E L E M Z É S. Elemzés a fővárosi fenntartású középiskolák 10. évfolyamának évi kompetenciamérési eredményeiről május

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "E L E M Z É S. Elemzés a fővárosi fenntartású középiskolák 10. évfolyamának 2011. évi kompetenciamérési eredményeiről. 2012. május"

Átírás

1 E L E M Z É S Elemzés a fővárosi fenntartású középiskolák 10. évfolyamának évi kompetenciamérési eredményeiről május

2 Póta Mária (4. fejezet matematika) Sáfrányné Molnár Mónika (4. fejezet szövegértés) elemzésének felhasználásával Összeállította Lövei Mária Südi Ilona Török József Lektorálta dr. Kovács Diána

3 Tartalomjegyzék 1. Bevezetés A mérés eredménye A képzéstípusok szerinti teljesítmények Eredmények a matematikai eszköztudás területén Eredmények szövegértésből Az eredmények képességszintek szerinti megoszlása A nemek szerinti teljesítmények A és a évi országos kompetenciamérés eredményeinek összehasonlítása A feladatok jellemzői, eredménye, fejlesztési javaslatok Matematika A matematikafeladatok jellemzői A matematikafeladatok megoldottsága Képzéstípusonkénti eredmények A matematikafeladatok megoldottsága tartalmi területek szerint A matematikafeladatok megoldottsága gondolkodási műveletek szerint Nemek szerinti eredmények Javaslatok a matematikai eszköztudás fejlesztésére Szövegértés A szövegértés-feladatok jellemzői Képzéstípusonkénti eredmények A szövegértés-feladatok megoldottsága A szövegértés-feladatok megoldottsága tartalmi területek szerint A szövegértés-feladatok megoldottsága gondolkodási műveletek szerint Nemek szerinti eredmények Javaslatok a szövegértés fejlesztésére A családi háttér hatása a teljesítményre Összegzés Felhasznált irodalom Ábrajegyzék Táblázatjegyzék Mellékletek Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 2

4 1. BEVEZETÉS 2011-ben kilencedik alkalommal került sor az Országos kompetenciamérés lebonyolítására, a 6., 8. és 10. évfolyamon a tanulók szövegértési képességének és matematikai eszköztudásának értékelésére. A mérőeszközök összeállítását, a tesztfüzetek javítását és értékelését, a központi adatfeldolgozást az Oktatási Hivatal Közoktatási Mérési és Értékelési Osztálya (OH KMÉO) végezte óta a mérés az érintett tanulók teljes körére kiterjedt, ekkor került bevezetésre a mérési azonosító is óta új, közös, évfolyamfüggetlen skálán jeleníti meg az OH KMÉO az eredményeket, mely lehetővé tette, hogy a fejlődés mértékéről is képet kaphassunk. Ez a 2011-es adatok esetében is fennáll, a fejlődés mértéke megállapítható. A mérések eredményeit a felhasználók több szempont szerinti bontásban is megtekinthetik. Mindenki számára nyilvánosak a fenntartói, intézményi és telephelyi jelentések. A tanulói jelentés csak mérési azonosítóval érhető el a szülők és tanulók számára. Az adatelemzés további lehetősége az elemző szoftverben történő lekérdezéssel a fenntartók és intézmények számára jelszóval biztosított. Ugyanígy van lehetőség az intézményi telephelyek számára az adatok szerkesztése is. Jelen értékelés a fővárosi fenntartású intézmények 10. évfolyamos tanulói évi teljesítményének összegzésére koncentrál 1. A mérés eredményeinek áttekintéséhez elsősorban a Fenntartói jelentés, valamint annak összefoglalása szolgált alapul. A jelentésekben minden esetben súlyozott átlag 2 szerepel, ahol a súlyozás a hiányzások korrigálása miatt szükséges. A és évi eredmények összehasonlítása, a feladatonkénti teljesítmények értékelése az OKM FIT elemző szoftver felhasználásával végzett lekérdezés során keletkezett adatok alapján készült. 1 A korábbi évek Országos kompetenciamérés eredményeiről készült elemzéseink elérhetőek 2 Útmutató a Fenntartói jelentés ábráinak értelmezéséhez. (8. oldal) Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 3

5 2. A MÉRÉS EREDMÉNYE A évi 10. évfolyamos országos kompetenciamérésben 84 fővárosi fenntartású intézmény 120 telephellyel érintett. A szakközépiskolai telephelyek aránya meghaladja az 50%-ot, a telephelyek negyede szakiskolai, 17%-uk 4 évfolyamos gimnázium (1. ábra). 1. ábra. Az intézményi telephelyek képzéstípusok szerinti összetétele A fővárosi fenntartású intézmények 10. évfolyamos tanulóinak száma az intézmények adatszolgáltatása szerint fő volt. A mérés során jelentésre jogosult a tanulók közel 100%-a, fő. Ebből a fenntartói jelentésben szereplők aránya 88%-os (2. ábra). Ezek a tanulók azok, akik a felmérés napján nem hiányoztak, és mind matematika, mind szövegértés pontszámmal rendelkeznek. A legnagyobb, 20%-os arányú létszámeltérés a jelentésre jogosultak és a jelentésben szereplők között a szakiskolásoknál figyelhető meg, tehát a szakiskolai tanulók ötödére vonatkozóan nincs objektív információ. 2. ábra. A jelentésben szereplő tanulók létszámának, valamint arányának alakulása képzéstípusonként A jelentésben szereplő tanulók kétharmada szakközépiskolás, a 4 évfolyamos gimnazisták aránya 17%, a szakiskolásoké pedig 12%. A 8 évfolyamos gimnáziumi tanulók száma két telephelyen összesen 64, a 6 évfolyamosoké négy telephelyen ennek három és félszerese. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 4

6 A fenntartók körében a Fővárosi Önkormányzat helyzetét a 3. ábra mutatja be. A fenntartók közel egyharmada tőle jobban, fele nála gyengébben teljesített. 3. ábra. A Fővárosi Önkormányzathoz képest szignifikánsan jobban, hasonlóan, illetve gyengébben teljesítő fenntartók számának és arányának alakulása A fővárosi fenntartású intézmények tanulóinak az átlagos teljesítménye matematikából 1637 pont, mely az országos átlaghoz hasonló eredmény, a budapesti átlag 3 ennél 34 ponttal magasabb (4. ábra). 4. ábra. Az átlagos eredmények alakulása A fővárosi szövegértés-eredmény (1624 pont) az országos átlagot meghaladja. A budapesti átlag azonban itt is magasabb 34 ponttal, mint ahogyan az a matematikánál már látható volt A képzéstípusok szerinti teljesítmények Eredmények a matematikai eszköztudás területén A képzéstípusonkénti matematika átlageredmények a leggyengébb szakiskolai és a legeredményesebb 6 évfolyamos gimnázium között kétszórásnyi különbséget mutatnak (5. ábra). A gimnáziumi átlageredmények különbözősége félszórásnyi, ennél valamivel magasabb a szakközépiskolai átlagnak 3 Budapesti átlag az Országos kompetenciamérés során a Budapest területén telephellyel rendelkező összes (pl. fővárosi, kerületi, alapítványi, egyházi stb. fenntartású) iskola átlaga, fővárosi átlag ebből csak a fővárosi fenntartású közoktatási intézmények átlaga Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 5

7 a 4 évfolyamos gimnáziumi átlagtól vett eltérése. A szakiskolai átlag 164 ponttal alacsonyabb a szakközépiskolai átlagnál. 5. ábra. A matematika átlagos eredmények képzéstípusonkénti alakulása A 8 évfolyamos gimnáziumi átlag sem az országos, sem a budapesti átlagtól ténylegesen nem tér el. A szakiskolák esetében az országos átlaghoz viszonyítva nem mutatható ki számszerűsíthető különbség. A többi esetben a különbözőség statisztikailag számottevő. A tanulói teljesítmények a fővárosban 922 és 2331 pont között szóródnak, mely mögött több mint hétszórásnyi, 1409 pont különbség van (6. ábra). Függőleges vonalak - 6., 8. és 10. évfolyamos átlagértékek 6. ábra. A tanulók képességeloszlása az egyes képzéstípusokban matematikából A tanulók átlag körül csoportosuló felének teljesítménye egyszórásnyi széles intervallumban szóródik. Ennél valamivel szélesebb sáv a 6 évfolyamos gimnáziumoknál látható. Képzéstípusonként a tanulók gyengén és jobban teljesítő negyedének teljesítményében tapasztalható jelentősebb elté- Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 6

8 rés. A 4 évfolyamos gimnáziumi és a szakközépiskolai tanulók gyengébben és jobban teljesítő 25%- ának teljesítménye két és félszórásnyi széles intervallumban található. A szakiskolásoknál ez az érték közel kétszórásnyi, a 6 és 8 évfolyamos gimnazistáknál másfél kétszórásnyi. Ezek az értékek arra mutatnak rá, hogy milyen jelentős különbségek vannak a tanulói képességek terén. Ha vizsgálatunk során figyelembe vesszük, milyen átlagos teljesítményt nyújtottak a 6., 8. és 10. évfolyamos tanulók, akkor még szembetűnőbb, hol milyen elmaradás tapasztalható. A közös, évfolyamfüggetlen skála biztosítja ezen összehasonlítás lehetőségét. A gimnáziumi tanulók több mint háromnegyede, a szakközépiskolásoknak a fele a 10. évfolyamos átlag feletti eredményt ért el. Azonban a szakiskolások valamivel több mint fele nem éri el a 6. évfolyamos tanulók átlagát. A telephelyi átlagos eredmények képzéstípusonkénti alakulását a 7. ábra szemlélteti. A 6 és 8 évfolyamos gimnáziumi telephelyek átlagos eredményei közel egyszórásnyi különbséget mutatnak és meghaladják a 4 évfolyamos gimnáziumok átlagát. Ezeknek a gimnáziumi telephelynek az eredményei kétszórásnyi intervallumban szóródnak. Két gimnáziumi telephely eredménye nem éri el a szakközépiskolai átlagot. 7. ábra. A telephelyenkénti átlagos eredmények alakulása matematikából A szakközépiskolai telephelyek egyharmadának átlagos eredménye a szakközépiskolai és országos átlag feletti. A telephelyi eredmények másfél szórásnyi terjedelemben helyezkednek el. A szakiskolai telephelyi eredmények mindegyike az országos átlag alatt található, a három legeredményesebb telephely átlaga meghaladja a leggyengébb 4 évfolyamos gimnáziumi teljesítményt. A telephelyek egy harmada teljesített a szakiskolai átlag felett Eredmények szövegértésből A szövegértés képzéstípusonkénti átlagos eredményei hasonló képet mutatnak a matematikai eszköztudásnál látottakhoz. A 8 és 6 évfolyamos gimnáziumok teljesítménye hasonló, a 4 évfolyamosoké kevesebb mint fél szórással alacsonyabb náluk (8. ábra). A szakközépiskolai átlag közel háromnegyed szórással alacsonyabb a 4 évfolyamos gimnáziumi átlagnál, a szakiskolai átlag 176 ponttal marad el a szakközépiskolaitól. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 7

9 8. ábra. A szövegértés átlagos eredmények képzéstípusonkénti alakulása Mindegyik képzéstípus fővárosi átlaga meghaladja az adott képzéstípus országos átlagát, a 4 és 6 évfolyamos gimnáziumok esetében a budapesti átlagot is. A többi esetben látható különbség statisztikailag nem számottevő. A tanulói teljesítmények a fővárosban 886 és 2200 pont között szóródnak több mint hat és félszórásnyi, 1314 pont szélességű intervallumban (9. ábra). Függőleges vonalak - 6., 8. és 10. évfolyamos átlagértékek 9. ábra. A tanulók képességeloszlása az egyes képzéstípusokban szövegértésből A tanulók átlag körül csoportosuló felének teljesítménye egyszórásnyi széles intervallumban szóródik. Ennél valamivel szélesebb sáv a 8 évfolyamos gimnáziumoknál látható. Képzéstípusonként a tanulók gyengén és jobban teljesítő negyedének teljesítményében tapasztalható jelentősebb eltérés. A matematikánál látottakkal ellentétben az eredményesebben teljesítők homogénebb csoportot alkotnak. A 4 évfolyamos gimnáziumi, valamint a szakközépiskolai tanulók gyengébben teljesítő Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 8

10 25%-a igen széles, háromszórásnyi intervallumban szóródik. Az eredményesebbek teljesítménye már csak egy- és kétszórásnyi terjedelemben található. A 6 évfolyamos gimnáziumi és szakiskolai tanulók esetében a gyengébbeknél kétszórásnyi, a jobbaknál egy-másfélszórásnyi az intervallum. Ezek az értékek itt is arra mutatnak rá, hogy milyen jelentős különbségek vannak a tanulói képességek terén. Megvizsgálva a tanulók eloszlását a 6., 8. és 10. évfolyamos tanulók átlagához képest hasonló megállapításra juthatunk, mint a matematikaeredmények vizsgálatakor. A gimnáziumi tanulók több mint háromnegyede, a szakközépiskolásoknak a fele a 10. évfolyamos átlag feletti eredményt nyújtott. A szakiskolások háromnegyede a 8. évfolyamos, valamivel több mint fele a 6. évfolyamos átlagos eredmény alatt teljesített, mely komoly fejlesztési beavatkozások mielőbbi végrehajtását teszi indokolttá. A telephelyi átlagos eredmények képzéstípusonkénti alakulását a 10. ábra szemlélteti. 10. ábra. A telephelyenkénti átlagos eredmények alakulása szövegértésből A 8 évfolyamos gimnáziumi telephelyek átlagos eredményüket tekintve egy szórásra vannak, a négy 6 évfolyamos gimnáziumi telephely félszórásnyira található egymástól. Egytől eltekintve a 4 évfolyamos gimnáziumi átlag feletti eredményt értek el. A 4 évfolyamos gimnáziumi eredmények négy és félszórásnyi intervallumban szóródnak, egy telephely esetében marad el az országos átlagtól a teljesítmény. A szakközépiskolai telephelyek felének átlagos eredménye a szakközépiskolai és országos átlag feletti. A telephelyi eredmények közel kétszórásnyi terjedelemben szóródnak. A szakiskolai telephelyi eredmények mindegyike az országos átlag alatt helyezkedik el, egy szórás terjedelemben. A telephelyek 70%-a a szakiskolai átlag felett teljesített, azonos sávban a gyengébben teljesítő szakközépiskolai telephelyek ötödével Az eredmények képességszintek szerinti megoszlása Az új, közös, évfolyamfüggetlen skálán 7-7 képességszint került kialakításra 4. A matematika- és szövegértés-mérés területén az egyes szinthatárokat tartalmazó táblázat elérhetősége az 1. mellékletben található. A 10. évfolyam esetében a 4. képességszint az a minimális szint, amelynek elérése 4 Vö.: Változások az Országos kompetenciamérés skáláiban Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 9

11 szükséges ahhoz, hogy a tanuló eredményesen tudja alkalmazni képességeit a további ismeretszerzésben és az önálló tanulás során. A 11. és a 15. ábra mutatja be mérési területenként a tanulók képességszintek szerinti megoszlását a különböző képzési formákban. Matematikából a gimnáziumi tanulók 88-95%-a, a szakközépiskolások kétharmada, a szakiskolások egy negyede található a 4. képességszinten és a felett (11. ábra). A harmadik képességszinten a 4 évfolyamos gimnáziumi tanulók közel egy tizede, a szakközépiskolások egy negyede, a szakiskolások 35%-a teljesített. A szakiskolások negyede 2. képességszinten, míg 15%-a az 1. szinten vagy az alatt található. 11. ábra. A tanulók képességszintek szerinti megoszlása matematikából Telephelyenként vizsgálva a 4. képességszint alatt teljesítő tanulók aránya matematikából a különböző képzési formákban változatos képet mutat ( ábra, 9. melléklet). 12. ábra. A gimnáziumi telephelyek 4. képességszint alatt teljesítő tanulóinak aránya matematikából Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 10

12 13. ábra. A szakközépiskolai telephelyek 4. képességszint alatt teljesítő tanulóinak aránya matematikából 14. ábra. A szakiskolai telephelyek 4. képességszint alatt teljesítő tanulóinak aránya matematikából A gimnáziumi telephelyek 31%-án a 4. képességszint alatti tanulók aránya az adott képzéstípus átlaga felett található. Az egyik 4 évfolyamos gimnáziumi telephelyen a 4. képességszint alatti tanulók 41%-os aránya országos átlagot is meghaladó mértékű. A szakközépiskolai telephelyek felénél a 4. képességszint alatti tanulók aránya meghaladja a 47%-ot, négy telephelynél 70% fölötti. A szakiskolai telephelyeken 54 és 100% közötti a minimális szint alatt teljesítők aránya, minden esetben az országos átlag feletti. A szakiskolai telephelyek 83%-ánál a szint alatt teljesítők aránya meghaladja a 70%-ot. A tanulók képességszintek szerinti megoszlását szövegértés területen vizsgálva némileg kedvezőbb a kép a matematikánál látottakhoz képest (15. ábra). A gimnáziumi tanulók 96-98%-a, a szakközépiskolások négy ötöde, a szakiskolások két ötöde 4. vagy a feletti képességszinten van. Míg a szakközépiskolások egy tizede, addig a szakiskolások egy harmada a 2. képességszinten található. Sajnos a szakiskolások negyede a 2. vagy az alatti képességszinten teljesített. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 11

13 15. ábra. A tanulók képességszintek szerinti megoszlása szövegértésből A szövegértés területén tapasztalható kedvezőbb képet a szint alatt teljesítő tanulók arányának telephelyek szerinti vizsgálata is alátámasztja ( ábra). A gimnáziumok esetében egy telephelynél látható az országos átlag feletti arány, egyharmaduknál viszont nincs szint alatt teljesítő tanuló. 16. ábra. A gimnáziumi telephelyek 4. képességszint alatt teljesítő tanulóinak aránya szövegértésből A szakközépiskolai telephelyeknél 0 és 58% közötti a szint alatti tanulók aránya, a telephelyek 38%- ánál tapasztalható a képzésforma és az országos átlagot meghaladó arány. A szakiskolai telephelyeken a szint alatt teljesítők aránya 36 és 100% közötti. A telephelyek 38%- ánál az alulteljesítő tanulók aránya meghaladja a 70%-ot. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 12

14 17. ábra. A szakközépiskolai telephelyek 4. képességszint alatt teljesítő tanulóinak aránya szövegértésből 18. ábra. A szakiskolai telephelyek 4. képességszint alatt teljesítő tanulóinak aránya szövegértésből 2.3. A nemek szerinti teljesítmények A nemzetközi és hazai mérések eredményei a fiúk és lányok teljesítményének különbözőségét mutatják. A vizsgált tanulók nemek szerinti összetétele hatással lehet a két mérési területen elért eredményre. A mérésben érintett tanulók nemek szerinti összetételét nézve, több a fiú mint a lány (19. ábra). Képzéstípusonként tekintve a 6 és 8 évfolyamos gimnáziumokban a tanulók több mint fele, a 4 évfolyamos gimnáziumoknál több mint 60% a lányok aránya. A szakközépiskolákban és a szakiskolákban magasabb a fiúk aránya (57, 65%). A 20. ábra a már látottakat más megközelítéssel mutatja be. A fiúk 15%-a gimnazista, 14%-a szakiskolás, a szakközépiskolások aránya 71%. A lányok negyede gimnazista, 4 évfolyamos gimnáziumba járók aránya duplája a fiúkénak. Szakiskolában a lányok 9%-a tanul. A évi országos kompetenciamérés fővárosi adatainál is jól látható a nemek szerinti eredményeltérés ( ábra). A fiúk matematika, a lányok szövegértés teljesítménye a magasabb, a nemek eredménye közötti különbség 53, 44 standard képességpont. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 13

15 19. ábra. A képzéstípusonkénti tanulók nemek szerinti összetétel 20. ábra. A nemek képzéstípusok szerinti megoszlása 21. ábra. Az átlageredmények és konfidencia-intervallumok alakulása nemenként matematikából Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 14

16 A fiúk és lányok matematikaeredménye között negyedszórásnyi különbség van a fiúk javára, mely képzéstípusonként is látható, kivéve a 8 évfolyamos gimnáziumoknál (21. ábra, 6. melléklet). A 4 és 6 évfolyamos gimnazista, valamint a szakközépiskolás és 4 évfolyamos gimnazista fiúk eredményének eltérése félszórást meghaladó, a szakiskolás és szakközépiskolások esetében már egyszórásnyi a különbség. A lányoknál is hasonló a helyzet, a különbség fél-, háromnegyed-szórásnyi. A szövegértés-eredménynél szintén negyedszórásnyi különbség tapasztalható a nemek szerinti teljesítmények között, de fordítva, a lányok eredményesebbek (22. ábra, 6. melléklet). 22. ábra. Az átlageredmények és konfidencia-intervallumok alakulása nemenként szövegértésből Képzéstípusonként tényleges különbség a 4 évfolyamos gimnazisták és szakiskolások esetében mutatható ki. A 4 és 6 évfolyamos gimnazista, valamint a szakközépiskolás és 4 évfolyamos gimnazista fiúk eredményének eltérése félszórás körüli, a szakiskolás és szakközépiskolásoknál már egyszórásnyi a különbség. A lányoknál is hasonló a helyzet, a különbség fél-, háromnegyed-szórásnyi, mint a matematikaeredményeknél tapasztalható volt. A tanulók képességeloszlását nemek szerint vizsgálva nagyon hasonló kép tárul elénk (23. ábra). 23. ábra. A tanulók képességeloszlása nemenként Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 15

