( ;. f'.'.(/o Díj. EAICSOLÜSI ELREHDEZÉS SUGARSZEIJIÍYEZEa?TsáQJÍÉ[iÓ KÉSZÜLÉK EATEÍÍÉTER IDŐÁlMBDŐJiÖJAK TRAKZIEíSMEUTES VÁLTÁSÁRA

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "( ;. f'.'.(/o Díj. EAICSOLÜSI ELREHDEZÉS SUGARSZEIJIÍYEZEa?TsáQJÍÉ[iÓ KÉSZÜLÉK EATEÍÍÉTER IDŐÁlMBDŐJiÖJAK TRAKZIEíSMEUTES VÁLTÁSÁRA"

Átírás

1 H í ( ' J.iÜZ Taj. rr-f Képviselő: DAHUBIA SZABADALMI IRODA Budapest a /f MÜ - ( ;. f'.'.(/o Díj Szolgálati találmány EAICSOLÜSI ELREHDEZÉS SUGARSZEIJIÍYEZEa?TsáQJÍÉ[iÓ KÉSZÜLÉK EATEÍÍÉTER IDŐÁlMBDŐJiÖJAK TRAKZIEíSMEUTES VÁLTÁSÁRA Gemma Müvek, Budapest Feltalálók: SARKADI András aérabk ( 50 0 ' TÓTH Istvánná méltóik 30 JS ISTÓK (fcrula mérnök 20 % budapesti lakosok A bejelentén napjai r A találmány tárgya kapcsolási elrendebősbugárszennyezettsőgmőrő készülők xatenéter Időállandójának tranr.lensaentes váltására* /KAnÓ

2 Ismeretes, hog? & eugárszennyzettflégmérő készülék tervezésének és alkalmazásának igen ldnyegeo rásze az éltalánob a n használt rateméterak időállandójának megválasztása. Ezeknek a berendezéseknek ugyanis két fő felhasználási területe vent egyfelől az esetleg kis mértékben szennyezett felület felkutatását másfelől a felkutatott szennyezettség pontos meghatározása* E feladatok végrehajtásához, azaz a sugárszennyezett felület gyors detektálásához rövid Integrálási Időre /1-3 van szükség, hogy a műszer azonnal jelezze az érzékelője előtt megjelenő sugárforrást. Ugyanakkor a sugárszennyezettség pontos meghatározásához hosszú Integrálási idő /3Ó-60pfytf szükséges, hogy a statisztikus bomlásbél eredő hiba a méróbt ne hamisítsa meg, A kettős feladat közötti ellentmondás legegyszerűbb és Igen gyakori megoldása az 8 hogy minden méréshatárban kült5n f kompromisszumos időállandót választanak 9 e a sugárforrás keresését az értéktelenebb, de gyorsabb méréshatárban végzik el. Ez a módszer azonban az igen kis szennyezések felfedezését lehetetlenné teszi, mert a Btochasztlkus hiba lefedi & sugárforrás okozta kitérést. Gyakorlati szakemberek előtt ismert e probléma megoldásának olyan lehetősége» bogy a rateméter időállón- i

3 - 3 - dója a méréshat ártól függetlenen válton tatható, mégpodig ágy, hogy vagy az integráló kondenzátor kapacitását, vagy a kielltő ellenállást növelik. Az átváltás után azonban a beállási id5 három-négyezerebe az integrálási időállandónak, Így a pontos méréshez háíom-nógydzer annyi id6 szlikeéges, mint amennyi a radioaktív bomlás ctochaaztikus voltából adódna. A találmány czerinti megoldásnak megfelelő kapcsolási elrendeléssel ennek a beállási időnek a lecsökkentéséi kívánjuk elérni. A megoldáö lényege az, hogy egy három áramkörös, kétállású kapcoolé nagyobb időállandójú állásba történő átkapcbolásakor egy áramkör a nagyobb integrálási időhöz tartozó másik kondenzátornak egy további kondenzátor mintavételezett feszültségére, majd a nagyobb integrálási időhöz tartozó kondenzátort a kisebb integrálási időhöz tartozó kondenzátorral párhuzamosan a Eaiiszerkörre kapcsolja. Az áramkör csak az átkapcsoláci tranzlena ictején fogyaszt áramot. Az átkapcsolás után a beállási idő lényegesen lerövidül, mert igy csak az eredeti felfutás utolsó azakaszát, azaz kb. egy integrálási időállandónak megfelelő időtartamot kell megvárni. A találmány szerinti megoldásnak megfelelő kap. ceoláai elrendezést a leíráshoz mellékelt elvi kapcsolási vázlat révén részletesen is ieoertetjuk* Az ábrán a kapcsolási elrendezés elvi felépítését mutatjuk be.

