FARMAKODINÁMIA. mit tesz a gyógyszer a szervezettel

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "FARMAKODINÁMIA. mit tesz a gyógyszer a szervezettel"

Átírás

1 FARMAKODINÁMIA mit tesz a gyógyszer a szervezettel

2 Gyógyszerhatások alapvető mechanizmusai 1. Kötődés FEHÉRJÉKHEZ - receptorok - enzimek - ioncsatornák - transzportfehérjék (carrierek) - szerkezeti fehérjék

3 Gyógyszerhatások alapvető mechanizmusai 2. Kötődés DNS-HEZ pl. alkiláló citosztatikumok 3. Egyéb - ozmotikus hatás pl. ozmotikus diuretikum, ozmotikus hashajtó - só- vagy komplexképződés pl. antacidum + gyomorsósav, cholestyramin + epesavak

4 Receptorok specifikusan kötnek endogén vagy exogén kémiai anyagokat (ligandok) egyetlen ismert funkciójuk a ligand felismerése és jelenlétének közvetítése a sejt felé Ligand típusai AGONISTA: kötődik a receptorhoz biológiai hatás ANTAGONISTA: kötődik a receptorhoz, ugyanazon a kötőhelyen hatást NEM vált ki DE: meggátolja az endogén agonista kötődését ALLOSZTERIKUS MODULÁTOR: a receptoron másik helyre kötődik modulálja az endogén agonista hatását (pozitív/negatív alloszterikus modulátor) INVERZ AGONISTA : kötődik a receptorhoz ellentétes biológiai hatás

5 Enzimek ENZIMGÁTLÓ: az enzim által katalizált reakció sebessége csökken ibuprofen - ciklooxigenáz (COX) physostigmin - acetilkolin-észteráz - irreverzibilis gátlás pl. aszpirin COX HAMIS SZUBSZTRÁT: a gyógyszermolekula szintén szubsztrátja az enzimnek kompetíció alakul ki az endogén szubsztráttal + hamis termék képződik α- metildopa - DOPA-dekarboxiláz α-metil-noradrenalin SERKENTŐ: növeli az enzim által katalizált reakció sebességét nitroglycerin NO - guanilát cikláz

6 Ioncsatornák LIGANDfüggő = ioncsatornához-kapcsolt receptor pl. acetilkolin nikotinreceptora FESZÜLTSÉGfüggő Blokkolók: fizikailag eldugaszolják az ioncsatornát így akadályozzák meg az ionok átjutását pl. lidocain feszültségfüggő Na + -csatornák Modulátorok: növelik vagy csökentik a csatornanyitás valószínűségét (pozitív/negatív modulátor) pl. amlodipin feszültségfüggő Ca 2+ -csatornák negatív modulátora

7 Transzportfehérjék (carrier-ek) GÁTLÓK: meggátolja az endogén anyag transzportját pl. kokain, triciklikus antidepresszánsok uptake-1 (noradrenalin visszavételt végző transzporter, NET) HAMIS SZUBSZTRÁT: a gyógyszer maga is transzportálódik és kompetíció révén csökkenti az endogén anyag transzportját pl. amfetamin uptake-1

8 Szerkezeti fehérjék Mechanizmusok: Tubulin polimerizáció gátlása révén megakadályozzák az osztódási orsó kialakulását pl. Vinca alkaloidok: vincristin A polimerizált mikrotubulusok átrendeződését gátolva akadályozzák meg az osztódást pl. taxánok: paclitaxel

9 Gyógyszer-receptor interakció Receptor okkupancia modell: - a gyógyszer-receptor kötődés során dinamikus egyensúly alakul ki - a gyógyszerhatás az elfoglalt receptorok hányadával (= okkupancia) arányos receptor- jelátvitel receptorokkupancia aktiváció A + R AR AR* Hatás koncentráció okkupancia összefüggés okkupancia hatás összefüggés koncentráció -hatás összefüggés

10 Koncentráció okkupancia összefüggés egyensúlyban v 1 = v 2 A + R k 1 szabad ligand + szabad receptor k 2 AR ligand-receptor komplex k 1 c (N t N A ) = k 2 N A c - ligand koncentráció N t összes receptorszám N A - ligand-receptor komplexek száma ( foglalt receptor) HILL-LANGMUIR EGYENLET: N A c N c K okkupancia (p) = t d k k 2 1 K d - egyensúlyi disszociációs konstans

11 p = N N A t c c K d A receptor okkupancia 2 tényezőtől függ: 1. a ligand koncentrációja 2. K d a ligand adott receptorhoz való kötődési hajlamát jellemzi = affinitás DE: az affinitás és a K d fordítottan arányosak egymással! (annál erősebben kötődik, minél kisebb a K d )

12 Ligand koncentráció-okkupancia görbe okkupancia p = N N A t c c K ha c = K d akkor p = 0.5 d K d azzal a ligand koncentrációval egyenlő, amelynél a receptorok fele foglalt ligand cc. K d

13 Ligand koncentráció-okkupancia görbe 1 SZEMI- LOGARITMIKUS SKÁLA okkupancia 0.5 szigmoid görbe ligand cc. K d

14 Dózis-hatás (koncentráció-hatás) görbe 1. elhelyezkedés az x tengelyen HATÁSERŐSSÉG 100 teljes agonista % hatás meredekség parciális agonista 2. hatás maximuma HATÉKONY- SÁG dózis/konc. ED 50 ED 50

15 1. Hatáserősség (potency) A görbe elhelyezkedése a dózis (koncentráció) tengely mentén mutatja meg, mekkora dózis (koncentráció) szükséges adott mértékű hatás kiváltásához. A hatáserősséget azzal a dózissal vagy koncentrációval jellemezhetjük, ami a maximális hatás 50%át váltja ki: effective dose/concentration 50 (ED 50 /EC 50 ). a hatáserőség és az EC 50 /ED 50 fordítottan arányosak egymással! ped 50 (pec 50 ): ED 50 (EC 50 ) negatív logaritmusa, ami viszont arányos a hatáserősséggel pl. EC 50 =10-7 M pec 50 =7

16 2. Hatékonyság (efficacy) A görbe maximuma, vagyis az adott szerrel elérhető maximális hatás (E max ) Intrinszik aktivitás (IA): Az a tizedestört, amely megmutatja, hogy a teljes receptorokkupancia mellett adott szerek a teljes (maximális) hatás mekkora hányadát hozzák létre. antagonista parciális agonista teljes agonista IA=0 0 < IA < 1 IA=1

17 3. Görbe meredeksége Minél meredekebb a dózis (koncentráció)-hatás görbe középső szakasza, annál nagyobb lesz adott mértékű dózisemelés esetén a hatásfokozódás. Ha nagyon meredek a görbe, ez azt eredményezheti, hogy a terapiás index kisebb lesz TERÁPIÁS INDEX: letális (vagy toxikus) dózis 50 és a hatékony dózis 50 aránya LD ED TD ED 50 50

18 A receptoriális hatást befolyásoló tényezők E E max f c c K d N t A ligand részéről: c = ligand koncentrációja K d = ligand affinitása ε = a ligand hatékonyságát kifejező paraméter (intrinsic hatékonyság) intrinsic aktivitás! Az adott szövet/szerv részéről: f = a jelátviteli folyamatokat leíró függvény N t =össz receptorszám

19 Okkupancia-hatás öszefüggés 100 D C A A - teljes agonista B - parciális agonista % hatás 50 B C, D - teljes agonista receptor rezervvel okkupancia %

20 Okkupancia hatás összefüggés TARTALÉK RECEPTOROK avagy RECEPTOR-REZERV Legritkább esetben 1:1 az összefüggés a receptor okkupancia és a hatás %- között. Jellemzőbb eset, hogy már részleges receptorokkupancia kiváltja a maximális hatást. EC 50 < K d TARTALÉK RECEPTOROK/RECEPTOR REZERV = azon receptorok aránya, amelyek az agonista által kiváltott maximális hatás mellett is szabadon maradnak Parciális agonista: 100%-os okkupancia mellett sem vált ki maximális hatást.