17 Eltérés abban látszik, hogy mekkora volt a leggyengébb és legjobb teljesítmény a két mérési területen fiúk és lányok vonatkozásában. Ennél sokkal változatosabb az összetétel a képességszintek szerinti összehasonlítás alapján ( ábra). Különösen matematikánál tapasztalható jelentős eltérés a 4. képességszinten, illetve a felett teljesítő tanulók arányát illetően. 24. ábra. A tanulók képességszintek szerinti megoszlása nemenként matematikából Matematikánál a gimnazista fiúk több mint 90%-a, a lányok közel 90%-a, a szakközépiskolás fiúk 74%-a, a lányok fele található a minimális képességszint felett. A szakiskolásoknál ez az arány már sokkal kisebb. A fiúk negyede, a lányok közel egyötöde tartozik ebbe a csoportba. Ugyanakkor a szakiskolásoknál a legmagasabb a 3. képességszint alattiak aránya. A fiúknál közel 40, a lányoknál 50%. Ez legalább négy évfolyamnyi lemaradást jelez a szakiskolások jelentős része esetében, hiszen a 6. évfolyamon a 3. képességszint az a minimális szint, amelynek elérése szükséges ahhoz, hogy a tanuló eredményesen tudja alkalmazni képességeit a további ismeretszerzésben és az önálló tanulás során. A 7. képességszinten a gimnáziumi tanulókkal találkozunk magas arányban, kiemelkedő a 4 évfolyamos gimnazista fiúk 40%-os aránya. A nemek között a matematikánál látott különbségek a szövegértésnél kevésbé jelennek meg az egyes képzéstípusoknál, kivéve a szakiskolásokat. Ebben a csoportban a lányok 45, a fiúk 36%-a van 4. képességszinten és a felett. Ugyanakkor a 3. képességszint alatt a fiúk közel harmada, a lányok ötöde található. Ezek az eloszlás értékek magyarázatát adják az eredmény átlagos alakulásának. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 16

18 25. ábra. A tanulók képességszintek szerinti megoszlása nemenként szövegértésből Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 17

19 3. A ÉS A ÉVI ORSZÁGOS KOMPETENCIAMÉRÉS EREDMÉNYEINEK ÖSZ- SZEHASONLÍTÁSA A mérési azonosító 2008-as bevezetésével lehetővé vált egy adott tanuló teljesítményének követése, melyre először a évi kompetenciamérés eredményeinek értékelésénél volt mód. Az elemzés tárgyául szolgáló mérés vonatkozásában az összehasonlítás csak abban az esetben végezhető el, ha a tanulónak a évi mérési eredménye mellett rendelkezésre áll a évi mérési eredménye is. Figyelembe véve ezt a tényt, a már korábban jelzett fővárosi 8963 fős jelentésben szereplő létszám az összehasonlításnál 7290 főre csökken. A fejlődés vizsgálatának legegyszerűbb módja, ha az átlageredményeket hasonlítjuk össze. A matematikateljesítmények két év alatti alakulását nézve fejlődés tapasztalható a gimnáziumi és szakközépiskolai tanulók matematikai eszköztudásánál (26. ábra, 10. melléklet), a 8 évfolyamos gimnáziumoknál látható emelkedés azonban statisztikailag nem bizonyítható. A szakiskolások csoportjában történt változás azonban 21 pontos tényleges csökkenés. 26. ábra. A matematika teljesítmény két év alatti fejlődése A tanulók két évre vonatkozó képességeloszlását szemléltető 27. ábra hasonló következtetések levonására ad lehetőséget. A képzéstípusonként 2009-ben meglévő különbségek 2011-ben is láthatók. Az egyes évek eloszlását szemléltető szalagok párhuzamosan, nagyon hasonló szerkezetben futnak egymás mellett, 2011-re kissé magasabb értékkel indulva. A szakiskolásoknál viszont jól látható a csökkenés. A fejlődést nemenként vizsgálva, 2009-ről 2011-re a fiúknál tényleges növekedés (34 pont) tapasztalható (27. ábra). A lányok eredményénél lényeges változás nem figyelhető meg. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 18

20 27. ábra. A tanulók képességeloszlása képzéstípusonként matematikából 28. ábra. A tanulók képességeloszlása nemenként matematikából A képet árnyalja, ha az átlageredmények helyett azt vizsgáljuk, hogy a korábbi eredmény alapján milyen évi eredmény várható. A telephelyenkénti átlageredményeket ezen szempont figyelembevételével vizsgálva meg kell állapítani, hogy a telephelyek 56%-ánál volt mód az összehasonlításra. A vizsgált telephelyek egyharmadánál a telephely tanulóinak kevesebb, mint kétharmada rendelkezik korábbi eredménnyel, így nincs lehetőség összehasonlításra. Továbbá szintén nincs lehetőség összehasonlításra azon telephelyek esetében ahol kevesebb, mint 10 tanuló rendelkezik korábbi eredménnyel (8%), valamint abban az esetben, amikor a korábbi eredménnyel is rendelkező tanulók évi átlageredménye szignifikánsan eltér az összes tanuló évi átlageredményétől (2%). Képzéstípusonkénti bontásban a 4 évfolyamos gimnáziumi telephelyek háromnegyede, a 6 és 8 évfolyamos gimnáziumok teljes köre, a szakközépiskolai kétharmada, míg a szakiskolainál csupán 10% (három telephely) esetében van mód a és a évi eredmények összehasonlítására. Matematika területén a két év eredményeinek összehasonlítását a fenti szempontok szerint a 29. ábra szemlélteti (11. melléklet). Az ábrában 67 telephely adatai szerepelnek, amelyben külön kerültek jelölésre a telephelyek tényleges eredményének az adott képzéstípus várható eredményéhez képest tett megállapítások. A tényleges és várható eredmény között nincs szignifikáns különbség a 4 évfolyamos gimnáziumi telephelyek 73%-ánál és a 6 évfolyamos telephelyek felénél, a szakközépis- Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 19

21 kolai telephelyek 72%-ánál és a szakiskolai telephelyek kétharmadánál. Ténylegesen jobb a helyezet négy 4 évfolyamos gimnáziumi (27%) és négy szakközépiskolai (9%) telephely esetében. 11 telephely esetében viszont gyengébb az eredmény (16%). 29. ábra. A két év alatti változás a telephelyenkénti átlagos eredmények alapján matematikából A szövegértés területén az átlageredmények képzéstípusok szerinti összehasonlítását tekintve ben mindegyik csoportban magasabb értéket találunk, de tényleges változás csupán a 4 évfolyamos gimnazistáknál és a szakközépiskolásoknál tapasztalható negyed-negyed szórás értékben (30. ábra). 30. ábra. A szövegértés teljesítmény két év alatti fejlődése Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 20

22 A tanulók képességeloszlását bemutató ábra is jól szemlélteti a változást (31. ábra). Ezen az ábrán is látszik, hogy a tanulók középen elhelyezkedő felének teljesítménye a 4 évfolyamos gimnáziumok és a szakközépiskolák esetében mennyit fejlődött. 31. ábra. A tanulók képességeloszlása képzéstípusonként szövegértésből A fiúk és lányok képességeloszlása szövegértésből a két év viszonylatában hasonló szerkezetben alakult, a 2011-es magasabb teljesítmények fejlődést jeleznek (32. ábra). 32. ábra. A tanulók képességeloszlása nemenként szövegértésből A korábbi eredmény alapján várható évi eredmény telephelyenkénti alakulását szövegértési területen a matematikánál már jelzett feltételek szerint a 33. ábra (12. melléklet) mutatja be. A 67 telephely kétharmadánál a tényleges és várható eredmény között nincs szignifikáns különbség. Képzéstípusonként tekintve a gimnáziumok háromnegyedére (8 évfolyamosok teljes körére), a szakközép- és szakiskolák közel kétharmadára igaz, hogy nem mutatható ki tényleges változás. 10 telephelynél (15%) jobb, 11-nél (16%) gyengébb az elvárthoz képest az eredmény. Ténylegesen jobb eredményt három 4 évfolyamos gimnázium és hét szakközépiskola nyújtott. A gyengébben teljesítők között egy-egy 4, 6 évfolyamos gimnáziumi és szakiskolai, valamint 8 szakközépiskolai telephely szerepel. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 21

23 33. ábra. A két év alatti változás a telephelyenkénti átlagos eredmények alapján szövegértésből Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 22

24 4. A FELADATOK JELLEMZŐI, EREDMÉNYE, FEJLESZTÉSI JAVASLATOK 4.1. Matematika A matematikafeladatok jellemzői A 2011-es országos kompetenciamérésben szereplő feladatok többsége hasonlított a tanulók által korábbról ismert matematikai jellegű, vagy annak alkalmazását igénylő, a gyakorlati élethez köthető problémákhoz, ugyanakkor olyan feladatok voltak, amelyek megmutatták azoknak az alapvető képességeknek a helyzetét, amelyek a többi tantárgy tanulása szempontjából is meghatározóak, ezért kiemelten fontos szerepet játszanak. A feladatok változatosak, érdekesek voltak, különböző nehézségi szintűek, a kérdések egy-egy feladaton belül is többféle területet öleltek fel. A matematikafeladatok gondolkodási műveletek és tartalmi területek szerinti megoszlását az 1. táblázat mutatja be. Tartalmi terület 1. táblázat. A feladatok megoszlása a gondolkodási műveletek és a tartalmi területek szerint Gondolkodási művelet Tényismeret és műveletek Modellalkotás, integráció Komplex megoldások és kommunikáció Tartalmi terület összesen Mennyiségek és műveletek Hozzárendelések és összefüggések Alakzatok síkban és térben Események statisztikai jellemzői és valószínűsége Gondolkodási művelet összesen Az egyes tartalmi területeket csaknem azonos számú feladat reprezentálta, a hangsúly kissé a hozzárendelések és az alakzatok terület irányába tolódott el. A mennyiségek és műveletek, valamint az alakzatok síkban és térben területen a modellalkotásos feladatok dominálnak, kisebb szerepet kapnak a tényismeretek és a komplex megoldások. A modellalkotás és az integráció gondolkodási műveletekhez tartozik a feladatok fele; ezek igénylik a legszemléletesebben az alkalmazásképes tudást. A tényismeret jellegű feladatok száma a hozzárendelések és az alakzatok tartalmi területeken a legnagyobb. A modellalkotás, integráció gondolkodási művelet feladatai minden tartalmi területen csaknem ugyanolyan számban képviseltek. A komplex megoldások körébe az összetettebb, általában a két- vagy több részből álló feladatok tartoznak, melyek megoldása legtöbbször igen összetett gondolkodást igényelt. A feladatlap több olyan kérdést tartalmaz, amelynek egyik része a tényismeret, másik része pedig a komplex megoldások körébe sorolható, esetleg három-négy, lényegesen különböző, ám egymásra épülő gondolati lépést igényel megoldása. A mérésben szereplő feladatok az elemzésben a grafikonokon, a táblázatokban kódszámukkal megjelölten szerepelnek. A 2. mellékletben megtalálható az itemek és a kódszámok azonosítása a tartalmi terület és a gondolkodási művelet szerint is. A különféle képességszintek mérésére szintenként eltérő számú feladat található a 10. évfolyam mérőeszközében (2. táblázat). Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 23

25 2. táblázat. A feladatok számának megoszlása képességszintek szerint matematikai eszköztudásból Képességszint Feladatok száma Az összes értékelt feladat százalékában 1 5 8,8% ,5% 3 1 1,8% ,8% ,3% ,3% ,5% Legnagyobb mértékben az 5. képességszint reprezentált, legkevésbé pedig a 3. szint, amelyen öszszesen egy feladat szerepelt a feladatlapon. Fontos az is, hogy a feladatlap összeállítói összesen 12 db, a 4. képességszint alatti feladatot, valamint 45 db 4. és a feletti képességszintű feladatot tűztek ki A matematikafeladatok megoldottsága A matematikai eszköztudás feladatsorán a fővárosi fenntartású középfokú oktatási intézmények által nyújtott összesített teljesítményéről tájékoztat a 3. táblázat. 3. táblázat. A matematika eszköztudás teljesítmények alakulása a tartalmi keretmátrix szerint Tartalmi terület Gondolkodási művelet Tényismeret és műveletek Modellalkotás, integráció Komplex megoldások és kommunikáció Együtt Országos Fővárosi Országos Fővárosi Országos Fővárosi Országos Fővárosi Mennyiségek és műveletek Hozzárendelések és összefüggések Alakzatok síkban és térben Események statisztikai jellemzői és valószínűsége 68% 69% 55% 56% 26% 27% 54% 55% 68% 67% 35% 34% 24% 23% 44% 43% 78% 78% 35% 36% 21% 22% 46% 46% 52% 52% 45% 46% 27% 28% 43% 43% Együtt 67% 67% 42% 42% 24% 25% 47% 47% A fővárosi összesített eredmény szinte pontosan megegyezik az országos átlaggal Képzéstípusonkénti eredmények A 2011-es matematikamérés néhány jellemzője a 4. táblázatból olvasható le. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 24

26 4. táblázat. A 2011-es mérés 10. évfolyamos matematika eszköztudás feladatlapjának néhány jellemzője Az értékelésbe bevont itemek száma 57 A központi elemzésbe bevont fővárosi tanulók száma 8963 Cronbach-alfa 0,909 Országos átlag (standard hiba) 1635 (0,5) Fővárosi átlag 1637 Országos szórás (standard hiba) 198 (0,4) Az 1. és a 3. táblázatban szereplő feladatszámok közötti különbség oka az, hogy három feladat pszichometriai paraméterei nem bizonyultak megfelelőnek, ezért az azokból származó adatokat nem vették figyelembe a teljes teszt értékelésekor. A feladatlap megbízhatósága Cronbach-alfa - kimagaslóan jó. A fővárosi fenntartású intézmények tizedikes tanulóinak eredménye összességében és iskolatípusonként is néhány standard képességponttal magasabb az országos átlagnál, azonban szignifikánsan magasabb teljesítményt csak a 6, a 4 évfolyamos gimnáziumok és a szakközépiskolák esetében lehet megállapítani. A fővárosi összeredmény sem különbözik szignifikánsan az országostól. (5. táblázat). 5. táblázat. A fővárosi fenntartású intézmények tizedikes évfolyamainak matematika eszköztudás-eredményei az országos eredmények tükrében, standard pontban Képzéstípus Fővárosi fenntartású intézmények tizedikes tanulóinak eredménye Eltérés mértéke Országos eredmény 8 évfolyamos gimnázium évfolyamos gimnázium 1879 > évfolyamos gimnázium 1759 > 1724 Szakközépiskola 1629 > 1624 Szakiskola Összesített eredmény A nyolc évfolyamos gimnáziumok eredménye 20, a szakiskolásoké 9 standardponttal magasabb, statisztikailag nem minősül számottevőnek. A gimnáziumok teljesítménye igen szélsőséges, fővárosi szinten összességében a négy- és nyolcosztályos gimnáziumi eredmények 120, illetve 33 ponttal alacsonyabbak a hatosztályos gimnazisták átlagánál. A tavalyi eredményhez képest a különbségek csökkentek. A szakiskolák teljesítménye 164 ponttal alacsonyabb a szakközépiskolások eredményénél, de az országos szakiskolai átlagot 9 ponttal meghaladja. A szakközépiskolai tanulók jelentősen, ponttal maradnak le a gimnáziumi eredményektől, de teljesítményük meghaladja az országos szakközépiskolai átlagot. A tizedik évfolyamon a 4. képességszint képezi azt a minimális szintet, amely ahhoz szükséges, hogy a tanuló a jövőben eredményesen tudjon önállóan tanulni, képességeit alkalmazni (6. táblázat). A szakiskolások eredményeinek átlaga 1465 pont, ez csupán 15 ponttal haladja meg a 3. képességszint alsó határát, a 4. képességszinttől pedig 111 pontnyira van. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 25

27 6. táblázat. A matematika eszköztudás képességszintjeinek alsó határai Képességszint A képességszint alsó határa standard pontban 7. szint szint szint szint szint szint szint A matematikafeladatok megoldottsága tartalmi területek szerint Az egyes tartalmi területekhez tartozó feladatok, azok szakmai háttere és az elért eredmények vizsgálatakor azt tartjuk szem előtt, hogy a különféle képességszinteket, kiemelten a 4. és az a feletti képességszintet igénylő feladatokat milyen sikerrel oldották meg a különféle iskolatípusok tanulói. A feladatokon elért eredmények azt mutatják, a matematikai ismeretek mennyire mozgósíthatók ezeknek a gyakorlati tartalmú problémáknak a megoldásában. Az 34. ábra, valamint a 3. mellékletben szereplő 1. táblázat a mennyiségek és műveletek tartalmi terület feladatainak megoldási szintjét mutatja. 34. ábra. A mennyiségek és műveletek tartalmi területhez tartozó feladatok megoldási szintje képzéstípusonként E tartalmi terület kiemelkedő megoldottságú (országosan 87%, fővárosi szinten 89%) feladata a 2. szintű, tényismeretet igénylő Autóverseny feladat, két táblázat adatainak összevetését, majd az ennek eredményeként adódó összeadási művelet elvégzését igényelte. Megoldása során nem született nullás kódú, tehát nem tipikusan rossz válasz, és mindössze 1%-nyi 9-es kódú válasz érkezett, ami szerint a feladattal szívesen foglalkoztak a tanulók. Közel hasonló eredményességű a szintén 2. szintű feladat (országosan 84%, fővárosi szinten 85%), mégis kiemelendő, mert a maradékos osztást követő egészre kerekítés műveletéről legtöbbször elfeledkeznek a tanulók. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 26

28 E területen a tényismeretet igénylő feladatok körében a leggyengébben megoldott feladat (országosan 37%, fővárosi szinten 38%) az 5. szintű, Túlsúlyos poggyász, amelynek megoldásával a tanulók 55%-a meg sem próbálkozott, pedig csupán egy kivonást és egy szorzást kellett elvégezni. A tartalmi terület modellalkotás, integráció gondolati művelethez sorolt feladatainak megoldási színvonala a 4. szinten átlagosan nem mutat kiugróan nagy eltéréseket. A legjobban megoldott Archiválás -1. feladat egyenletmegoldást, mértékegységváltást, összehasonlítást igényelt. Az 5. szintű Érettségi bankett feladat (országos eredmény: 45%, fővárosi eredmény: 45%) megoldási színvonala egyben a leghullámzóbb is, 48 százalékpontnyi a különbség az évfolyamon belül az egyes iskolatípusok között. Első fokú egyenletet kellett felállítani a szöveg alapján, majd azt jól megoldani. A szakiskolások 17%-os megoldási szintje nagyon alacsony, az alapismeretek teljes hiányára utal. A tartalmi terület komplex megoldások gondolkodási műveletcsoportba sorolt két feladata közül az egyik 6., a másik 7. szintű. A 6. szintű Motogp 2. feladat (országos eredmény: 38%, fővárosi eredmény: 40%) jobb megoldási szintű, mint a tényismeretek közé tartozó, 5. szintű Túlsúlyos poggyász feladat. A legalacsonyabb eredményt a 7. szintű Parlamenti szavazás (országos eredmény: 14%, fővárosi eredmény: 13%) érték el a tanulók, melynél egy táblázat adataival kellett összegzési, százalékszámítási, arány-összevetési feladatot elvégezni, majd ezt követően megadni a helyes választ. Igen magas, 71%-nyi a rossz válaszok aránya. A különféle iskolatípusok tekintetében az állapítható meg, hogy a négy- és a nyolcosztályos gimnáziumi tanulók teljesítménye ugyanazt az igen nagy hullámzást mutatja, mint a szakiskolások és szakközépiskolások eredménye, hatosztályos gimnáziumi tanulók teljesítenek a legkiegyensúlyozottabb szinten. A szakiskolák, szakközépiskolák és a négyosztályos gimnáziumok teljesítménygrafikonja csaknem párhuzamosan halad, iskolatípusonként az egyes feladatoknál százalékpontos megoldási szintkülönbséget mutatva. A gimnáziumi tanulók a 4. szintű összetett táblázatkezelést igénylő Motogp- 1. feladatban (országosan 60%, fővárosi szinten 61%) nyújtották a legegységesebb teljesítményt, ugyanakkor ez a feladat mutatta az egyik legkisebb teljesítmény-eltérést is a szakközépiskoláktól (14%p) és a szakiskoláktól (14%p). A hat évfolyamos gimnazisták a 4. és 5. szintű modellalkotás, integráció feladatokban értek el magasabb eredményt az országos hatosztályos eredményeknél. A nyolcosztályos gimnazisták 100%-os teljesítményt nyújtottak az Autóversenyzés feladatnál. Az arányossági, a szöveges egyenletes feladatok, a szabályjátékok, a halmazelméleti és logikai feladatok köthetők a hozzárendelések és összefüggések témakörhöz (35. ábra, 3. melléklet 2. táblázatában). A tényismereteket igénylő feladatokon a nyolcosztályos gimnazisták érték el a legmagasabb teljesítményt, itt a hatosztályosok a négyosztályosoknál is gyengébben teljesítettek, modellalkotásban és komplex megoldásokban pedig a hatosztályosok teljesítménye a kiemelkedő, a négyosztályos gimnazistáknál csaknem 20 százalékponttal, a nyolcosztályosoknál 3-8 százalékponttal jobb a teljesítményük. E tartalmi területhez mindössze 3 feladat tartozik a 4. szintnél alacsonyabbak körébe. A tényismeretek műveleti kör feladatain a szakiskolások 51%-os átlagteljesítményt értek el úgy, hogy még az 5. szintű Savanyítás 1. feladatban is 29%-os az eredményük. A modellalkotás, integráció műveleti területen, amely zömmel 6. és 7. szintű feladatokból áll, 20%-os az átlagos teljesítményük, és az egyik 6. szintű feladaton 47%-os, 7. szintűn pedig 37%-os átlagos teljesítménnyel büszkélkedhetnek. A tartalmi terület legalacsonyabb átlageredményű feladata is e gondolkodási művelethez kapcsolható: a 7. szintű Cégtábla 2. feladat (országos eredmény: 17%, fővárosi eredmény: 16%), amelynél mérést, arányszámítást, mértékegység-váltást kellett elvégezni. E feladatban a szakiskolások mindössze 6%-os teljesítményt nyújtottak, de a szakközépiskolások is az átlag alatt teljesítettek, 14% az eredményük. Kiemelkedő, 50%-os teljesítményűek voltak a hatosztályos gimnazisták. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 27