4 Ulnt a rajzból Is látható, e töltő ód mllszerkörre csatlakozik a három áramkörös, kát állású K^ kap* csoló, melynek kőt Z 6a ZI helyzete közül az Z helyzetű kapcsolt állapotot ábrázoltuk. Ebbfin a helyzetben a ratei i mater tültfí ós mllszerkörére azjcjjj- és C^jintegrálóLkondeneátorok pozitív fegyverzete van kötve*/ezek határozzák meg a kisebb, T^ Időállandót/* Ugyanezen kondenzátorok negatív fegyverzete közös földvezetókbe csatlakozik* A előtti leágazásból egy integráló kondenzátor pozltiv fegyverzete tranzisztor bár.isával van összekötve, melynek emittere szintén a közöa földelésre, mig kollektora egyrészt egy további másrészt egy El ellenálláson át egy tranzisztor emitterére csatlakozik. A tranzisztor bázisárai tranzisztor emlttere a Tj tranzisztor kollektorával van összekötve, előtte leágazva egy olyan R^ellenálláe egyik végére coat lakozik, melynek másik vőge a tranzisztor bázisával ée egy további IÍ3; ellenáláo egyik végével kapcsolódik* Az ellenállásnak a lg tranzisztorra csatlakozó vége az U^ positiv tápfeszültoóggel van összekötve 9 mig az R^ ellenállás másik váge a Kjl kapcsoló II helyzetet kijelölő érintkezőjével /a harmadik áramkörben/ van összekötve* A Sg tranzisztor kollektora egyrészt a K^ kapcsoló első uramkörben lévő II helyzetét meghatározó érintkezőjével, másrészt ugyanezen K^ kapcsolónak a második áramkörben lévő, első kapcsolóhelyzetét meghatározó

5 érintkezőjével van ösezekötve, A K^ kapcsoló második és harmadik áramköri, első kapcsolóhelyzetében egy ellenállásra át a közös föld vezet ékre csatlakozik. A K.^ kapcsoló ezen túlmenően a második áramkörben egy C^ kondenzátor pozitív fegyverzetével ven öcczekötve,raelynoknegativ fegyverzete a közös földvezetékre csatlakozik, a ugyanezen kapcsoló a harmadik áramkörben egy C4 kondenzátoron keresztül van földelve. Alaphelyzetben a ^ tranzisztorok le vannak zárva, igy nem terhelik sem a töltőkört, sem a tápfeszültséget, A C^ ás kondenzátorok az E4 ellenálláson keresztül nulla feszültségre vannak kisütve. Amikor a K^ kapcsolót átkapcsoljuk, a második helyzetben a integráló kondenzátor tárolja az átkapcsolás előtti feszültséget, mig a C^ és C^ kondenzátorok párhuzamosan kapcsolódnak, a C^ kondenzátor pedig töltődni kezd a tranzisztor bázleemitterén, valamint az Bg és R^ ellenállásokon keresztül. így a tranzisztor nyit és a Tg tranzisztorok is működőképesek lesznek. A 2? lt SCg tranzisztorok alkotják a feszultségátmásolé áramkört, emely a C^, C^icoiadenzátorokat a Cg kondenzátorban tárolt feszültségre tölti fel. A C^ kondenzátor töltőáramának lecsökkenéeével, - ha az Eg ellenálláson eső feszültség a tranzisztor nyitófeszülteége alá cshkken, a T^ tranzisztor lezár. Ekkor

6 Bárnak a Tg tranzisztorok is, az áramkör ismét nem terheli sea a tbltokört, cea a tápfeszültséget. A párhuzamosan kapcsolt C^ kondenzátorok határozzák meg a nagyobb, Időállandót. A Tg tranzisztor nyitvat óriásának idegét r. C kondenzátor, továbbá as R^ és R^ ellenállások értóke ozabja meg, A találmány szerinti megoldáenak megfelelő kapcsolási elrendezáe főleg telepes eugárszennyezettség-méro műszerekben célszerű, ahol lényegesen lerövidíti a csekély szennyezettségek pontos mérés éhes ezlikséges időt, s emellett az átkaposoláci tranziensen, kivill áramot sem fogyaszt. Az áramkör viszonylag kevés szerkezeti elemből van felépítve, ennek ellenére szélsőséges hőmérsékleti viszonyok, és az átmásolandó fessultság szélső értékei mellett is biztonság goaan működik.

7 Szabadalmi Igénypont Kapcsolási elrendezés sugárszennyezettség-mérő kónzulék ratemőter időállendójának tran aiensmenteb váltására, azzal 3 e 1 1 e m e zve, hogy Integráló kondenzátor /C^/ pozitív fegyverzete kétállású kapcsolón /K^/ át a töltő ée müszerkörre, a kapcsoló további integráló kondenzátor /Cg/ pozitív fegyverzetére és tranzisztor /T^/ bázisára csatlakozik, mig a tranzisztor /T-J kollektora egyrészt további tranzisztor /Tg/ bázisára, másrészt ellenálláson /E-j/ át hfumadik tranzisztor /T^/ emitterére csatlakozik; usyanesen tranzisztor /T^/ kollektora a második tranzisztor /Tg/ eiaitterővel van összekötve* mig bázisa egyrészt további ellenálláson /R^/ át a kapcsoló /K^/ második nelyzetét meghatározó érintkezőjére, másrészt ellenálláson /Eg/ át a második tranzisztor /Tg/ emitterével és az ellenállás /flg/ végével összekötve a pozitív tápfeszültségre /+U,j/ csatlakozik; az integráló kondenzátorok /Cj, Cg/ negativ fegyverzete és az első tranzisztor /T^/ emit tere kösüs földvezetókre van kötve, mig a második tranzisztor /Tg/ kollektora a kétállású, kapcsoló /Ej/ első árenköri helyzetében a kapcsoló második kapcgolt holysétát jseglmtárosé érintkezőre, a xaádodik vu haxtuadik áramkörben pedig ugyanezen kapcsoló első kapcsolt helyzetét meghatározó érintkezőn át egy-egy kondenzátor /O^, 0^/ pozitív

8 - 6 - fegyverzetére, Illetve leágazácból ellcnállácra /E^/ csatlakozik, vágul, hágj a knndenzátarolc /Cq 3 C^/ negatív fegyverzete és az ellenállá:; /R^/ másik vége k<);;i& fölflvozetúkre van kötve. A meghatalmazott: / l /ül' íuj-i 4okív. IJ j Í 'I \

