A 16-3 bakteriofág host-range mutációi

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A 16-3 bakteriofág host-range mutációi"

Átírás

1 DIPLOMAMUNKA A 16-3 bakteriofág host-range mutációi Maász Anita biológus hallgató témavezető: Dr. Putnoky Péter Pécsi Tudományegyetem Természettudományi Kar Genetikai és Molekuláris Biológiai Tanszék 2004.

2 TARTALOM RÖVIDÍTÉSEK 3 1. IRODALMI ÁTTEKINTÉS A 16-3 bakteriofág A 16-3 bakteriofág genetikai és fizikai térképe A 16-3 bakteriofág ismert génjei A fágfertőzés folyamata A h gén lokalizálása A rhizobiumok A szimbiózis kialakulása Sejtfelszíni poliszacharidok A szimbiózisban szerepet játszó fontosabb gének KÍSÉRLETI ELŐZMÉNYEK CÉLKITŰZÉSEK ANYAGOK ÉS MÓDSZEREK Baktériumtörzsek, bakteriofágok és plazmidok Baktériumok és bakteriofágok szaporítása Cseppteszt Fágkötési teszt Bakteriofág DNS izolálás Plazmid DNS preparálás DNS tisztítás a minták nukleotidsorrendjének meghatározásához Agaróz gélelektroforézis és restrikciós endonukleázok alkalmazása Fragmentizolálás Ligálási reakció Kompetens sejtek készítése Transzformáció PCR DNS szekvencia meghatározás Számítógépes szekvencia analízis KÍSÉRLETI EREDMÉNYEK ÉS MEGVITATÁSUK Egy host-range mutáció jellemzése Újabb host-range fágmutánsok azonosítása A fág baktériumfelszín felismerésében más fágfehérje is szerepet játszhat A h mutáns fágok baktériumhoz történő kötődésének vizsgálata ÖSSZEFOGLALÁS FÜGGELÉK FELHASZNÁLT IRODALOM 36 KÖSZÖNETNYILVÁNÍTÁS 2

3 RÖVIDÍTÉSEK Amp ATP bp DMSO DNS EDTA EPS IPTG kb Km KPS LPS Neo ORF PCR SDS Tris X-gal ampicillin adenozin-5 -trifoszfát bázispár dimetil-szulfoxid dezoxi-ribonukleinsav etilén-diamin-tetraacetát exopoliszacharid izopropil-β-d-galaktopiranozid kilobázis kanamicin kapszuláris poliszacharid lipopoliszacharid neomicin open reading frame (nyitott leolvasási keret) polimeráz láncreakció nátrium-dodecil-szulfát tris-(hidroxi-metil)-amino-metán 5-bromo-4-kloro-3-indolil-β-D-tiogalaktopiranozid 3

4 1. IRODALMI ÁTTEKINTÉS 1.1. A 16-3 bakteriofág A bakteriofágok a baktériumgenetika fontos eszközei, elég, ha csak az Escherichia coli - lambda fág rendszerre utalunk, amely kiemelkedő jelentőségűvé vált. A rhizobium genetikában, melynek fő célja a szimbiotikus baktériumgének megismerése, ennek mintájára szintén fontosnak tűnt egy megfelelő fág - baktérium rendszer megismerése. A rhizobiumok számos bakteriofágja ismert. Ezek közül többel végeztek sikeresen általános vagy speciális transzdukciót. A legtöbb eredmény a Sinorhizobium meliloti törzsek fágjaival született. Ezek közül is kiemelkedik a Magyarországon használt S. meliloti 41 törzsön szaporodó 16-3 fág, amely az egyetlen részletesen tanulmányozott rhizobium fág. A 16-3 fágot a talajból izolálták Balatonberény környékén (Szende et al., 1960). A virion kromoszómája kétszálú, lineáris, 60,8 kb nagyságú molekula (Dallman et al., 1979), amely 10 bázis hosszú, 3 túlnyúló ragadós végekkel rendelkezik. Alakjában és több molekuláris sajátságában is emlékeztet a lambda fágra és ahhoz hasonlóan egy speciális transzdukáló fág. Ismert a részletes genetikai-fizikai térképe (1. ábra), a represszor fehérje szerkezete, a fág és a baktérium kromoszómáján lévő att régió pontos szekvenciája, tanulmányozták a fág integrációjának mechanizmusát. Ennek eredményeként egy speciális vektorcsaládot is kifejlesztettek, amely a fág int génjét és att régióját hordozza. Ennek felhasználásával a legkülönbözőbb gének építhetők be a S. meliloti 41 kromoszóma att helyére (Papp et al., 1993) A 16-3 bakteriofág genetikai és fizikai térképe A 16-3 fág alapvető genetikai analízisét és térképezését különböző mutánsok segítségével végezték el. Az izolált, mintegy 150 ts (hőérzékeny) mutáns a fágszaporodás szempontjából korai és kései típusokra bontható. A korai és kései funkciók elkülönülését jól tükrözi a 16-3 fág genetikai térképe, szoros korreláció van a gének elhelyezkedése és működésének ideje között (1. ábra) (Orosz et al., 1973). A géntérkép régiói a következők: h gén - ant gén - lizozim gén - immx régió - att régió - int gén - xis gén - avirc operátor - C cisztron - avirt operátor (Orosz et al., 1973). A géntérkép hossza a C cisztrontól a lizozim génig 40 térképegység hosszúságú. 4