29 35. ábra. A hozzárendelések és összefüggések tartalmi területhez tartozó feladatok megoldási szintje képzéstípusonként A kombinációs készség szintjét is mérő, 7. szintű Víztározó feladat a tartalmi terület második legalacsonyabb eredményű példája lett (országosan 22%, fővárosi szinten 19%). A feladat a komplex megoldások gondolkodási művelethez tartozik, paraméteres térfogatszámítást kellett végezni, henger és kúp össztérfogatát kellett meghatározni oldalnézeti kép alapján. A hatosztályos és a nyolcosztályos gimnazisták 50%, illetve 41% eredményt értek el, a szakközépiskolások 16%-os eredménye azonban alig haladja meg a szakiskolásokét (12%). Két vonaldiagram értelmezését, adatok leolvasását és az azokkal végzett számítások eredményének vizsgálatát igényelte a szintén a komplex megoldások gondolkodási művelethez tartozó Mobiltelefon -2. feladat (országos eredmény: 22%, fővárosi eredmény: 19%), amelyen a fővárosi hatosztályos gimnazisták érték el a legmagasabb teljesítményt, eredményüktől 42 százalékponttal alacsonyabb a szakiskolásoké. A tartalmi terület legmagasabb átlagú feladata a tényismertek és műveletek gondolkodási művelethez sorolt, 1. szintű Ragadozók -2. feladat volt (országos eredmény: 92%, fővárosi eredmény: 92%), melynél vonaldiagramot kellett értelmezni. Az előzményként szolgáló, 3. szintű Ragadozók -1. feladatnál (országos eredmény: 69%, fővárosi eredmény: 69%) ugyanerről a grafikonról intervallumokat kellett megállapítani, ami már alacsonyabb eredményességet mutat. A két feladat számítási eredménye nem épült egymásra, így a vétett hiba nem halmozódott. A 2. szintű Hungaroring feladaton (országos eredmény: 69%, fővárosi eredmény: 69%), melynél táblázati eredményeket kellett súlyozással kódolni, még a szakiskolások is 55%-os teljesítményt értek el, ami csupán 14 százalékpontnyi elmaradás a szakközépiskolásokéhoz képest. A modellalkotás, integráció gondolkodási művelet 6. szintű Rock koncert feladatát (országos eredmény: 57%, fővárosi eredmény: 56%) több lépéses logikai következtetéssel lehetett megoldani, melynél piktogramos ábra értelmezése alapján kellett arányt számítani, majd választ adni a kérdésre. A mérés során ez volt az egyik leghomogénebb eredményű feladat, a legalacsonyabb eredmény 19, a legmagasabb 13 százalékponttal tér el az átlagtól. Szintén a modellalkotás, integráció gondolkodási művelethez tartozik a tartalmi terület megoldási szintjének legnagyobb ingadozását mutató, 5. szintű Betonozás feladat (országos eredmény: 35%, fővárosi eredmény: 34%), amelyet a szakiskolások 14%-os, míg a hatosztályos gimnazisták 76%-os átlaggal teljesítettek. Az adatokból arányszámot kellett meghatározni, majd ezzel kellett meghatározni a kívánt értékeket. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 28

30 E tartalmi területen is született 100%-os eredmény, ezt a fővárosi nyolcosztályos gimnazisták érték el, a Ragadozók feladatnál. A mérés geometriai tartalmú kérdései szerkesztési, alakzatok tulajdonságaival kapcsolatos és geometriai számítási feladatokat egyaránt tartalmaztak az alakzatok síkban és térben témakör keretében. Jelenleg az ábrakészítés, a térbeli ábrák síkbeli hálói, a transzformációk, a mértékváltással és becsléssel összekötött számítási feladatok szerepeltek a mérésben (36. ábra és a 3. melléklet 3. táblázata). 36. ábra. Az alakzatok síkban és térben tartalmi területhez tartozó feladatok megoldási szintje képzéstípusonként Az alakzatok síkban és térben tartalmi területhez tartozik az országos mérés legtöbb 1. szintű feladata, valamint a mérés során a legmagasabb átlagértéket produkáló példája, az 1. szintű Csempeburkolat feladat (országos eredmény: 93%, fővárosi eredmény: 93%) és a gondolkodási műveletek szerint a szintén tényismeretet igénylők közé tartozó Ventilátor feladat is (országos eredmény: 88%, fővárosi eredmény: 89%). A Csempeburkolat feladatnál geometriai alakzatok tulajdonságainak öszszehasonlításával kellett új alakzatokat kiválasztani, a Ventilátor feladatnál pedig pont körüli elforgatással kapott négy pont pályáját kellett felismerni. A tényismeret feladatok között a nyolcosztályos gimnazisták érték el a legmagasabb eredményt, 97%-ra teljesítették a Ventilátor feladatot, a Csempeburkolat példánál a szakiskolások 83%-os teljesítménye pedig csak 6 százalékponttal maradt el a hatosztályosok eredményétől. Az 1. szintű Járműfelirat feladatot (országos eredmény: 81%, fővárosi eredmény: 81%), melynél a tengelyes tükörképet kellett felismerni, a hatosztályos gimnazisták messze a várakozások alatt oldották meg, a másik két gimnáziumi csoport és a szakközépiskolások is magasabb eredményt értek el, mint ők. A 4. szintű, a modellalkotás gondolkodási művelethez sorolt példák közül kiemelkedik a megoldottsággal a Kocka feladat (országos eredmény: 66%, fővárosi eredmény: 68%), melyben perspektivikus ábrához kellett társítani a nem megfelelő hálózatot. A 6. szintű Radar feladat (országos eredmény: 16%, fővárosi eredmény: 15%) koordináta-rendszerben mért távolságok összehasonlítását kérte, alapvetően feleletválasztásos példa, amelynek eredményét azonban számítással kellett alátámasztani, a 7. szintű Szökőkút feladat (országos eredmény: 12%, fővárosi eredmény: 13%) pedig számításokkal igazolt eldöntendő kérdés volt, négyzet területéből oldalhosszt kellett számítani, majd azt összevetni a kör átmérőjével. A Radar feladatnál kiemelkedő a hatosztályos gimnazisták eredmé- Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 29

31 nye, a Szökőkút példánál pedig a szakiskolások 4%-os teljesítménye tűnik ki, mint a gondolkodási művelet leggyengébb megoldási szintje. Országosan 9%-os, fővárosi szinten 10%-os átlagos megoldottságú a feladatlap második legalacsonyabb eredményű példája, a 7. szintű Tetris -1. feladat, mely valójában hézagmentes lefedés síkbeli mozgások kombinációjával, de a számítógépes, telefonos játékoktól eltérően csak egyféle alakzat felhasználásával. A helyes válaszhoz az indoklás is szükséges volt. A tanulók 84%-a adott rossz választ, de csupán 4%-uk nem foglalkozott a feladattal. Az 1. szintű Tetris -2. feladaton, mely csupán számlálást igényelt és a tartalmi terület tényismeret gondolkodási műveletéhez sorolt, a tanulók lényegesen magasabb eredményt (országos: 85%, fővárosi: 85%) értek el. A komplex megoldások gondolkodási művelethez e témában csak 7. szintű feladatok tartoztak. Ezek közül a Vetület feladat (országos eredmény: 10%, fővárosi eredmény: 10%) mutatta a leginkább hullámzó teljesítményt, a szakiskolások mindössze 3%-os eredményűek, míg a hatosztályosok 50%-ot értek el a perspektivikusan ábrázolt kockára rajzolandó szakaszokkal, melyeket a vetületi ábrákkal adtak meg. Szintén 7. szintű Pontos idő -2. feladat is (országos eredmény: 10%, fővárosi eredmény: 11%), melynél tükörképből leolvasott adatokkal végzett számítás eredményét kellett újra tükörképben megadni. Könnyebbnek bizonyult a feladat első része, a modellalkotáshoz tartozó Pontos idő -1. feladat (országos eredmény: 42%, fővárosi eredmény: 44%), hiszen itt csak egyszer kellett a tengelyes tükrözést elvégezni. A 7. szintű, komplex megoldást igénylő Oktaéder feladat (országos eredmény: 42%, fővárosi eredmény: 44%) megoldási szintje nehézségi szintje ellenére nem eredményezett nagy teljesítménykülönbségeket: a hatosztályos gimnazisták 64%-os, a szakiskolások 33%-os eredményt értek el. A mérőlap az események statisztikai jellemzői és valószínűsége témakör feladatain is igen nagy a szakiskolások lemaradása (37. ábra és a 3. melléklet 4. táblázata). 37. ábra. Az események statisztikai jellemzői és valószínűsége tartalmi területhez tartozó feladatok megoldási szintje képzéstípusonként A 2. szintű, tényismeret gondolkodási területhez tartozó, feleletválasztós Korfa -1. feladaton (országos eredménye 87%, fővárosi szintű eredménye 88%), melyben adott táblázat sávdiagrammá konvertált alakját kellett felismerni, a négy- és nyolcosztályos gimnazisták 95%-os teljesítményt értek el, és a szakiskolások is 73%-os eredményűek. E példa folyatatása a modellalkotás gondolati művelethez sorolt Korfa 2. feladat (országos eredmény: 51%, fővárosi eredmény: 52%), amelyben az előző feladat ábrája alapján kellett eldöntendő kérdésekre válaszolni a táblázat adatainak felhasználásá- Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 30

32 val végzett műveletek eredményével. Mindkét feladat a legsikeresebbnek bizonyult az egyes gondolkodási területeken. A tényismeretek gondolkodási művelet Jótékonysági hét -1. feladata (országos eredmény: 27%, fővárosi eredmény: 26%) 6. szintű, míg a Jótékonysági hét 2. feladat (országos eredmény: 59%, fővárosi eredmény: 58%) 2. szintű volt. Az 1. feladatnál két oszlopdiagram adatait kellett értelmezni, összehasonlítani, azokkal műveletet végezni, és ezek alapján válaszolni az eldöntendő kérdésekre, a 2. feladatnál pedig az oszlopdiagramok páronként összetartozó értékeit kellett összegezni és a feleletválasztós kérdésre ennek alapján válaszolni. Ez utóbbi példát igen homogén eredményességgel oldották meg a tanulók, teljesítményük az 51%-65% sávba esik, és a szakiskolások csak 3 százalékponttal gyengébbek a hatosztályos gimnazistáknál. A modellalkotás gondolati művelethez tartozó Cégtábla 1. feladat (országos eredmény: 50%, fővárosi eredmény: 51%) kombinatorikai jellegű volt, tulajdonképpen ismétléses variációt kellett számítani, de e fogalom matematikai tartalmának pontos ismeretére nem volt szükség. Az 5. szintű Matematika érettségi feladatban (országos eredmény: 34%, fővárosi eredmény: 34%) gyakorisági eloszlások összevetéséből kellett oszlopdiagramot készíteni, és ehhez a tengelyek skálázásának önálló megtervezésére is szükség volt. A hat- és nyolcosztályos gimnazisták magas teljesítménye ellentéteként nagyon alacsonyan találjuk a 11%-os eredményt produkáló szakiskolásokét, míg a 31%-os teljesítményű szakközépiskolások átlag körüli eredményességűek. A komplex megoldások gondolkodási művelethez tartozik a 7. szintű Olvasási szokások feladat (országos eredmény: 7%, fővárosi eredmény: 7%), amelyben oszlopdiagram megfelelő oszlopának kiválasztását követően az abban reprezentált értékkel végzett művelet eredményét százalékban kellett megadni, és azt összevetni egy, a szövegben megadott értékkel. A szakiskolások teljesítménye 1%, a szakközépiskolásoké 5%, de még a négyosztályos gimnazisták is csak 14%-os eredményt értek el. A nehézségi szinttel összhangban a tanulók 67%-a egyáltalán nem foglalkozott a feladattal. Az 5. szintű Árváltozás II. -1. feladatban (országos eredmény: 51%, fővárosi eredmény: 51%) oszlopdiagram értékeinek az adott átlagtól való eltérését kellett megállapítani, majd válaszolni az eldöntendő kérdésekre. E feladatnál a legmagasabb eredményt a nyolcosztályos gimnazisták (80%) értek el. Összességében minden tartalmi területre megállapítható, hogy a tényismeret és műveletek gondolkodási műveletben a nyolcosztályos gimnazisták érik el a legjobb eredményeket. Őket a négyosztályosok követik, és a hatosztályosok eredménye e téren a legalacsonyabb a gimnazisták között, teljesítményeik sokszor alig térnek el a szakközépiskolásokétól és a szakiskolásokétól. E gondolkodási műveletcsoportba tartoznak az 1. és 2. szintű feladatok, s többnyire itt a legmagasabbak is minden iskolatípusban az eredmények. A modellalkotás, integráció gondolkodási művelet terén már a hatosztályosok eredményei a kiemelkedőek, megoldási szintjeik nem ritkán akár 60 százalékponttal is magasabbak, mint a szakiskolásoké. E területen 4., 5., 6. és 7. szintű feladatok szerepeltek. A komplex megoldások gondolkodási terület eredményei igen hullámzóak. 5., 6., de zömmel 7. szintű feladatok tartoztak ide a mérésnél, változó teljesítménnyel. A hatosztályosok eredményei a legmagasabbak, a nyolcosztályosoké ezt az alakzatok térben és síkban tartalmi területtől eltekintve kisebb lemaradással követi, ám a négyosztályosok sokszor jobban közelítenek a szakközépiskolások eredményei felé, mint a többi gimnazista értékeihez A matematikafeladatok megoldottsága gondolkodási műveletek szerint Tartalmi területek szerint közel azonos volt a feladatok megoszlása, az egyes gondolkodási műveleteket viszont eltérő számú feladaton méri az OKM: legtöbb feladat a modellalkotás, integráció művelethez kötődik, tényismeretek és műveletek típusú lépéseket a feladatok harmada tartalmaz, komplex megoldások típusból, amelyek a mélyebb, alkalmazáskészebb tudást igénylő feladatok voltak, szerepelt a legkevesebb. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 31

33 A tényismeretek és rutinműveletek körébe matematikai alapműveletek, törtekkel való számítási feladatok, szorzási, összeadási, mértékváltási feladatok, egyszerű grafikonok értelmezése és elemzése tartozik (38. ábra, 3. melléklet 5. táblázat). 38. ábra. A tényismeret és műveletek gondolkodási műveletekhez tartozó feladatok megoldási szintje képzéstípusonként Mindössze a feladatok harmadán nem érték el a fővárosi tanulók az országos 67%-os átlagot, ezek azonban kivétel nélkül mind 4. vagy a feletti nehézségi szintűek voltak. A hatosztályos gimnazisták a mennyiségek és műveletek terület kivételével mindenütt a nyolc- és négyosztályosok átlaga alatt teljesítettek, eredményük az 5. és a 6. szintű feladatoknál közelíti vagy haladja meg a többi gimnazistáét. A szakközépiskolások országos átlag közeli eredményt értek el, a szakiskolások átlagos teljesítménye 41%-66% közötti. A négy 1. nehézségi szintű feladatot tartalmazó alakzatok síkban és térben tartalmi területen a fővárosi tanulók eredménye 78%-os. Az egyetlen 4. szintű feladat, a Kilátó (országos eredménye 78%, fővárosi eredménye 78%) kivételével a szakiskolások is 70%-os vagy annál magasabb átlageredményűek. Az események statisztikai jellemzői terület átlaga 52%-os, két 2. szintű és két 6 szintű feladatból áll. A gondolkodási művelet legalacsonyabb megoldottságú feladata a Jótékonysági hét 1. példa, melyen a nyolcosztályos gimnazisták is csak 44%-os teljesítményt nyújtottak, a szakiskolások átlagteljesítménye pedig mindössze 15%-os. A hozzárendelések, összefüggések tartalmi terület összteljesítménye 67%-os. A 4. szintű Árvízveszély feladat (országos eredménye 66%, fővárosi eredménye 64%) a gimnazisták viszonylag homogén megoldását, viszont a szakiskolások jelentős leszakadását mutatja. A feleletválasztásos feladatnál helyesen kellett meghatározni a naptári napok számát, majd összesített eredményt számítani sima összeadással. A mennyiségek és műveletek terület figyelemreméltó példája a 2. szintű Árváltozás -II. feladat (országos eredménye 63%, fővárosi eredménye 62%), melyen a szakiskolások mindössze 9 százalékponttal mutattak gyengébb teljesítményt a szakközépiskolásoknál. A példában oszlopdiagram adatát kellett leolvasni, majd azzal műveletet végezni. A tanulók 15%-a nem foglalkozott a feladattal, valószínűleg a rendelkezésre álló idő hiánya miatt. A modellalkotás, integráció gondolkodási művelethez tartozó kizárólag 4-7. szintű feladatok minden tartalmi területen közel azonos, és iskolatípusonként igen hullámzó eredményeket hoztak. A Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 32

34 különféle iskolatípusok eredményeit ábrázoló görbék csaknem mindenütt párhuzamosan haladnak, és közel azonos (nagyjából 10 százalékpontos) különbségértékeket mutatnak (39. ábra, 3. melléklet 6. táblázat). 39. ábra. A modellalkotás, integráció gondolkodási műveletekhez tartozó feladatok megoldási szintje képzéstípusonként Tíz feladat megoldási szintje haladja meg az 50%-os eredményt fővárosi szinten, ami a tavalyi három feladathoz képest nagyságrendekkel több, és nincs olyan feladat, amelynek megoldási szintje 10% alatti, míg tavaly két ilyen feladat is volt: ezeket a feladatokat szakiskolásaink tavaly 0%-os szinten teljesítették, most viszont 4% volt a legalacsonyabb eredmény. A legnehezebb feladatoknál az egyébként a legjobb eredményt elérő hatosztályos gimnazisták is 50% alatt teljesíttettek. A hatosztályos gimnazisták eredményei minden tartalmi területen kiemelkedőek, csupán a mennyiségek, műveletek téren közelítik meg összesített eredményüket a nyolcosztályosok. A 4. szintű, feleletválasztós Jutalom feladaton (országos eredménye 60%, fővárosi eredménye 61%), melyben elsőfokú egyenletet kellett felállítani és megoldani, a nyolcosztályosok teljesítménye 80%-os. Szintén a nyolcosztályosok voltak e kategóriában a legeredményesebbek az 5. szintű Matematikusok kora feleletválasztós feladatban (országos eredménye 57%, fővárosi eredménye 59%), amelyben adott táblázat adataiból kellett intervallumot készíteni a negatív számok tartományában, majd azok metszetét meghatározni. Ezzel a Püthagoraszról és Thalészről szóló feladattal a tanulók viszonylag nagy arányban (11%) nem foglalkoztak. A szintén 5. szintű Vízfelhasználás feladat (országos eredménye 39%, fővárosi eredménye 40%) számítással eldöntendő kérdés volt, melynél mértékegység átváltását, arány számítását, majd összehasonlítást kellett végezni. E feladatnál a négyosztályos gimnazisták eredménye 20 százalékponttal, a szakiskolásoké 61 százalékponttal maradt el a hatosztályosok eredményétől. A 6. szintű Hóhatár feladatban (országos eredménye 26%, fővárosi eredménye pedig 25%) vonaldiagramon kellett elhelyezni és azonosítani egy leolvasott értéket. A tanulók nagy arányban (46%) hagyták ki ezt a feladatot, amelyben a hatosztályosok és a szakiskolások teljesítményének különbsége 41 százalékpont. Tengelyes tükrözéshez kapcsolódik a 4. szintű Papírhajtogatás feladatban (országos eredménye 54%, fővárosi eredménye pedig 51%) sorozatos tengelyes tükrözések eredményeként kapott mintázatot kellett felfedezni feleletválasztós kérdésfeltevés formájában, valamint az 5. szintű Minta II. feladat (országos eredménye 40%, fővárosi eredménye pedig 42%), melyben adott tengelyek mentén egy alakzat, és a kapott tükörkép nyolc tükrözését kellett végrehajtani. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 33