9 GAMMA MOVEK 1/1 ^,,.'-I - / ' o4-

Összetett hálózat számítása_1

Összetett hálózat számítása_1 Összetett hálózat számítása_1 Határozzuk meg a hálózat alkatrészeinek feszültségeit, valamint az áramkörben folyó eredő áramot! A megoldás lépései: - számítsuk ki a kör eredő ellenállását, - az eredő ellenállás

Részletesebben

Beütésszám átlagmérő k

Beütésszám átlagmérő k Beütésszám átlagmérő k A beütésszám átlagmérők elsősorban a radioaktív sugárforrások intenzitásának ellenőrzésére és mérésére szolgálnak Természetesen használhatjuk más jeladók esetében is, amikor például

Részletesebben

1. Feladat. 1. ábra. Megoldás

1. Feladat. 1. ábra. Megoldás . Feladat Az. ábrán látható egyenáramú áramkörben, kezdetben mindkét kapcsoló nyitott állásba található. A0 pillanatban zárjuk a kapcsolót, majd megvárjuk, hogy a létrejövő tranziens folyamat során a kondenzátor

Részletesebben

Tranziens jelenségek rövid összefoglalás

Tranziens jelenségek rövid összefoglalás Tranziens jelenségek rövid összefoglalás Átmenet alakul ki akkor, ha van energiatároló (kapacitás vagy induktivitás) a rendszerben, mert ezeken a feszültség vagy áram nem jelenik meg azonnal, mint az ohmos

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Térvezérlésű tranzisztorok (FET)

Hobbi Elektronika. Bevezetés az elektronikába: Térvezérlésű tranzisztorok (FET) Hobbi Elektronika Bevezetés az elektronikába: Térvezérlésű tranzisztorok (FET) 1 Felhasznált irodalom Sulinet Tudásbázis: Unipoláris tranzisztorok Electronics Tutorials: The MOSFET CONRAD Elektronik: Elektronikai

Részletesebben

/ w. U^YcXÍV^éxi.^ KAKJSOLÓÜZEMÜ TÁPEGYSÉG TÖBB STABIL TÁPFESZ ÜLTS ÉGlíT IGÉ3Y1Ő BUG ifeszeithyezettségmérö KÉZIMÜSZER SZÁMÁÉ A

/ w. U^YcXÍV^éxi.^ KAKJSOLÓÜZEMÜ TÁPEGYSÉG TÖBB STABIL TÁPFESZ ÜLTS ÉGlíT IGÉ3Y1Ő BUG ifeszeithyezettségmérö KÉZIMÜSZER SZÁMÁÉ A / w Képviselőt BANUBIA BZABADAUfflC IRODA Budapest 2 3 A U^YcXÍV^éxi.^ Szolgálati találmány KAKJSOLÓÜZEMÜ TÁPEGYSÉG TÖBB STABIL TÁPFESZ ÜLTS ÉGlíT IGÉ3Y1Ő BUG ifeszeithyezettségmérö KÉZIMÜSZER SZÁMÁÉ A

Részletesebben

SZABADALMI LEÍRÁS (11) (19) HU MAGYAR NÉPKÖZTÁRSASÁG SZOLGALATI TALÁLMÁNY. Nemzetközi osztályjelzet: A bejelentés napja: (22) 81. 09. 22.

SZABADALMI LEÍRÁS (11) (19) HU MAGYAR NÉPKÖZTÁRSASÁG SZOLGALATI TALÁLMÁNY. Nemzetközi osztályjelzet: A bejelentés napja: (22) 81. 09. 22. (19) HU MAGYAR NÉPKÖZTÁRSASÁG SZABADALMI LEÍRÁS (11) 183584 SZOLGALATI TALÁLMÁNY A bejelentés napja: (22) 81. 09. 22. (21) 2739/81 Nemzetközi osztályjelzet: (51) NSZO3 G 01 T 1/02 ORSZÁGOS TALÁLMÁNYI HIVATAL

Részletesebben

Elektronikus fekete doboz vizsgálata

Elektronikus fekete doboz vizsgálata Elektronikus fekete doboz vizsgálata 1. Feladatok a) Munkahelyén egy elektronikus fekete dobozt talál, amely egy nem szabványos egyenáramú áramforrást, egy kondenzátort és egy ellenállást tartalmaz. Méréssel

Részletesebben

A stabil üzemű berendezések tápfeszültségét a hálózati feszültségből a hálózati tápegység állítja elő (1.ábra).

A stabil üzemű berendezések tápfeszültségét a hálózati feszültségből a hálózati tápegység állítja elő (1.ábra). 3.10. Tápegységek Az elektronikus berendezések (így a rádiók) működtetéséhez egy vagy több stabil tápfeszültség szükséges. A stabil tápfeszültség időben nem változó egyenfeszültség, melynek értéke független

Részletesebben

Bevezetés az elektronikába

Bevezetés az elektronikába Bevezetés az elektronikába 3. Astabil multivibrátorok alkalmazása 1 Ismétlés: astabil multivibrátor Amikor T2 kinyit, Uc2 alacsony (néhány tized V) lesz, az eredetileg feltöltöt kondenzátor negatívbe viszi

Részletesebben

5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA

5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA 5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA BMF-Kandó 2006 2 A mérést végezte: A mérés időpontja: A mérésvezető tanár tölti ki! Mérés vége:. Az oszcillátorok vizsgálatánál a megadott kapcsolások közül csak egyet