5 Elkészítették a 16-3 fág kromoszómájának fizikai térképét 10 féle restrikciós endonukleáz segítségével. Ez száz térképezett hasítóhelyet tartalmaz (7. fejezet). Lényegesen kevesebb a 16-3 fágról szerzett ismeretanyag, mint az, ami az E. coli lambda vagy T4 fágjáról felhalmozódott. Ennek ellenére a 16-3 fág ma már a viszonylag jól ismert bakteriofágok szűk köréhez tartozik (Orosz et al., 1973; Dallmann et al., 1979; Dorgai et al., 1981). 1. ábra: A 16-3 bakteriofág genetikai és fizikai térképe. Az ábra felső részén a 16-3 fág publikált fizikai térképe látható két restrikciós endonukleázzal hasítva (Dorgai et al., 1983). A számok az 1. táblán (7. fejezet) található hasítóhelyek pozíciójára utalnak. A színes téglalapok a géneket, illetve a fontos régiókat jelölik. Az ábra alsó részén az egyes régiók felépítését tüntettük fel. P R, P C : a C cisztron promotereit, az O R az operátor régiókat jelöli. (Csiszovszki et al., 2003; Semsey et al., 1999; Dallmann et al., 1991) 5

6 A 16-3 bakteriofág ismert génjei A 16-3 fágnak két fő regulátor génje van: a c cisztron és az immx régió (Orosz et al., 1973). A c regulátorgén a 16-3 egyik legjobban ismert génje, amely a lizogén életciklus kialakításában játszik szerepet, a fág baktériumba integrálódását és kivágódását szabályozza. A gén kódoló régiója az (55)HindIII-(60)HindIII fragmenten található (1. ábra). Két operátor régióval rendelkezik: avirc és avirt. Az avirc a géntől 5 irányban található, míg az avirt -t 3 irányban a korai génekhez közel lokalizálták. A c gén terméke egy represszor fehérje, amely transzkripciógátló hatást fejt ki. A DNS szekvencia adatok alapján a C represszor egy 197 aminosav hosszúságú bázikus fehérje. Amino-terminális doménje egy helix-turn-helix DNS kötő motívumot hordoz, amely az operátor régióhoz való kötődésért felelős (Dallmann et al., 1991). A másik regulátor régió, az immx a (41)EcoRI hasítóhely környékén lévő körülbelül 1500 bázispáros régióban foglal helyet (EcoRI L, H fragment) (1. ábra). A vizsgálatok alapján ez a regulátor nagymértékű hasonlóságot mutat a lambda fág ci represszorával. Az immx régió 3 részből áll: X U, X L és X V. Az X U és X L két átfedő cisztron, amelyek a px U, px L fehérjéket kódolják. E fehérjék szabályozó tevékenységének célpontja az X V régió, amely szintén három részből áll: X V1, X V2, X V3. Az X V1 egy rho független transzkripció terminációs struktúra. Az X V2 az X V1 és X V3 expresszivitását növeli (Dorgai et al., 1986; Csiszovszki et al., 2003). A 16-3 egy tipikus temperált fág, amelyik helyspecifikus rekombináció révén képes integrálódni a gazdakromoszóma egy meghatározott helyére. A baktérium és a fág részéről is az att régiók (fág: attp, baktérium: attb) vesznek részt a folyamatban. A fág genomjában az attp szekvencia a (48)EcoRI - (52)EcoRI hasítóhelyek között (K fragment) található (1. ábra). Az att régión belül egy 51 bázispár hosszúságú szakaszt, egy core (magi) régiót különíthetük el, amely a fágban és a baktériumban is azonos. E részen belül történik meg a szálkicserélődés. A baktérium kromoszómáján található attb hely két fordított orientációjú integráz kötőhelyet tartalmaz (Dorgai et al., 1993; Papp et al., 1993). A helyspecifikus rekombináció működését két rekombináns gén teszi lehetővé: az int és a xis gén (1. ábra). Az int gén az integrációért felelős fehérjét (Int) kódolja, a xis gén pedig a baktérium kromoszómájából történő kivágódásért felelős. Mindkét gént az att régiótól 3 irányban a (48)EcoRI - (55)HindIII hasítóhelyek között lokalizálták. A két gén körülbelül 240 bázispár hosszú része átfed egymással. Mindkét gént a C represszor 6