35 Az 5. szintű, az események statisztikai jellemzői területhez sorolt Áruszállítás feladatban (országos eredménye 48%, fővárosi eredménye pedig 49%) táblázat alapján kellett állítások igaz-hamis voltát eldönteni az adatokkal végzett művelet eredményét figyelembe véve. A hatosztályosok 83%-os eredményükkel e tartalmi területen az 5. szintű Látogatók feladatban (országos eredménye 45%, fővárosi eredménye pedig 48%) voltak a legsikeresebbek. Adott táblázat két oszlopának értékeit kellett adott sorig összegezni, majd a kivonás művelete következett. A nem túl nehéz feladattal a tanulók 23%-a egyáltalán nem is foglalkozott. 5. vagy annál magasabb nehézségi szintű feladatokat tartalmazott a komplex megoldások műveleti tartomány (40. ábra, 3. melléklet 7. táblázat). 40. ábra. A komplex megoldások és kommunikáció gondolkodási műveletekhez tartozó feladatok megoldási szintje képzéstípusonként Ezek közül kiemelkedő, 80%-os teljesítményt nyújtottak az 5. szintű, az események statisztikai jellemzői tartalmi területhez tartozó Árváltozás 1. feladaton (országos eredménye 51%, fővárosi eredménye 51%) a nyolcosztályos gimnazisták, de 30% feletti a szakiskolások teljesítménye is ezen a feladaton. A tartalmi terület legnagyobb, 57%-os ingadozást mutató példája a 6. szintű Szótár feladat (országos eredménye 23%, fővárosi eredménye 25%), amelyben egy szótárban lévő szókészlet számának meghatározására kellett számítási módot kialakítani, átlagot vagy tartományt kellett meghatározni. A tanulók 45%-a nem foglalkozott a feladattal, amelynek megoldásában a lányok különösen gyengék voltak. A tartalmi területen a hat- és nyolc évfolyamosok eredménye csaknem megegyezik, és több mint 25 százalékponttal haladja meg a szakközépiskolások, 30 százalékponttal pedig a szakiskolások megoldási szintjét. Az alakzatok síkban és térben tartalmi területen, amely kivétel nélkül 7. szintű feladatokból állt, a legkisebb teljesítményingadozást az Oktaéder feladat mutatja, amelyben a szakiskolások is 33%-os eredményűek. A hozzárendelések és összefüggések területen a 6. szintű Mobil 2. feladaton (országos eredménye 23%, fővárosi eredménye 23%) szóródnak az iskolatípus szerinti eredmények a legszélesebb, 7%-50% közötti tartományban. A feladatban mobiltelefonok díjcsomagjainak összehasonlítása és az adott vonaldiagramok alapján végzett számítás volt a feladat. A mennyiségek és műveletek területet a 6. szintű Motogp 2 és a 7. szintű Parlamenti szavazás feladat képviselte, utóbbin 27 százalékpontnyival alacsonyabb átlag született. E két feladatnál igen magas (53%, illetve 71%) a rossz válaszok aránya. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 34

36 Bár most is e gondolkodási műveletben születtek a legalacsonyabb eredmények, egyetlen feladatnál és egyetlen iskolatípusnál sem született 0%-os megoldási szint. E gondolkodási műveleti területen csupán az alakzatok síkban és térben tartalmi területen értek el jelentősen jobb eredményt a hatosztályosok a többi tanulónál. A másik három tartalmi területen összteljesítményük közel azonos a nyolcosztályosokéval. A négyosztályos gimnazisták jelentősen, százalékponttal leszakadtak a másik két gimnáziumi csoport eredményétől. A szakközépiskolások 20-26% közötti eredményűek, a szakiskolások pedig 11-14% között teljesítettek. A számítások kifogástalan elvégzéséhez néhányszor mértékegység-átváltást is kellett végezni. A gondolkodási művelet egyes feladatainak gyenge teljesítménye a napi használatban előforduló mértékegységek átváltásának elmulasztásából és a válaszok pongyola megfogalmazásból eredhet. A fentiek alapján nem meglepő az alacsony és hullámzó megoldási szintű feladatok ilyen magas aránya a komplex megoldások témakörben, hiszen ez az a terület, ahol sok problémát kell analizálni és szintetizálni a feladat sikeres megoldásához Nemek szerinti eredmények A tényismeretek és műveletek gondolkodási művelet terén az alacsonyabb nehézségi szintű feladatokon csupán 2-3 százalékpontos eltérésű a fiúk és a lányok eredménye, és ez az eltérés esetenként a lányok számára kedvező (41. ábra). A magasabb 4., 5., 6. szinteken több feladatnál is élesen elkülönül a megoldási szint a fiúk javára, esetenként 7-13 százalékpontos különbséget mutatva. A legnagyobb, 13 százalékpontos eltérés a hozzárendelések és összefüggések tartalmi területhez tartozó Savanyítás -1. (országos eredmény: 44%, fővárosi eredmény: 43%) feladatnál tapasztalható. E feladatban a fiúk az országos és a fővárosi átlag fölött teljesítettek, míg a lányok az országos átlagnál 8, a fővárosinál 7 százalékponttal gyengébb eredményt értek el. A feladatnál aránypár ismeretlen tagját kellett meghatározni. 41. ábra. A tényismeretek és műveletek gondolkodási művelethez tartozó feladatok megoldási szintje nemenként Az események statisztikai jellemzői területhez tartozó Meteorok feladat (országos eredmény: 36%, fővárosi eredmény: 35%) szintén a fiúknak ment lényegesen jobban: az országos átlagnál 3, a fővárosinál 4 százalékponttal jobb az eredményük, a lányoké pedig 7, illetve 6 százalékponttal marad el Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 35

37 az átlagoktól. A feladatnál a komplementer esemény valószínűségének tizedes tört alakját kellett felismerni, és abból meghatározni a helyes választ. Az alakzatok síkban és térben területen a Kilátó feladat (országos eredmény: 45%, fővárosi eredmény: 44%) sikerült a fiúknak sokkal jobban, mint a lányoknak. Itt a körlap definícióját kellett a gyakorlatban felismerni a sugár megfelelő hozzárendelésével. Annak ellenére, hogy a feladat a 6. szinthez sorolt, valójában alapismeretet kért számon. A modellalkotás, integráció műveleti területen változatosabb az eredmények nemek szerinti megoszlása (42. ábra). Minden tartalmi területen vannak nagy eltérést mutató feladatok, a legtöbb ilyen jellegűt a mennyiségek és műveletek témában, a legnagyobb eltérésűt pedig az alakzatok síkban és térben, valamint az események statisztikai jellemzői területen találjuk. 42. ábra. A modellalkotás, integráció gondolkodási művelethez tartozó feladatok megoldási szintje nemenként Az alakzatok síkban és térben területen az eredmények nemek szerinti eltérése a Fogaskerék feladatnál volt a legjelentősebb (országos eredmény: 40%, fővárosi eredmény: 41%). A feladatban egyrészt az ellentétes forgást, másrészt a fogaskerekek sugarának fordított arányosságát kellett felismerni a helyes megoldáshoz. Ezen az 5. szintű feladaton a fiúk az országos átlagnál 8, a fővárosinál 7 százalékponttal értek el jobb eredményt, míg a lányok összességében 16 százalékponttal teljesítettek gyengébben. Az események statisztikai jellemzői feladatcsoportnál a legkiemelkedőbb különbség (16 %p) a 6. szintű Labdarúgó feladatnál (országos eredménye 40%, fővárosi eredménye pedig 41%) volt. A feladatban táblázatos formában megadott adatokat kellett a tanulóknak értelmezniük, majd az adatokkal műveletet kellett elvégezni, és ennek eredményét az igaz/hamis állításoknak megfeleltetni. Ez a téma a fiúk körében jóval népszerűbb, mint a lányoknál, a megoldás is jelentősen jobban sikerült, mint a lányoknak. A hozzárendelések és összefüggések területen a 7. szintű Mobiltelefon 1. feladatnál volt legnagyobb az eltérés a nemek szerinti eredményekben: a fiúk 11 százalékponttal értek el jobb eredményt a lányoknál, 5 százalékponttal teljesítettek jobban az összesített eredményekhez képest. A feladatban (országos eredmény 47%, fővárosi eredmény 47%) a grafikon alapján kellett kiválasztani a függvény helyes szöveges leírását. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 36

38 A mennyiségek és műveletek területen a 4. szintű Archiválás 2. feladat mutatja a legnagyobb eltérést, 14 százalékponttal jobbak a fiúk ennél a feladatnál, mint a lányok (országos eredmény: 59%, fővárosi eredmény: 61%). A helyes megoldáshoz egyenletet kellett felírni, jól megoldani, majd a maradékos osztás elvégzését követően a szövegben kívánt megfelelő kerekítést is el kellett végezni. A komplex megoldások és műveletek területhez tartozó feladatok megoldásának nemek szerinti eloszlása az alakzatok síkban és térben, valamint az események statisztikai jellemzői feladatainál nem mutat lényeges eltérést (43. ábra). A 7. szintű feladatok megoldottsága egyedül az Oktaéder feladatnál (országos eredmény: 42%, fővárosi eredmény: 44%) mutat említendő 7 százalékpontoseltérést, melyben az oktaéder perspektivikus képe ismeretében a palástjára megadott lehetőségek közül azt kellett kiválasztani, amelyből nem lesz összehajtogatható a bemutatott test. 43. ábra. A komplex megoldások és műveletek gondolkodási művelethez tartozó feladatok megoldási szintje nemenként A hozzárendelések és összefüggések területen a 6. szintű Árfolyam feladatnál értek el a fiúk 11 százalékponttal magasabb eredményt a lányoknál (országos eredmény: 28%, fővárosi eredmény: 27%). A grafikonokról leolvasott értékekkel százalékszámításokat kellett végezni, majd az átlag körüli sávot meghatározni, és azt követően lehetett válaszolni az eldöntendő kérdésekre. A mennyiségek és műveletek területen a 6. szintű Motogp -2. feladatnál (országos eredmény: 38%, fővárosi eredmény: 40%) volt az eltérés a fiúk javára a legnagyobb: 16 százalékpontos. A helyes megoldás összetett táblázatkezelést, az adatokkal való pontos számítást, az eredmény jó értelmezését igényelte. A feladatot nehezítette, hogy az adott táblázat értékeit a számításban kapott eredményekkel kellett módosítani, majd ezt követően elvégezni az összehasonlítást Javaslatok a matematikai eszköztudás fejlesztésére A komplex megoldást igénylő feladatoknál sokszor okozott problémát a különböző területekről származó tényismeretek összevetése, együttes hiányuk szembeötlő volt. Ismét bebizonyosodott tehát, hogy nem alakul ki alkalmazható tudás, ha az alapismereteit a diák nem tanulja meg az öszszes előforduló helyzetre transzferálni. E szemlélet kialakításában nemcsak a matematika szakos kollégáknak, hanem minden szaktanárnak kiemelkedően fontos szerepe van. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 37

39 Komoly figyelmet igényel, hogy az alapvető számolási feladatokban (mennyiség, műveletek; tényismeret, rutinfeladatok) a szakközépiskolások csaknem fele, a szakiskolai tanulóknak pedig a majdnem háromnegyede sikertelen. Arra is érdemes figyelmet fordítani, hogy olyan, gyakran alkalmazott matematikai műveletekre, mint a százalékszámítás, az arányszámítás és az elsőfokú egyenletek megoldásának ismeretére is csak a gimnáziumi tanulóknál lehet megbízhatóan számítani, a szakközépiskolások tudása az előző évekhez hasonlóan esetleges volt, a szakiskolai tanulók pedig továbbra is teljes tájékozatlanságot mutattak ezeken a területeken. Mivel ezekre a műveletekre a többi tantárgyban is készségszinten szüksége van a tanulónak, a területen tapasztalt lemaradás esetén megfontolandó a matematikai alapismeretek biztos elsajátíttatását és megszilárdítását célzó, esetleg a tanuló órarendjébe iktatható rendszeres korrepetálás tartása. A rendelkezésre álló feladatgyűjtemények, segédkönyvek bőséges anyaggal szolgálnak a gyakorlásra. Egyes feladatgyűjtemények megmutatják az alapfokú ismeretek elsajátításához szükséges feladatok szintjét is, támpontot adva ezzel a felkészüléshez tanárnak, szülőnek, diáknak egyaránt. Kiemelt feladat kell, hogy legyen a gyengébb teljesítményt mutató matematikai területek, részfejezetek fejlesztése. Azokban az iskolákban vagy osztályokban, ahol a fővárosi átlagtól, de legfőképp az iskolatípus átlagától szignifikánsan gyengébb eredmények születtek, reálisan szembe kell nézni a helyzettel, és a középiskolai matematikai nevelést a továbbiakban ennek tudatában kell megtervezni. Javasoljuk e célból az alapismeretek tematikus ismétlését és a korrepetálást. Különféle iskolatípusokban (gimnázium, szakközépiskola, szakiskola) tett látogatásaink során szerzett tapasztalataink mutatják ennek sikerességét, szaktanácsadóink szívesen adják át ez irányú tapasztalataikat is. Az alkalmazott szakmódszertani eljárások közül az aktív egyéni vagy kis csoportos tanulói tevékenységre alapozó feldolgozásra, a sokoldalú szemléltetés és a differenciálás szükségességére hívjuk fel a figyelmet. A mérési eredmények azt is visszajelzik, hogy a tanulók milyen arányban nem rendelkeznek a tudás megszerzéséhez szükséges technikákkal. Különösen nagy gondot jelenthet ebben a vonatkozásban a folyamatos, rendszeres tanulás hiánya, ami az egyik kulcsa a sikeres haladásnak. A gyenge munkafegyelmű, tanulásban alulmotivált diákok esetében a rendszeres visszajelzés, számonkérés elengedhetetlen. A kis egységekben megfogalmazott, így teljesíthető követelmények megadhatják a siker lehetőségét, az értelmes tanulás örömét. A fejlesztő tevékenységek megtervezésében, a hatékonyabb módszerek megválasztásában is javasoljuk a matematika szaktanácsadók segítségének igénybevételét. Szaktanácsadóink speciális segédleteket dolgoznak ki az iskolák kérésére, és segítséget nyújtanak az új módszerekkel történő tanítás sikerre vitelében is. A TISZK-ek tananyag-fejlesztési programjai keretében is számos olyan színvonalas segédlet, tankönyvrészlet, útmutató, tananyag-feldolgozás készült, amelyet bátran ajánlunk a kollégák figyelmébe. Tapasztalataink szerint az e program keretében készült feladatgyűjtemények, témafeldolgozások az iskola speciális képzési irányának megfelelő megfogalmazásúak, a feladatok szorosan kapcsolódnak a szaktárgyakhoz, így a diákok motivációja egyre jobban növekszik. A tananyagok az internetről is letölthetők, egy-egy részletük kivetíthető, a tanórai és azon kívüli szaktárgyi motiváció alapjául is szolgálhatnak. Az alkalmazott szakmódszertani eljárások közül az aktív egyéni vagy kis csoportos tanulói tevékenységre alapozó feldolgozásra, a sokoldalú szemléltetés és a differenciálás szükségességére hívjuk fel a figyelmet. Ezek bevezetésében nagy segítséget nyújthatnak az új oktatási munkaformák, mint a kooperatív módszerek, a projektmódszer, a különféle oktatási programok, mint például az SDT, a GeoGebra és a függvény-tervező programok bármelyike. Mindezek az interaktív tábla segítségével, a csoportmunka bevezetésével még élvezetesebbé, hatékonyabbá tehetők. A középiskolában nagy arányban megjelenő gyenge előképzettségű tanulók fejlesztése pedagógiai és szaktárgyi szempontból egyaránt a diákok egyéni haladási tempóját figyelembe vevő differenciált munka biztosítását igényli. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 38

40 4.2. Szövegértés A szövegértés-feladatok jellemzői A 2011 májusában megírt szövegértés-teszt az eddigi évekhez hasonlóan - különböző műfajú és típusú elbeszélő, magyarázó, dokumentum - szövegeket tartalmaz, melyeknek megszerkesztettsége, szókincse és stílusa alkalmazkodik a mérésben részt vevő korosztály életkorból fakadó sajátosságaihoz, és megfelel a 2006-ban megjelent Tartalmi keretben 5 megfogalmazott szempontoknak (7. táblázat). Szövegtípus 7. táblázat. A feladatok megoszlása a gondolkodási műveletek és szövegtípus szerint. Művelettípus Információvisszakeresés Kapcsolatok, összefüggések felismerése Értelmezés Szövegtípus összesen Dokumentum Elbeszélő Magyarázó Művelettípus összesen Az Oktatási Hivatal 2012-ben is kiadta az Országos kompetenciamérés 2011 Feladatok és jellemzőik, szövegértés, 10. évfolyam című kötetét, melynek célja, hogy megismertesse a tanárokat az egyes feladatok mérési jellemzőivel és statisztikai paramétereivel. A fővárosi fenntartású középiskolák eredményeinek elemzéséhez e kötet és a Tartalmi keret terminológiáját használtuk fel. Elbeszélő típusú szövegek: Betekintés a Nemzetközi Űrállomás mindennapjaiba (részlet a Nemzetközi Űrállomásról szóló internetes beszámolóból) Vasúti tolvaj (Kosztolányi Dezső novellája) Magyarázó típusú szövegek: Némó, a bohóchal kiszagolja az utat hazafelé (újságcikk) Egy kis agyterület gátolja, hogy ne másszunk bele más arcába (kutatási beszámoló) Dokumentum típusú szövegek: TeÉrted Akadémia (az akadémia programja) Tájékoztató az utazás feltételeiről (részlet a BKV honlapjáról) A mérésben szereplő feladatok az elemzésben a grafikonokon, a táblázatokban kódszámukkal megjelölten szerepelnek. A 4. mellékletben megtalálható az itemek és a kódszámok azonosítása a szövegtípus és a gondolkodási művelet szerint is. A szövegek olvasását követően a feladatok megoldásakor a tanuló különböző szövegértési műveleteket hajt végre, ezekkel bizonyítja, hogy megértette a szöveget. Minden művelettípus a szöveg globális megértését szolgálja. A tesztben tavaly is a következő szövegértési műveletek végrehajtására volt szükség: A szöveg információinak azonosítása, visszakeresése: A teszt ilyen jellegű feladata volt az OH00301, OH00302, OH00304, OH06601, OH06604, OH06606, OH06616, OH02603, OH02606, OH02607, OH02501, OH02503, OH02504, OH02508, OH05201, OH05202, OH05205, OH05215, OH01701, OH (A mérésben szereplő feladatok az elemzésben, a grafikonokon és a táblázatokban kódszámukkal megjelölten szerepelnek.) 5 Balázsi Ildikó Felvégi Emese Rábainé Szabó Annamária Szepesi Ildikó: Országos kompetenciamérés 2006, Tartalmi keret, SuliNova Kht., Budapest, 2006 Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 39

41 A szövegben lévő logikai és tartalmi kapcsolatok, összefüggések felismerése, egyes szövegelemek funkciójának meghatározása: A teszt ilyen jellegű feladata volt az OH00308, OH00310, OH00313, OH06605, OH06608, OH06609, OH06610, OH06620, OH02604, OH02509, OH02511, OH02514, OH05206, OH05207, OH05213, OH01702, OH01703, OH01708, OH01714, OH A szöveg konkrét tartalmi elemeinek értelmezése, a szöveg megformáltságára való reflektálás: A teszt ilyen jellegű feladata volt az OH00309, OH00311, OH00312, OH00315, OH06602, OH06611, OH06614, OH06617, OH06618, OH02601, OH02602, OH02613, OH02615, OH02510, OH02512, OH02515, OH05208, OH05209, OH05214, OH01707, OH01712, OH01716, OH A tanulóknak a teszt kitöltése közben két alapvető feladattípust kellett megoldaniuk: feleletválasztós kérdéseket, valamint nyílt végű, szöveges választ igénylő feleletalkotó feladatokat. A képességek mérésére szintenként eltérő számú feladat található a mérőeszközben (8. táblázat). 8. táblázat. A feladatok számának megoszlása képességszintek szerint szövegértésből Képességszint Feladatok száma Az összes értékelt feladat százalékában 1 2 3% % % % % % % Legnagyobb mértékben az 5. képességszint reprezentált, legkevésbé pedig az 1. szint, amelyen összesen két feladat szerepelt a feladatlapon. A feladatlap összeállítói összesen 18 db, a 4. képességszint alatti feladatot, valamint 43 db 4. és a feletti képességszintű feladatot vontak be a mérésbe Képzéstípusonkénti eredmények A 7. és a 9. táblázatban szereplő feladatszámok közötti különbség oka, hogy két feladat pszichometriai paraméterei nem bizonyultak megfelelőnek, ezért az azokból származó adatokat nem vették figyelembe a teljes teszt értékelésekor. A feladatlap megbízhatósága Cronbach-alfa - kiváló. 9. táblázat. A 2011-es mérés 10. évfolyamos szövegértés feladatlapjának néhány jellemzője Az értékelésbe bevont itemek száma 61 A központi elemzésbe bevont fővárosi tanulók száma 8963 Cronbach-alfa 0,912 Országos átlag (standard hiba) 1617 (0,4) Fővárosi átlag 1624 Országos szórás (standard hiba) 196 (0,4) A fővárosi fenntartású középfokú oktatási intézmények szövegértés-eredménye összességében és képzéstípusonkénti bontásban szignifikánsan magasabb, mint az országos átlag (10. táblázat). Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 40

42 10. táblázat. A fővárosi fenntartású intézmények tizedikes évfolyamainak szövegértés-eredményei az országos eredmények tükrében, standard pontban Képzéstípus Fővárosi fenntartású intézmények tizedikes tanulóinak eredménye Eltérés mértéke Országos eredmény 8 évfolyamos gimnázium 1826 > évfolyamos gimnázium 1830 > évfolyamos gimnázium 1757 > 1723 Szakközépiskola 1616 > 1604 Szakiskola 1440 > 1417 Összesített eredmény 1624 > 1617 A 8 és 6 évfolyamos gimnáziumok eredménye gyakorlatilag nem tér el egymástól, a 4 évfolyamos gimnáziumok teljesítménye azonban egyharmad szórásnyival elmarad tőlük. A szakiskolák teljesítménye 176 ponttal alacsonyabb a szakközépiskolások eredményénél, de az országos szakiskolai átlagot 23 ponttal meghaladja. A szakközépiskolai tanulók jelentősen, ponttal, bár a matematikánál tapasztaltaknál kevésbé maradnak le a gimnáziumi eredményektől. A 4. képességszint képezi azt a minimális szintet a tizedik évfolyamon, amely szükséges ahhoz, hogy önállóan tudjon a tanuló a jövőben eredményesen tanulni, képességeit alkalmazni (11. táblázat). A szakközépiskolások átlaga az 5. szinten van, a szakiskolásoké azonban 51 ponttal elmarad a 4. szint alsó határától. 11. táblázat. A szövegértés képességszintjeinek alsó határai Képességszint A képességszint alsó határa standard pontban 7. szint szint szint szint szint szint szint A szövegértés-feladatok megoldottsága Az országos átlaghoz hasonlóan a fővárosban is a dokumentum és a magyarázó típusú szövegekkel boldogultak jobban a tanulók (61-61%), eltérően a 2010-es méréstől, amikor csak a magyarázó típusú szöveghez kapcsolódtak a legnagyobb arányban sikeres megoldások (12. táblázat). 12. táblázat. A szövegértés teljesítmények alakulása a tartalmi keretmátrix szerint Szövegtípus Gondolkodási művelet Információvisszakeresés Kapcsolatok, összefüggések felismerése Értelmezés Együtt Országos Fővárosi Országos Fővárosi Országos Fővárosi Országos Fővárosi Dokumentum 67% 69% 67% 69% 46% 47% 60% 61% Elbeszélő 56% 56% 49% 50% 62% 62% 56% 57% Magyarázó 76% 77% 41% 41% 60% 61% 60% 61% Együtt 68% 69% 54% 55% 55% 57% 59% 60% Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 41