21 Tachyphylaxia, tolerancia Ismételt gyógyszeradagolás esetén hatáscsökkenés következik be, azaz: - ugyanaz a dózis kisebb választ vált ki VAGY - magasabb dózis szükséges a hatás kiváltásához nem feltétlenül egyformán minden hatáshoz! pl. morfin: pupillaszűkítő hatásra alig TACHYPHYLAXIA (DESZENZIBILIZÁCIÓ): percek-órák alatt kialakul TOLERANCIA: lassan, fokozatosan alakul ki, napok-hetek alatt

22 Tachyphylaxia, tolerancia: mechanizmusok a) Receptor-deszenzibilizáció pl. adrenerg β receptor agonisták b) Receptorszám-változás: endocytosis, transzkripció változás (down-reguláció vagy up-reguláció) pl. adrenerg β receptor agonisták c) Mediátor depléció pl. indirekt szimpatomimetikumok d) Gyógyszerelimináció fokozódása (enzimindukció) pl. phenobarbital e) Gyógyszerellenes antitest képződése pl. inzulin f) Aktív efflux ( kipumpálás ) a célsejtekből pl. citosztatikumok g) Fiziológiai adaptáció: kompenzatorikus válasz pl. vazodilatátor vérnyomáscsökkentők

23 Kombinatív gyógyszerhatások Addíció: a hatás a két gyógyszer hatásának összege pl.: adrenerg β 2 -agonista + muszkarin receptor antagonista bronchodilatáció Potencírozás: az együttes hatás sokkal nagyobb, mint a kettő összege pl.: etanol + KIR depresszánsok, NO donor + sildenafil Antagonizmus: a létrejövő hatás kisebb, mint az egyes hatások összege

24 Gyógyszerantagonizmusok RECEPTORIÁLIS kompetitív nem-kompetitív (alloszterikus) reverzibilis irreverzibilis NEM-RECEPTORIÁLIS szignál transzdukció gátlása funkcionális (fiziológiás): ellentétes hatás ugyanazon a szöveten vagy szerven farmakokinetikai pl. abszorpció gátlása, elimináció fokozása kémiai: megkötés, neutralizáció

25 100 Reverzibilis kompetitív antagonizmus az agonista és az antagonista ugyanazon a kötőhelyen KOMPETICIÓ antagonista conc. (µm) áttörhető % hatás 50 a görbe párhuzamosan jobbra tolódik agonista conc.

26 Reverzibilis kompetitív antagonizmus kvantitatív jellemzése Agonista okkupanciája kompetitív antagonista jelenlétében: p Ag c K Ag d Ag c K Ag d K Ag c Ant d Ant 1 - függ az agonista és antagonista affinitásától és koncentrációiktól

27 Reverzibilis kompetitív antagonizmus SCHILD EGYENLET: kvantitatív jellemzése Dózis (koncentráció) arány: az a hányados, amennyivel az agonista dózisát (koncentrációját) meg kell növelni ahhoz, hogy ugyanazt a hatást váltsa ki az antagonista jelenlétében, mint anélkül c ' c Ag dózisarány (r) = Ant 1 c K Ag K d Ant az antagonista egyensúlyi disszociációs konstansa = az az antagonista koncentráció, amelynél az agonista koncentrációját kétszeresre kell növelni (r=2), hogy elérje ugyanazt a hatást, mint antagonista nélkül d Ant nem kell ismerni az agonista affinitását! pa 2 : K d Ant negatív logaritmusa

28 Irreverzibilis kompetitív antagonizmus 100 nem áttörhető! antagonista conc. (µm) % hatás agonista conc.

29 100 Irreverzibilis kompetitív antagonizmus receptor rezerv esetén antagonista conc. (µm) % hatás agonista conc.

30 Irreverzibilis kompetitív antagonizmus Az agonista receptor okkupanciája az antagonista jelenlétében: p Ag c Ag c Ag K d Ag ( 1 pant ) az antagonista által elfoglalt receptorok hányada az agonista nem tud 100%-os okkupanciát elérni

31 100 IC 50 : antagonista koncentráció, ami a maximális agonista hatást 50%-kal csökkenti. % hatás antagonista cc. IC 50 (µm)

32 Alloszterikus antagonizmus Az antagonista a receptoron teljesen más kötőhelyre kapcsolódik (alloszterikus kötőhely), mint az endogén agonista gátolja az agonista kötődését és/vagy a jelátviteli útvonalat pl. ketamin - NMDA receptor

33 Példák nem-receptoriális antagonizmusra JELÁTVITELI ÚT GÁTLÁSA: a receptoraktivációt követő intracelluláris jelátviteli folyamatokat gátolja pl. lítium FUNKCIONÁLIS: az agonista és antagonista eltérő receptoron, ellentétes hatás fejt ki az adott sejten pl. simaizmon: ACh M 3 -receptor vs. adrenalin β 2 -receptor FARMAKOKINETIKAI: farmakokinetikai interakció révén csökkenti az adott szer szöveti koncentrációját pl. atropin gyomorürülés lassul, felszívódás csökken KÉMIAI: az antagonista megköti az agonista molekulákat pl. komlexképződés révén pl.: heparin protamin

34 Jelátvitel

35 Receptorok osztályozása jelátviteli mechanizmusok alapján 1. Ioncsatornához kapcsolt pl.: ACh nikotin receptorok 2. G-proteinhez kapcsolt pl: ACh muszkarin receptorok 3. Enzimhez kapcsolt pl.: inzulin 4. Intracelluláris pl.: szteroid hormonok

36 Receptorok osztályozása jelátviteli mechanizmusok alapján

37 1. Ioncsatornához kapcsolt (ionotróp) receptorok (=ligandfüggő ioncsatorna) - szerkezet: 4-5 alegység hozza létre a csatornát - ionszelektivitás szerint: Na + csatorna, kation csatorna, Cl - csatorna stb. - ligandkötő alegység extracelluláris részéhez kapcsolódik az agonista csatornanyitás az ionok a grádiensüknek megfelelően áramlanak át - nagyon gyors jelátvitel: milliszekundumok pl.: ACh nikotin receptor GABA A receptor szerotonin 5-HT 3 -rec.

38 2. G-proteinhez kapcsolt receptorok szerkezet: 1 polipeptid lánc, 7 transzmembrán α-hélix EXTRACELLULÁRISAN: ligandkötő alegység INTRACELLULÁRISAN: G-protein kötő alegység (effektor alegység) aktivált G-protein membránban található effektor molekulákat aktiválnak + intracellulárisan szekunder messenger-ek keletkezhetnek újabb effektorok aktivációja a jelátvitel sebessége: szekundumok

39 2. G-proteinhez kapcsolt receptorok

40 2. G-proteinhez kapcsolt receptorok G s /G i protein: ADENIL-CIKLÁZ camp camp függő kináz (protein kináz A) aktivációja számos celluláris funkció szabályozása fehérjék FOSZFORILÁCIÓJA révén G s -protein STIMULÁCIÓ camp pl. adrenerg β-receptorok dopamin D 1 -receptor histamin H 2 -receptor G i -protein INHIBÍCIÓ camp pl. ACh M 2 -receptor adrenerg α 2 -receptor dopamin D 2 -receptor

41 2. G-proteinhez kapcsolt receptorok G s /G i protein: ADENIL-CIKLÁZ camp Példák PKA által közvetített hatásokra: - simaizom relaxáció: miozin könnyűlánc kináz gátlása - szívizom kontraktilitás nő: feszültségfüggő Ca 2+ csatornák serkentése - anyagcsere: glikogenolízis, lipolízis fokozása - neuronális excitabilitás fokozása: feszültségfüggő csatornák serkentése - stb.