Részletesebben

KÖZÖS EMITTERŰ FOKOZAT BÁZISOSZTÓS MUNKAPONTBEÁLLÍTÁSA

KÖZÖS EMITTERŰ FOKOZAT BÁZISOSZTÓS MUNKAPONTBEÁLLÍTÁSA KÖZÖS EMITTERŰ FOKOZT BÁZISOSZTÓS MUNKPONTBEÁLLÍTÁS Mint ismeretes, a tranzisztor bázis-emitter diódájának jelentős a hőfokfüggése. Ugyanis a hőmérséklet növekedése a félvezetőkben megnöveli a töltéshordozók

Részletesebben

1. ábra A Colpitts-oszcillátor, valamint közös drain-ű változata, a Clapp-oszcillátor

1. ábra A Colpitts-oszcillátor, valamint közös drain-ű változata, a Clapp-oszcillátor A tárgyalandó oszcillátortípusok a hárompont-kapcsolásúak egyik alcsoportja, méghozzá a a Colpitts-oszcillátor földelt kollektoros (drain-ű, anódú), valamint földelt emitteres (source-ű, katódú) változatai.

Részletesebben

FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás

FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás A tranzisztor felfedezése A tranzisztor kifejlesztését a Lucent Technologies kutatóintézetében, a Bell Laboratóriumban végezték el. A laboratóriumban három

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 760A Digitális multiméter TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Előlap és kezelőszervek... 2 3. Általános tulajdonságok... 3 4. Mérési tulajdonságok... 3 5. A Multiméter használata...

Részletesebben

Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel

Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedés- és Járműirányítási Tanszék Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel Segédlet az Irányítástechnika I.

Részletesebben

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2 1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2

Részletesebben

Lineáris és kapcsoló üzemű feszültség növelő és csökkentő áramkörök

Lineáris és kapcsoló üzemű feszültség növelő és csökkentő áramkörök Lineáris és kapcsoló üzemű feszültség növelő és csökkentő áramkörök Buck, boost konverter Készítette: Támcsu Péter, 2016.10.09, Debrecen Felhasznált dokumentum : Losonczi Lajos - Analog Áramkörök 7 Feszültség

Részletesebben

= 163, 63V. Felírható az R 2 ellenállásra, hogy: 163,63V. blokk sorosan van kapcsolva a baloldali R 1 -gyel, és tudjuk, hogy

= 163, 63V. Felírható az R 2 ellenállásra, hogy: 163,63V. blokk sorosan van kapcsolva a baloldali R 1 -gyel, és tudjuk, hogy Határozzuk meg és ellenállások értékét, ha =00V, = 00, az ampermérő 88mA áramot, a voltmérő,v feszültséget jelez! Az ampermérő ellenállását elhanyagolhatóan kicsinek, a voltmérőét végtelen nagynak tekinthetjük

Részletesebben

Bevezetés az elektronikába

Bevezetés az elektronikába Bevezetés az elektronikába 6. Feladatsor: Egyszerű tranzisztoros kapcsolások Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Tranziens (átmeneti) jelenségek Az előzőekben csupán az

Részletesebben

Vizuális segédlet az Elektrotechnika II. laboratóriumi mérési gyakorlataihoz

Vizuális segédlet az Elektrotechnika II. laboratóriumi mérési gyakorlataihoz Vizuális segédlet az Elektrotechnika II. laboratóriumi mérési gyakorlataihoz 2007. dr. Kloknicer Imre laborvezet 2 Tartalom 1. Bevezetés 2. Mérések 2.1 1. sz. mérés (dióda, Zener dióda) 2.2 2. sz. mérés

Részletesebben

Földelt emitteres erősítő DC, AC analízise

Földelt emitteres erősítő DC, AC analízise Földelt emitteres erősítő DC, AC analízise Kapcsolási vázlat: Az ábrán egy kisjelű univerzális felhasználású tranzisztor (tip: 2N3904) köré van felépítve egy egyszerű, pár alkatrészből álló erősítő áramkör.

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

Tájékoztató. Használható segédeszköz: számológép

Tájékoztató. Használható segédeszköz: számológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított), a 27/2012 (VIII. 27.) NGM rendelet a 29/2016 (III.26.) NMG rendelet által módosított, a 27/2012 (VIII. 27.) NGM rendelet

Részletesebben

Áramkörök számítása, szimulációja és mérése próbapaneleken

Áramkörök számítása, szimulációja és mérése próbapaneleken Áramkörök számítása, szimulációja és mérése próbapaneleken. Munkapontbeállítás Elektronika Tehetséggondozás Laboratóriumi program 207 ősz Dr. Koller István.. NPN rétegtranzisztor munkapontjának kiszámítása

Részletesebben

ELLENÁLLÁSMÉRÉS. A mérés célja. Biztonságtechnikai útmutató. Mérési módszerek ANALÓG UNIVERZÁLIS MŰSZER (MULTIMÉTER) ELLENÁLLÁSMÉRŐ MÓDBAN.

ELLENÁLLÁSMÉRÉS. A mérés célja. Biztonságtechnikai útmutató. Mérési módszerek ANALÓG UNIVERZÁLIS MŰSZER (MULTIMÉTER) ELLENÁLLÁSMÉRŐ MÓDBAN. ELLENÁLLÁSMÉRÉS A mérés célja Az egyenáramú hidakkal, az ellenállásmérő műszerekkel, az ellenállásmérő módban is használható univerzális műszerekkel végzett ellenállásmérés módszereinek, alkalmazási sajátosságainak

Részletesebben

Tranzisztoros erősítő vizsgálata. Előzetes kérdések: Mire szolgál a bázisosztó az erősítőkapcsolásban? Mire szolgál az emitter ellenállás?

