeselem-módszer Számítógépek alkalmazása a szerkezettervezésben: 1. a geometria megadása, tervkészítés, 2. műszaki számítások: - analitikus számítások

Részletesebben

DEME FERENC okl. építőmérnök, mérnöktanár RÁCSOS TARTÓK

DEME FERENC okl. építőmérnök, mérnöktanár RÁCSOS TARTÓK we-lap : www.hild.gyor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STTIK 47. RÁCSOS TRTÓK rácsos tartók két végükön csuklókkal összekötött merev testekől állnak. z így

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés 1_1. Bevezetés Végeselem-módszer Számítógépek alkalmazása a szerkezettervezésben: 1. a geometria megadása, tervkészítés, 2. mőszaki számítások: - analitikus számítások gyorsítása, az eredmények grafikus

Részletesebben

1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok

1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok /0 SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK MECHNIK-SZILÁRDSÁGTN GYKORLT (kidolgozt: Szüle Veronik, eg Ts; Trni Gábor mérnöktnár) Mtemtiki összefoglló, kiinduló feldtok Mátrilgebri összefoglló:

Részletesebben

1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok

1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK MECHNIK-SZILÁRDSÁGTN GYKORLT (kidolgozt: Szüle Veronik, eg Ts; Trni Gáor mérnöktnár) Mtemtiki összefoglló, kiinduló feldtok Mátrilgeri összefoglló: ) Mátri

Részletesebben

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. IV. Előadás

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. IV. Előadás DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II IV. Előadás Rácsos tartók szerkezeti formái, kialakítása, tönkremeneteli módjai. - Rácsos tartók jellemzói - Méretezési kérdések

Részletesebben

Végeselemes analízisen alapuló méretezési elvek az Eurocode 3 alapján. Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke

Végeselemes analízisen alapuló méretezési elvek az Eurocode 3 alapján. Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke Végeselemes analízisen alapuló méretezési elvek az Eurocode 3 alapján Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke 1 Tartalom Méretezési alapelvek Numerikus modellezés Analízis és

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek lineáris elsőfokú, z ismeretlenek ( i -k) elsőfokon szerepelnek. + + n n + + n n m + m +m n n m m n n mn n m (m n)(n )m A A: együtthtó mátri Megoldás: milyen értékeket vehetnek

Részletesebben

Algebrai struktúrák, mátrixok

Algebrai struktúrák, mátrixok A számítástudomány mtemtiki lpji Algebri struktúrák, mátrixok ef.: Algebri struktúrán olyn nemüres hlmzt értünk melyen leglább egy művelet vn definiálv. ef.: A H nemüres hlmzon értelmezett kétváltozós

Részletesebben

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 1 MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összefoglló 11 Mátrilgeri összefoglló: ) Mátri értelmezése, jelölése: Mátri:

Részletesebben

Vektorok. Vektoron irányított szakaszt értünk.

Vektorok. Vektoron irányított szakaszt értünk. Vektorok Vektoron irányított szkszt értünk A definíció értelmében tehát vektort kkor ismerjük, h ismerjük hosszát és z irányát A vektort kövér kis betűkkel (, b stb) jelöljük, megkülönböztetve z, b számoktól,

Részletesebben

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése Hrmdik típusú nyelvek és véges utomták Formális nyelvek, 10. gykorlt Házi feldtok megoldás 1. feldt Melyik nyelvet fogdj el következő utomt? c q 0 q 1 q 2 q 3 q 1 q 4 q 2 q 4 q 2 q 0 q 4 q 3 q 3 q 4 q

Részletesebben

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összeoglló Mátrilgeri összeoglló: ) Mátri értelmezése, jelölése: Mátri: skláris

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei 7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,

Részletesebben

Absztrakt vektorterek

Absztrakt vektorterek Absztrkt vektorterek Összeállított: dr. Leitold Adrien egyetemi docens 213. 1. 8. Absztrkt vektorterek /1. Absztrkt vektortér definíciój Legyen V egy hlmz, egy test (pl. vlós vgy komplex számtest), és