42 2. G-proteinhez kapcsolt receptorok G q protein : FOSZFOLIPÁZ C PIP 2 hidrolízise DAG és IP 3 DAG protein kináz C aktiváció IP 3 Ca 2+ mobilizáció az endoplazmatikus retikulumból Ca 2+ /kalmodulin (CaM) függő kinázok CaM-függő foszfodiészterázok NO szintáz pl. ACh M 1 - és M 3 -receptor adrenerg α 1 -receptor histamin H 1 -receptor

43 2. G-proteinhez kapcsolt receptorok G q protein : FOSZFOLIPÁZ C PIP 2 hidrolízise DAG és IP 3 Példák G q aktiváció által közvetített hatásokra: - simaizom kontrakció: miozin könnyűlánc kináz aktivációja (DE: ha NO szintáz aktiválódik pl. az endothelben, a végeredmény lehet relaxáció az érfal simaizomzatában) - szekréció (hormon, neurotranszmitter) - neuronális excitabilitás fokozása - stb.

44 2. G-proteinhez kapcsolt receptorok FOSZFOLIPÁZ A 2 membrán foszfolipidekből arachidonsavat (AA), hasít ki eikozanoidok: prosztaglandinok, leukotriének, tromboxánok - az extracelluláris térbe kerülve, first messengerként, azaz lokális hormonként (=autakoid) hathatnak - de a citoplazmán belül szekunder messenger szerepük is lehet

45 2. G-proteinhez kapcsolt receptorok IONCSATORNÁK egyes G-proteinek közvetlenül is, szekunder messenger képződése nélkül is képesek K + -, Ca 2+ - vagy Na + - csatornák működését befolyásolni. pl.: M 2 muszkarin receptorok K + csatornák α 2 adrenerg receptorok feszültségfüggő Ca 2+ csatornák

46 3. Enzimhez-kapcsolt receptorok szerkezet: EC ligandkötő alegység IC katalitikus alegység jelátvitel sebessége: percek Enzimfunkció alapján: 1.Tirozin-kinázhoz kapcsolt 2.Guanil-ciklázhoz kapcsolt 3.Tirozin-foszfatázhoz kapcs. 4.Szerin/treonin-kinázhoz kapcsolt pl: inzulin növekedési faktorok citokinek

47 4. Intracelluláris receptorok (ligand-aktivált transzkripciós faktorok) szerkezet: ligandkötő alegység (C-terminális) DNS-kötő alegység transzkripció aktiváló alegység (N-terminális) jelátvitel sebessége: órák (napok)! agonista kötődés dimerizáció sejtmagba belép (ha citoplazmatikus a rec.) kötődés a DNS bizonyos szakaszaihoz: hormone responsive element (HRE) génexpresszió modulációja (aktiváció vagy represszió) pl. szteroid hormonok, pajzsmirigy hormonok D vitamin, retinoidok, fibrátok, tiazolidindion-antidiabetikumok

48 Jelátviteli folyamatok általános jellegzetességei - jelerősítés: mivel katalitikus folyamatok aktiválódnak DE: minden esetben van olyan mechanizmus, ami fékezi a jel túlzott erősítését pl. PDE camp, foszfoprotein foszfatázok - a jelátvitel számos lépésében fehérjék foszforilációja történik következménye lehet aktiváció és gátlás is - interakciók a jelátviteli utak között - konvergencia-divergencia a jelátviteli utakon - a végső biológiai választ a célsejt tulajdonságai szabják meg

49 Simaizom kontrakciót és relaxációt szabályozó mechanizmusok

Szignalizáció - jelátvitel

Szignalizáció - jelátvitel Jelátvitel autokrin Szignalizáció - jelátvitel Összegezve: - a sejt a,,külvilággal"- távolabbi szövetekkel ill. önmagával állandó anyag-, információ-, energia áramlásban áll, mely autokrin, parakrin,

Részletesebben

2. A jelutak komponensei. 1. Egy tipikus jelösvény sémája 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék

2. A jelutak komponensei. 1. Egy tipikus jelösvény sémája 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék Jelutak 2. A jelutak komponensei 1. Egy tipikus jelösvény sémája 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék Egy tipikus jelösvény sémája 1. Receptor fehérje Jel molekula (ligand; elsődleges

Részletesebben

Jelutak. 2. A jelutak komponensei Egy tipikus jelösvény sémája. 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék

Jelutak. 2. A jelutak komponensei Egy tipikus jelösvény sémája. 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék Jelutak 2. A jelutak komponensei 1. Egy tipikus jelösvény sémája 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék Egy tipikus jelösvény sémája Receptor fehérje Jel molekula (ligand; elsődleges

Részletesebben

a. Szinaptikus jelátvitel b. Receptorok c. Szignál transzdukció neuronokban d. Neuromoduláció. Szinaptikus jelátvitel.

a. Szinaptikus jelátvitel b. Receptorok c. Szignál transzdukció neuronokban d. Neuromoduláció. Szinaptikus jelátvitel. Az idegsejtek kommunikációja a. Szinaptikus jelátvitel b. eceptorok c. Szignál transzdukció neuronokban d. Neuromoduláció Szinaptikus jelátvitel Terjedő szignál 35. Stimulus eceptor végződések Érző neuron

Részletesebben

Az idegsejtek kommunikációja. a. Szinaptikus jelátvitel b. Receptorok c. Szignál transzdukció neuronokban d. Neuromoduláció

Az idegsejtek kommunikációja. a. Szinaptikus jelátvitel b. Receptorok c. Szignál transzdukció neuronokban d. Neuromoduláció Az idegsejtek kommunikációja a. Szinaptikus jelátvitel b. Receptorok c. Szignál transzdukció neuronokban d. Neuromoduláció Szinaptikus jelátvitel Terjedő szignál 35. Stimulus PERIFÉRIÁS IDEGRENDSZER Receptor

Részletesebben

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: Az orvosi biotechnológiai mesterképzés

Részletesebben

Receptorok és szignalizációs mechanizmusok

Receptorok és szignalizációs mechanizmusok Molekuláris sejtbiológia: Receptorok és szignalizációs mechanizmusok Dr. habil Kőhidai László Semmelweis Egyetem Genetikai, Sejt- és Immunbiológiai Intézet Sejtek szignalizációs kapcsolatai Sejtek szignalizációs

Részletesebben

Dózis-válasz görbe A dózis válasz kapcsolat ábrázolása a legáltalánosabb módja annak, hogy bemutassunk eredményeket a tudományban vagy a klinikai

Dózis-válasz görbe A dózis válasz kapcsolat ábrázolása a legáltalánosabb módja annak, hogy bemutassunk eredményeket a tudományban vagy a klinikai Dózis-válasz görbe A dózis válasz kapcsolat ábrázolása a legáltalánosabb módja annak, hogy bemutassunk eredményeket a tudományban vagy a klinikai gyakorlatban. Például egy kísérletben növekvő mennyiségű

Részletesebben

S-2. Jelátviteli mechanizmusok

S-2. Jelátviteli mechanizmusok S-2. Jelátviteli mechanizmusok A sejtmembrán elválaszt és összeköt. Ez az információ-áramlásra különösen igaz! 2.1. A szignál-transzdukció elemi lépései Hírvivô (transzmitter, hormon felismerése = kötôdés

Részletesebben

A sejtfelszíni receptorok három fő kategóriája

A sejtfelszíni receptorok három fő kategóriája A sejtfelszíni receptorok három fő kategóriája 1. Saját enzimaktivitás nélküli receptorok 1a. G proteinhez kapcsolt pl. adrenalin, szerotonin, glukagon, bradikinin receptorok 1b. Tirozin kinázhoz kapcsolt

Részletesebben

ÖSSZ-TARTALOM. 1. Az alapok - 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás 4. Idegi kommunikáció 3.