7 fehérje szabályozza. Az int gén által kódolt fehérje hordozza mindazon jegyeket, amelyek a helyspecifikus rekombinázok integráz családjának tagjaira jellemzőek. Így az Int fehérje is ebbe a csoportba sorolható. A homológia vizsgálatok alapján elmondható, hogy a fehérje C-terminális részéhez közel a 346-os pozícióban található tirozin oldallánc vesz részt a DNS szálak hasításában. Ezen oldallánc hidroxil csoportjának eltávolítása a fehérje rekombináz aktivitásának elvesztéséhez vezet (Semsey et al., 1999). A xis gén által kódolt fehérje (Xis) 140 aminosavból áll. Számítógépes analízis szerint az N-terminálisán valószínűleg egy helix-turn-helix motívum található. Mérete hasonló az eddig ismert néhány hasonló fehérje méretéhez, de azokhoz számottevő szekvencia homológiát nem mutat. A 16-3 fág h génje a (28) EcoRI - (37) EcoRI (D) fragmenten található. A fág farki rost fehérjéjét (H) kódolja, amely a fág baktériumhoz tapadásában játszik fontos szerepet. Az ant gén a h gén közelében, attól 3 irányban helyezkedik el (1. ábra). Az általa termelt fehérje (Ant) a fág poliklonális ellenanyagokkal történő reakciójában vesz részt (Orosz et al., 1970) A fágfertőzés folyamata A fág a fertőzés során először farki rostjával a baktérium sejtfal speciális kiemelkedésein, az ún. fágreceptorokon tapad meg. Ezt fág adszorpciónak nevezzük, amely hatékony, kalciumiont igénylő folyamat. A fág a tapadási folyamat után lítikus és lizogén módon szaporodhat (2. ábra). Lítikus úton a fágok a baktériumon belül sokszorozódnak, majd a baktériumsejtet szétroncsolva kiszabadulnak és újabb baktériumokat fertőznek meg. A lizogén módon szaporodó fágok kromoszómájukat a baktérium genomjába képesek integrálni és ott generációkon keresztül a baktériummal együtt replikálódni. A 16-3 tulajdonságainak és viselkedésének beható tanulmányozása során kiderült, hogy ez a bakteriofág egy temperált (mérsékelt) fág, amely képes profágként a baktérium genomjába integrálódni, illetve lítikus úton is szaporodni. Ezzel szemben léteznek agresszív fágok, amelyek csak lítikus módon képesek önmaguk sokszorozására (Szende et al., 1960). A 16-3 fág integrációja helyspecifikus rekombináció révén valósul meg. A folyamat meghatározott szekvenciájú rövid homológ DNS szakaszok között játszódik le, 7

8 amelynek során profág keletkezik. Az, hogy a 16-3 fág helyspecifikus rekombinációs rendszere E. coliban nem működik, arra utal, hogy a fág kromoszómába épüléséhez specifikus gazdafaktor is szükséges, amely az E. coliban nem található meg. A 16-3 helyspecifikus rekombinációs rendszer közvetlen felhasználhatóságának tehát két feltétele van, az egyik a specifikus gazdafaktor jelenléte, a másik pedig az, hogy a rekombinációs célszekvencia az adott baktérium kromoszómáján megtalálható legyen (Semsey et al., 1999). A 16-3 fág csak a baktérium egy meghatározott régiójához (attb) tud hozzákapcsolódni. Környezeti indukció hatására bekövetkező kivágódása során e régió környéki kromoszómaszakaszokat képes magával vinni. Így a fág fehérjeburkába a fág DNS helyett bakteriális DNS darabok kerülhetnek. A 16-3 fág tehát egy speciális transzdukáló fág. Léteznek azonban általános transzdukcióra képes fágok, amelyek a baktérium kromoszómájából bizonyos gyakorisággal (10-5 ) kivágódva bármely baktérium-kromoszómadarabot magukkal ragadhatnak. 2. ábra: A bakteriofágok szaporodási formái ( lizogén, lítikus). 8

9 Egyedi cys + transzduktáns telepekből fágot indukáltak és megvizsgálták a fág DNS restrikciós képét. Gyakran találtak stabilan transzdukáló, ugyanakkor életképtelen fágokat, amelyeket dtr-nek neveztek el. Az ilyen fág csakis helper fág jelenlétében szaporodott. A dtr fágokban a fág DNS óriási része hiányzott. A hiányzó szakaszt bakteriális DNS helyettesítette. A deléció/inszerció nem érinti a ragadós végeket és a replikációs origót, aminek következtében a dtr kromoszóma jól pakolódik és replikálódik. A kiesett fág funkciókat és az ezeket kódoló fág DNS szakaszokat azonosítva megállapították, hogy a Sinorhizobium meliloti DNS modifikáló aktivitással rendelkezik (Svab et al., 1978 ). Az érett fágrészecske elkészüléséhez (ún. eklipsz periódus) 28 C-on minimálisan 80 percre, 36 C-on 65 percre van szükség (Orosz et al., 1973). A fágot a késői gének által kódolt 5 nagy (72 Kd, 18,5 Kd, 31,5 Kd, 47 Kd, 86 Kd) és 5 kicsi (25 Kd, 27 Kd, 50 Kd, 59 Kd, 68 Kd) fehérje építi fel. Eddigi ismereteink alapján a fágfej 6 (18,5 Kd, 31,5 Kd, 47 Kd, 50 Kd, 59 Kd, 68 Kd), a farokrész pedig 2 polipeptidláncot (72 Kd, 86 Kd) tartalmaz. A két legkisebb fehérje (25, 27 Kd) helyzete még bizonytalan (Erdei et al., 1982) A h gén lokalizálása Ha a baktérium felszínén megváltozik a fág receptora, de még jelen van, akkor lehet olyan fágmutánsokat izolálni, amelyek egy mutáció révén képesek ismét felismerni ezt a felszínt. A jelenséget host-range mutációnak, az érintett gént pedig h génnek nevezzük. Orosz László laborjában Palágyi Zsuzsanna (pzs plazmidok) határozta meg a h gén körülbelüli helyzetét marker rescue technikával, mely során h mutáns fágból klónozott DNS fragmenteket egy plazmidba. Ha a plazmidot tartalmazó baktériumon vad típusú fágokat szaporítottak el, akkor homológ rekombináció révén a fágokban megjelenhet a h mutáció. A h mutánsok nagy száma jelezte, hogy a kérdéses mutáció a klónozott DNS szakaszon helyezkedik el. Egyre kisebb DNS fragmentumokkal dolgozva, ezen az elven a pzs5 klón,- amely EcoRI hasítással keletkezett, illetve a BamHI enzimmel előállított pzs10 klón (4. ábra) tartalmazta a mutációt. Így a h mutációt az 1,16 kb hosszúságú BamHI szakaszon belül lehetett lokalizálni. 9