43 Az elbeszélő típusú szövegekhez kapcsolódó feladatokat 4 százalékponttal gyengébben oldották meg a diákok. A fővárosi fenntartású iskolák átlaga összességében 1 százalékponttal magasabb az országosénál (2010-ben az országos átlag volt magasabb) minden szövegtípusban. Az egyes szövegtípusokhoz kapcsolódó eredményeket összehasonlítva megállapíthatjuk, hogy a tanulók teljesítménye azonos szinten van a dokumentum és a magyarázó típusú szövegeknél országos és fővárosi körben egyaránt (országos 60, fővárosi 61%). 6 Ebből arra következtethetünk, hogy a diákok szövegértésszövegalkotási kompetenciáinak fejlesztésében, a gyakorlás során többször fordulhatnak elő magyarázó és dokumentum típusú írások, mint elbeszélők, illetve hogy ez a korosztály az olvasási szokások megváltozása miatt sokkal kevesebb elbeszélő típusú szöveggel találkozik, mint egyebekkel, hiszen a különböző tantárgyi tankönyvek szövege is elsősorban magyarázó vagy dokumentum típusú. A 2011-es mérés eredményei alapján azt kell gondolnunk, hogy iskolai tanulmányaik alatt a tanulók azonos szinten képesek dokumentum és magyarázó típusú szövegek értelmezésére, feldolgozására a tanulási folyamat során, viszont az elbeszélő típusú szövegekhez tartozó szövegértelmezési-alkotási feladatok megoldása a 2010-es méréshez képest nagyobb lemaradást mutat, vagyis a szövegekkel való munkát befolyásolhatja azok típusa. Azt is meg kell említeni, hogy az elbeszélő típusú szövegek jellegüknél fogva több értelmezésre adnak lehetőséget, feldolgozásuk során másféle gondolkodási folyamatokat igényelnek és indítanak el, nagyobb a hozzájuk fűződő asszociációs lehetőségek köre, nagyobb szabadságot adnak a fantáziának, a kreativitásnak, és értelmezésük ezekből többet is vár el. Ennek oka a szövegek természete közötti különbségben keresendő, hiszen az elbeszélő típusú szöveg megértése egészen más kompetenciákat, a művészi alkotások szövegében való eligazodást is feltételez, mint a sokkal tárgyilagosabb, racionálisabb, egyértelmű magyarázó vagy dokumentum típusú szövegeké. Azt is meg kell említeni, hogy mind a legjobb, mind a legrosszabb eredmények egy kivételtől eltekintve ugyanannál a két - dokumentum, illetve magyarázó típusú - szövegnél születtek: a TeÉrted Akadémia és az Egy kis agyterület gátolja, hogy ne másszunk bele más arcába címűeknél. Annak ellenére, hogy az eredmények alapján az elbeszélő típusú szövegekkel gyűlt meg leginkább a tanulók baja, a legrosszabb eredmények közül egy sem kapcsolódott ehhez a szövegtípushoz. Hasonló különbséget látunk a gondolkodási műveletek szerinti áltagok között: az információvisszakeresés fővárosi átlaga 69% és 1 százalékponttal jobb az országos átlagnál; a kapcsolatok, öszszefüggések felismeréséé már csak 55%, és ugyancsak 1 százalékponttal magasabb az országos átlagnál; az értelmezésé pedig 57%, 2 százalékponttal az országos átlag felett. Összefoglalva tehát az eredményekről leolvasható, hogy a fővárosi fenntartású iskolákban a magyarázó típusú szövegek információinak visszakeresését igénylő feladatok okozták a legkevesebb gondot a tanulóknak (77%, országos: 76%, OH00301, OH00302, OH00304, OH02501, OH02503, OH02504, OH02508 feladatok átlaga). Közvetlenül ez után a dokumentum típusú szövegek információvisszakeresése és kapcsolatainak, összefüggéseinek felismerése (69-69%, országos: 67-67%, OK06601, OH06604, OH06606, OH06616, OH05201, OH05202, OH05205, OH05215; OH06605, OH06608, OH06609, OH06610, OH06620, OH05206, OH05207, OH05213 feladatok átlaga) következik. A legnehezebb feladatnak a magyarázó típusú szövegek kapcsolatainak, összefüggéseinek felismerése bizonyult (41%, megegyezik az országos átlaggal, OH00308, OH00310, OH00313, OH02509, OH02511, OH02514 feladatok átlaga), ezen a területen értek el a fővárosi tanulók jóval 50% alatti eredményt, az összes többinél 50%-on vagy a fölött teljesítettek. A mérés szerint a szövegen belüli logikai, tartalmi kapcsolatok, összefüggések felismerése és a szöveg globális értelmezése az adatok alapján változatlanul majdnem minden második tanulónak gondot jelent, míg az információk visszakeresésében 69%-ban sikeresek. Ez a tendencia évek óta változatlan. Az eredmények árnyaltabbá tételéhez természetesen meg kell vizsgálnunk az egyes iskolatípusok teljesítményét is, de ez nem változtat azon az összképen, hogy a 10.-es korosztály szövegértési kompetenciája még mindig problémás területnek tűnik. Azt is meg kell jegyeznünk, hogy a fő- 6. Vö.: Ostorics László eredményei, melyek elhangoztak a X. Pedagógiai Értékelési Konferencián Szegeden. In mérés.info o. Utolsó megtekintés Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 42

44 városi tanulók átlageredményei minden értékben meghaladják az országos átlagot, vagy azonosak azzal A szövegértés-feladatok megoldottsága tartalmi területek szerint A 44. ábra (5. melléklet 1. táblázat) alapján megállapítható, hogy melyek azok az itemek, amelyeket a dokumentum típusú szövegekben a legmagasabb, illetve a legalacsonyabb arányban oldottak meg jól a tanulók országosan, a fővárosi fenntartású iskolák szintjén, illetve azokon belül képzéstípusok szerint. Összességében láthatjuk, hogy a fővárosi középiskolák a 23 item közül 12-ben az országos átlag fölött, 6 item esetében az országos átlaggal megegyező szinten és csak 5 itemnél az alatt teljesítettek, de a különbség lefelé csupán 1 százalékpontnyi. A fővárosban a dokumentum típusú szövegekben a legmagasabb értéket, 91%-os összteljesítményt 1 itemben (OH06601) értek el a diákok, amely információ-visszakeresést igényelt, és az 1. nehézségi szinten helyezkedik el. Az összteljesítményt tekintve 80% fölött 3 itemben teljesítettek a tanulók, mindhárom kapcsolatok, összefüggések felismerését kívánta meg. A legalacsonyabb átlag (13%) az értelmezést igénylő, 7-es nehézségi szintű OH06617-es itemnél született. A második és harmadik legalacsonyabb megoldottságú feladat ebben a szövegtípusban a 21, illetve 38%-ban jól megoldott, mindkét esetben értelmezést kérő item volt. Az itemek több mint felét 60% fölött teljesítették a tanulók. 44. ábra. A dokumentum szövegtípushoz tartozó feladatok megoldási szintje képzéstípusonként A legmagasabb eredményeket a gimnazisták, a legalacsonyabbakat a szakiskolások produkálták. A 8 évfolyamos gimnazisták 8 itemet (valamivel több, mint az itemek egyharmadát) oldottak meg 90% fölött, a 6 évfolyamosok 4-et, a 4 évfolyamosok hármat. A legmagasabb megoldási szint, 99% a 6 évfolyamos gimnáziumban kapcsolatok, összefüggések felismerésében az OH06605 itemnél született meg. A szakközépiskolások 1 itemet oldottak meg 90% fölött, a már említett, az összteljesítmény legjobbját is adó OH06601 itemet, a szakiskolások egyet sem. Náluk a legmagasabb megoldási szint 81% volt a már említett legsikeresebb feladatnál, majd 74% következik, mint a második legmagasabb érték egy feladatnál, és az itemek több mint felében (13 item) 50% alatt teljesítettek. A leggyengébb eredmény is ebben az iskolatípusban született: 6% a 7-es nehézségi szintű, értelmezést igénylő OH06617 itemnél. A szakiskolások 5 itemet oldottak meg 30% alatt, a szakközépiskolások kettőt, a 8 Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 43

45 és 6 évfolyamos gimnáziumokban ilyen alacsony eredmény nem született, és a 4 osztályos gimnáziumokban is csak egy itemnél. A szakközépiskolásoknál a legalacsonyabb érték 11% volt. A 8 évfolyamos gimnazisták 31%-kal az OH06614 itemnél, a 6 évfolyamosok 36, a 4 évfolyamosok 22%-kal az OH06617 itemnél voltak a legsikertelenebbek. A fővárosi átlagot tekintve a legtöbb nehézséget ez a két feladat jelentette, minden iskolatípusban itt születtek a legalacsonyabb eredmények megegyezve az országos átlaggal. A 45. ábra (5. melléklet 2. táblázat) ugyanilyen szempontok alapján mutatja az elbeszélő típusú szövegekhez tartozó itemek nehézségi és megoldási szintjét. 45. ábra. Az elbeszélő szövegtípushoz tartozó feladatok megoldási szintje képzéstípusonként Nyolc item esetében voltak sikeresebbek a fővárosi középiskolások az országos átlagnál, egy esetben 5 százalékpontnyi a különbség, szintén egy itemnél 3, két esetben 2, négynél 1. Azonos szinten 7 itemet oldottak meg, és ennél a szövegtípusnál egy itemnél -2 százalékpont a legnagyobb eltérés az országos átlagtól. Az elbeszélő típusú szövegekben egy itemet sem sikerült 90%-os átlag fölött teljesíteni, a legsikeresebb két feladat az OH02615 és az OH01701 item volt 82%-kal: az első 2-es nehézségi szintű és értelmezést, a második szintén 2-es nehézségi szintű, információ-visszakeresést igénylő item. A legmagasabb, 97%-os teljesítmény az utóbbi feladatnál született meg a 8 évfolyamos gimnáziumokban. Az ő átlaguk az értelmezéseknél kiemelkedik a gimnáziumok közül, a többi gondolkodási műveletnél pontosan megegyezik a 6 évfolyamos gimnáziumokéval. A legalacsonyabb átlagot a gimnazisták közül a 4 évfolyamosok produkálták. A 8 évfolyamos gimnáziumok 10.-es tanulói 4 itemet oldottak meg 90% fölött, a 6 évfolyamosok egyet, a 4 évfolyamosok pedig kettőt. A szakközépiskolások legmagasabb eredménye 83% volt a már említett OH02615 feladatnál, és 82%-ot értek el a másik, átlagban legjobban megoldott itemnél. A szakiskolások két legjobb eredménye a már említett itemeknél 68, illetve 64%, és csak egyetlen esetben teljesítettek 10%-on, az OH02604 feladatnál, amelyik a 6. nehézségi szinten helyezkedik el, és kapcsolatok, összefüggések felismerését kérte a tanulóktól, és a gimnazisták 50% fölött oldották meg. A legtöbb problémát a szakközépiskolásoknak a 27%-ban jól megoldott OH01711 item jelentette, éppúgy, mint a 8 és 4 évfolyamos gimnazistáknak is. A 6 évfolyamos gimnazisták 57%-kal az OH01714 itemben érték el a legalacsonyabb átlageredményt. A szakközépiskolások egyébként 8 itemben nem érték el az 50%-ot, a szakiskolások Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 44

46 pedig összesen 4 itemben teljesítettek 50% fölött, ami az összes itemnek (19) csupán egyötöde. 3 feladatot 20% alatt oldottak meg, igaz, a 6-os nehézségi szinten. A 46. ábra (5. melléklet 3. táblázat) a magyarázó típusú szövegekhez tartozó itemek nehézségi és megoldási szintjét mutatja be. A legmagasabb eredmények a 2010-es méréshez hasonlóan ebben a szövegtípusban születtek. Ez talán összefügg azzal is, hogy a tankönyvi szövegek is zömükben ebbe a típusba tartoznak, és a tanulók a 10. évfolyamra viszonylagos gyakorlatot szereznek az ilyen típusú szövegekkel való rendszeres és kontrollált munkában. Ebben a szövegtípusban is alig van eltérés az országos és a fővárosi átlagok között, az értelmezésnél és az információ-visszakeresésnél 1 százalékponttal voltak sikeresebbek a fővárosi tanulók, mint az országos átlag, a kapcsolatok, összefüggések felismerése pedig azonos százalékban sikerült mindkét körben. 46. ábra. A magyarázó szövegtípushoz tartozó feladatok megoldási szintje képzéstípusonként A 8 évfolyamos gimnazisták 7 itemet 90% fölötti arányban oldottak meg jól, ebből 2 információvisszakeresést kérő item megoldottsága 100%: az OH00301 és az OH Érdemes megnézni e feladatok jellemzőit, mivel a többi iskolatípus is sikeresen oldotta meg ezeket, az elsőnél a legalacsonyabb eredmény is 92%, a másodiknál 81% volt a szakiskolákban. Ugyanilyen magas teljesítményt értek el ennél a két itemnél a 6 és 4 évfolyamos gimnazisták és a szakközépiskolások is 90, 99 és 97, illetve 100, 98 és 94%-kal. Ez egyébként a fővárosi átlagok közül is a két legmagasabb érték, 97, illetve 93%. A 6 évfolyamos gimnazisták szintén 7, a 4 évfolyamosok 4 itemet oldottak meg 90%-on vagy fölötte. A szakközépiskolásoknál ez a szám 2, a szakiskolásoknál 1. A legalacsonyabb a szakiskolások 10%-os teljesítménye az OH00313 és az OH02514 itemeknél, amelyek 7-es nehézségi szintűek és kapcsolatok, összefüggések felismerését kérték. Minden iskolatípusban ezek és az OH02511 item voltak a legnehezebbnek bizonyuló feladatok. Egyébként ennél a gondolkodási műveletnél születtek a legalacsonyabb eredmények a magyarázó szövegtípusban. A szakiskolások összesen 12, a szakközépiskolások 6, a 8 és 4 évfolyamos gimnazisták 3, a 6 évfolyamosok 2 feladatot teljesítettek 50% alatt. Ha összességükben vizsgáljuk a feladatokat, a fővárosi, átlagosan legmagasabb arányban (90% fölött) megoldott itemek a következők: OH00301 (97%), OH02501 (93%), OH06601 (91%). Mindhárom az információ-visszakeresés gondolkodási művelethez tartozik, 1 dokumentum, 2 magyarázó típusú szöveghez kapcsolódik. Ebből arra következtethetünk, hogy a legkevesebb problémát az információk megkeresése jelenti a vizsgált korosztálynak, míg a legnehezebben a szövegben lévő kapcsolatok, Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 45

47 összefüggések felismerése megy. Érdekes, hogy a legmagasabb és a legalacsonyabb eredmények egyaránt leginkább a magyarázó típusú szövegekben születtek. A legkönnyebbnek bizonyult feladat a Némó, a bohóchal kiszagolja az utat hazafelé című, magyarázó típusú szöveghez kapcsolódó információ-visszakeresés volt, ahol be kellett satírozni (feleletválasztós kérdés) a kutatócsoport nemzetiségének betűjelét (a szöveg elején volt az információ). A 8 évfolyamos gimnazisták 100, a 4 évfolyamosoké 99, a szakiskolások 92%-a jelölte meg jól az ausztrál szót. Hasonlóan könnyűnek bizonyult az Egy kis agyterület gátolja, hogy ne másszunk bele más arcába című kutatási beszámoló (szintén magyarázó típusú szöveg) ugyancsak információ-visszakeresése, ahol röviden le kellett írni, hogyan reagálnak az emberek és hogyan az állatok, ha megsértik a személyes távolságukat (rövid választ igénylő, nyílt végű feleletalkotó kérdés). A 8 és 6 évfolyamos gimnazisták 100%-a, a szakiskolások 81%-a találta meg a jó információkat. A harmadik legsikeresebb feladat a TeÉrted Akadémia programajánló dokumentum időtartamra vonatkozó információvisszakeresése volt (rövid választ igénylő, nyílt végű feleletalkotó kérdés), amely a 8 évfolyamos gimnazisták 98, a szakiskolások 81%-ának nem okozott problémát. Ki kell emelnem, hogy a feladatok nehézségi szintje 2 itemnél az 1-es, 1-nél a 2-es szinten helyezkedik el. Az átlagosan a legalacsonyabb arányban (25% alatt) megoldott itemek a következők: OH06617 (13%), OH02514 (20%), OH06614 (21%), OH00313 (23%) és OH02511 (24%). Az értékek alig maradnak el az országos átlagtól (maximum 1 százalékponttal), és országosan is ezek a legalacsonyabban teljesített feladatok. A szakiskolások e feladatok közül kettőt 10% alatt (6 és 8%), kettőt 10%-on oldottak meg. Az öt itemből három kapcsolatok, összefüggések felismerését, kettő értelmezést igényelt a tanulóktól, kettő közülük dokumentum, három magyarázó típusú szöveghez tartozott. A legnehezebbnek a TeÉrted Akadémia programajánló dokumentumának értelmezést igénylő feladata bizonyult (2010- ben is ugyanilyen paraméterekkel rendelkező item volt a legalacsonyabb megoldottságú), amelyben meg kellett győzni Sárát annak ellenkezőjéről, mely szerint a médiaismeret-foglalkozások egyáltalán nem teszik próbára a résztvevők kreativitását (nyílt végű, hosszabb szöveges választ igénylő feleletalkotó kérdés). A legalacsonyabb eredmény itt született a szakiskolások 6%-os átlagával. Feltételezzük, hogy az alacsony megoldottság mögött a feladat szövegének értelmezési problémái is állhatnak, hiszen három csapda is nehezíti a megértést: a meggyőzés mint beszédcselekvési aktus szövegalkotási készlettárának ismerete, egy negatív elem megjelenése a feladatban (valamilyen állításnak az ellenkezőjéről kell érvelni), illetve két idegen kifejezés, amelyeknek jelentésével tisztában kell lenni a feladat megoldásához (médiaismeret, kreativitás). Nehézséget okozott még a 20%- os teljesítmény alapján az Egy kis agyterület gátolja, hogy ne másszunk bele más arcába című kutatási beszámoló kapcsolatainak, összefüggéseinek felismerése (nyílt végű, hosszabb szöveges választ igénylő feleletalkotó kérdés): Barátod orvosi pályára készül. Ajánlanád neki ezt a cikket? Válaszodat a szöveg alapján indokold! (2010-ben szintén egy indoklást kérő itemen érték el a másik legalacsonyabb eredményt). Kiemelném, hogy a 2010-es méréssel megegyezően mindkét feladat nyílt végű, hosszabb szöveges választ igénylő feleletalkotó kérdést tartalmazott, az egyik meggyőző érvelést, a másik indoklást kért, vagyis a szövegértés mellett a szövegalkotási kompetenciákra is szükség volt a jó válasz megfogalmazásához, valamint nehézségük szerint a 7. szinten találhatók. Ugyanez jellemzi a harmadik legalacsonyabb megoldottságú feladatot is, amely szintén a TeÉrted Akadémia programajánló dokumentumához kapcsolódott: Megfelelően jelképezi-e a médiaismeret-sorozat mottója a tanfolyamot? Indokold meg a válaszodat! A tanulók legnagyobb arányban ott szembesültek szövegértési és szövegalkotási problémákkal, ahol önálló véleményalkotásra volt szükség, el kellett szakadniuk a szöveg konkrét elemeitől, és a saját aktív szókészletük segítségével kreatív módon kellett egy új szöveget megalkotniuk természetesen egy adott problémával kapcsolatban A szövegértés-feladatok megoldottsága gondolkodási műveletek szerint A 47. ábra (5. melléklet 4. táblázat) a legnehezebb, legösszetettebb gondolkodási műveletet vizsgálja, az értelmezést. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 46