Részletesebben

3. el adás: Determinánsok

3. el adás: Determinánsok 3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns

Részletesebben

1. függelék. Mátrixszámítási praktikum-i. Mátrixaritmetikai eljárások

1. függelék. Mátrixszámítási praktikum-i. Mátrixaritmetikai eljárások . függelék-/5 oldl Eötvös Lóránd Tudományegyetem Természettudományi Kr Budpest Kemometri tnfolym, Szepesváry Pál. függelék Mátrixszámítási prktikum-i. Mátrixritmetiki eljárások . függelék-2/5 oldl Bevezető

Részletesebben

M. 2. Döntsük el, hogy a következő két szám közül melyik a nagyobb:

M. 2. Döntsük el, hogy a következő két szám közül melyik a nagyobb: Mgyr Ifjúság (Rábi Imre) Az előző években közöltük Mgyr Ifjúságbn közös érettségi-felvételi feldtok megoldását mtemtikából és fizikából. Tpsztltuk, hogy igen ngy volt z érdeklődés lpunk e szám iránt. Évente

Részletesebben

Törésmechanika. Statikus törésmechanikai vizsgálatok

Törésmechanika. Statikus törésmechanikai vizsgálatok Törésmechnik (Gykorlti segédlet) A C törési szívósság meghtározás Sttikus törésmechniki vizsgáltok A vizsgáltokt áltlábn z 1. és. ábrán láthtó úgynevezett háromontos hjlító (TPB) illetve CT róbtesteken

Részletesebben

Excel. Feladatok 2015.02.13. Geotechnikai numerikus módszerek 2015

Excel. Feladatok 2015.02.13. Geotechnikai numerikus módszerek 2015 05.0.3. Ecel Geotechniki numerikus módszerek 05 Feldtok Szögtámfl ellenőrzése A Ferde, terhelt térszín, szemcsés háttöltés, elcsúszás, nyomtéki ábr Sávlp süllyedésszámítás B Két tljréteg, krkterisztikus

Részletesebben

Házi feladatok megoldása. Automaták analízise, szintézise és minimalizálása. Házi feladatok megoldása. Házi feladatok megoldása

Házi feladatok megoldása. Automaták analízise, szintézise és minimalizálása. Házi feladatok megoldása. Házi feladatok megoldása Automták nlízise, szintézise és minimlizálás Formális nyelvek, 11. gykorlt Célj: Az utomták nlízisének és szintézisének gykorlás, utomt minimlizáió Foglmk: Anlízis és szintézis, nyelvi egyenlet és egyenletrendszer

Részletesebben

II. A számtani és mértani közép közötti összefüggés

II. A számtani és mértani közép közötti összefüggés 4 MATEMATIKA A 0. ÉVFOLYAM TANULÓK KÖNYVE II. A számtni és mértni közép közötti összefüggés Mintpéld 6 Számítsuk ki következő számok számtni és mértni közepeit, és ábrázoljuk számegyenesen számokt és közepeket!

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens átrixok Összeállított: dr. Leitold Adrie egyetemi doces 28.9.8. átrix átrix: tégllp lkú számtáblázt 2 2 22 2 Amx = O m m2 Jelölés: A, A mx, ( ij ) mx átrix típus (redje): m x, A R m x m: sorok szám : oszlopok

Részletesebben

IV. Algebra. Algebrai átalakítások. Polinomok

IV. Algebra. Algebrai átalakítások. Polinomok Alger Algeri átlkítások olinomok 6 ) Öttel oszthtó számok pl: -0-5 0 5 áltlánosn 5 $ l lkú, hol l tetszôleges egész szám Mtemtiki jelöléssel: 5 $ l hol l! Z ) $ k+ vgy$ k- hol k! Z $ m- vgy $ m+ lkú, hol