10 1.2. A rhizobiumok A 16-3 bateriofág gazdabaktériuma a Sinorhizobium meliloti 41-es törzs, amely a Rhizobiaceae családba tartozó endoszimbionta talajbaktérium. E család tagjai (Rhizobium, Bradyrhizobium, Azorhizobium, Sinorhizobium, röviden rhizobiumok) nitrogénkötésre képesek. Általában a Leguminosae (hüvelyesek) növénycsalád tagjaival alakítanak ki szimbiótikus kapcsolatot (Allen et al., 1981). Ez az együttélés mindkét fél számára előnyös, hiszen a baktérium tápanyagokhoz jut a növény által, a növény pedig a szervezete felépítéséhez szükséges nitrogént a baktériumok segítségével veszi fel. Így a növény tulajdonképpen függetleníti fejlődését a talajtól és közvetve a légkör nitrogéntartalmát hasznosítja. Az általunk vizsgált Sinorhizobium meliloti 41 (régi nevén Rhizobium meliloti 41) egy pálcika alakú, endospóra nélküli Gram-negatív baktérium, amely Medicago, Melilotus és Trigonella fajokkal alakít ki endoszimbiózist. Gazdaságilag legfontosabb partnere a lucerna (Medicago sativa) A szimbiózis kialakulása A rhizobiumok hüvelyes növényekkel kialakított kapcsolatát endoszimbiózisnak nevezzük. A baktériumok e folyamatban egy új növényi szerv, a szimbiótikus gümő (nodulus) belsejében végzik a nitrogénfixációt. Ez a struktúra csak a megfelelő baktérium jelenlétében alakul ki a gazdanövény gyökerén. A rhizobiumok a gümő belsejében a nitrogéngázt ammóniává redukálják, hasznosíthatóvá téve ezáltal a növény számára. A fertőzési folyamat függ a növény fiziológiai állapotától és a fertőzési helyek egymástól való távolságától. A baktériumok a növény gyökérszőrsejtjein keresztül jutnak be azok belsejébe. A baktériumok ezért először e képletekhez kapcsolódnak. Hatásukra a fertőzési ponttal ellentétes oldalon megindul a gyökérszőrsejt növekedése, ami annak görbülését eredményezi. A fertőzési ponton a sejtfal leépül és egy sejtösszetevőkből álló, újonnan kialakuló csőszerű képlet, az infekciós fonal jön létre. Ebben a baktériumok a kéregsejteken át a kéreg belsejébe jutnak, ahol mitózist indukálnak. Ennek hatására egy új osztódószövet, a gümőmerisztéma jön létre (Dudley et al., 1987), amelyből aztán a gümő fejlődik. Ezzel egyidőben a baktériumok endocitózissal belépnek a gümősejtekbe, így egy ún. peribakteroid membránnal határolódnak, amely transzportfehérjéket tartalmaz és jelentős 10