ÖSSZ-TARTALOM. 1. Az alapok - 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás 4. Idegi kommunikáció 3. Jelutak ÖSSZ-TARTALOM 1. Az alapok - 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás 4. Idegi kommunikáció 3. előadás Jelutak 1. a sejtkommunikáció alapjai 1. Bevezetés 2. A sejtkommunikáció

Részletesebben

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: TÁMOP-4.1.2-08/1/A-2009-0011 Az orvosi

Részletesebben

Receptorok, szignáltranszdukció jelátviteli mechanizmusok

Receptorok, szignáltranszdukció jelátviteli mechanizmusok Receptorok, szignáltranszdukció jelátviteli mechanizmusok Sántha Péter 2016.09.16. A sejtfunkciók szabályozása - bevezetés A sejtek közötti kommunikáció fő típusai: Endokrin Parakrin - Autokrin Szinaptikus

Részletesebben

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: TÁMOP-4.1.2-08/1/A-2009-0011 Az orvosi

Részletesebben

ÖSSZ-TARTALOM 1. Az alapok - 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás

ÖSSZ-TARTALOM 1. Az alapok - 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás Jelutak ÖSSZ-TARTALOM 1. Az alapok - 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás 4. Idegi- és hormonális kommunikáció 3. előadás Jelutak 1. a sejtkommunikáció alapjai 1. Bevezetés

Részletesebben

Jelutak ÖSSZ TARTALOM. Jelutak. 1. a sejtkommunikáció alapjai

Jelutak ÖSSZ TARTALOM. Jelutak. 1. a sejtkommunikáció alapjai Jelutak ÖSSZ TARTALOM 1. Az alapok 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás 4. Idegi és hormonális kommunikáció 3. előadás Jelutak 1. a sejtkommunikáció alapjai 1. Bevezetés

Részletesebben

A sejtek közöti kommunikáció formái. BsC II. Sejtélettani alapok Dr. Fodor János

A sejtek közöti kommunikáció formái. BsC II. Sejtélettani alapok Dr. Fodor János A sejtek közöti kommunikáció formái BsC II. Sejtélettani alapok Dr. Fodor János 2010. 03.19. I. Kommunikáció, avagy a sejtek informálják egymást Kémiai jelátvitel formái Az üzenetek kémiai úton történő

Részletesebben

9. előadás Sejtek közötti kommunikáció

9. előadás Sejtek közötti kommunikáció 9. előadás Sejtek közötti kommunikáció Intracelluláris kommunikáció: Elmozdulás aktin szálak mentén miozin segítségével: A mikrofilamentum rögzített, A miozin mozgékony, vándorol az aktinmikrofilamentum

Részletesebben

16. A sejtek kommunikációja: jelátviteli folyamatok (szignál-transzdukció)

16. A sejtek kommunikációja: jelátviteli folyamatok (szignál-transzdukció) 16. A sejtek kommunikációja: jelátviteli folyamatok (szignál-transzdukció) 2016. február 25. Lippai Mónika lippai@elte.hu Minden sejt érzékel többféle, más sejtek által kibocsájtott jelmolekulát. - A jeleket

Részletesebben

A somatomotoros rendszer

A somatomotoros rendszer A somatomotoros rendszer Motoneuron 1 Neuromuscularis junctio (NMJ) Vázizom A somatomotoros rendszer 1 Neurotranszmitter: Acetil-kolin Mire hat: Nikotinos kolinerg-receptor (nachr) Izom altípus A parasympathicus

Részletesebben

3. Főbb Jelutak. 1. G protein-kapcsolt receptor által közvetített jelutak 2. Enzim-kapcsolt receptorok által közvetített jelutak 3.

3. Főbb Jelutak. 1. G protein-kapcsolt receptor által közvetített jelutak 2. Enzim-kapcsolt receptorok által közvetített jelutak 3. Jelutak 3. Főbb Jelutak 1. G protein-kapcsolt receptor által közvetített jelutak 2. Enzim-kapcsolt receptorok által közvetített jelutak 3. Egyéb jelutak I. G-protein-kapcsolt receptorok 1. által közvetített

Részletesebben

Farmakodinámia. - Szerkezetfüggő és szerkezettől független gyógyszerhatás. - Receptorok és felosztásuk

Farmakodinámia. - Szerkezetfüggő és szerkezettől független gyógyszerhatás. - Receptorok és felosztásuk Farmakodinámia A gyógyszer hatása a szervezetre - Szerkezetfüggő és szerkezettől független gyógyszerhatás - Receptorok és felosztásuk - A gyógyszer-receptor kölcsönhatás összefüggései Szerkezetfüggő és

Részletesebben

JELÁTVITEL I A JELÁTVITELRŐL ÁLTALÁBAN, RECEPTOROK INTRACELLULÁRIS (NUKLEÁRIS) RECEPTOROK G FEHÉRJÉHEZ KÖTÖTT RECEPTOROK

JELÁTVITEL I A JELÁTVITELRŐL ÁLTALÁBAN, RECEPTOROK INTRACELLULÁRIS (NUKLEÁRIS) RECEPTOROK G FEHÉRJÉHEZ KÖTÖTT RECEPTOROK JELÁTVITEL I A JELÁTVITELRŐL ÁLTALÁBAN, RECEPTOROK INTRACELLULÁRIS (NUKLEÁRIS) RECEPTOROK G FEHÉRJÉHEZ KÖTÖTT RECEPTOROK A jelátvitel hírvivő molekula (messenger) elektromos formában kódolt információ

Részletesebben

A jel-molekulák útja változó hosszúságú lehet. A jelátvitel. hírvivő molekula (messenger) elektromos formában kódolt információ

A jel-molekulák útja változó hosszúságú lehet. A jelátvitel. hírvivő molekula (messenger) elektromos formában kódolt információ A jelátvitel hírvivő molekula (messenger) elektromos formában kódolt információ A jel-molekulák útja változó hosszúságú lehet 1. Endokrin szignalizáció: belső elválasztású mirigy véráram célsejt A jelátvitel:

Részletesebben

Jelátviteli útvonalak 2

Jelátviteli útvonalak 2 Jelátviteli útvonalak 2 Információ metabolizmus Szignál transzdukció GPCR: PLC és foszfoinozitid kaszkád Szignál (pl. adrenalin) + receptor (pl. 1 -adrenerg) G q foszfolipáz-c (PLC) IP 3 (hidrofil) + DAG

Részletesebben

Hormonok hatásmechanizmusa

Hormonok hatásmechanizmusa Hormonok hatásmechanizmusa Signal transduction pathways 1. Signal recognition ligand binding; cell contact 2. Transduction transfer of signal to cell interior modulate the activity of protein kinases and

Részletesebben

a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál. Nyugalmi potenciál. 3 tényező határozza meg:

a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál. Nyugalmi potenciál. 3 tényező határozza meg: Egy idegsejt működése a. Nyugalmi potenciál b. Transzport proteinek c. Nyugalmi potenciál Az ionok vándorlása 5. Alacsonyabb koncentráció ioncsatorna membrán Passzív Aktív 3 tényező határozza meg: 1. Koncentráció

Részletesebben

Signáltranszdukciós útvonalak: Kívülről jövő információ aktiválja őket Sejtben keletkező metabolit aktiválja őket (mindkettő)

Signáltranszdukciós útvonalak: Kívülről jövő információ aktiválja őket Sejtben keletkező metabolit aktiválja őket (mindkettő) Szignáltranszdukció Signáltranszdukciós útvonalak: Kívülről jövő információ aktiválja őket Sejtben keletkező metabolit aktiválja őket (mindkettő) Információ átvitel másodlagos hírvivőkkel vagy fehérje-fehérje

Részletesebben

Egy idegsejt működése. a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál

Egy idegsejt működése. a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál Egy idegsejt működése a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál Nyugalmi potenciál Az ionok vándorlása 5. Alacsonyabb koncentráció ioncsatorna membrán Passzív Aktív 3 tényező határozza

Részletesebben

A sejtek közötti kommunikáció módjai és mechanizmusa. kommunikáció a szomszédos vagy a távoli sejtek között intracellulári jelátviteli folyamatok

A sejtek közötti kommunikáció módjai és mechanizmusa. kommunikáció a szomszédos vagy a távoli sejtek között intracellulári jelátviteli folyamatok A sejtek közötti kommunikáció módjai és mechanizmusa kommunikáció a szomszédos vagy a távoli sejtek között intracellulári jelátviteli folyamatok A kommunikáció módjai szomszédos sejtek esetén autokrin

Részletesebben

A glükóz reszintézise.