Tranzisztoros erősítő vizsgálata. Előzetes kérdések: Mire szolgál a bázisosztó az erősítőkapcsolásban? Mire szolgál az emitter ellenállás? Tranzisztoros erősítő vizsgálata Előzetes kérdések: Mire szolgál a bázisosztó az erősítőkapcsolásban? Mire szolgál az emitter ellenállás? Mi az emitterkövető kapcsolás 3 jellegzetessége a földelt emitterűhöz

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Egyszerű tranzisztoros kapcsolások

Hobbi Elektronika. Bevezetés az elektronikába: Egyszerű tranzisztoros kapcsolások Hobbi Elektronika Bevezetés az elektronikába: Egyszerű tranzisztoros kapcsolások 1 Felhasznált irodalom Torda Béla: Bevezetés az elektrotechnikába 2. F-alpha.net: The Multivibrator P. Falstad: Circuit

Részletesebben

Gingl Zoltán, Szeged, :47 Elektronika - Műveleti erősítők

Gingl Zoltán, Szeged, :47 Elektronika - Műveleti erősítők Gingl Zoltán, Szeged, 06. 06.. 3. 7:47 Elektronika - Műveleti erősítők 06.. 3. 7:47 Elektronika - Műveleti erősítők Passzív elemek nem lehet erősíteni, csi jeleket kezelni erősen korlátozott műveletek

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA TÁVKÖZLÉSI ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA TÁVKÖZLÉSI ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK TÁVKÖZLÉSI ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK 1. Egyenáramú hálózat számítása 13 pont Az ábrán egy egyenáramú ellenállás hálózat látható, melyre Ug = 12 V feszültséget kapcsoltak. a)

Részletesebben

Elektronika 1. 4. Előadás

Elektronika 1. 4. Előadás Elektronika 1 4. Előadás Bipoláris tranzisztorok felépítése és karakterisztikái, alapkapcsolások, munkapont-beállítás Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch.

Részletesebben

Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő

Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő Műveleti erősítők A műveleti erősítők egyenáramú erősítőfokozatokból felépített, sokoldalúan felhasználható áramkörök, amelyek jellemzőit A u ', R be ', stb. külső elemek csatlakoztatásával széles határok

Részletesebben

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 760B Digitális multiméter TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Előlap és kezelőszervek... 2 3. Általános tulajdonságok... 3 4. Mérési tulajdonságok... 3 5. A Multiméter használata...

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 760C Digitális multiméter TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Előlap és kezelőszervek... 2 3. Általános tulajdonságok... 3 4. Mérési tulajdonságok... 3 5. A Multiméter használata...

Részletesebben

(11) Lajstromszám: E (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA. 2. ábra

(11) Lajstromszám: E (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA. 2. ábra !HU000005906T2! (19) HU (11) Lajstromszám: E 005 906 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 07 001467 (22) A bejelentés napja:

Részletesebben

írásbeli vizsgatevékenység

írásbeli vizsgatevékenység Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 0896-06 Villanyszerelési munka előkészítése, dokumentálása Vizsgarészhez rendelt vizsgafeladat száma, megnevezése: 0896-06/3 Mérési feladat

Részletesebben

Attól függően, hogy a tranzisztor munkapontját melyik karakterisztika szakaszon helyezzük el, működése kétféle lehet: lineáris és nemlineáris.

Attól függően, hogy a tranzisztor munkapontját melyik karakterisztika szakaszon helyezzük el, működése kétféle lehet: lineáris és nemlineáris. Alapkapcsolások (Attól függően, hogy a tranzisztor három csatlakozási pontja közül melyiket csatlakoztatjuk állandó potenciálú pólusra, megkülönböztetünk): földelt emitteres földelt bázisú földelt kollektoros

Részletesebben

Mérési utasítás. P2 150ohm. 22Kohm

Mérési utasítás. P2 150ohm. 22Kohm Mérési utasítás A mérés célja: Tranzisztorok és optocsatoló mérésén keresztül megismerkedni azok felhasználhatóságával, tulajdonságaival. A mérés során el kell készíteni különböző félvezető alkatrészek

Részletesebben

EPS-1-60 és EPS-1-120 HASZNÁLATI ÚTMUTATÓ

EPS-1-60 és EPS-1-120 HASZNÁLATI ÚTMUTATÓ EPS-1-60 és EPS-1-120 HASZNÁLATI ÚTMUTATÓ BILLENTYŰZET 1) ON/OFF gomb: a mérleg ki- és bekapcsolása 2) TARE gomb: tárázás/nullázás 3) MODE gomb: mértékegység váltás MŰSZAKI PARAMÉTEREK 1) Méréshatár: 60.00kg

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus

Részletesebben

Bipoláris tranzisztoros erősítő kapcsolások vizsgálata

Bipoláris tranzisztoros erősítő kapcsolások vizsgálata Mérési jegyzõkönyv A mérés megnevezése: Mérések Microcap Programmal Mérõcsoport: L4 Mérés helye: 14 Mérés dátuma: 2010.02.17 Mérést végezte: Varsányi Péter A Méréshez felhasznált eszközök és berendezések:

Részletesebben

2.Előadás ( ) Munkapont és kivezérelhetőség

2.Előadás ( ) Munkapont és kivezérelhetőség 2.lőadás (207.09.2.) Munkapont és kivezérelhetőség A tranzisztorokat (BJT) lineáris áramkörbe ágyazva "működtetjük" és a továbbiakban mindig követelmény, hogy a tranzisztor normál aktív tartományban működjön