11 anyagtranszportot bonyolít le. Közben a baktériumok fiziológiai változásokon mennek keresztül, illetve térfogatuk szeresére megduzzad, vagyis bakteroidokká alakulnak. A bakteroidok nitrogenáz enzimének működéséhez nélkülözhetetlen bizonyos mennyiségű (csekély) oxigén. A komplex azonban túl nagy oxigén-koncentrációra érzékeny. A gazdanövényben egy olyan különleges hemoglobin képződik, a leghemoglobin, amely biztosítja az alacsony, de még szükséges oxigén mennyiséget (mikroaerob környezet) Sejtfelszíni poliszacharidok A szimbiózis kialakulásában fontos szerepük van a rhizobiális sejtfelszíni poliszacharidoknak. Ezen belül elkülöníthetünk exopoliszacharidokat (EPS), lipopoliszacharidokat (LPS) és kapszuláris poliszacharidokat (KPS). Az exopoliszacharidok a sejtfelszínen felhalmozódó és a környezetbe nagy mennyiségben kiválasztott extracelluláris poliszacharidok. Nélkülözhetetlen szerepet töltenek be a gümőfejlődésben, ugyanakkor a szimbiózis kialakulásában nem meghatározó a funkciójuk. A S. meliloti 41 törzs egy szükcinoglükán természetű heteropoliszacharidot termel, amely ismétlődő oktaszacharid egységekből épül fel. Az alegységek szukcinil, piruvil és acetil módosításokat tartalmaznak. Ezek közül a szukcinil és piruvil csoportok elengedhetetlenül szükségesek a gümő kialakulásához. (Hiányuk esetén gümő nem képződik.) A S. meliloti 41 által termelt exopoliszacharidot kromatográfiás módszerrel egy nagy (HMW) és egy kis (LMW) molekulatömegű frakcióra lehet elkülöníteni. Az exopoliszacharidok szintézise négy lépéses folyamat: 1. nukleotidcukrok szintézise (UDP-glükóz, UDP-galaktóz); 2. az oktaszacharid alegységek szintézise a nukleotidcukrokból egy lipidhordozó felszínén; 3. az alegységek módosítása piruvil, szukcinil és acetil-csoportok elhelyezése révén; 4. az oktaszacharid alegységek polimerizációja. A lipopoliszacharidok a Gram-negatív baktériumok sejtfelszínének fontos alkotói, a külső membrán integráns részei. Egy LPS molekula három szerkezeti egységre tagolható: lipida egység, amely a molekulát a külső membránhoz horgonyozza. Ehhez kapcsolódik a konzerválódott szerkezetű core oligoszacharid, amellyel az ismétlődő 11

12 oligoszacharidokból álló törzsspecifikus O-antigén alakít ki kapcsolatot (Kannenberg et al.,1994). A lipopoliszacharidok a nagy variabilitással és nagyfokú immunogén aktivitással rendelkező alkotórészük (O-antigén) által fontos szerepet tölthetnek be például a patogenitás mértékének meghatározásában. Ezek a sejtfelszíni struktúrák az új eredmények alapján a rhizobiumoknál szerepet játszhatnak a szimbiózis kialakításában. A kapszuláris poliszacharidok más néven (erős immunogén hatásuk miatt) K- antigének a baktérium felszínéhez szorosabban kötődő struktúrák, amelyek (az EPS-sel ellentétben) nem választódnak ki a környezetbe. A KPS-ek szerkezetüket tekintve diszacharidegységekből felépülő poliszacharidok. A diszacharidegységek a 2-keto-3-deoxi-oktulonsavat (Kdo) vagy annak valamilyen variánsát tartalmazzák. Az EPS-sel ellentétben, melynek szerkezete fajon belül állandó, a KPS törzsspecifikus antigén, vagyis a faj különböző törzsei eltérő szerkezetű sejfelszíni KPS-sel rendelkeznek (Reuhs et al., 1997). A S. meliloti 41 törzs K R 5 nevű poliszacharidot termel. Ez a struktúra felépítésében hasonló az E. coli törzs II. típusú K antigénjéhez (Reuhs et al., 1993). A KPS-ek képesek akár az EPS-ek szerepét is betölteni a szimbiózisban. Erre az általunk vizsgált baktériumtörzs exob mutánsa mutatott rá, amely az EPS elvesztése mellett továbbra is ki tudott alakítani szimbiózist a gazdanövénnyel. Ezt pedig a KPS biztosította (Putnoky et al., 1990). A KPS-ek elősegítik a bakteriofág baktériumhoz történő kötődését, azonban léteznek a 16-3 fágra rezisztens KPS baktériummutánsok, amelyekhez a fág nem tud hozzákapcsolódni, mert megváltozott szerkezetű poliszacharidot termelnek, vagy egyáltalán nem képeznek ilyen sejtfelszíni struktúrákat (Petrovics et al., 1993; Kereszt et al., 1998; Kiss et al., 2001) A szimbiózisban szerepet játszó fontosabb gének A S. meliloti 41 törzs 6,7 Mb nagyságú genommal rendelkezik (Honeycutt et al., 1993). Kromoszómája 3,7 Mb hosszú, emellett egy psyma (1,4 Mb) és egy psymb (1,7 Mb) megaplazmidot hordoz. A psyma replikon a nod, nif és fix géneket illetve a transzfert irányító szekvenciákat (orit és tra gének) tartalmazza. A psymb plazmidon az orit és tra gének homológjai és sok poliszacharid bioszintézist irányító gén található. 12