48 47. ábra. Az értelmezés gondolkodási művelethez tartozó feladatok megoldási szintje képzéstípusonként Az eredmények tükrözik ennek a gondolkodási műveletnek a nehézségét, hiszen a feladatok nehézségi szintje is magas, 2-3. szinten csupán 6 item található a 22-ből, többségük 4-6. szintű, illetve 3 item 7-es nehézségű. A fővárosi és az országos átlagok alig térnek el egymástól, és a többi vizsgált területhez hasonlóan a fővárosi értékek többségükben magasabbak az országos átlagoknál. Az egyébként jól teljesítő gimnáziumok eredményei a nehézségi szintekkel összhangban alacsonyabbak, a legjobb eredmény 95%-kal a 8 évfolyamos gimnáziumoknál született egy magyarázó típusú szöveghez kapcsolódó itemnél. A 8 évfolyamos gimnazisták 90% fölött öt feladatot, a 6 évfolyamosok kettőt, a 4 évfolyamosok csak egyet tudtak megoldani. A szakközépiskolások legjobb eredménye 83%, ezen kívül még egy feladatnál érték el a 80%-ot. A szakiskolások legmagasabb eredménye 64% az OH02615 feladatnál, amelynek megoldása a többi iskolatípusban sem okozott gondot. A legalacsonyabb értékek azonban 10% alattiak: 6 és 8%, ilyen alacsony arány más iskolatípusban nem született. A szakközépiskolások 2 itemen teljesítettek 20% alatt, a gimnazisták egyen sem; náluk a legalacsonyabb érték a 4 évfolyamos gimnáziumoknál született 22%-kal az OH06617 feladatnál. Az 48. ábra (5. melléklet 5. táblázat) ugyanezt vizsgálja, csak az információ-visszakeresés gondolkodási műveletének szempontjából. A 19 itemből négy az 1. vagy 2. nehézségi szinten található, 7. szintű nincs, 5.-ből és 6.-ból is csak kettő-kettő. Ezek tehát a könnyűnek számító feladatok, és ez az elért teljesítménynél is látszik. A fővárosi átlag többségében megegyezik az országossal, a többi itemnél az eltérés 1-2, két esetben 5 százalékpontnyi, általában a fővárosi átlag javára. Magas eredmények születtek a gimnáziumoknál: a 8 évfolyamosok tanulói 9 itemnél teljesítettek 90% fölött két feladatnál 100%-on -, a 6 évfolyamosok 8-nál - egy feladatnál 100%-on -, a 4 évfolyamosok 5-nél, és az eredmények csak két itemnél vannak 50% alatt (a 4 évfolyamos gimnáziumokban). A szakközépiskolások 5 feladatot oldottak meg 80% fölött, és három esetben kerültek 50% alá. A szakiskolásoknak sincs 10% alatti teljesítménye, a legalacsonyabb eredményük 13%-os, a legmagasabb pedig 92%. 3 itemet oldottak meg 80% fölött, viszont 8-at 50% alatt, ami közel a feladatok fele. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 47

49 48. ábra. Az információ-visszakeresés gondolkodási művelethez tartozó feladatok megoldási szintje képzéstípusonként A 49. ábra (5. melléklet 6. táblázat) alapján összehasonlíthatjuk az egyes iskolatípusokban tanuló diákok teljesítményét a szöveg tartalmi, logikai kapcsolatainak, összefüggéseinek felismerését igénylő feladatok megoldásának szempontjából. 49. ábra. A kapcsolatok, összefüggések felismerése gondolkodási művelethez tartozó feladatok megoldási szintje képzéstípusonként Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 48

50 A legkönnyebb feladat is a 2. nehézségi szinten helyezkedik el, de ebből csak egy van, a feladatok fele az 5. szinten található, és van három item a 7. szinten (hasonlóan az értelmezéshez). A fővárosi átlag négy esetben rosszabb csak az országosnál, de az eltérés csupán 1 százalékpontnyi. Itt van azonban a legnagyobb mértékű többlet a főváros javára: 6 százalékpontnyi előny az OH05206 feladatnál. A legmagasabb fővárosi érték 99% az OH06605 itemnél, ez a 6 évfolyamos gimnáziumok átlaga. A gimnáziumokban és a szakközépiskolákban ennél a feladatnál születtek a legjobb eredmények, a szakiskolások viszont az OH05207 itemben teljesítettek a legjobban 74%-kal. A gimnazisták egyetlen ilyen gondolkodási műveletet igénylő feladatot sem oldottak meg 30% alatt, a szakközépiskolások hármat, a szakiskolások legalacsonyabb eredménye 10% három itemnél. Ők a feladatok több mint felét 40% alatt teljesítették. A gimnazistáknál ez az arány éppen a fordítottja: ők az itemek felét 70% fölött oldották meg jól. A szakközépiskolások képviselik a középmezőnyt: 9 itemnél 60% fölötti a megoldottság, 5 itemnél 40% alatti. Összefoglalásként a 2011-es mérés néhány jellemzőjére szeretnék kitérni. A fővárosi átlagok többségükben meghaladják az országos értékeket, illetve azonos szinten helyezkednek el azokkal. Ha lefelé van eltérés, az 1-2 százalékpontnyi, felfelé viszont gyakrabban magasabb az eltérés mértéke, egy itemnél 6 százalékpontnyi. Az országos átlagot meghaladó eredmények elsősorban a dokumentum és magyarázó típusú szövegeknél jellemzőek, az elbeszélő típusú szövegeknél szinte teljesen megegyeznek az átlagok az országos értékekkel Nemek szerinti eredmények Mivel az adatok alapján a 2011-es mérésben is jelentős különbségek figyelhetők meg a fiúk és lányok teljesítménye között, érdemes ezt a kérdést is megvizsgálni az elemzés során a különböző gondolkodási műveletek szempontjából. Az értelmezésnél a lányok három item kivételével jobban teljesítettek a fiúknál, a különbség néha igen jelentős a lányok javára: egy itemnél 11, kettőnél 10 és szintén kettőnél 9 százalékpontnyi (50. ábra). 50. ábra. Az értelmezés gondolkodási művelethez tartozó feladatok megoldási szintje nemenként Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 49

51 A fiúk javára a legnagyobb eltérés is csak 6 százalékpontnyi az OH05214 feladatnál. Amit talán érdemes megjegyeznünk, hogy két, a fiúk által jobban megoldott item is a dokumentum típusú szövegekhez kapcsolódik, a magyarázó típusú szövegekben a lányok teljesítménye kiemelkedő a fiúkéhoz képest, az elbeszélő típusú szövegben viszont kiegyensúlyozott a helyzet, a fiúk és a lányok 1 item kivételével azonos szinten teljesítettek (éppen ennél az egy itemnél a legnagyobb az eltérés a lányok javára). Az információ-visszakeresésben csak egyetlen feladatnál voltak eredményesebbek a fiúk a lányoknál, az OH itemnél 2 százalékponttal (51. ábra). Az összes többi kérdést (a három azonos százalékon kívül) magas százalékpont-különbséggel (egy itemnél 12, kettőnél 10 százalékpont) a lányok válaszolták meg jobban. 51. ábra. Az információ-visszakeresés gondolkodási művelethez tartozó feladatok megoldási szintje nemenként A kapcsolatok, összefüggések felismerésében érték el a fiúk legjobb, a lányok (a fiúkhoz képesti) legalacsonyabb eredményeiket (52. ábra). A fiúk 4 itemnél voltak jobbak a lányoknál, a legnagyobb különbség 7 százalékpontnyi, az itemek közül kettő dokumentum, kettő elbeszélő típusú szöveghez kapcsolódik. A lányok 14 feladatnál jobb eredményeket értek el a fiúknál. Itt született meg a legnagyobb mértékű eltérés a lányok javára: 13 százalékpontnyi az OH00310 itemnél a magyarázó szövegtípusnál. Itt egyébként minden feladatnál jobbak voltak a lányok, mint a fiúk. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 50

52 52. ábra. A kapcsolatok, összefüggések felismerése gondolkodási művelethez tartozó feladatok megoldási szintje nemenként Javaslatok a szövegértés fejlesztésére Az iskolai fejlesztéseknél érdemes figyelembe venni, hogy az alapkészségek hiánya vagy alacsony színvonalú megléte alapjaiban akadályozza a sikeres tanítási-tanulási folyamatot. Oka lehet a viselkedésbeli problémák kialakulásának vagy erősödésének, az iskolai konfliktusok eldurvulásának, egyre több kudarc kényszerű elviselésének, a frusztrációnak. Ezért minden eszközt meg kell ragadni a készségfejlesztésre, és ez szemléletbeli és módszertani megújulást kíván a pedagógusoktól. Számtalan pedagógiai írás, publikáció foglalkozik a hatékony tanulásszervezési módok bemutatásával, a reformpedagógiai módszerekkel, a kompetenciaalapú oktatás népszerűsítésével. Az olvasott szöveg megértésének képessége tantárgyközi kompetencia, nem köthető kizárólagosan egyetlen tantárgyhoz, műveltségi területhez sem. A tanítási-tanulási folyamat bármelyik szakaszán felmerül a kérdés, hogy a tanulói teljesítményekben milyen mértékben jelenik meg a feladatok szövegének értelmezési szintje, hiszen abból is származhat rossz válasz. Ezért szakterülettől független, általános pedagógiai feladatként jelenik meg a szövegértési kompetencia fejlesztése, és nem utalhatjuk kizárólag a magyar nyelv és irodalom tanárának hatáskörébe. A kompetenciaalapú oktatási programcsomagok kifejlesztése során létrejöttek azok a taneszközök, amelyek egy adott kompetenciát több műveltségi terület tanításának keretében, kereszttantervi módon támogatják a szaktárgyi órák témáinak feldolgozásával, illetve a tanórán kívüli nevelési-tanítási helyzetekhez kínálnak modulokat a kompetenciafejlesztés kereteiben. A programcsomagok intézményi alkalmazását, az adaptáció folyamatát pályázatokon keresztül tanár-továbbképzési, valamint mentorképzési program segíti. A szövegértési képességek szorosan összefüggnek a szövegalkotási kompetenciákkal. A helyes szövegalkotásnak egyik alapvető feltétele a szókincs fejlesztése, amelynek két nagy területe van: a szókincs gyarapítása és a már ismert vagy használt szavak jelentésének tisztázása, pontosítása. Ez utóbbi alapfeltétele a szöveg megértésének, hiszen a szavak jelentésének ismerete nélkül a szövegegészt sem érthetjük meg. Ezért fontos a tanulók aktív és passzív szókészletének mindennapos karban tartása, amelyhez szintén több módszer áll a pedagógusok rendelkezésére. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 51

53 A szövegértés összetett gondolkodási folyamat, melynek feltétele a tanuló már meglévő tudása, a hosszú távú memóriában tárolt tudásstuktúrája. Ezért fontos a tanítási órán az előkészítés, melynek során felfrissítjük az új dolgok megértéséhez szükséges tudást. A kompetenciafejlesztés interaktív és reflektív tanulási technikáinak gazdag tárháza található többek között Pethőné Nagy Csilla módszertani kézikönyvében, amely az Irodalomkönyv és az Irodalomtankönyv a szakközépiskolák számára című tankönyvcsaládhoz készült metodikai segédanyagként 7. 7 Pethőné Nagy Csilla: Módszertani kézikönyv (Korona Kiadó, Budapest, 2007.) Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 52

54 5. A CSALÁDI HÁTTÉR HATÁSA A TELJESÍTMÉNYRE A tanulói kérdőíven egyes kérdésekre adott válaszok összesítésével családiháttér-indexet (CSHI) alakított ki az Országos kompetenciamérés (OKM), melynek számítási módja 8 a évi mérés óta változatlan. A cél egy olyan mutató létrehozása volt, mely a legtöbb tanuló esetében létezik, egyben a legnagyobb magyarázóerővel bír az azonos képességű tanulók teljesítményei között. A CSHI súlyozva tartalmazza a tanuló otthonában található könyvek számát 9, a szülők iskolai végzettségét 10, van-e a családnak számítógépe 11, és vannak-e a tanulónak saját könyvei 12. A kérdőíven szolgáltatott adatok alapján az index értékét a évi mérés során országosan a tanulók 78%-ára lehetett kiszámítani. A számított CSHI-értékek korrelációja a szövegértés- és matematikai eszköztudás-képességpontokkal 0,45 és 0,53 között változott 13, tehát a modell magyarázóereje 20-28% között található, mely értékek az elmúlt évhez képest nem változtak. A fővárosi 84 középfokú oktatási intézmény 120 telephelyére messze az országos átlag alatt, csupán alig több mint a fele esetében lehetett kiszámítani a CSHI-t (13. táblázat). 13. táblázat. A CSHI-vel rendelkező/nem rendelkező fővárosi telephelyek száma és aránya. A fővárosi telephelyek száma aránya rendelkezik CSHI-vel 66 55% legfeljebb 2/3-ának van CSHI-je 45 37% a CSHI-vel rendelkezők/nem rendelkezők eredménye eltér 1 1% legfeljebb 9 tanulónak volt adata 8 7% összesen % Ahhoz, hogy nem teljes adatszolgáltatás esetén is érvényes következtetést lehessen levonni, szükséges, hogy a tanulók több mint kétharmada esetében számítható legyen a CSHI és a CSHI-vel rendelkező és nem rendelkező tanulók teljesítménye szignifikánsan ne térjen el egymástól. Ez a két feltétel a fővárosi telephelyek közel kétötödében nem teljesült, és nyolc telephelyen tíznél kevesebb tanuló adott választ azokra a kérdésekre, amelyek minimálisan szükségesek a CSHI számításához. A 13. mellékletben táblázatos formában jelenítettük meg, az egyes iskolai telephelyek által elért eredmények milyen mértékben és irányban térnek el a CSHI alapján várttól, és feltüntettük, ha a CSHI számítására nem volt a telephely vonatkozásában lehetőség. Az így rendelkezésre álló hiányos adatok alapján azonban a fővárosi intézményrendszer egészére érvényes következtetéseket már nem lehet levonni. A probléma egyértelműen negatívan hat az egyes iskolák vagy egyes telephelyeik teljesítményének értékelhetőségére, hiszen az OKM a teljesítmények összehasonlítását nemcsak az országos standard átlag és az iskolatípus szerinti átlag szerint teszi összevethetővé, hanem az azonos CSHI-val jellemezhető telephelyekével is. Ez utóbbi szempont nagyban módosítja az iskola, telephelye által várt teljesítmény bevezetésével annak a standard átlagtól eltérő, mégis reálisnak tekinthető eredményét. Mivel a CSHI olyan mutatókat foglal magába, melyek az azonos képességű tanulók közötti teljesítmények egynegyedét képesek megmagyarázni, nyilvánvalóan az alacsonyabb szociokulturális és gaz- 8 Országos kompetenciamérés Országos jelentés. Melléklet (82. oldal) Utolsó megtekintés Vö. 17. ábra: Átlageredmény és az átlageredmény konfidencia-intervalluma a tanuló otthonában található könyvek száma szerint In: Országos kompetenciamérés Országos jelentés. (34. oldal) 10 Vö. 15. ábra: Átlageredmény és az átlageredmény konfidencia-intervalluma az anya iskolai végzettsége szerint és 16. ábra: Átlageredmény és az átlageredmény konfidencia-intervalluma az apa iskolai végzettsége szerint. In: Országos kompetenciamérés Országos jelentés. ( oldal) 11 Vö. 19. ábra: Átlageredmény és az átlageredmény konfidencia-intervalluma annak függvényében, hogy a tanuló otthonában van-e számítógép. In: Országos kompetenciamérés Országos jelentés. (35. oldal) 12 Vö. 18. ábra: Átlageredmény és az átlageredmény konfidencia-intervalluma annak függvényében, hogy a tanulónak vannak-e saját könyvei. In: Országos kompetenciamérés Országos jelentés. (35. oldal) 13 Vö. 21. ábra: A családiháttér-index és a teljesítmény közötti összefüggés településtípusonként, illetve képzési formák szerint. In: Országos kompetenciamérés Országos jelentés. (37. oldal) Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 53

55 dasági ellátottságú környezetből származó tanulók nagy aránya egy iskolán belül mintegy előrejelzi az általuk elért eredmény jórészt iskolától független, külső tényezők által befolyásolt alacsonyabb voltát. Miután ennek fényében a standard átlag alatt teljesítő iskola érdeke annak bizonyítása, hogy nem az alkalmazott módszerek hiányossága okozza a teljesítményelmaradást, a standard átlag felett teljesítő iskolának pedig, hogy nem pusztán a támogató családi tényezők hatása a kiemelkedő eredmény, az iskolák maguk tehetnék a legtöbbet azért, hogy a mutatószám kiszámítható legyen minden egyes telephelyükre. Ehhez mindössze arra van szükség, hogy ösztönözzék úgy a tanulókat, mint szüleiket a minél teljesebb körű adatszolgáltatásra. Iskolatípusonként változó mértékben nem rendelkezünk telephelyi CSHI-adatokkal (14. táblázat). 14. táblázat. A fővárosi telephelyek eloszlása és azon telephelyek aránya, amelyek rendelkeznek CSHI-vel. Fővárosi telephelyek összes CSHI-vel rendelkező 8 osztályos gimnázium 2% 1% 6 osztályos gimnázium 3% 3% 4 osztályos gimnázium 17% 12% szakközépiskola 54% 34% szakiskola 24% 6% Összesen 100% 55% Már a gimnáziumi telephelyek több mint egynegyedénél sincs ilyen mutatószámunk, azonban nagyságrendekkel teljesebb képpel rendelkezhetnénk, ha a jellemzően a szakiskolások, kisebb részben a szakközépiskolások esetében nagyon hiányos CSHI jobban tükrözhetné az iskolákban, a telephelyeiken folyó pedagógiai erőfeszítések hatékonyságát, mely ilyen módon jórészt láthatatlan marad. Az országos és a fővárosi CSHI-átlagok jelentős mértékben eltérnek egymástól (53. ábra). 53. ábra. Az országos és a fővárosi iskolatípus szerinti CSHI-átlagok. Azon fővárosi telephelyek közül, amelyek rendelkeznek CSHI-vel, a nyolc és a hat évfolyamos gimnazistáké félszórásnyival magasabb, mint az országos nyolc évfolyamos átlag és közel ennyivel magasabb a négy évfolyamos gimnáziumi telephelyeké is. Összességében egyharmad szórásnyival magasabb az összes telephely átlagos CSHI-jénél a fővárosi, a szakközépiskoláké egyötödnyivel, a szakiskolásoké ismét félszórásnyival. Ezek az értékek magasabb fővárosi eredményeket jeleznek előre, amelyeket vissza is igazolnak a regionális eredmények Vö. 6. ábra: A tanulók képességmegoszlása az egyes régiókban az átlageredmény szerinti növekedő sorrendben In: Országos kompetenciamérés Országos jelentés. (15. oldal) Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 54

56 Telephelyenkénti szinten igazán leszakadó, az országos szociokulturális átlagtól egy szórásnyival elmaradó mértékű lemaradást nem mutatott ki az OKM azon fővárosi telephelyek között, amelyekre tudott számítani CSHI-t (54. ábra). 54. ábra. A fővárosi számított értékkel rendelkező telephelyek CSHI-értékei. A telephelyek többsége átlag körüli, vagy jócskán afeletti értékkel rendelkezik, amely ismét előrejelzi az elvárt teljesítmények magasabb értékeit. Az országos összes telephelyhez, valamint az azonos képzéstípus szerinti telephelyek átlagához hasonlítva nem különbözik számottevően a fővárosi telephelyek egyharmada-egyötöde, de nagyobb azon telephelyek aránya, amelyeknek a teljesítménye szignifikánsan gyengébb (15. táblázat). 15. táblázat. A CSHIvel rendelkező fővárosi telephelyek valós teljesítménye a várt teljesítményértékhez képest A matematikaeredmény az ország összes telephelyéhez képest az azonos képzéstípusokhoz képest A szövegértés-eredmény az ország összes telephelyéhez képest az azonos képzéstípusokhoz képest Szignifikánsan jobb Számottevően nem különbözik Szignifikánsan gyengébb Összesen Igazán feltűnő a szignifikánsan jobb szövegértés-teljesítmények alacsony aránya, de a matematikai eszköztudás területén sem jelentősen jobbak az arányok. A matematikai eszköztudás területén nyújtott teljesítmények összhangban a CSHI által előre jelzett várakozással javarészt meghaladják az országos tapasztalati átlagértéket (55. ábra). Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 55

57 55. ábra. A matematikai eszköztudás és a CSHI telephelyi értékeinek összefüggése azon fővárosi fenntartású középfokú oktatási intézményekben, amelyek rendelkeznek CSHI-vel. A teljesítményértékek trendvonal körüli szóródása esetenként nagy, fél-háromnegyed szórásnyi eltérést mutat a várt értéktől. A trendvonal felett ilyen mértékben teljesítő telephelyekről megállapítható, hogy a családi háttér negatívan befolyásoló hatását hatékonyan tudták ellensúlyozni, illetve a jellemzően 1800 standardpont feletti átlagú telephelyek esetében - a család támogató hatását megfelelően be tudták csatornázni a nevelő-oktató munka rásegítő eszközei közé. Megállapítható mindemellett a trendvonal meredekségéből, hogy azon telephelyeken, amelyeknek van számított CSHI-je, a családi háttér nagyon erős befolyással bír a tanulói teljesítmények közötti különbségekre. Hasonló jelenségeket tapasztalhatunk szövegértés terén is (56. ábra). 56. ábra. A szövegértés és a CSHI telephelyi értékeinek összefüggése azon fővárosi fenntartású középfokú oktatási intézményekben, amelyek rendelkeznek CSHI-vel. Itt ugyan kisebb mértékűek, legfeljebb félszórásnyiak a trendvonal által jelölt, várttól való eltérések mindkét irányban, tehát kevésbé heterogének a teljesítmények, mint matematikából, az összefüggések a családi háttér és a szövegértés-teljesítmény között még erősebbek, mint azt matematikából láttuk. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 56

58 A két összefüggés túl azon, hogy leképezi az iskolarendszer kontraszelektivitását, annak hatását fel is látszik erősíteni azon telephelyek esetében, amelyek rendelkeznek CSHI-vel. Miután azonban ez alig több, mint a fővárosi fenntartású középfokú oktatási intézmények fele, összességében a megállapítás a fenntartott intézményrendszer egészére bizonyossággal nem terjeszthető ki. Remélhetőleg szélesedik azon iskolák-telephelyek köre, amely biztosítja a évi májusi OKM során a szükséges háttérkérdőív-adatok meglétét, és a következő évi elemzés már ennél konkrétabb, pontosabb, jobban általánosítható érvényű megállapításokkal szolgálhat majd. Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 57