Részletesebben

Feszültségszintek. a) Ha egy esemény bekövetkezik akkor az értéke 1 b) Ha nem következik be akkor az értéke 0

Feszültségszintek. a) Ha egy esemény bekövetkezik akkor az értéke 1 b) Ha nem következik be akkor az értéke 0 Logikai áramkörök Feszültségszintek A logikai rendszerekben az állapotokat 0 ill. 1 vagy H ill. L jelzéssel jelöljük, amelyek konkrét feszültségszinteket jelentenek. A logikai algebrában a változókat nagy

Részletesebben

Adatok: R B1 = 100 kω R B2 = 47 kω. R 2 = 33 kω. R E = 1,5 kω. R t = 3 kω. h 22E = 50 MΩ -1

Adatok: R B1 = 100 kω R B2 = 47 kω. R 2 = 33 kω. R E = 1,5 kω. R t = 3 kω. h 22E = 50 MΩ -1 1. feladat R B1 = 100 kω R B2 = 47 kω R C = 3 kω R E = 1,5 kω R t = 4 kω A tranzisztor paraméterei: h 21E = 180 h 22E = 30 MΩ -1 a) Számítsa ki a tranzisztor kollektor áramát, ha U CE = 6,5V, a tápfeszültség

Részletesebben

A/D és D/A konverterek vezérlése számítógéppel

A/D és D/A konverterek vezérlése számítógéppel 11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,

Részletesebben

ELEKTRONIKA I. (KAUEL11OLK)

ELEKTRONIKA I. (KAUEL11OLK) Félévi követelmények és beadandó feladatok ELEKTRONIKA I. (KAUEL11OLK) tárgyból a Villamosmérnöki szak levelező tagozat hallgatói számára Óbuda Budapest, 2005/2006. Az ELEKTRONIKA I. tárgy témaköre: Az

Részletesebben

25.B 25.B. 25.B Impulzustechnikai alapáramkörök Impulzusok elıállítása

25.B 25.B. 25.B Impulzustechnikai alapáramkörök Impulzusok elıállítása 5.B Impulzustechnikai alapáramkörök Impulzusok elıállítása Értelmezze a félvezetı elemek és a mőveleti erısítı kapcsoló üzemmódját, a stabil- és a kvázistabil állapotot! Magyarázza el a tranzisztoros vagy

Részletesebben

Elektronika I. Gyakorló feladatok

Elektronika I. Gyakorló feladatok Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó

Részletesebben

Érzékelők és beavatkozók

Érzékelők és beavatkozók Érzékelők és beavatkozók DC motorok 3. rész egyetemi docens - 1 - DC motorvezérlés H-híd: +V r Motor mozgatás előre Motor mozgatás hátra Fékezés Szabadonfutás a vezérlés függvényében UL LL + Ø - UR LR

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

A felületi radioaktívszennyezettség-mérők mérési bizonytalansága

A felületi radioaktívszennyezettség-mérők mérési bizonytalansága Szűcs László Magyar Kereskedelmi Engedélyezési Hivatal A felületi radioaktívszennyezettség-mérők mérési bizonytalansága Mire alkalmas egy radioaktívszennyezettség-mérő? A radioaktívszennyezettség-mérők

Részletesebben

0 Általános műszer- és eszközismertető

0 Általános műszer- és eszközismertető 0 Általános műszer- és eszközismertető A laborgyakorlatok során előforduló eszközök vázlatos áttekintésében a teljesség igénye nélkül s a célfeladatokra koncentrálva a következő oldalak nyújtanak segítséget.

Részletesebben

Oktatási Hivatal. A 2008/2009. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja. FIZIKÁBÓL II.

Oktatási Hivatal. A 2008/2009. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja. FIZIKÁBÓL II. Oktatási Hivatal A 8/9. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja FIZIKÁBÓL II. kategóriában Feladat a Fizika Országos Középiskolai Tanulmányi Verseny harmadik fordulójára.

Részletesebben

Áramköri elemek mérése ipari módszerekkel

Áramköri elemek mérése ipari módszerekkel 3. aboratóriumi gyakorlat Áramköri elemek mérése ipari módszerekkel. dolgozat célja oltmérők, ampermérők használata áramköri elemek mérésénél, mérési hibák megállapítása és azok függősége a használt mérőműszerek

Részletesebben

Zener dióda karakterisztikáinak hőmérsékletfüggése

Zener dióda karakterisztikáinak hőmérsékletfüggése A mérés célja 18. mérés Zener dióda karakterisztikáinak hőmérsékletfüggése A Zener dióda nyitóirányú és záróirányú karakterisztikájának, a karakterisztika hőmérsékletfüggésének vizsgálata, a Zener dióda

Részletesebben

Billenő áramkörök (multivibrátorok)

Billenő áramkörök (multivibrátorok) Billenő áramkörök (multivibrátorok) 1. Bevezetés Multivibrátorok típusai A billenőkörök pozitívan visszacsatolt univerzális digitális áramkörök, melyeket négyszögjelek előállítására használunk. Kimeneti

Részletesebben

Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila 2007 március 27

Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila 2007 március 27 Bevezetés a méréstechnikába és jelfeldolgozásba Tihanyi Attila 2007 március 27 Ellenállások R = U I Fajlagos ellenállás alapján hosszú vezeték Nagy az induktivitása Bifiláris Trükkös tekercselés Nagy mechanikai