Részletesebben

2. Gauss elimináció. 2.1 Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:

2. Gauss elimináció. 2.1 Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert: . Guss elimináció.1 Oldjuk meg Guss-Jordn eliminációvl következő egyenletrendszert: x - x + x + x5 = -5 x1-7x + 8x - 5x = 9 x1-9x + 1x - 9x = 15. A t prméter mely értékeire nincs z egyenletrendszernek

Részletesebben

Tartószerkezetek modellezése

Tartószerkezetek modellezése Tartószerkezetek modellezése 5. elıadás Tervezési folyamat Szerkezetek mérete, modellje Végeselem-módszer elve, alkalmazhatósága Tervezési folyamat, együttmőködés más szakágakkal: mérnök építész mőszaki

Részletesebben

Vektoralgebra. Ebben a részben a vektorokat aláhúzással jelöljük

Vektoralgebra. Ebben a részben a vektorokat aláhúzással jelöljük Vektorlger VE Vektorlger Een részen vektorokt láhúzássl jelöljük Vektorlger VE Szdvektorok Helyzetvektorok (kötött vektorok) Az irányított szkszok hlmzán z eltolás, mint ekvivlenci reláció, áltl generált

Részletesebben

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz 2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix

Részletesebben

Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015.

Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015. Gyakorlati útmutató a tárgyhoz Fekete Ferenc 5. gyakorlat Széchenyi István Egyetem, 015. 1. ásodrendű hatások közelítő számítása A következőkben egy, a statikai vizsgálatoknál másodrendű hatások közelítő

Részletesebben

Vektoralgebra előadás fóliák. Elméleti anyag tételek, definíciók, bizonyítás vázlatok. Bércesné Novák Ágnes 1. Források, ajánlott irodalom:

Vektoralgebra előadás fóliák. Elméleti anyag tételek, definíciók, bizonyítás vázlatok. Bércesné Novák Ágnes 1. Források, ajánlott irodalom: Bevezetés számítástudomány mtemtiki lpji Vektorlger elődás fóliák Elméleti nyg tételek, definíciók, izonyítás vázltok Bércesné Novák Ágnes Források, jánlott irodlom: Hjós György: Bevezetés geometriá, Tnkönyvkidó,

Részletesebben

1. Végezd el a kijelölt mûveleteket a betûk helyére írt számokkal! Húzd alá azokat a mûveleteket,

1. Végezd el a kijelölt mûveleteket a betûk helyére írt számokkal! Húzd alá azokat a mûveleteket, Számok és mûveletek + b b + Összedásnál tgok felcserélhetõk. (kommuttív tuljdonság) ( + b) + c + (b + c) Összedásnál tgok csoportosíthtók. (sszocitív tuljdonság) b b ( b) c (b c) 1. Végezd el kijelölt

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

FELVÉTELI VIZSGA, július 15.

FELVÉTELI VIZSGA, július 15. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy

Részletesebben

VEKTOROK ÉS MÁTRIXOK

VEKTOROK ÉS MÁTRIXOK DR NAGY TAMÁS VEKTOROK ÉS MÁTRIXOK Miskolc, A bemuttott kuttó munk TÁMOP-B-//KONV-- jelű projekt részeként z Európi Unió támogtásávl, z Európi Szociális Alp társfinnszírozásávl vlósul meg This reserch

Részletesebben

Minta feladatsor I. rész

Minta feladatsor I. rész Mint feldtsor I. rész. Írj fel z A számot htványként! A / pont/. Mekkor hosszúságú dróttl lehet egy m m-es tégllp lkú testet z átlój mentén felosztni két derékszögű háromszögre? Adj meg hosszúságot mértékegységgel!