59 6. ÖSSZEGZÉS Az Országos kompetenciamérés és annak jelentései az adott mérési év eredményeinek több szempontú országos, fenntartói és intézményi, valamint telephelyi elemzéseit bocsátja rendelkezésre. Az iskolák saját jelszóval ennél részletesebb lekérdezéseket végezhetnek, osztály-, és tanulócsoportszintű adatokat nyerve, melyre már fejlesztési terveket lehet készíteni. Az Országos kompetenciamérés külső mérés lévén objektív, összehasonlításra alkalmas képet ad az intézmény és egyes telephelyeinek teljesítményéről, melyhez azonban a helyi konkrét specialitások ismeretében az adott intézmény pedagógusai tudják hozzáfűzni a saját empirikus tapasztalataikat. Fontos ezt évről évre meg is tenniük, hiszen a két információforrás kiegészíti, magyarázza egymást, és a kettőből nyerhető csak teljes kép a tanulók összetételét, motivációját, előismereteit illetően. Ebben nagy segítségére lehet az intézménynek a működő értékelési rendszerének a tanulói tudásszintmérésre irányuló alrendszere, mely a belépéstől kezdődően visszacsatolás jelleggel információval látja el a pedagógusokat, a szakmai munkaközösségeket a tanulók körében végzett fejlesztőmunka hatékonyságát, az időarányos fejlődést illetően. Egy iskola tanulóinak több évre visszamenőlegesen lekért és összehasonlított adatai hasonlatosságokat mutatnak a tanulói teljesítmények jellegzetes hiányosságait illetően. Erre a 9. évfolyamra lépő osztály esetében fejlesztés dolgozható ki és valósítható meg, melynek hatása lemérhető a 10. évfolyam végén sorra kerülő kompetenciamérés során. E fejlesztőmunka során azonban nem szabad szem elől téveszteni egy nagyon fontos szempontot: a kompetenciamérés feladatai nem alkalmasak a vizsgált kompetenciák fejlesztésére. Azok a napi tanítási gyakorlat során fejlődnek, a fokozatosan nehezedő gyakorlófeladatok megoldása során. A kompetenciamérő feladatok gyakoroltatásával csupán azt érhetjük el, hogy a tanulók a feladattípusok ismeretében hamarabb érnek a feladatsor végére, de miután képességeik nem lesznek fejlettebbek, csak feladatmegoldási sebességük, a mért kompetenciaszintjük amely szinten levő feladatot még legalább 50%-os valószínűséggel meg tudnak oldani ugyanaz marad. A sokoldalú visszajelzési funkcióját nem tudja ellátni az Országos kompetenciamérés, ha hiányos adatok akadályozzák annak teljes körű végrehajtását. Ez érvényes a CSHI-számítás fővárosi telephelyi szinten igen alacsony szintjére, melynek terén jelentős hatékonyságnövelés indokolt adatszolgáltatás vonatkozásában, mert a fejlesztésben hasznos, értékes információkat vesztettünk el az elemzett mérés során is ebben a viszonylatban. A rendelkezésre álló adatok, a közös évfolyamfüggetlen képességskála további következtetések levonásának lehetőségét teremti meg, mely egy következő értékelés része is lehet. A fővárosi fenntartású intézmények tanulóinak átlagos eredményét 2008-tól vizsgálva 15 a két mérési területen más kép tárul elénk (57. ábra). Matematikánál évről évre látott változás tényleges különbséget, a helyzetben romlást vagy javulást jelent, hozzátéve, hogy mindegyik év más-más populációt takar. A szövegértés eredményeknél 2011-ben van egy kiugrás, azt megelőzően nagyon hasonlóan teljesítettek a tanulók. 15 OKM FIT elemző szoftver adatelemzési lehetősége alapján lekérdezett adatokkal Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 58

60 57. ábra. A két mérési terület átlagos eredményének alakulása A tanulók négy évet bemutató képességszintek szerinti eloszlás görbéjét egymásra helyezve matematikánál a 2008-as és a 2011-es mérési eredmények közel azonos eloszlást mutatnak, a másik két mérési évhez képest jobbra, a magasabb eredmények felé tolódva (58. ábra). 58. ábra. A tanulók képességszintek szerinti eloszlása matematikai eszköztudásból Szövegértésnél a négy mérési évre vonatkozó eloszlásgörbék a 4-5-ös képességszintnél csúcsosodnak és minimális eltéréssel helyezkednek el egymáson (59. ábra). A különbség a 3. képességszint alatti és a 4-5. képességszinten látható 2011-ben, amikor a legmagasabb volt az átlagos érték a 4-5-ös szinten magasabb a tanulók aránya melléklet A matematikaeredmények telephelyenkénti alakulása ; 8. melléklet A szövegértés-eredmények telephelyenkénti alakulása Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 59

61 59. ábra. A tanulók képességszintek szerinti eloszlása szövegértésből Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 60

E L E M Z É S. Elemzés a fővárosi fenntartású középiskolák 10. évfolyamának 2012. évi kompetenciamérési eredményeiről. 2013.

E L E M Z É S. Elemzés a fővárosi fenntartású középiskolák 10. évfolyamának 2012. évi kompetenciamérési eredményeiről. 2013. E L E M Z É S Elemzés a fővárosi fenntartású középiskolák 10. évfolyamának 2012. évi kompetenciamérési eredményeiről 2013. július Póta Mária (4. fejezet matematika) elemzésének felhasználásával Összeállította

Részletesebben

Elemzés a fővárosi fenntartású középiskolák 10. évfolyamának 2010. évi kompetenciamérési eredményeiről

Elemzés a fővárosi fenntartású középiskolák 10. évfolyamának 2010. évi kompetenciamérési eredményeiről E L E M Z É S Elemzés a fővárosi fenntartású középiskolák 10. évfolyamának 2010. évi kompetenciamérési eredményeiről 2011. november Póta Mária (4. fejezet matematika) Sáfrányné Molnár Mónika (4. fejezet

Részletesebben

A 2008. és 2009. évi bemeneti mérés eredményei új csoportosítási szempontok szerint

A 2008. és 2009. évi bemeneti mérés eredményei új csoportosítási szempontok szerint E L E M Z É S A 28. és 29. évi bemeneti mérés eredményei új csoportosítási szempontok szerint 1. rész Teljesítmények 21. november Összeállította Südi Ilona Lektorálta Török József Tartalomjegyzék 1. Bevezetés...

Részletesebben

Átlageredmények a 2011. évi Országos Kompetenciamérésen. matematikából és szövegértésből

Átlageredmények a 2011. évi Országos Kompetenciamérésen. matematikából és szövegértésből Átlageredmények a 2011. évi Országos Kompetenciamérésen Általános iskola 8. osztály matematikából és szövegértésből Matematika Szövegértés Iskolánkban Ált. iskolákban Budapesti ált. iskolákban Iskolánkban

Részletesebben

Kilencedikes kompetencia alapú bemeneti mérés matematikából 2008 őszén

Kilencedikes kompetencia alapú bemeneti mérés matematikából 2008 őszén Kilencedikes kompetencia alapú bemeneti mérés matematikából 2008 őszén Póta Mária 2009. 0 1 i e π 1 A matematikai eszköztudás kompetencia alapú mérése Méréssorozat első fázisa, melynek a hozzáadott értéket

Részletesebben

Iskolai jelentés. 10. évfolyam szövegértés

Iskolai jelentés. 10. évfolyam szövegértés 2008 Iskolai jelentés 10. évfolyam szövegértés Az elmúlt évhez hasonlóan 2008-ban iskolánk is részt vett az országos kompetenciamérésben, diákjaink matematika és szövegértés teszteket, illetve egy tanulói

Részletesebben

Intézményi jelentés. 10. évfolyam. Szent-Györgyi Albert Általános Iskola és Gimnázium 1093 Budapest, Lónyay u. 4/c-8. OM azonosító: 035282

Intézményi jelentés. 10. évfolyam. Szent-Györgyi Albert Általános Iskola és Gimnázium 1093 Budapest, Lónyay u. 4/c-8. OM azonosító: 035282 FIT-jelentés :: 2010 Szent-Györgyi Albert Általános Iskola és Gimnázium 1093 Budapest, Lónyay u. 4/c-8. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika

Részletesebben

Országos kompetenciamérés eredményei Kiskulcsosi Általános Iskola 035857 Telephelyi jelentés 6. 8. évfolyam szövegértés

Országos kompetenciamérés eredményei Kiskulcsosi Általános Iskola 035857 Telephelyi jelentés 6. 8. évfolyam szövegértés Országos kompetenciamérés eredményei Kiskulcsosi Általános Iskola 035857 Telephelyi jelentés 6. 8. évfolyam szövegértés Karcag, 2011. április 4. Horváthné Pandur Tünde munkaközösség vezető Kiskulcsosi

Részletesebben

FIT-jelentés :: 2010. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola

FIT-jelentés :: 2010. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola FIT-jelentés :: 2010 10. évfolyam :: Szakközépiskola Szegedi Ipari, Szolgáltató Szakképző és Általános Iskola Déri Miksa Tagintézménye 6724 Szeged, Kálvária tér 7. Figyelem! A 2010. évi Országos kompetenciaméréstől

Részletesebben

A 2012-ES ORSZÁGOS KOMPETENCIAMÉRÉS FELADATAI ÉS FŐVÁROSI EREDMÉNYEI MATEMATIKA ESZKÖZTUDÁSBÓL

A 2012-ES ORSZÁGOS KOMPETENCIAMÉRÉS FELADATAI ÉS FŐVÁROSI EREDMÉNYEI MATEMATIKA ESZKÖZTUDÁSBÓL Mérei Ferenc Fővárosi Pedagógiai Intézet A 2012-ES ORSZÁGOS KOMPETENCIAMÉRÉS FELADATAI ÉS FŐVÁROSI EREDMÉNYEI MATEMATIKA ESZKÖZTUDÁSBÓL elemzés Póta Mária 2013.06.26. A matematikafeladatok jellemzői A

Részletesebben

Kompetencia 2012. 6.osztály MATEMATIKA. Az intézmények átlageredményeinek összehasonlítása

Kompetencia 2012. 6.osztály MATEMATIKA. Az intézmények átlageredményeinek összehasonlítása Kompetencia 2012 6.osztály MATEMATIKA Átlageredmények Az intézmények átlageredményeinek összehasonlítása - a grafikonon a különböző iskolák átlag eredményei követhetők nyomon standardizált képességponthoz

Részletesebben

FIT-jelentés :: 2011. Kispesti Deák Ferenc Gimnázium 1192 Budapest, Gutenberg krt. 6. OM azonosító: 035253 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Kispesti Deák Ferenc Gimnázium 1192 Budapest, Gutenberg krt. 6. OM azonosító: 035253 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 10. évfolyam :: 4 évfolyamos gimnázium Kispesti Deák Ferenc Gimnázium 1192 Budapest, Gutenberg krt. 6. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban

Részletesebben

FIT-jelentés :: 2010. Gárdonyi Géza Általános Iskola 2030 Érd, Gárdonyi Géza u. 1/b. OM azonosító: 037320 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2010. Gárdonyi Géza Általános Iskola 2030 Érd, Gárdonyi Géza u. 1/b. OM azonosító: 037320 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2010 8. évfolyam :: Általános iskola Gárdonyi Géza Általános Iskola 2030 Érd, Gárdonyi Géza u. 1/b. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a

Részletesebben

FIT-jelentés :: 2013. Karinthy Frigyes Gimnázium 1183 Budapest, Thököly u. 7. OM azonosító: 035252 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2013. Karinthy Frigyes Gimnázium 1183 Budapest, Thököly u. 7. OM azonosító: 035252 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2013 10. évfolyam :: 4 évfolyamos gimnázium Karinthy Frigyes Gimnázium 1183 Budapest, Thököly u. 7. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban a 10.

Részletesebben

FIT-jelentés :: 2012. Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. OM azonosító: 029264 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2012. Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. OM azonosító: 029264 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2012 10. évfolyam :: 4 évfolyamos gimnázium Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban a 10. évfolyamon

Részletesebben

FIT-jelentés :: 2014. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola

FIT-jelentés :: 2014. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola FIT-jelentés :: 2014 10. évfolyam :: Szakközépiskola Puskás Tivadar Távközlési Technikum Infokommunikációs Szakközépiskola 1097 Budapest, Gyáli út 22. Létszámadatok A telephely létszámadatai a szakközépiskolai

Részletesebben

FIT-jelentés :: 2012. Montenuovo Nándor Szakközépiskola, Szakiskola és Kollégium 7754 Bóly, Rákóczi u. 2/a OM azonosító: 027445 Telephely kódja: 001

FIT-jelentés :: 2012. Montenuovo Nándor Szakközépiskola, Szakiskola és Kollégium 7754 Bóly, Rákóczi u. 2/a OM azonosító: 027445 Telephely kódja: 001 FIT-jelentés :: 2012 10. évfolyam :: Szakiskola Montenuovo Nándor Szakközépiskola, Szakiskola és Kollégium 7754 Bóly, Rákóczi u. 2/a Létszámadatok A telephely létszámadatai a szakiskolai képzéstípusban

Részletesebben

FIT-jelentés :: 2011. Intézményi jelentés. Összefoglalás

FIT-jelentés :: 2011. Intézményi jelentés. Összefoglalás FIT-jelentés :: 2011 Összefoglalás Német Nemzetiségi Gimnázium és Kollégium, Deutsches Nationalitätengymnasium und Schülerwohnheim 1203 Budapest, Serény u. 1. Összefoglalás Az intézmény létszámadatai Tanulók

Részletesebben

A telephely létszámadatai:

A telephely létszámadatai: Országos kompetenciamérés értékelése - matematika 2011. 2011. tavaszán kilencedik alkalommal került sor az Országos kompetenciamérésre. A kompetenciamérés mind anyagát, mind a mérés körülményeit tekintve

Részletesebben

FIT-jelentés :: 2012. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola

FIT-jelentés :: 2012. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola FIT-jelentés :: 2012 10. évfolyam :: Szakközépiskola Sághy Mihály Szakképző Iskola, Középiskola és Kollégium, a Csongrádi Oktatási Központ, Gimnázium, Szakképző Iskola és Kollégium Tagintézménye 6640 Csongrád,

Részletesebben

Országos kompetenciamérés 2007

Országos kompetenciamérés 2007 Országos kompetenciamérés 2007 Év végi értékelés Váci Utcai Ének-zenei Általános Iskola Bevezető Az Országos kompetenciamérés 2007. május 30-án ötödik alkalommal zajlott le, a mi iskolánkban a negyedikes,

Részletesebben

FIT-jelentés :: 2011 Telephelyi jelentés 10. évfolyam :: Szakközépiskola Közgazdasági Szakközépiskola

FIT-jelentés :: 2011 Telephelyi jelentés 10. évfolyam :: Szakközépiskola Közgazdasági Szakközépiskola FIT-jelentés :: 2011 10. évfolyam :: Szakközépiskola Közgazdasági Szakközépiskola 4200 Hajdúszoboszló, Gönczy P. u. 17. Létszámadatok A telephely létszámadatai a szakközépiskolai képzéstípusban a 10. évfolyamon

Részletesebben

A Kempelen Farkas Gimnázium országos kompetenciaméréseinek elemzése (2008-tól 2014-ig)

A Kempelen Farkas Gimnázium országos kompetenciaméréseinek elemzése (2008-tól 2014-ig) A Kempelen Farkas Gimnázium országos kompetenciaméréseinek elemzése (2008-tól 2014-ig) 1. A mérésről általánosságban Az országos kompetenciamérés bevezetésére 2001-ben került sor. Iskolánk ettől az időtől

Részletesebben

Karinthy Frigyes Gimnázium

Karinthy Frigyes Gimnázium 27 Karinthy Frigyes Gimnázium Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 1. évfolyam gimnázium szövegértés 1 Az Önök telephelyének átlageredménye szövegértésből a többi

Részletesebben

Kispesti Deák Ferenc Gimnázium

Kispesti Deák Ferenc Gimnázium 27 Kispesti Deák Ferenc Gimnázium Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 1. évfolyam gimnázium szövegértés Előállítás ideje: 28.3.3. 1:4:4 1 Az Önök telephelyének átlageredménye

Részletesebben

Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium

Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium 26 Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 1. évfolyam gimnázium matematika Előállítás ideje: 27.3.. 12:2:16

Részletesebben

Intézményi jelentés. 8. évfolyam

Intézményi jelentés. 8. évfolyam FIT-jelentés :: 2010 Lenkey János Általános Iskola 3300 Eger, Markhot Ferenc u. 6. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika területén új, évfolyamfüggetlen

Részletesebben

Intézményi jelentés. 10. évfolyam

Intézményi jelentés. 10. évfolyam FIT-jelentés :: 2008 Berzsenyi Dániel Gimnázium, Közgazdasági Szakközépiskola és Kollégium 8700 Marcali, Petőfi S. u. 16. Matematika Országos kompetenciamérés 1 1 Átlageredmények Az iskolák átlageredményeinek

Részletesebben

FIT-jelentés :: 2011. Rózsakerti Általános Iskola 1223 Budapest, Rákóczi u. 16. OM azonosító: 035200 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Rózsakerti Általános Iskola 1223 Budapest, Rákóczi u. 16. OM azonosító: 035200 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 8. évfolyam :: Általános iskola Rózsakerti Általános Iskola 1223 Budapest, Rákóczi u. 16. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 8. évfolyamon

Részletesebben

FIT-jelentés :: 2008. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola

FIT-jelentés :: 2008. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola FIT-jelentés :: 2008 10. évfolyam :: Szakközépiskola Xántus János Idegenforgalmi Gyakorló Középiskola és Szakképző Iskola 1055 Budapest, Markó u. 18-20. Matematika Országos kompetenciamérés 1 1 Átlageredmények

Részletesebben

FIT-jelentés :: 2010. Tátra Téri Általános Iskola 1204 Budapest, Tátra tér 1. OM azonosító: 035165 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2010. Tátra Téri Általános Iskola 1204 Budapest, Tátra tér 1. OM azonosító: 035165 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2010 6. évfolyam :: Általános iskola Tátra Téri Általános Iskola 1204 Budapest, Tátra tér 1. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika

Részletesebben

Intézményi jelentés. 8. évfolyam

Intézményi jelentés. 8. évfolyam FIT-jelentés :: 2011 Alternatív Közgazdasági Gimnázium, Szakképző Iskola és Pedagógiai Szakmai Szolgáltató Intézet 1035 Budapest, Raktár u. 1. Létszámadatok A telephelyek kódtáblázata A 001 - Alternatív

Részletesebben

FIT-jelentés :: 2010. Képes Géza Általános Iskola 4700 Mátészalka, Szokolay Örs u. 2-4 OM azonosító: 033392 Telephely kódja: 003. Telephelyi jelentés

FIT-jelentés :: 2010. Képes Géza Általános Iskola 4700 Mátészalka, Szokolay Örs u. 2-4 OM azonosító: 033392 Telephely kódja: 003. Telephelyi jelentés FIT-jelentés :: 2010 6. évfolyam :: Általános iskola Képes Géza Általános Iskola 4700 Mátészalka, Szokolay Örs u. 2-4 Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve

Részletesebben

FIT - jelentés 2011. Kompetenciamérés a SIOK Vak Bottyán János Általános Iskolában

FIT - jelentés 2011. Kompetenciamérés a SIOK Vak Bottyán János Általános Iskolában FIT - jelentés 2011. Kompetenciamérés a SIOK Vak Bottyán János Általános Iskolában 1. Létszámadatok: A 2011-es kompetenciamérésben, a 6.évfolyamosok közül 64, míg a nyolcadik évfolyamosok közül 76 tanuló

Részletesebben

\'Agy\' Tanoda Két Tanítási Nyelvű Általános Iskola

\'Agy\' Tanoda Két Tanítási Nyelvű Általános Iskola 27 \'Agy\' Tanoda Két Tanítási Nyelvű Általános Iskola Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 8. évfolyam szövegértés Előállítás ideje: 28..23. 1:38:34 1 Az Önök telephelyének

Részletesebben

FIT-jelentés :: 2013. Derkovits Gyula Általános Iskola 9700 Szombathely, Bem J u. 7. OM azonosító: 036611 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2013. Derkovits Gyula Általános Iskola 9700 Szombathely, Bem J u. 7. OM azonosító: 036611 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2013 8. évfolyam :: Általános iskola Derkovits Gyula Általános Iskola 9700 Szombathely, Bem J u. 7. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 8. évfolyamon

Részletesebben

FIT-jelentés :: 2013. Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: 2013. Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2013 8. évfolyam :: Általános iskola Bulgárföldi Általános és Magyar - Angol Két Tanítási Nyelvű Iskola 3534 Miskolc, Fazola H u. 2. Létszámadatok A telephely létszámadatai az általános

Részletesebben

FIT-jelentés :: 2010. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2010. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2010 6. évfolyam :: Általános iskola """Magyar-kút"" ÁMK Etyek, Német Nemzetiségi Általános Iskolája, Nemzetiségi Alapfokú Művészetoktatási Intézménye, Könyvtár-közművelődés" 2091 Etyek,

Részletesebben

FIT-jelentés :: 2011. Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. OM azonosító: 029264 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. OM azonosító: 029264 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 8. évfolyam :: 6 évfolyamos gimnázium Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. Létszámadatok A telephely létszámadatai a 6 évfolyamos gimnáziumi képzéstípusban a 8. évfolyamon

Részletesebben

Intézményi jelentés. 10. évfolyam

Intézményi jelentés. 10. évfolyam FIT-jelentés :: 2008 Gimnázium, Informatikai, Közgazdasági, Nyomdaipari Szakközépiskola és Szakiskola 3300 Eger, Mátyás Király út 165. Matematika Országos kompetenciamérés 1 1 Átlageredmények Az iskolák