A glükóz reszintézise. A glükóz reszintézise. A glükóz reszintézise. A reszintézis nem egyszerű megfordítása a glikolízisnek. A glikolízis 3 irrevezibilis lépése más úton játszódik le. Ennek oka egyrészt energetikai, másrészt

Részletesebben

Debreceni Egyetem Orvos- és Egészségtudományi Centrum Biofizikai és Sejtbiológiai Intézet

Debreceni Egyetem Orvos- és Egészségtudományi Centrum Biofizikai és Sejtbiológiai Intézet Debreceni Egyetem Orvos- és Egészségtudományi Centrum Biofizikai és Sejtbiológiai Intézet Az ioncsatorna fehérjék szerkezete, működése és szabályozása Panyi György www.biophys.dote.hu Mesterséges membránok

Részletesebben

8. előadás. Sejt-sejt kommunikáció és jelátvitel

8. előadás. Sejt-sejt kommunikáció és jelátvitel 8. előadás Sejt-sejt kommunikáció és jelátvitel A sejt-sejt szignalizáció evolúciója A Saccharomyces cerevisiae (sörélesztő) élesztőnek két párosodási típusa van: a és α A különböző párosodási típusokba

Részletesebben

RECEPTOROK JELÁTVITEL Sperlágh Beáta

RECEPTOROK JELÁTVITEL Sperlágh Beáta RECEPTOROK JELÁTVITEL perlágh Beáta Összefoglalás A receptorok az élővilág jelfelismerésre specializálódott makromolekulái, központi szerepet játszanak a sejtek közötti információátvitelben. Az ezernél

Részletesebben

Enzimaktivitás szabályozása

Enzimaktivitás szabályozása 2017. 03. 12. Dr. Tretter László, Dr. olev rasziir Enziaktivitás szabályozása 2017. árcius 13/16. Mit kell tudni az előadás után: 1. Reverzibilis inhibitorok kinetikai jellezői és funkcionális orvosbiológiai

Részletesebben

Idegsejtek közötti kommunikáció

Idegsejtek közötti kommunikáció Idegsejtek közötti kommunikáció Idegrendszer funkcionális alapegysége: neuron (idegsejt) Neuronok morfológiája: Morfológia leírása: Soma és dendritek geometria leírása: dendritek száma, elágazások száma

Részletesebben

[S] v' [I] [1] Kompetitív gátlás

[S] v' [I] [1] Kompetitív gátlás 8. Szeminárium Enzimkinetika II. Jelen szeminárium során az enzimaktivitás szabályozásával foglalkozunk. Mivel a klinikai gyakorlatban használt gyógyszerhatóanyagok jelentős része enzimgátló hatással bír

Részletesebben

Gyógyszerészeti neurobiológia. Idegélettan

Gyógyszerészeti neurobiológia. Idegélettan Az idegrendszert felépítő sejtek szerepe Gyógyszerészeti neurobiológia. Idegélettan Neuronok, gliasejtek és a kémiai szinapszisok működési sajátságai Neuronok Információkezelés Felvétel Továbbítás Feldolgozás

Részletesebben

TÁMOP /1/A

TÁMOP /1/A Előadás száma Előadás címe Dia sorszáma Dia címe 1. Bevezetés 1. 2. Bevezetés 1. (Cím) 3. Történet 4. Jelátvitel 5. Sejt kommunikációs útvonalak 1. 6. Sejt kommunikációs útvonalak 2. 7. A citokinek hatásmechanizmusai

Részletesebben

Jelátviteli útvonalak 1

Jelátviteli útvonalak 1 Jelátviteli útvonalak 1 Információ metabolizmus Szignál transzdukció 1 Jelátviteli séma Mi lehet a jel? Hormonok Növekedési faktorok Fejlődési szignálok Neurotranszmitterek Antigének Sejtfelszíni glikoproteinek

Részletesebben

Endokrinológia. Közös jellemzők: nincs kivezetőcső, nincs végkamra - hámsejt csoportosulások. váladékuk a hormon

Endokrinológia. Közös jellemzők: nincs kivezetőcső, nincs végkamra - hámsejt csoportosulások. váladékuk a hormon Közös jellemzők: Endokrinológia nincs kivezetőcső, nincs végkamra - hámsejt csoportosulások váladékuk a hormon váladékukat a vér szállítja el - bő vérellátás távoli szervekre fejtik ki hatásukat (legtöbbször)

Részletesebben

Helyi érzéstelenítők farmakológiája

Helyi érzéstelenítők farmakológiája Helyi érzéstelenítők farmakológiája SE Arc-Állcsont-Szájsebészeti és Fogászati Klinika BUDAPEST Definíció Farmakokinetika: a gyógyszerek felszívódásának, eloszlásának, metabolizmusának és kiürülésének

Részletesebben

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: TÁMOP-4.1.2-08/1/A-2009-0011 Az orvosi

Részletesebben

Leukotriénekre ható molekulák. Eggenhofer Judit OGYÉI-OGYI

Leukotriénekre ható molekulák. Eggenhofer Judit OGYÉI-OGYI Leukotriénekre ható molekulák Eggenhofer Judit OGYÉI-OGYI Mik is azok a leukotriének? Honnan ered az elnevezésük? - először a leukocitákban mutatták ki - kémiai szerkezetükből vezethető le - a konjugált

Részletesebben

Szénhidrátok monoszacharidok formájában szívódnak fel a vékonybélből.

Szénhidrátok monoszacharidok formájában szívódnak fel a vékonybélből. Vércukorszint szabályozása: Szénhidrátok monoszacharidok formájában szívódnak fel a vékonybélből. Szövetekben monoszacharid átalakítás enzimjei: Szénhidrát anyagcserében máj központi szerepű. Szénhidrát

Részletesebben

Sejt - kölcsönhatások az idegrendszerben

Sejt - kölcsönhatások az idegrendszerben Sejt - kölcsönhatások az idegrendszerben dendrit Sejttest Axon sejtmag Axon domb Schwann sejt Ranvier mielinhüvely csomó (befűződés) terminális Sejt - kölcsönhatások az idegrendszerben Szinapszis típusok

Részletesebben

Szignáltranszdukció Mediátorok (elsődleges hírvivők) az információ kémiailag kódolt

Szignáltranszdukció Mediátorok (elsődleges hírvivők) az információ kémiailag kódolt Szignáltranszdukció Mediátorok (elsődleges hírvivők) az információ kémiailag kódolt apoláros szerkezet (szabad membrán átjárhatóság) szteroid hormonok, PM hormonok, retinoidok hatásmech.: sejten belül

Részletesebben

Fenntartó adag: az a gyógyszermennyiség, amely egy adott hatás állandó szinten tartásához szükséges: elimináció visszapótlása!