Részletesebben

Lineáris algebra LI 1. Lineáris algebra. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Lineáris algebra LI 1. Lineáris algebra. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! LI Definíció: mátri LI Legyen m és n pozitív egész szám. Az : m : m......... n n : mn tábláztot m n típusú mártink nevezzük, és zt mondjuk, hogy A-nk m sor és n oszlop vn. ij z A mátri i-deik soránk j-edik

Részletesebben

A vezetői munka alapelemei - Döntéselmélet, döntéshozatal lehetséges útjai

A vezetői munka alapelemei - Döntéselmélet, döntéshozatal lehetséges útjai A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji Szkgyógyszerész-jelöltek képzése Király Gyul Az operációkuttás rövid Mérföldkövek törtéete II. világháború ltt strtégii és tktiki ktoi

Részletesebben

Mátrixok és determinánsok

Mátrixok és determinánsok Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.

Részletesebben

Mátrixok. 3. fejezet. 3.1. Bevezetés: műveletek táblázatokkal

Mátrixok. 3. fejezet. 3.1. Bevezetés: műveletek táblázatokkal fejezet Mátrixok Az előző fejezetben a mátrixokat csak egyszerű jelölésnek tekintettük, mely az egyenletrendszer együtthatóinak tárolására, és az egyenletrendszer megoldása közbeni számítások egyszerüsítésére

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

TERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22.

TERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22. TERMÉKZIMULÁCIÓ Végeselem módszer Termékszimuláció tantárgy 6. elıadás 211. március 22. Elıadó: Dr. Kovács Zsolt egyetemi tanár A végeselem módszer lényege A vizsgált, tetszıleges geometriai kialakítású

Részletesebben

n m dimenziós mátrix: egy n sorból és m oszlopból álló számtáblázat. n dimenziós (oszlop)vektor egy n sorból és 1 oszlopból álló mátrix.

n m dimenziós mátrix: egy n sorból és m oszlopból álló számtáblázat. n dimenziós (oszlop)vektor egy n sorból és 1 oszlopból álló mátrix. Vektorok, átrok dezós átr: egy soról és oszlopól álló szátálázt. L L Jelölés: A A, L hol z -edk sor -edk elee. dezós (oszlop)vektor egy soról és oszlopól álló átr. Jelölés: u u,...,, hol z -edk koordát.

Részletesebben

Bevezetés az algebrába 1

Bevezetés az algebrába 1 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Determinánsok H406 2017-11-27 Wettl Ferenc ALGEBRA

Részletesebben

DEBRECENI EGYETEM Műszaki Kar GYAKORLATI FELADATOK Hajdu Sándor 2009. MŰSZAKI MECHANIKA I.

DEBRECENI EGYETEM Műszaki Kar GYAKORLATI FELADATOK Hajdu Sándor 2009. MŰSZAKI MECHANIKA I. DERECENI EGYETEM Műszki Kr GYKORLTI ELDTOK Hjdu Sándor 2009. MŰSZKI MECHNIK I. 1 VEKTORLGER...2 2 ERŐK ÖSSZEGZÉSE, ÖSSZETEVŐKRE ONTÁS, NYGI PONTR HTÓ ERŐRENDSZEREK EGYENÉRTÉKŰSÉGE ÉS EGYENSÚLY...2 3 KÖTÖTT

Részletesebben

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke? . Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik

Részletesebben

I. VEKTOROK, MÁTRIXOK

I. VEKTOROK, MÁTRIXOK 217/18 1 félév I VEKTOROK, MÁTRIXOK I1 I2 Vektorok 1 A síkon derékszögű koordinátarendszerben minden v vektornak van vízszintes és van függőleges koordinátája, ezeket sorrendben v 1 és v 2 jelöli A v síkbeli

Részletesebben

Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül.

Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül. 01.03.16. RADNAY László Tnársegéd Debreceni Egyetem Műszki Kr Építőmérnöki Tnszék E-mil: rdnylszlo@gmil.com Mobil: +36 0 416 59 14 Definíciók: Kinemtik: A mechnikánk z része, mely testek mozgását vizsgálj

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

Gyökvonás. Hatvány, gyök, logaritmus áttekintés

Gyökvonás. Hatvány, gyök, logaritmus áttekintés Htvány, gyök, logritmus áttekintés. osztály Gyökvonás Négyzetgyök: Vlmely nem negtív vlós szám négyzetgyöke olyn nem negtív vlós szám, melynek négyzete z szám. Mgj.: R = Azonosságok: b ; b k ;, h, b R

Részletesebben

1. Laboratóriumi gyakorlat ELMÉLETI ALAPFOGALMAK

1. Laboratóriumi gyakorlat ELMÉLETI ALAPFOGALMAK . Lortóriumi gykorlt LMÉLTI ALAPFOGALMAK. Műveleti erősítők A műveleti erősítőket feszültség erősítésre, összehsonlításr illetve különöző mtemtiki műveletek elvégzésére hsználják (összedás, kivonás, deriválás,

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens átrixok Összeállított: dr. Leitold Adrie egyetemi doces 28.9.8. átrix átrix: tégllp lkú számtáblázt 2 2 22 2 Am = O m m2 Jelölés: A, A mx, ( ij ) mx átrix típus (redje): m x m: sorok szám : oszlopok szám

Részletesebben

Informatika alapjai Tantárgyhoz Kidolgozott Excel feladatok

Informatika alapjai Tantárgyhoz Kidolgozott Excel feladatok SZENT ISTVÁN EGYETEM Gépészmérnöki Kr Orov Lászlóné dr. Informtik lpji Tntárgyhoz Kidolgozott Ecel feldtok Gödöllı, 8. Bevezetı Ez feldtgyőjtemény összefogllj z Informtik lpji tntárgy keretében okttott,

Részletesebben

Ellenállás mérés hídmódszerrel

Ellenállás mérés hídmódszerrel 1. Lbortóriumi gykorlt Ellenállás mérés hídmódszerrel 1. A gykorlt célkitűzései A Whestone-híd felépítésének tnulmányozás, ellenállások mérése 10-10 5 trtománybn, híd érzékenységének meghtározás, vlmint

Részletesebben

Gauss elimináció, LU felbontás

Gauss elimináció, LU felbontás Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek

Részletesebben

Aszimmetrikus hibák számítási módszere, a hálózati elemek sorrendi helyettesítő vázlatai. Aszimmetrikus zárlatok számítása.

Aszimmetrikus hibák számítási módszere, a hálózati elemek sorrendi helyettesítő vázlatai. Aszimmetrikus zárlatok számítása. VEL.4 Aszimmetrikus hiák számítási módszere, hálózti elemek sorrendi helyettesítő vázlti. Aszimmetrikus zárltok számítás. Szimmetrikus összetevők módszere Alpelve, hogy ármilyen tetszőleges szimmetrikus

Részletesebben

Mátrixok, mátrixműveletek

Mátrixok, mátrixműveletek Mátrixok, mátrixműveletek 1 előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Mátrixok, mátrixműveletek p 1/1 Mátrixok definíciója Definíció Helyezzünk el n m elemet egy olyan téglalap

Részletesebben

Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 4. gyakorlat. Széchenyi István Egyetem,

Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 4. gyakorlat. Széchenyi István Egyetem, Gyakorlati útmutató a Tartók statikája I. tárgyhoz Fekete Ferenc 4. gyakorlat Széchenyi István Egyetem, 0..3. . Feladat Határozza meg a képen látható tartó A támaszra vonatkozó reakcióerő hatásábráját,

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logritmusos feldtok A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z

Részletesebben

Lajk o K aroly Kalkulus II. Debreceni Egyetem Matematikai es Informatikai Int ezet 2003 1

Lajk o K aroly Kalkulus II. Debreceni Egyetem Matematikai es Informatikai Int ezet 2003 1 Ljkó Károly Klkulus II. Debreceni Egyetem Mtemtiki és Informtiki Intézet 2003 1 c Ljkó Károly ljko @ mth.klte.hu Amennyiben hibát tlál jegyzetben, kérjük jelezze szerzőnek! A jegyzet dvi, pdf és ps formátumbn

Részletesebben

PIACI SZERKEZETEK BMEGT30A hét, 2. óra: Stackelberg-oligopólium

PIACI SZERKEZETEK BMEGT30A hét, 2. óra: Stackelberg-oligopólium IACI SZEREZETE BMEGT30A104 8. hét,. ór: Stkelerg-oligopólium RN: 11.1 fejezet 019.04.03. 1:15 QAF14 upsik Rék (kupsikr@kgt.me.hu) Stkelerg-oligopólium: feltételek Strtégii változó: mennyiség Szekveniális

Részletesebben

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6. Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

Pere Balázs október 20.