13 Rendelkezik még néhány esszenciális aminosav bioszintézisét kódoló, illetve a sejtosztódáshoz nélkülözhetetlen génnel. A hordozott gének által a psymb megaplazmid növeli a baktérium környezethez való alkalmazkodóképességét. A szimbiózis kialakulásának és a nitrogénfixáció egyes lépéseinek kódolásáért felelős géneket három csoportba sorolhatjuk: nodulációs gének, gümőinváziót meghatározó gének és a nitrogénkötés génjei. A nodulációs gének (nodabc) a növény által kibocsátott szignálmolekulák (flavonoidok) megjelenésével aktiválódnak. Egy diffúzibilis molekula, a Nod-faktor szintézisét kódolják, amely a gazdanövény gyökerén hoz létre változásokat: indukálja a gümőmerisztéma és a gümő kialakulását. A gümőinváziót meghatározó gének közé a sejtfelszíni struktúrák bioszintézis útjait kódoló géneket soroljuk, hiszen a szimbiózis e szakaszában elsődleges szerepet ezek a struktúrák játszanak. Az infekcióban hibás mutánsok gümőfejlődést tudnak indukálni, azonban a fertőzési folyamat nem jön létre. Az exopoliszacharidok szintézisét ( fejezet) exo gének irányítják (exoa-w). A K R 5 antigén bioszintézisében szerepet játszó gének a psymb megaplazmidon, az rkp- 1,2,3 régióba tartoznak. A poliszacharidok szintézisében és a transzportban jelentős funkcióval bírnak az NdvA, B fehérjék, amelyeket az ndv gének kódolnak. A nitrogénkötés génjei közé sorolhatók a nif és fix gének. A nif gének a nitrogenáz enzimkomplex egyes részeit és kofaktorának szintézisét irányítják. A fix gének pedig a nitrogenáz enzimkomplexhez elektront szállító rendszer elemeit kódolják. 13

14 2. KÍSÉRLETI ELŐZMÉNYEK Munkám kezdetekor a vad típusú 16-3 fág h génjének DNS-szekvencia meghatározására vonatkozó kísérletek is megkezdődtek. (A kapott részletes eredmények Békási Krisztina diplomamunkájában olvashatók.) A vad típusú szekvencia meghatározásához először a fág fizikai térképe alapján a D és a C EcoRI fragmentet kellett elválasztani egymástól (3. ábra). Ezután a D fragmentből izolálva az 1,16 kb hosszúságú BamHI fragmentet, meghatározták annak nukleotidszekvenciáját. 3. ábra: A D EcoRI fragment helyzete a 16-3 fág fizikai térképén. Az ábra felső részén a 16-3 kromoszóma EcoRI restrikciós hasítóhelyei és a fragmentek jelei vannak feltüntetve. Az alsó részen a D EcoRI fragment részletesebb fizikai térképe látható, amelyen a számozás a restrikciós hasítóhelyek pozíciójára utal a 16-3 fág publikált fizikai térképén. (7. fejezet) (Dorgai et al., 1983) 14

15 A kapott szekvenciát elemezve megállapítható volt, hogy egyetlen esetben a meghatározott 1157 bp-os szakaszon keresztül húzódik egy ORF. Valószínűnek tartották, hogy ez az ORF határozza meg a H fehérje aminósavsorrendjét. A kapott szekvenciában azonban sem a gén elejét (5 vég), sem a gén végét (3 vég) nem találták meg. Ezért mindkét irányban meghatározták a szomszédos régiók nukleotidsorrendjét is. A 3 irányban történő szekvenálás eredményeként a (36)BamHI helytől körülbelül 300 bp távolságra elhelyezkedő transzlációs stop kodon, illetve egy transzkripció terminációs szignálszerű szekvencia volt azonosítható, amelynek jelenléte alátámasztja, hogy ez ténylegesen a h gént kódoló régió. Később a (34)BamHI helytől 5 irányba haladva azt próbálták meghatározni, vajon honnan kezdődik a h gén. Többféle esetleges transzlációs start kodont is detektáltak (ATG, GTG, GTT). Ezek közül a valós kezdőpont kiválasztásához a H fehérje termeltetésével kapcsolatos kísérleteket terveztek. A bakteriofág genetikai-fizikai térképén Palágyi Zsuzsanna révén már ismert volt egy host-range mutáció körülbelüli helyzete. A mutációt Orosz László laborjában marker-rescue technikával azonosította. Eredményei azt mutatták, hogy ez a változás a pdh1 klónon, a ppzs5 klónon ((29)BamHI - (36)BamHI fragmenten), illetve a ppzs10 klónon ((34)BamHI - (36)BamHI fragmenten) belül helyezkedik el (4. ábra). Az érintett gén nukleotid-szekvenciáját és természetét azonban eddig még nem határozták meg. 4. ábra: Egy h mutáció elhelyezkedése a 16-3 fág fizikai térképén. 15

16 3. CÉLKITŰZÉSEK A 16-3 fág kizárólag a Sinorhizobium meliloti 41 baktériumtörzsön képes szaporodni, feltehetően azért, mert ez a törzs egy speciális kapszuláris poliszachariddal rendelkezik, amelynek szerepe van a gazdanövénnyel való szimbiózis kialakításában is. Korábbi munkákban feltételezték, hogy a fág receptora ez a törzsre jellemző KPS. A fágreceptor természetének tanulmányozása érdekében célul tűztük ki receptor-mutáns baktérium és host-range fágmutánsok azonosítását és jellemzését. E munkában feladatunk a bakteriofág vizsgálata volt. Orosz László laborjában sok évvel ezelőtt egy mutációval azonosították a megváltozott baktériumfelszín felismerésében szerepet játszó fehérjét (H) kódoló h gén helyét a bakteriofág genetikai-fizikai térképén. Az érintett gén nukleotid-szekvenciájában történt változásokat azonban még nem vizsgálták. Ennek ismeretében célunk: a 16-3 bakteriofág feltételezett farki rost fehérjéjét kódoló h génben található mutáció(k) helyzetének feltérképezése, és a mutáció(k) természetének meghatározása volt. 16