Részletesebben

FIT-jelentés :: 2011. Cecei Általános Iskola 7013 Cece, Árpád u. 3. OM azonosító: 038726 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Cecei Általános Iskola 7013 Cece, Árpád u. 3. OM azonosító: 038726 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 8. évfolyam :: Általános iskola Cecei Általános Iskola 7013 Cece, Árpád u. 3. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 8. évfolyamon Tanulók száma

Részletesebben

FIT-jelentés :: 2010. Pallavicini Sándor Iskola 6762 Sándorfalva, Alkotmány krt. 15-17. OM azonosító: 200909 Telephely kódja: 011. Telephelyi jelentés

FIT-jelentés :: 2010. Pallavicini Sándor Iskola 6762 Sándorfalva, Alkotmány krt. 15-17. OM azonosító: 200909 Telephely kódja: 011. Telephelyi jelentés FIT-jelentés :: 2010 6. évfolyam :: Általános iskola Pallavicini Sándor Iskola 6762 Sándorfalva, Alkotmány krt. 15-17. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve

Részletesebben

Móricz Zsigmond Általános Iskola és Óvoda

Móricz Zsigmond Általános Iskola és Óvoda 27 Móricz Zsigmond Általános Iskola és Óvoda Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 8. évfolyam matematika Előállítás ideje: 28.6.23. 1:39: 1 Az Önök telephelyének átlageredménye

Részletesebben

Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium

Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium 26 Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 8. évfolyam matematika Előállítás ideje: 27.3.5. 12:21:25 182

Részletesebben

OKM-eredményeinek elemzése

OKM-eredményeinek elemzése E L E M Z É S A Dunabogdányi Általános Iskola és Alapfokú Művészetoktatási Intézmény (OM azonosító: 032397) OKM-eredményeinek elemzése 2013. december Készítette Südi Ilona Török József Mérei Ferenc Fővárosi

Részletesebben

Szent Imre Katolikus Általános Iskola és Óvoda

Szent Imre Katolikus Általános Iskola és Óvoda 27 Szent Imre Katolikus Általános Iskola és Óvoda Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 8. évfolyam szövegértés Előállítás ideje: 28.3.22. 15:59:14 1 Az Önök telephelyének

Részletesebben

FIT-jelentés :: 2011. Pázmány Péter Utcai Óvoda és Általános Iskola 7634 Pécs, Pázmány Péter u. 27. OM azonosító: 027246 Telephely kódja: 005

FIT-jelentés :: 2011. Pázmány Péter Utcai Óvoda és Általános Iskola 7634 Pécs, Pázmány Péter u. 27. OM azonosító: 027246 Telephely kódja: 005 FIT-jelentés :: 2011 8. évfolyam :: Általános iskola Pázmány Péter Utcai Óvoda és Általános Iskola 7634 Pécs, Pázmány Péter u. 27. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban

Részletesebben

Széchenyi István Gimnázium

Széchenyi István Gimnázium 27 Széchenyi István Gimnázium Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 8. évfolyam matematika Előállítás ideje: 28.1.4. 19:34:1 1 Az Önök telephelyének átlageredménye

Részletesebben

FIT-jelentés :: 2012. Szent Imre Katolikus Általános Iskola 6792 Zsombó, Móra Ferenc utca 8. OM azonosító: 201629 Telephely kódja: 001

FIT-jelentés :: 2012. Szent Imre Katolikus Általános Iskola 6792 Zsombó, Móra Ferenc utca 8. OM azonosító: 201629 Telephely kódja: 001 FIT-jelentés :: 2012 8. évfolyam :: Általános iskola Szent Imre Katolikus Általános Iskola 6792 Zsombó, Móra Ferenc utca 8. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a

Részletesebben

Telephelyi jelentés. Mészöly Géza Általános Iskola Tagiskola 8171 Balatonvilágos, József Attila utca 119. OM azonosító: 037158 Telephely kódja: 002

Telephelyi jelentés. Mészöly Géza Általános Iskola Tagiskola 8171 Balatonvilágos, József Attila utca 119. OM azonosító: 037158 Telephely kódja: 002 FIT-jelentés :: 2010 6. évfolyam :: Általános iskola Mészöly Géza Általános Iskola Tagiskola 8171 Balatonvilágos, József Attila utca 119. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a

Részletesebben

Az Országos kompetenciamérés

Az Országos kompetenciamérés Az Országos kompetenciamérés Az OKM 2006 FIT-jelentés szoftver Balázsi Ildikó Értékelési Központ Visszajelzés Visszajelzés az iskoláknak és fenntartóiknak saját eredményeikről és az országos eredményekről

Részletesebben

6., 8. és 10. évfolyam matematika eredményei

6., 8. és 10. évfolyam matematika eredményei Melléklet: Mérési eredmények táblázatai Az eredményeket táblázatok formájában jelenítettük meg, hogy segítsük az adatok értelmezését és a pontos értékek megismerését. 6., 8. és 10. évfolyam matematika

Részletesebben

Elemzés a fővárosi fenntartású középiskolák 10. évfolyamának 2008. évi kompetenciamérési eredményeiről

Elemzés a fővárosi fenntartású középiskolák 10. évfolyamának 2008. évi kompetenciamérési eredményeiről Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet Elemzés a fővárosi fenntartású középiskolák 10. évfolyamának 2008. évi kompetenciamérési eredményeiről 2009. május Póta Mária (5. fejezet

Részletesebben

Hétvezér Általános Iskola

Hétvezér Általános Iskola 27 Hétvezér Általános Iskola Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 8. évfolyam matematika Előállítás ideje: 28..19. 1:9:8 1 Az Önök telephelyének átlageredménye matematikából

Részletesebben

A 2010-ES ORSZÁGOS KOMPETENCIAMÉRÉS FELADATAI ÉS FŐVÁROSI EREDMÉNYEI MATEMATIKA ESZKÖZTUDÁSBÓL

A 2010-ES ORSZÁGOS KOMPETENCIAMÉRÉS FELADATAI ÉS FŐVÁROSI EREDMÉNYEI MATEMATIKA ESZKÖZTUDÁSBÓL Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet A 2010-ES ORSZÁGOS KOMPETENCIAMÉRÉS FELADATAI ÉS FŐVÁROSI EREDMÉNYEI MATEMATIKA ESZKÖZTUDÁSBÓL elemzés Póta Mária 2011.10.10. A matematikafeladatok

Részletesebben

FIT-jelentés :: 2012. Erzsébet Utcai Általános Iskola 1043 Budapest, Erzsébet u. 31. OM azonosító: 034862 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2012. Erzsébet Utcai Általános Iskola 1043 Budapest, Erzsébet u. 31. OM azonosító: 034862 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2012 6. évfolyam :: Általános iskola Erzsébet Utcai Általános Iskola 1043 Budapest, Erzsébet u. 31. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6. évfolyamon

Részletesebben

FIT-jelentés :: 2013. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2013. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2013 6. évfolyam :: Általános iskola Vörösmarty Mihály Általános Iskola, Gimnázium és Alapfokú Művészetoktatási Intézmény 2475 Kápolnásnyék, Gárdonyi u. 29. Létszámadatok A telephely létszámadatai

Részletesebben

FIT-jelentés :: 2012. Óbudai Szent Péter és Pál Szalézi Általános Iskola és Óvoda 1036 Budapest, Fényes Adolf u. 10. OM azonosító: 034858

FIT-jelentés :: 2012. Óbudai Szent Péter és Pál Szalézi Általános Iskola és Óvoda 1036 Budapest, Fényes Adolf u. 10. OM azonosító: 034858 FIT-jelentés :: 2012 Óbudai Szent Péter és Pál Szalézi Általános Iskola és Óvoda 1036 Budapest, Fényes Adolf u. 10. Létszámadatok A telephelyek kódtáblázata A 002 - Óbudai Szent Péter és Pál Szalézi Általános

Részletesebben

FIT-jelentés :: 2009. Széchenyi István Gimnázium és Szakközépiskola 6723 Szeged, Felső Tisza-part 25. OM azonosító: 029746 Telephely kódja: 001

FIT-jelentés :: 2009. Széchenyi István Gimnázium és Szakközépiskola 6723 Szeged, Felső Tisza-part 25. OM azonosító: 029746 Telephely kódja: 001 FIT-jelentés :: 2009 10. évfolyam :: 4 évfolyamos gimnázium Széchenyi István Gimnázium és Szakközépiskola 6723 Szeged, Felső Tisza-part 25. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi

Részletesebben

FIT-jelentés :: 2012. Hétvezér Általános Iskola 8000 Székesfehérvár, Hétvezér tér 1. OM azonosító: 030062. Intézményi jelentés. 8.

FIT-jelentés :: 2012. Hétvezér Általános Iskola 8000 Székesfehérvár, Hétvezér tér 1. OM azonosító: 030062. Intézményi jelentés. 8. FIT-jelentés :: 2012 Hétvezér Általános Iskola 8000 Székesfehérvár, Hétvezér tér 1. Létszámadatok A telephelyek kódtáblázata A 001 - Hétvezér Általános Iskola (általános iskola) (8000 Székesfehérvár, Hétvezér

Részletesebben

FIT-jelentés :: 2013. Krúdy Gyula Általános Iskola 1037 Budapest, Gyógyszergyár u. 22-24. OM azonosító: 035361 Telephely kódja: 001

FIT-jelentés :: 2013. Krúdy Gyula Általános Iskola 1037 Budapest, Gyógyszergyár u. 22-24. OM azonosító: 035361 Telephely kódja: 001 FIT-jelentés :: 2013 6. évfolyam :: Általános iskola Krúdy Gyula Általános Iskola 1037 Budapest, Gyógyszergyár u. 22-24. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6.

Részletesebben

FIT-jelentés :: 2012. Krúdy Gyula Általános Iskola 1037 Budapest, Gyógyszergyár u. 22-24. OM azonosító: 035361 Telephely kódja: 001

FIT-jelentés :: 2012. Krúdy Gyula Általános Iskola 1037 Budapest, Gyógyszergyár u. 22-24. OM azonosító: 035361 Telephely kódja: 001 FIT-jelentés :: 2012 6. évfolyam :: Általános iskola Krúdy Gyula Általános Iskola 1037 Budapest, Gyógyszergyár u. 22-24. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6.

Részletesebben

FIT-jelentés :: 2012. Balassi Bálint Általános Iskola és Előkészítő Szakiskola 3300 Eger, Malomárok utca 1. OM azonosító: 031462 Telephely kódja: 004

FIT-jelentés :: 2012. Balassi Bálint Általános Iskola és Előkészítő Szakiskola 3300 Eger, Malomárok utca 1. OM azonosító: 031462 Telephely kódja: 004 FIT-jelentés :: 2012 6. évfolyam :: Általános iskola Balassi Bálint Általános Iskola és Előkészítő Szakiskola 3300 Eger, Malomárok utca 1. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban

Részletesebben

FIT-jelentés :: 2014. Dabasi II. Rákóczi Ferenc Általános Iskola 2371 Dabas, Rákóczi Ferenc utca 2. OM azonosító: 037749 Telephely kódja: 001

FIT-jelentés :: 2014. Dabasi II. Rákóczi Ferenc Általános Iskola 2371 Dabas, Rákóczi Ferenc utca 2. OM azonosító: 037749 Telephely kódja: 001 FIT-jelentés :: 2014 6. évfolyam :: Általános iskola Dabasi II. Rákóczi Ferenc Általános Iskola 2371 Dabas, Rákóczi Ferenc utca 2. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban

Részletesebben

FIT-jelentés :: 2014. Szentendrei Református Gimnázium 2000 Szentendre, Áprily tér 5. OM azonosító: 101433 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2014. Szentendrei Református Gimnázium 2000 Szentendre, Áprily tér 5. OM azonosító: 101433 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2014 6. évfolyam :: 8 évfolyamos gimnázium Szentendrei Református Gimnázium 2000 Szentendre, Áprily tér 5. Létszámadatok A telephely létszámadatai a 8 évfolyamos gimnáziumi képzéstípusban

Részletesebben

FIT-jelentés :: 2009. Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. OM azonosító: 029264 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2009. Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. OM azonosító: 029264 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2009 10. évfolyam :: 6 évfolyamos gimnázium Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. Létszámadatok A telephely létszámadatai a 6 évfolyamos gimnáziumi képzéstípusban a 10. évfolyamon

Részletesebben

Telephelyi jelentés. 10. évfolyam :: Szakiskola

Telephelyi jelentés. 10. évfolyam :: Szakiskola FIT-jelentés :: 2009 10. évfolyam :: Szakiskola Várkerti Általános Iskola, Szakiskola és Tagiskolái 8100 Várpalota, Thuri Gy. tér 3. Létszámadatok A telephely létszámadatai a szakiskolai képzéstípusban

Részletesebben

FIT-jelentés :: 2013 Telephelyi jelentés 6. évfolyam :: Általános iskola Herman Ottó Általános Iskola és Budaörsi Logopédiai Intézet

FIT-jelentés :: 2013 Telephelyi jelentés 6. évfolyam :: Általános iskola Herman Ottó Általános Iskola és Budaörsi Logopédiai Intézet FIT-jelentés :: 2013 6. évfolyam :: Általános iskola Herman Ottó Általános Iskola és Budaörsi Logopédiai Intézet 2040 Budaörs, Ifjúság u. 6. Létszámadatok A telephely létszámadatai az általános iskolai

Részletesebben

Kompetenciamérés eredményei 2011 tanév - 6. és 8. osztály. Szövegértés, matematika. SIOK Balatonendrédi Általános Iskola

Kompetenciamérés eredményei 2011 tanév - 6. és 8. osztály. Szövegértés, matematika. SIOK Balatonendrédi Általános Iskola Kompetenciamérés eredményei 2011 tanév - 6. és 8. osztály Szövegértés, matematika SIOK Balatonendrédi Általános Iskola 1 Fit jelentés 2011-es tanév, 6-8. osztály (matematika, szövegértés) A 2011-es mérés

Részletesebben

FIT-jelentés :: 2012. Ady Endre Általános Iskola 2360 Gyál, Ady Endre u. 20. OM azonosító: 032478 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2012. Ady Endre Általános Iskola 2360 Gyál, Ady Endre u. 20. OM azonosító: 032478 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2012 6. évfolyam :: Általános iskola Ady Endre Általános Iskola 2360 Gyál, Ady Endre u. 20. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6. évfolyamon Tanulók

Részletesebben

FIT-jelentés :: 2009. Váci Mihály Gimnáziumi Tagintézmény 4440 Tiszavasvári, Hétvezér út 19. OM azonosító: 201200 Telephely kódja: 004

FIT-jelentés :: 2009. Váci Mihály Gimnáziumi Tagintézmény 4440 Tiszavasvári, Hétvezér út 19. OM azonosító: 201200 Telephely kódja: 004 FIT-jelentés :: 2009 10. évfolyam :: 4 évfolyamos gimnázium Váci Mihály Gimnáziumi Tagintézmény 4440 Tiszavasvári, Hétvezér út 19. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban

Részletesebben

Kossuth Lajos Közgazdasági és Humán Szakközépiskola

Kossuth Lajos Közgazdasági és Humán Szakközépiskola 27 Kossuth Lajos Közgazdasági és Humán Szakközépiskola Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 1. évfolyam szakközépiskola szövegértés El!állítás ideje: 28..6. 1:4:46

Részletesebben

FIT-jelentés :: 2011. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2011. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2011 6. évfolyam :: Általános iskola VIK Általános Iskolák Intézményegysége Széchenyi István Általános Iskola 3390 Füzesabony, Kossuth út 1-3. Létszámadatok A telephely létszámadatai az

Részletesebben

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2014 6. évfolyam :: Általános iskola Dunabogdányi Általános Iskola és Alapfokú Művészeti Iskola 2023 Dunabogdány, Hegyalja utca 9-11. Létszámadatok A telephely létszámadatai az általános

Részletesebben

Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat

Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat Szent István Egyetem Gazdaság- és Társadalomtudományi Kar Statisztika I. Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat Boros Daniella OIPGB9 Kereskedelem és marketing I. évfolyam BA,

Részletesebben

FIT-jelentés :: 2011. Zugligeti Általános Iskola 1121 Budapest, Zugligeti út. 113. OM azonosító: 035007 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Zugligeti Általános Iskola 1121 Budapest, Zugligeti út. 113. OM azonosító: 035007 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 6. évfolyam :: Általános iskola Zugligeti Általános Iskola 1121 Budapest, Zugligeti út. 113. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6. évfolyamon

Részletesebben

Telephelyi jelentés. 10. évfolyam :: Szakiskola

Telephelyi jelentés. 10. évfolyam :: Szakiskola FIT-jelentés :: 2009 10. évfolyam :: Szakiskola Herman Ottó Kertészeti-, Környezetvédelmi-, Vadgazdálkodási Szakképző Iskola és Kollégium 9700 Szombathely, Ernuszt K. u. 1. Létszámadatok A telephely létszámadatai

Részletesebben

FIT-jelentés :: 2014. Esztergomi Babits Mihály Általános Iskola 2500 Esztergom, Sugár út 24. OM azonosító: 031815 Telephely kódja: 001

FIT-jelentés :: 2014. Esztergomi Babits Mihály Általános Iskola 2500 Esztergom, Sugár út 24. OM azonosító: 031815 Telephely kódja: 001 FIT-jelentés :: 2014 6. évfolyam :: Általános iskola Esztergomi Babits Mihály Általános Iskola 2500 Esztergom, Sugár út 24. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a

Részletesebben

FIT-jelentés :: 2012. Epreskerti Általános Iskola 4030 Debrecen, Epreskert u. 80. OM azonosító: 200020 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2012. Epreskerti Általános Iskola 4030 Debrecen, Epreskert u. 80. OM azonosító: 200020 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2012 6. évfolyam :: Általános iskola Epreskerti Általános Iskola 4030 Debrecen, Epreskert u. 80. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6. évfolyamon

Részletesebben

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2014 6. évfolyam :: Általános iskola Grassalkovich Antal Német Nemzetiségi és Kétnyelvű Általános Iskola 2220 Vecsés, Fő utca 90-92. Létszámadatok A telephely létszámadatai az általános

Részletesebben

FIT-jelentés :: 2009. Forrás Waldorf Iskola Balassi Telephelye 9027 Győr, Balassi u. 1. OM azonosító: 101503 Telephely kódja: 004. Telephelyi jelentés

FIT-jelentés :: 2009. Forrás Waldorf Iskola Balassi Telephelye 9027 Győr, Balassi u. 1. OM azonosító: 101503 Telephely kódja: 004. Telephelyi jelentés FIT-jelentés :: 2009 10. évfolyam :: 4 évfolyamos gimnázium Forrás Waldorf Iskola Balassi Telephelye 9027 Győr, Balassi u. 1. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban

Részletesebben

FIT-jelentés :: 2013. Jókai Mór Általános Iskola 7622 Pécs, Jókai Mór u. 49. OM azonosító: 027249 Telephely kódja: 006. Telephelyi jelentés

FIT-jelentés :: 2013. Jókai Mór Általános Iskola 7622 Pécs, Jókai Mór u. 49. OM azonosító: 027249 Telephely kódja: 006. Telephelyi jelentés FIT-jelentés :: 2013 6. évfolyam :: Általános iskola Jókai Mór Általános Iskola 7622 Pécs, Jókai Mór u. 49. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6. évfolyamon Tanulók

Részletesebben

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2014 6. évfolyam :: Általános iskola Szennai Fekete László Általános Iskola Kaposfői Tagintézménye 7523 Kaposfő, Kossuth utca 206. Létszámadatok A telephely létszámadatai az általános iskolai

Részletesebben

FIT-jelentés :: 2011. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2011. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2011 6. évfolyam :: Általános iskola Bethlen Gábor Általános Iskola és Újreál Gimnázium Keveháza utcai telephely 1119 Budapest, Keveháza utca 2. Létszámadatok A telephely létszámadatai

Részletesebben

FIT-jelentés :: 2009. Leövey Klára Gimnázium és Szakközépiskola 1096 Budapest, Vendel u. 1. OM azonosító: 035235 Telephely kódja: 001

FIT-jelentés :: 2009. Leövey Klára Gimnázium és Szakközépiskola 1096 Budapest, Vendel u. 1. OM azonosító: 035235 Telephely kódja: 001 FIT-jelentés :: 2009 8. évfolyam :: 6 évfolyamos gimnázium Leövey Klára Gimnázium és Szakközépiskola 1096 Budapest, Vendel u. 1. Létszámadatok A telephely létszámadatai a 6 évfolyamos gimnáziumi képzéstípusban

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2015 6. évfolyam :: Általános iskola Baár-Madas Református Gimnázium, Általános Iskola és Kollégium 1022 Budapest, Lorántffy Zsuzsanna utca 3. Létszámadatok A telephely létszámadatai az

Részletesebben

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2014 6. évfolyam :: Általános iskola Fáy András Református Általános Iskola és Alapfokú Művészeti Iskola 2217 Gomba, Iskola utca 2. Létszámadatok A telephely létszámadatai az általános

Részletesebben

FIT-jelentés :: 2009. Telephelyi jelentés. 10. évfolyam :: 4 évfolyamos gimnázium

FIT-jelentés :: 2009. Telephelyi jelentés. 10. évfolyam :: 4 évfolyamos gimnázium FIT-jelentés :: 2009 10. évfolyam :: 4 évfolyamos gimnázium Fazekas Mihály Gimnázium, Lycée Fazekas Mihály, Instituto Fazekas Mihály 4025 Debrecen, Hatvan u. 44. Létszámadatok A telephely létszámadatai

Részletesebben