Pere Balázs október 20. Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?

Részletesebben

2. előadás. Lineáris algebra numerikus módszerei. Mátrixok Mátrixműveletek Speciális mátrixok, vektorok Norma

2. előadás. Lineáris algebra numerikus módszerei. Mátrixok Mátrixműveletek Speciális mátrixok, vektorok Norma Mátrixok Definíció Az m n típusú (méretű) valós A mátrixon valós a ij számok alábbi táblázatát értjük: a 11 a 12... a 1j... a 1n.......... A = a i1 a i2... a ij... a in........... a m1 a m2... a mj...

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2

Részletesebben

12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor

12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor 12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása

Részletesebben

Lemez- és gerendaalapok méretezése

Lemez- és gerendaalapok méretezése Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén

Részletesebben

MUNKAGÖDÖR TERVEZÉSE

MUNKAGÖDÖR TERVEZÉSE MUNKAGÖDÖR TERVEZÉSE Munkagödör tervezése Munkatérhatárolás szerkezetei Munkagödör méretezés Plaxis programmal Munkagödör méretezés Geo 5 programmal Tartalom Bevezetés VEM - geotechnikai alkalmazási területek

Részletesebben

Versenyautó futóművek. Járműdinamikai érdekességek a versenyautók világából

Versenyautó futóművek. Járműdinamikai érdekességek a versenyautók világából Versenyutó futóművek Járműdinmiki érdekességek versenyutók világából Trtlom Bevezetés Alpfoglmk A gumibroncs Futómű geometri Átterhelődések Futómű kinemtik 2 Trtlom 2 Bevezetés Bevezetés Alpfoglmk A gumibroncs

Részletesebben

Lineáris algebra (10A103)

Lineáris algebra (10A103) Lineáris algebra (10A103 Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli (beugróval, feltétele a Lineáris algebra gyakorlat

Részletesebben

Matematika példatár 6.

Matematika példatár 6. Nyugt-mgyrországi Egyetem Geoinformtiki Kr Csordásné Mrton Melind Mtemtik példtár 6 MAT6 modul Lineáris lgebr I SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket szerzői jogról szóló 1999 évi LXXVI törvény védi

Részletesebben

a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a

a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a 44 HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, évfolym MEGOLDÁSOK Mutssuk meg, hogy egy tetszőleges tégltest háromféle lpátlójából szerkesztett háromszög hegyesszögű lesz! 6 pont A tégltest egy

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Felvonók méretezése. Üzemi viszonyok. (villamos felvonók) Hlatky Endre

Felvonók méretezése. Üzemi viszonyok. (villamos felvonók) Hlatky Endre Felvonók méretezése Üzemi viszonyok (villmos felvonók) Hltky Endre Trtlom A felvonó üzemviszonyi Cél: felvonó működése során előforduló üzemállpotokbn kilkuló erők és nyomtékok meghtározás, berendezés

Részletesebben

Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban

Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban tanszékvezető, főiskolai docens a Magyar Építész Kamara tagja a Magyar Mérnöki Kamara tagja a fib Magyar Tagozatának tagja az ÉTE Debreceni

Részletesebben

SZENT ISTVÁN EGYETEM Gépészmérnöki Kar. Orova Lászlóné dr. Számítástechnika I. Tantárgyhoz Kidolgozott Excel feladatok. Gödöllő, 2004.