Fenntartó adag: az a gyógyszermennyiség, amely egy adott hatás állandó szinten tartásához szükséges: elimináció visszapótlása! Farmakokinetika Tárgya: A gyógyszerhatás időbeni alakulásának vizsgálata. Meghatározható: a gyógyszer adagja a gyógyszerhatás erőssége a hatás időtartama az adagolás rendje Dosis efficans: terápiás dózis

Részletesebben

1. Mi jellemző a connexin fehérjékre?

1. Mi jellemző a connexin fehérjékre? Sejtbiológia ea (zh2) / (Áttekintés) (1. csoport) : Start 2019-02-25 20:35:53 : Felhasznált idő 00:01:02 Név: Minta Diák Eredmény: 0/121 azaz 0% Kijelentkezés 1. Mi jellemző a connexin fehérjékre? (1.1)

Részletesebben

IONCSATORNÁK. I. Szelektivitás és kapuzás. III. Szabályozás enzimek és alegységek által. IV. Akciós potenciál és szinaptikus átvitel

IONCSATORNÁK. I. Szelektivitás és kapuzás. III. Szabályozás enzimek és alegységek által. IV. Akciós potenciál és szinaptikus átvitel IONCSATORNÁK I. Szelektivitás és kapuzás II. Struktúra és funkció III. Szabályozás enzimek és alegységek által IV. Akciós potenciál és szinaptikus átvitel V. Ioncsatornák és betegségek VI. Ioncsatornák

Részletesebben

Immunológia alapjai. 10. előadás. Komplement rendszer

Immunológia alapjai. 10. előadás. Komplement rendszer Immunológia alapjai 10. előadás Komplement rendszer A gyulladás molekuláris mediátorai: Miért fontos a komplement rendszer? A veleszületett (nem-specifikus) immunválasz része Azonnali válaszreakció A veleszületett

Részletesebben

(1) A T sejtek aktiválása (2) Az ön reaktív T sejtek toleranciája. α lánc. β lánc. V α. V β. C β. C α.

(1) A T sejtek aktiválása (2) Az ön reaktív T sejtek toleranciája. α lánc. β lánc. V α. V β. C β. C α. Immunbiológia II A T sejt receptor () heterodimer α lánc kötőhely β lánc 14. kromoszóma 7. kromoszóma 1 V α V β C α C β EXTRACELLULÁRIS TÉR SEJTMEMBRÁN CITOSZÓL αlánc: VJ régió β lánc: VDJ régió Nincs

Részletesebben

CzB 2010. Élettan: a sejt

CzB 2010. Élettan: a sejt CzB 2010. Élettan: a sejt Sejt - az élet alapvető egysége Prokaryota -egysejtű -nincs sejtmag -nincsenek sejtszervecskék -DNS = egy gyűrű - pl., bactériumok Eukaryota -egy-/többsejtű -sejmag membránnal

Részletesebben

Intracelluláris ion homeosztázis I.-II. Február 15, 2011

Intracelluláris ion homeosztázis I.-II. Február 15, 2011 Intracelluláris ion homeosztázis I.II. Február 15, 2011 Ca 2 csatorna 1 Ca 2 1 Ca 2 EC ~2 mm PLAZMA Na /Ca 2 cserélő Ca 2 ATPáz MEMBRÁN Ca 2 3 Na ATP ADP 2 H IC ~100 nm citoszol kötött Ca 2 CR CSQ SERCA

Részletesebben

Új terápiás lehetőségek (receptorok) a kardiológiában

Új terápiás lehetőségek (receptorok) a kardiológiában Új terápiás lehetőségek (receptorok) a kardiológiában Édes István Kardiológiai Intézet, Debreceni Egyetem Kardiomiociták Ca 2+ anyagcseréje és új terápiás receptorok 2. 1. 3. 6. 6. 7. 4. 5. 8. 9. Ca

Részletesebben

A sejtfelszíni receptorok három fő kategóriája

A sejtfelszíni receptorok három fő kategóriája A sejtfelszíni receptorok három fő kategóriája 1. Saját enzimaktivitás nélküli receptorok 1a. G proteinhez kapcsolt pl. adrenalin, szerotonin, glukagon, bradikinin receptorok 1b. Tirozin kinázhoz kapcsolt

Részletesebben

Farmakobiokémia, gyógyszertervezés

Farmakobiokémia, gyógyszertervezés Farmakobiokémia, gyógyszertervezés Évente 40e t fogy Acetil-szalicilsav (F. Hoffmann, Bayer AG, 1897) Prosztaglandin szintézis (COX enzim) gátlása (J. Vane, 1971, 1982) Gyógyszerkutatás, gyógyszerek vegyület

Részletesebben

Elektrofiziológiai alapjelenségek 1. Dr. Tóth András

Elektrofiziológiai alapjelenségek 1. Dr. Tóth András Elektrofiziológiai alapjelenségek 1. Dr. Tóth András Témák Membrántranszport folyamatok Donnan egyensúly Nyugalmi potenciál Ioncsatornák alaptulajdonságai Nehézségi fok Belépı szint (6 év alatt is) Hallgató

Részletesebben

Az ioncsatorna fehérjék szerkezete, működése és szabályozása. A patch-clamp technika

Az ioncsatorna fehérjék szerkezete, működése és szabályozása. A patch-clamp technika Az ioncsatorna fehérjék szerkezete, működése és szabályozása. A patch-clamp technika Panyi György 2014. November 12. Mesterséges membránok ionok számára átjárhatatlanok Iontranszport a membránon keresztül:

Részletesebben

JELUTAK 2. A Jelutak Komponensei

JELUTAK 2. A Jelutak Komponensei JELUTAK 2. A Jelutak Komponensei TARTALOM - 1. Előadás: A jelutak komponensei 1. Egy egyszerű jelösvény 2. Jelmolekulák 3. Receptorok 4. Intracelluláris jelmolekulák 1 1.1. Egy tipikus jelösvény sémája

Részletesebben

Immunológia alapjai. 16. előadás. Komplement rendszer

Immunológia alapjai. 16. előadás. Komplement rendszer Immunológia alapjai 16. előadás Komplement rendszer A gyulladás molekuláris mediátorai: Plazma enzim mediátorok: - Kinin rendszer - Véralvadási rendszer Lipid mediátorok Kemoattraktánsok: - Chemokinek:

Részletesebben

A T sejt receptor (TCR) heterodimer

A T sejt receptor (TCR) heterodimer Immunbiológia - II A T sejt receptor (TCR) heterodimer 1 kötőhely lánc lánc 14. kromoszóma 7. kromoszóma V V C C EXTRACELLULÁRIS TÉR SEJTMEMBRÁN CITOSZÓL lánc: VJ régió lánc: VDJ régió Nincs szomatikus

Részletesebben

Jelutak. Apoptózis. Apoptózis Bevezetés 2. Külső jelút 3. Belső jelút. apoptózis autofágia nekrózis. Sejtmag. Kondenzálódó sejtmag

Jelutak. Apoptózis. Apoptózis Bevezetés 2. Külső jelút 3. Belső jelút. apoptózis autofágia nekrózis. Sejtmag. Kondenzálódó sejtmag Jelutak Apoptózis 1. Bevezetés 2. Külső jelút 3. Belső jelút Apoptózis Sejtmag Kondenzálódó sejtmag 1. autofágia nekrózis Lefűződések Összezsugorodás Fragmentálódó sejtmag Apoptotikus test Fagocita bekebelezi

Részletesebben

Kevéssé fejlett, sejthártya betüremkedésekből. Citoplazmában, cirkuláris DNS, hisztonok nincsenek

Kevéssé fejlett, sejthártya betüremkedésekből. Citoplazmában, cirkuláris DNS, hisztonok nincsenek 1 A sejtek felépítése Szerkesztette: Vizkievicz András A sejt az élővilág legkisebb, önálló életre képes, minden életjelenséget mutató szerveződési egysége. Minden élőlény sejtes szerveződésű, amelyek

Részletesebben

Biofizika I 2013-2014 2014.12.02.