Részletesebben

AQUA LUNA aqua_luna_int 08/11

AQUA LUNA aqua_luna_int 08/11 AQUA LUNA aqua_luna_int 08/11 DIGITÁLIS PASSZÍV INFRAÉRZÉKELŐ BEÉPÍTETT VILÁGÍTÁSSAL 1. Tulajdonságok Duál-elemes pyroszenzor. Teljesen digitális mozgásérzékelési algoritmus. Kettős jelelemzés, érték és

Részletesebben

OPT. típusú öntáp-egységek ΩProt készülékek számára. Budapest, 2005. április. Azonosító: OP-13-6769-20

OPT. típusú öntáp-egységek ΩProt készülékek számára. Budapest, 2005. április. Azonosító: OP-13-6769-20 OmegaProt OPT típusú öntáp-egységek ΩProt készülékek számára Azonosító: OP-13-6769-20 Budapest, 2005. április Alkalmazási terület Azt OPT típusú öntáp-egység másik ΩProt készülék táplálására és az általa

Részletesebben

DIÓDÁS ÉS TIRISZTOROS KAPCSOLÁSOK MÉRÉSE

DIÓDÁS ÉS TIRISZTOROS KAPCSOLÁSOK MÉRÉSE M I S K O C I E G Y E T E M GÉPÉSZMÉNÖKI ÉS INFOMATIKAI KA EEKTOTECHNIKAI ÉS EEKTONIKAI INTÉZET Összeállította D. KOVÁCS ENŐ DIÓDÁS ÉS TIISZTOOS KAPCSOÁSOK MÉÉSE MECHATONIKAI MÉNÖKI BSc alapszak hallgatóinak

Részletesebben

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata. El. II. 4. mérés. 1. Áramgenerátorok bipoláris tranzisztorral A mérés célja: Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 90D Digitális Multiméter TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Előlap és kezelőszervek... 2 3. Biztonsági információk... 3 4. Speciális használati figyelmeztetések... 3 5. Általános

Részletesebben

11.2. A FESZÜLTSÉGLOGIKA

11.2. A FESZÜLTSÉGLOGIKA 11.2. A FESZÜLTSÉGLOGIKA Ma a feszültséglogika számít az uralkodó megoldásnak. Itt a logikai változó két lehetséges állapotát két feszültségérték képviseli. Elvileg a két érték minél távolabb kell, hogy

Részletesebben

Felhasználói kézikönyv 33D Digitális multiméter

Felhasználói kézikönyv 33D Digitális multiméter HoldPeak Felhasználói kézikönyv 33D Digitális multiméter TARTALOMJEGYZÉK 1. BEVEZETÉS... 2 2. ELŐLAP ÉS KEZELŐSZERVEK... 2 3. BIZTONSÁGI INFORMÁCIÓK... 3 4. SPECIÁLIS HASZNÁLATI FIGYELMEZTETÉSEK... 3 5.

Részletesebben

Alapvető információk a vezetékezéssel kapcsolatban

Alapvető információk a vezetékezéssel kapcsolatban Alapvető információk a vezetékezéssel kapcsolatban Néhány tipp és tanács a gyors és problémamentes bekötés érdekében: Eszközeink 24 V DC tápellátást igényelnek. A Loxone link maximum 500 m hosszan vezethető

Részletesebben

MOTOR HAJTÁS Nagyfeszültségű megszakító

MOTOR HAJTÁS Nagyfeszültségű megszakító Forradalom a megszakító technológiában MOTOR HAJTÁS Nagyfeszültségű megszakító ABB HV Products - Page 1 Mi az a Motor Hajtás? ABB HV Products - Page 2 Energia Átvitel Energia Kioldás Energia Tárolás Energia

Részletesebben

1. ábra A Wheatstone-híd származtatása. és U B +R 2 U B =U A. =0, ha = R 4 =R 1. Mindezekből a hídegyensúly: R 1

1. ábra A Wheatstone-híd származtatása. és U B +R 2 U B =U A. =0, ha = R 4 =R 1. Mindezekből a hídegyensúly: R 1 A Wheatstone-híd lényegében két feszültségosztóból kialakított négypólus áramkör, mely Sir Charles Wheatstone (1802 1875) angol fizikus és feltalálóról kapta a nevét. UA UB UA UB Írjuk fel a kész feszültségosztó

Részletesebben

1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?

1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? Ellenörző kérdések: 1. előadás 1/5 1. előadás 1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? 2. Mit jelent a föld csomópont, egy áramkörben hány lehet belőle,

Részletesebben

DIFFERENCIÁLEGYENLETEK MEGOLDÁSA ANALÓG SZÁMÍTÓGÉPPEL

DIFFERENCIÁLEGYENLETEK MEGOLDÁSA ANALÓG SZÁMÍTÓGÉPPEL 1 DIFFERENCIÁLEGYENLETEK MEGOLDÁSA ANALÓG SZÁMÍTÓGÉPPEL Az analóg áramkörök körében léteznek olyan eszközök, amelyek képesek matematikai műveletek elvégzésére. A matematikai változókat áram vagy feszültség

Részletesebben

MIKROELEKTRONIKA, VIEEA306

MIKROELEKTRONIKA, VIEEA306 Budapesti Műszaki és Gazdaságtudományi Egyetem MKROELEKTRONKA, VEEA306 A bipoláris tranzisztor. http://www.eet.bme.hu/~poppe/miel/hu/08-bipol3.ppt http://www.eet.bme.hu Az ideális tranzisztor karakterisztikái

Részletesebben

Számítási feladatok megoldással a 6. fejezethez

Számítási feladatok megoldással a 6. fejezethez Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5

Részletesebben

Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő.

Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő. 3.8. Szinuszos jelek előállítása 3.8.1. Oszcillátorok Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő. Az oszcillátor elvi elépítését (tömbvázlatát)

Részletesebben

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2.