SZENT ISTVÁN EGYETEM Gépészmérnöki Kar. Orova Lászlóné dr. Számítástechnika I. Tantárgyhoz Kidolgozott Excel feladatok. Gödöllő, 2004. SZENT ISTVÁN EGYETEM Gépészmérnöki Kr Orov Lászlóné dr. Számítástechnik I. Tntárgyhoz Kidolgozott Ecel feldtok Gödöllő,. SZIE Informtik Tnszék Ecel - kidolgozott feldtok Bevezető A Számítástechnik I. tntárgy

Részletesebben

4. Hatványozás, gyökvonás

4. Hatványozás, gyökvonás I. Nulldik ZH-bn láttuk:. Htványozás, gyökvonás. Válssz ki, hogy z lábbik közül melyikkel egyezik meg következő kifejezés, h, y és z pozitív számok! 7 y z z y (A) 7 8 y z (B) 7 8 y z (C) 9 9 8 y z (D)

Részletesebben

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I ALKALMAZOTT MECHANIKA TANSZÉK V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I Előadásvázlat a Multidiszciplináris Műszaki Tudományi Doktori Iskola hallgatói számára

Részletesebben

Vektorok (folytatás)

Vektorok (folytatás) Vektorok (folyttás) Vektor szorzás számml (sklárrl) Vektor szorzás számml b 1 c 2b c 2 ( 1 ) 2 Az vektor k-szoros (k R, vgyis k egy vlós szám) z vektor, melynek hossz k, irány pedig k > 0 esetén irányávl

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke (

Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke ( 9 4 FÜGGVÉNYVIZSGÁLAT Htározzuk meg, hogy következő függvényeknek vn-e és hol zérushelye, továbbá helyi szélsőértéke és bszolút szélsőértéke (41-41): 41 f: f, R 4 f: 4 f: f 5, R f 5 44 f: f, 1, 1 1, R

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

Szöveges feladatok a mátrixaritmetika alkalmazására

Szöveges feladatok a mátrixaritmetika alkalmazására Szöveges feladatok a mátrixaritmetika alkalmazására Bevezetés: Tekintsük az alábbi -es mátrixot: A. Szorozzuk meg ezt jobbról egy alkalmas méretű (azaz -es) oszlopvektorral, amely az R tér kanonikus bázisának

Részletesebben

1144 PROGRAMOZÁSMÓDSZERTAN, PROGRAMOZÁSI NYELVEK

1144 PROGRAMOZÁSMÓDSZERTAN, PROGRAMOZÁSI NYELVEK PROGRAMOZÁSMÓDSZERTAN, PROGRAMOZÁSI NYELVEK ESETFELVETÉS- MUNKAHELYZET A következő fejezetekben zokkl z lpvető mtemtiki lpokkl ismerkedhet meg, melyek tudás elengedhetetlen z lpvető progrmozási ismeretek

Részletesebben

TERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA

TERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA 9 MÉRÉEK A KLAZKU FZKA LABORATÓRUMBAN TERMOELEKTROMO HŰTŐELEMEK VZGÁLATA 1. Bevezetés A termoelektromos jelenségek vizsgált etekintést enged termikus és z elektromos jelenségkör kpcsoltár. A termoelektromos

Részletesebben

CONSTEEL 8 ÚJDONSÁGOK

CONSTEEL 8 ÚJDONSÁGOK CONSTEEL 8 ÚJDONSÁGOK Verzió 8.0 2013.11.20 www.consteelsoftware.com Tartalomjegyzék 1. Szerkezet modellezés... 2 1.1 Új szelvénykatalógusok... 2 1.2 Diafragma elem... 2 1.3 Merev test... 2 1.4 Rúdelemek

Részletesebben

2. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Erők eredője, fölbontása

2. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Erők eredője, fölbontása SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK. MECHNIK-STTIK GYKORLT (kidolgozt: Triesz Péter, eg. ts.; Trni Gábor, mérnök tnár) Erők eredője, fölbontás.1. Péld dott eg erő és eg egenes irán-egségvektor:

Részletesebben