Biofizika I 2013-2014 2014.12.02. ÁTTEKINTÉS AZ IZOM TÍPUSAI: SZERKEZET és FUNKCIÓ A HARÁNTCSÍKOLT IZOM SZERKEZETE MŰKÖDÉSÉNEK MOLEKULÁRIS MECHANIZMUSA IZOM MECHANIKA Biofizika I. -2014. 12. 02. 03. Dr. Bugyi Beáta PTE ÁOK Biofizikai Intézet

Részletesebben

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: TÁMOP-4.1.2-08/1/A-2009-0011 Az orvosi

Részletesebben

Immunológia alapjai. Az immunválasz szupressziója Előadás. A szupresszióban részt vevő sejtes és molekuláris elemek

Immunológia alapjai. Az immunválasz szupressziója Előadás. A szupresszióban részt vevő sejtes és molekuláris elemek Immunológia alapjai 19 20. Előadás Az immunválasz szupressziója A szupresszióban részt vevő sejtes és molekuláris elemek Mi a szupresszió? Általános biológiai szabályzó funkció. Az immunszupresszió az

Részletesebben

1. előadás Membránok felépítése, mebrán raftok, caveolák jellemzője, funkciói

1. előadás Membránok felépítése, mebrán raftok, caveolák jellemzője, funkciói 1. előadás Membránok felépítése, mebrán raftok, caveolák jellemzője, funkciói Plazmamembrán Membrán funkciói: sejt integritásának fenntartása állandó hő, energia, és információcsere biztosítása homeosztázis

Részletesebben

Allergia immunológiája 2012.

Allergia immunológiája 2012. Allergia immunológiája 2012. AZ IMMUNVÁLASZ SZEREPLŐI BIOLÓGIAI MEGKÖZELÍTÉS Az immunrendszer A fő ellenfelek /ellenségek/ Limfociták, makrofágok antitestek, stb külső és belső élősködők (fertőzés, daganat)

Részletesebben

Asztroglia Ca 2+ szignál szerepe az Alzheimer kórban FAZEKAS CSILLA LEA NOVEMBER

Asztroglia Ca 2+ szignál szerepe az Alzheimer kórban FAZEKAS CSILLA LEA NOVEMBER Asztroglia Ca 2+ szignál szerepe az Alzheimer kórban FAZEKAS CSILLA LEA 2017. NOVEMBER Az Alzheimer kór Neurodegeneratív betegség Gyógyíthatatlan 65 év felettiek Kezelés: vakcinákkal inhibitor molekulákkal

Részletesebben

LIPID ANYAGCSERE (2011)

LIPID ANYAGCSERE (2011) LIPID ANYAGCSERE LIPID ANYAGCSERE (2011) 5 ELİADÁS: 1, ZSÍRK EMÉSZTÉSE, FELSZÍVÓDÁSA + LIPPRTEINEK 2, ZSÍRSAVAK XIDÁCIÓJA 3, ZSÍRSAVAK SZINTÉZISE 4, KETNTESTEK BIKÉMIÁJA, KLESZTERIN ANYAGCSERE 5, MEMBRÁN

Részletesebben

Szívelektrofiziológiai alapjelenségek. Dr. Tóth András 2018

Szívelektrofiziológiai alapjelenségek. Dr. Tóth András 2018 Szívelektrofiziológiai alapjelenségek 1. Dr. Tóth András 2018 Témák Membrántranszport folyamatok Donnan egyensúly Nyugalmi potenciál 1 Transzmembrán transzport A membrántranszport-folyamatok típusai J:

Részletesebben

Ioncsatorna szerkezetek

Ioncsatorna szerkezetek Jellegzetes Ioncsatorna szerkezetek Ördög Balázs Farmakológiai és Farmakoterápiai Intézet Kapuzás Feszültség szabályozott Voltage-gated Fesz. szab. Na +, +, Ca 2+ 2+,, K + + csatornák channels Transiens

Részletesebben

A KOLESZTERIN SZERKEZETE. (koleszterin v. koleszterol)

A KOLESZTERIN SZERKEZETE. (koleszterin v. koleszterol) 19 11 12 13 C 21 22 20 18 D 17 16 23 24 25 26 27 HO 2 3 1 A 4 5 10 9 B 6 8 7 14 15 A KOLESZTERIN SZERKEZETE (koleszterin v. koleszterol) - a koleszterin vízben rosszul oldódik - szabad formában vagy koleszterin-észterként

Részletesebben

Glikolízis. emberi szervezet napi glukózigénye: kb. 160 g

Glikolízis. emberi szervezet napi glukózigénye: kb. 160 g Glikolízis Minden emberi sejt képes glikolízisre. A glukóz a metabolizmus központi tápanyaga, minden sejt képes hasznosítani. glykys = édes, lysis = hasítás emberi szervezet napi glukózigénye: kb. 160

Részletesebben

Apoptózis. 1. Bevezetés 2. Külső jelút 3. Belső jelút

Apoptózis. 1. Bevezetés 2. Külső jelút 3. Belső jelút Jelutak Apoptózis 1. Bevezetés 2. Külső jelút 3. Belső jelút Apoptózis Sejtmag 1. Kondenzálódó sejtmag apoptózis autofágia nekrózis Lefűződések Összezsugorodás Fragmentálódó sejtmag Apoptotikus test Fagocita

Részletesebben

IONCSATORNÁK. Osztályozás töltéshordozók szerint: pozitív töltésű ion: Na+, K+, Ca2+ negatív töltésű ion: Cl-, HCO3-

IONCSATORNÁK. Osztályozás töltéshordozók szerint: pozitív töltésű ion: Na+, K+, Ca2+ negatív töltésű ion: Cl-, HCO3- Ionáromok IONCSATORNÁK 1. Osztályozás töltéshordozók szerint: 1. pozitív töltésű ion: Na+, K+, Ca2+ 2. negatív töltésű ion: Cl-, HCO3-3. Non-specifikus kationcsatornák: h áram 4. Non-specifikus anioncsatornák

Részletesebben

Sejt - kölcsönhatások. az idegrendszerben és az immunrendszerben

Sejt - kölcsönhatások. az idegrendszerben és az immunrendszerben Sejt - kölcsönhatások az idegrendszerben és az immunrendszerben A sejttől a szervezetig A sejtek között, ill. a sejtek és környezetük közötti jelátviteli folyamatok összessége az a struktúrált kölcsönhatásrendszer,

Részletesebben

A szövetek tápanyagellátásának hormonális szabályozása

A szövetek tápanyagellátásának hormonális szabályozása A szövetek tápanyagellátásának hormonális szabályozása Periódikus táplálékfelvétel Sejtek folyamatos tápanyagellátása (glükóz, szabad zsírsavak stb.) Tápanyag raktározás Tápanyag mobilizálás Vér glükóz

Részletesebben

Szignáltranszdukció: jelátvitel általános jellemzői, másodlagos hírvivők: szabad gyökök és intracelluláris szabad Ca2+

Szignáltranszdukció: jelátvitel általános jellemzői, másodlagos hírvivők: szabad gyökök és intracelluláris szabad Ca2+ Szignáltranszdukció: jelátvitel általános jellemzői, másodlagos hírvivők: szabad gyökök és intracelluláris szabad Ca2+ Signáltranszdukciós útvonalak: Kívülről jövő információ aktiválja őket Sejtben keletkező

Részletesebben

Jelzőmolekulák, receptorok és jelátvitel SZIGNÁLTRANSZDUKCIÓ

Jelzőmolekulák, receptorok és jelátvitel SZIGNÁLTRANSZDUKCIÓ Jelzőmolekulák, receptorok és jelátvitel SZIGNÁLTRANSZDUKCIÓ Tanulási támpontok 6. és 7. Dr. Kékesi Gabriella 2019 6. Receptorok, szignáltranszdukció - jelátviteli mechanizmusok Ismertesse a mediátorok

Részletesebben

Hemoglobin - myoglobin. Konzultációs e-tananyag Szikla Károly

Hemoglobin - myoglobin. Konzultációs e-tananyag Szikla Károly Hemoglobin - myoglobin Konzultációs e-tananyag Szikla Károly Myoglobin A váz- és szívizom oxigén tároló fehérjéje Mt.: 17.800 153 aminosavból épül fel A lánc kb 75 % a hélix 8 db hélix, köztük nem helikális

Részletesebben

Izomműködés. Az izommozgás. az állati élet legszembetűnőbb külső jele a mozgás amőboid, ostoros ill. csillós és izomösszehúzódással