17 4. ANYAGOK ÉS MÓDSZEREK 4.1. Baktériumtörzsek, bakteriofágok és plazmidok A munkánk során használt baktériumtörzseket, bakteriofágokat és plazmidokat, illetve azok jellemzőit az 1. táblázat foglalja össze. 1. táblázat: Alkalmazott baktériumtörzsek, bakteriofágok, plazmidok. Elnevezés Baktériumtörzsek AK631 Jellemzők, hivatkozások RM41 kompakt kolóniamorfológiájú változata (exob631, Nod +, Fix + ) (Kondorosi et al., 1977) RM41 S. meliloti 41 vad típusú (Exo +, Nod +, Fix + ) (Putnoky et al., 1990) XL1-Blue GH4046 GH4178 GH4180 Bakteriofágok E. coli K12, reca1, enda1, gyra96, thi-1, hsdr17, supe44, rela1, lacz M15 (Stratagene USA) RM41 rkpm 4046 (Hoffmann) RM41 rkpm 4178 (Hoffmann) RM41 rkp-4180 (Hoffmann) PP2511 AK631 rkp-3::tn5 (212) Km R Sm R (Kiss et al., 2001) 16-3 S. meliloti 41 baktériumtörzsre specifikus vad típusú fág (Orosz et al., 1970) 16-3 h fág, host-range mutáns (ez a munka) 16-3 h fág, host-range mutáns (ez a munka) 16-3 h fág, host-range mutáns (ez a munka) 16-3 h fág, host-range mutáns (ez a munka) 16-3 h fág, host-range mutáns (ez a munka) Plazmidok pbs pbluescript II SK (+), Amp R, klónozó vektor, (Stratagene USA) pbbr1-mcs 2 Km R, Tra, Mob + (Kovach et al., 1995) pdh1 PLAFR1 kozmid 16-3 fág klón, h régió; (Dorgai et al., 1986) 17

18 4.2. Baktériumok és bakteriofágok szaporítása Az E. coli törzseket LB komplett táptalajon, a megfelelő antibiotikum jelenlétében 37 ºC-on, a S. meliloti törzseket pedig TA komplett táptalajon, 32 ºC-on növesztettük. Az LB tápfolyadék komponensei: 10 g/l Bacto trypton 5 g/l Yeast extract 5 g/l NaCl (ph 7,2). (Meade et al., 1977) A TA tápfolyadék komponensei: 10 g/l Bacto trypton 1 g/l Yeast extract 5 g/l NaCl (ph 7.0) 1 mm MgSO 4 1 mm CaCl 2 (ph 7,2-7,5). (Orosz et al., 1973) A táptalajok készítésekor a tápoldatokat 1,5 % agarózzal, fedőagar esetében pedig 0,7 % agarral egészítettük ki. A szilárd táptalajokban alkalmazott antibiotikum koncentrációkat a 2. táblázat tartalmazza. 2. táblázat: Alkalmazott antibiotikum koncentrációk (µg/ml). Antibiotikumok E. coli S. meliloti ampicillin 100 kanamicin tetraciklin A bakteriofágok esetében 4 ml TA tápfolyadékban 0,2 ml megfelelő baktériumot (friss kultúra) és 1 plakk növeszteni kívánt bakteriofágot kevertünk össze, majd ezt éjszakán át 32 ºC-on erős rázatás mellett szaporítottuk Cseppteszt A kísérlet elvégzéséhez 4 ml TA fedőagarban elkevert, éjszakán át növesztett 0,2 ml rhizobium kultúrát TA táptalajt tartalmazó lemezekre szélesztettünk. A tesztelendő 18