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2. evezető fizika (infó), 8 feladatsor Egyenáram, egyenáramú áramkörök 04 november, 3:9 mai órához szükséges elméleti anyag: Kirchhoff törvényei: I Minden csomópontban a befolyó és kifolyó áramok előjeles

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 760E Digitális Multiméter TARTALOMJEGYZÉK 1. Bevezetés...2 2. Előlap és kezelőszervek...2 3. Speciális használati figyelmeztetések...3 4. Általános tulajdonságok...3 5. Mérési tulajdonságok...3

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 5. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 5. óra Verzió: 1.1 Utolsó frissítés: 2011. április 12. 1/20 Tartalom I 1 Demók 2 Digitális multiméterek

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit! Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg

Részletesebben

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek. III. VILLAMOS TÉR Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos töltések által keltett villamos tér törvényeivel foglalkozik.

Részletesebben

Led - mátrix vezérlés

Led - mátrix vezérlés Led - mátrix vezérlés Készítette: X. Y. 12.F Konzulens tanár: W. Z. Led mátrix vezérlő felépítése: Mátrix kijelzőpanel Mikrovezérlő panel Működési elv: 1) Vezérlőpanel A vezérlőpanelen található a MEGA8

Részletesebben

DT9205A Digital Multiméter

DT9205A Digital Multiméter DT9205A Digital Multiméter 1. BEVEZETÉS: DT9205A digitális multiméter precíziós, akkumulátoros, 3-1 / 2 számjegyű LCD digitális eszközhöz. Nagy pontosság Digit magasság 33mm Egyetlen 32 állású forgókapcsoló

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

Egyszerű kísérletek próbapanelen

Egyszerű kísérletek próbapanelen Egyszerű kísérletek próbapanelen készítette: Borbély Venczel 2017 Borbély Venczel (bvenczy@gmail.com) 1. Egyszerű áramkör létrehozása Eszközök: áramforrás (2 1,5 V), izzó, motor, fehér LED, vezetékek,

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 36K Digitális multiméter TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Előlap és kezelőszervek... 2 3. Biztonsági információk... 3 4. Speciális használati figyelmeztetések... 3 5. Általános

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. május 25. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.

Részletesebben

AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ ATOMATKA ÉS ELEKTONKA SMEETEK KÖZÉPSZNTŰ ÍÁSBEL VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ A MNTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40. Egy A=,5 mm keresztmetszetű alumínium (ρ= 0,08 Ω mm /m)

Részletesebben

ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü

Részletesebben

:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő

Részletesebben

Ü Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű

Részletesebben

Ü Éü É ü í í Í ö Ü Ú ú Ó í ő í Ö ű ö Ó ú Ű ü í Ó ö Ó Ü Ó Ó í í ú í Ü Ü ő Ú Ó Ó í ú É ÉÉ É Á Ü Ü Ü Ú ő í Ő Ó Ü ő ö ü ő ü ö ú ő ő ő ü ö ő ű ö ő ü ő ő ü ú ü ő ü ü Í ü Í Á Ö Í É Ú ö Í Á Ö í É ö í ő ő í ö ü

Részletesebben

Ö Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü

Részletesebben

Á Á Ó É ö ó ó ó ő ő ó ö ő ő ű ó ú ö ó ó ő ó ü ó ó ő ó ó ő ó ü ó ő ő ő ó ő ő ö ó ó ó ö ö ü ö Á Á Ó ü ó ö ó ő ó ő ő Á É Á Ó ű ü ö ó ő ó ú ÉÉ ó ú ő ö ó ó ó ó ó ö ö ő ü ó ö ö ü ó ű ö ó ó ó ó ú ó ü ó ó ö ó

Részletesebben

É É É ü É ó ó É ű ó ÉÉ ó É ó É É ó É ü ó ó Ó ű ó ó ó ó ü É ü ű ó É É É É ü ü ó ó ó ü É ó É ó É ó ó ó ü ü ü ü ó ü ü ü ü ó ű ű É Í Ó Ü Ö ó ó ó Ó ó ü ü ü ű ó ü ü ű ü ü ó ü ű ü ó ü ó ó ó ó ó ó ó ü ó ó ó ű

Részletesebben

Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é

Részletesebben

ű Ő ű Ü Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ú Ü Ő ű Ö ű Ü ű Ö ű Ú ű ű Ű É É ű ű ű ű ű ű ű Ü ű ű ű ű ű ű ű Ú ű ű ű É Ű É Ü Ü Ú É É ű ű ű Ü ű É É Ű É ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű ű Ö É Ó É É É Ü

Részletesebben

ú Ú Ö É ú ü í í ü í í í í ü Ú í ű í ú ü ü í í ü ü í ü ü ú Í í ű í ü ü Ü í í ü í ú ű ú ú í í ü ú í ü É ü Ö í í ü ú ű í í ü í ű í í Í Ö í í ü Ö ú É Í í í í ü ű ü ű ü ü ü ü í í í í ú í ü í ú É ü ü ü ü í ü

Részletesebben

ikerfém kapcsoló Eloadás Iváncsy Tamás termisztor â Közvetett védelem: áramvédelem

ikerfém kapcsoló Eloadás Iváncsy Tamás termisztor â Közvetett védelem: áramvédelem â Közvetlen motorvédelem: hovédelem ikerfém kapcsoló kis teljesítményen: közvetlenül kapcsolja a motort nagy teljesítményen: kivezetéssel muködteti a 3 fázisú kapcsolót Iváncsy Tamás termisztor â Közvetett

Részletesebben