Izomműködés. Az izommozgás. az állati élet legszembetűnőbb külső jele a mozgás amőboid, ostoros ill. csillós és izomösszehúzódással Izomműködés Az izommozgás az állati élet legszembetűnőbb külső jele a mozgás amőboid, ostoros ill. csillós és izomösszehúzódással történő mozgás van Galenus id. II.szd. - az idegekből animal spirit folyik

Részletesebben

Bevezetés a biokémiába fogorvostan hallgatóknak

Bevezetés a biokémiába fogorvostan hallgatóknak Bevezetés a biokémiába fogorvostan hallgatóknak Munkafüzet 14. hét METABOLIZMUS III. LIPIDEK, ZSÍRSAVAK β-oxidációja Szerkesztette: Jakus Péter Név: Csoport: Dátum: Labor dolgozat kérdések 1.) ATP mennyiségének

Részletesebben

MOLEKULÁRIS FORRÓDRÓTOK Jeltovábbító folyamatok a sejtekben

MOLEKULÁRIS FORRÓDRÓTOK Jeltovábbító folyamatok a sejtekben WILHELM IMOLA KRIZBAI ISTVÁN MOLEKULÁRIS FORRÓDRÓTOK Jeltovábbító folyamatok a sejtekben A mikor azt mondjuk, kommunikáció az élõvilágban, általában az egyedek (állatok, emberek) közötti verbális és nonverbális

Részletesebben

Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek

Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek Hidroxikarbonsavak α-hidroxi karbonsavak -Glikolsav (kézkrémek) - Tejsav (tejtermékek, izomláz, fogszuvasodás) - Citromsav (citrusfélékben,

Részletesebben

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Az orvosi biotechnolóii mesterképzés mefeleltetése z Európi Unió új társdlmi kihívásink écsi Tudományeyetemen és Debreceni Eyetemen Azonosító szám: TÁMO-4.1.-08/1/A-009-0011 Az orvosi biotechnolóii mesterképzés

Részletesebben

A sejtmembrán szabályozó szerepe fiziológiás körülmények között és kóros állapotokban

A sejtmembrán szabályozó szerepe fiziológiás körülmények között és kóros állapotokban A sejtmembrán szabályozó szerepe fiziológiás körülmények között és kóros állapotokban 17. Központi idegrendszeri neuronok ingerületi folyamatai és szinaptikus összeköttetései 18. A kalciumháztartás zavaraira

Részletesebben

A testidegen anyagok felszívódása, eloszlása és kiválasztása

A testidegen anyagok felszívódása, eloszlása és kiválasztása A testidegen anyagok felszívódása, eloszlása és kiválasztása A testidegen anyagok (xenobiotikumok): - gyógyszerek (farmakológia) - (környezeti) mérgezo anyagok (toxikológia) Történetileg elobb volt a farmakokinetika

Részletesebben

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a écsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: Az orvosi biotechnológiai mesterképzés

Részletesebben

Jelzőmolekulák, receptorok és jelátvitel SZIGNÁLTRANSZDUKCIÓ

Jelzőmolekulák, receptorok és jelátvitel SZIGNÁLTRANSZDUKCIÓ Jelzőmolekulák, receptorok és jelátvitel SZIGNÁLTRANSZDUKCIÓ Tanulási támpontok 6. és 7. Dr. Kékesi Gabriella 2018 6. Receptorok, szignáltranszdukció jelátviteli mechanizmusok Ismertesse a mediátorok (jelátvivő

Részletesebben

2006 1. Nemszinaptikus receptorok és szubmikronos Ca2+ válaszok: A két-foton lézermikroszkópia felhasználása a farmakológiai vizsgálatokra.

2006 1. Nemszinaptikus receptorok és szubmikronos Ca2+ válaszok: A két-foton lézermikroszkópia felhasználása a farmakológiai vizsgálatokra. 2006 1. Nemszinaptikus receptorok és szubmikronos Ca 2+ válaszok: A két-foton lézermikroszkópia felhasználása a farmakológiai vizsgálatokra. A kutatócsoportunkban Közép Európában elsőként bevezetett két-foton

Részletesebben

Membránpotenciál, akciós potenciál

Membránpotenciál, akciós potenciál A nyugalmi membránpotenciál Membránpotenciál, akciós potenciál Fizika-Biofizika 2015.november 3. Nyugalomban valamennyi sejt belseje negatív a külső felszínhez képest: negatív nyugalmi potenciál (Em: -30

Részletesebben

Endothel, simaizom, erek

Endothel, simaizom, erek Endothel, simaizom, erek r. Fagyas Miklós E Kardiológiai Intézet Klinikai Fiziológiai anszék Erek az endothelium, mint szerv Artéria fala Vazoreguláció Antithrombotikus hatás ermeabilitás szabályozás Endothél

Részletesebben

I. FARMAKOKINETIKA. F + R hatás (farmakon, (receptor) gyógyszer) F + R FR

I. FARMAKOKINETIKA. F + R hatás (farmakon, (receptor) gyógyszer) F + R FR I. FARMAKOKINETIKA Gyógyszerek felszívódása, eloszlása és kiválasztása. Receptorok: csak az a gyógyszermolekula hat ami kötődik specifikus kötőhelyek (szervek, szövetek, sejtek) F + R hatás (farmakon,

Részletesebben

Biológus Bsc. Sejtélettan II. Szekréció és felszívódás a gasztrointesztinális tractusban. Tóth István Balázs DE OEC Élettani Intézet

Biológus Bsc. Sejtélettan II. Szekréció és felszívódás a gasztrointesztinális tractusban. Tóth István Balázs DE OEC Élettani Intézet Biológus Bsc. Sejtélettan II. Szekréció és felszívódás a gasztrointesztinális tractusban Tóth István Balázs DE OEC Élettani Intézet 2010. 11. 12. A gasztrointesztinális rendszer felépítése http://en.wikipedia.org/wiki/file:digestive_system_diagram_edit.svg

Részletesebben

Orvosi élettan. Bevezetés és szabályozáselmélet Tanulási támpontok: 1.

Orvosi élettan. Bevezetés és szabályozáselmélet Tanulási támpontok: 1. Orvosi élettan Bevezetés és szabályozáselmélet Tanulási támpontok: 1. Prof. Sáry Gyula 1 anyagcsere hőcsere Az élőlény és környezete nyitott rendszer inger hő kémiai mechanikai válasz mozgás alakváltoztatás

Részletesebben

Biológiai módszerek alkalmazása környezeti hatások okozta terhelések kimutatására

Biológiai módszerek alkalmazása környezeti hatások okozta terhelések kimutatására Szalma Katalin Biológiai módszerek alkalmazása környezeti hatások okozta terhelések kimutatására Témavezető: Dr. Turai István, OSSKI Budapest, 2010. október 4. Az ionizáló sugárzás sejt kölcsönhatása Antone

Részletesebben

4. Egy szarkomer sematikus rajza látható az alanti ábrán. Aktív kontrakció esetén mely távolságok csökkenése lesz észlelhető? (3)

4. Egy szarkomer sematikus rajza látható az alanti ábrán. Aktív kontrakció esetén mely távolságok csökkenése lesz észlelhető? (3) Budapesti Műszaki és Gazdaságtudományi Egyetem, Budapest, 2009. jan. 6. Villamosmérnöki és Informatikai Kar Semmelweis Egyetem Budapest Egészségügyi Mérnök Mesterképzés Felvételi kérdések orvosi élettanból

Részletesebben

Kommunikáció. Sejtek közötti kommunikáció

Kommunikáció. Sejtek közötti kommunikáció Kommunikáció Sejtek közötti kommunikáció soksejtűekben elengedhetetlen összehangolni a sejtek működését direkt és indirekt kommunikáció direkt kommunikáció: rés-illeszkedés (gap junction) 6 connexin =

Részletesebben