19 bakteriofág szuszpenziójából 1 µl-t ( db fág részecske) a megszilárdult fedőagar tetejére cseppentettünk, majd 32 C-on, termosztátban inkubáltuk. Ha a fág fertőzése sikeres volt, másnapra tiszta tarfolt (plakk) vált láthatóvá. Kísérleteinkben ennek meglétét illetve hiányát elemeztük Fágkötési teszt A kísérletben éjszakán át növesztett baktériumkultúrát (RM41, GH4178, GH4180) és megfelelő higítású ( db/ml) bakteriofágot (16-3, 16-3 h 5, 16-3 h 109 ) használtunk. A teszt kivitelezése előtt meghatároztuk a fágok titerét [16-3 (3,4x10 9 ); 16-3 h 5 (1,05x10 10 ); 16-3 h 109 (4,2x10 9 )]. Ezen értékek alapján állapítottuk meg a higítás mértékét. A reakcióhoz 800 µl TA tápoldatot, 200 µl baktériumot és 50 µl megfelelő fágot használtunk. A vak (kontroll) oldatba baktérium helyett 200 µl TA oldatot adtunk. Ezután az Eppendorf-csöveket azonos körülmények között kezeltük: 5 percig szobahőmérsékleten inkubáltuk, majd a baktériumokat a hozzájuk tapadt fágrészecskékkel együtt lecentrifugáltuk (5 perc, rpm). Ezután a felülúszóból származó 100 µl fágot 0,2 ml vad típusú baktériummal kevertük össze és fedőagar jelenlétében TA táptalajt tartalmazó lemezekre szélesztve 32 C-on növesztettük. E fágtitrálással meghatározható volt a felülúszóban maradt (baktériumok által nem kötött), fertőzőképes bakteriofágok száma Bakteriofág DNS izolálás A szükséges mennyiségű DNS oldatot 20 ml TA táptalajban egész éjszakán át növesztett bakteriofágból ( fág/ml) izoláltuk. 1,5 ml kultúrát Eppendorf-csőbe mértünk és a sejteket centrifugálással ülepítettük. A felülúszót új csőbe átpipettázva 300 µl PEG/NaCl (20% PEG 6000; 2,5M NaCl) oldattal kevertük össze. Ezután a mintákat 15 percig jégen (0 C) inkubáltuk, majd újra lecentrifugáltuk. Az üledéket 50 µl TE (50mM Tris; 20mM EDTA; ph 8,0) oldatban szuszpendáltuk és 0,1 térfogat 10 % SDS oldatban vettük fel. Az elegyet 1 térfogat 7,5 M hűtött ammónium-acetáttal kevertük össze. 15 perces 0 C-on történő inkubáció után a csapadékot lecentrifugáltuk, majd a felülúszót új csőbe mérve 0,6 térfogat izopropanollal csaptuk ki a DNS oldatot. A mintákat 15 percig - 20 C-on inkubáltuk, majd 5 percig centrifugáltuk. Ezután az üledéket 400 µl 70 %-os 19

20 etanollal mostuk, szárítottuk, majd 25 µl (vagy 50 µl) steril desztillált vízben oldottuk fel. A kísérlet sikerességét restrikciós endonukleázokkal történő DNS emésztés után agaróz gélelektroforézissel ellenőriztük (4.8. fejezet). Az emésztés során 1 µl bakteriofág DNS mintát használtunk Plazmid DNS preparálás A plazmid DNS oldatot 3 ml TA táptalajban éjszakán át növesztett sejtekből alkalikus lízissel preparáltuk (Ish-Horovicz et al., 1981). 1,5 ml kultúrát Eppendorf-csőbe mértünk és a sejteket centrifugálással ülepítettük, majd 100 µl TEG oldatban (25 mm TrisHCl; 10 mm EDTA; 50 mm glükóz; ph 8,0) szuszpendáltuk fel. A feltárást óvatos keverés mellett 200 µl NS oldat (0,2 N NaOH; 1% SDS) hozzáadásával végeztük. A mintákat 5 percig jégen (0 ºC) inkubáltuk, majd 160 µl 0 ºC-os nátrium-acetátot (3M, ph4,8) adtunk az oldathoz. A keletkezett csapadékot 5 perc 0 ºC-os inkubáció után 5 percig centrifugáltuk, és a felülúszóban lévő plazmidot 320 µl izopropanollal csaptuk ki. 10 perc 20 ºC-on történő inkubáció után a mintákat lecentrifugáltuk, 400 µl 70 %-os etanollal mostuk és szárítottuk. A csapadékot 100 µl Tris-pufferben (50 mm TrisHCL; 100 mm nátrium-acetát; ph 8,0) oldottuk fel, majd 200 µl 96%-os etanollal ismét kicsaptuk. 10 perc 0 ºC-os inkubáció után a mintákat újból lecentrifugáltuk, mostuk és szárítottuk, majd kozmidok esetén 30 µl, pbluescript, illetve pbbr plazmidok esetében 50 µl RNáz ( µg/ml) oldatban vettük fel DNS tisztítás a minták nukleotidsorrendjének meghatározásához A szekvenálási reakció előtt nagy tisztaságú minták előállításához erre a célra tervezett tisztítási lépést végeztünk. A preparált DNS mintákhoz 0,1 térfogat 10 %-os SDS oldatot adtunk, és 5 percig jégen inkubáltuk. Ezután az DNS-SDS elegyhez 1 térfogat (0 ºC-os) 7,5 M ammónium-acetát oldatot tettünk és a mintákat 15 percig jégen inkubáltuk, majd a keletkezett csapadékot 5 percig centrifugáltuk (12000 rpm). A felülúszót azonnal átpipettáztuk egy másik Eppendorf-csőbe, és a benne lévő DNS oldatot 0,6 térfogat izopropanollal csaptuk ki. 20 perc 20 ºC-on történő inkubáció után a mintákat 400 µl 70 %-os etanollal mostuk, szárítottuk, majd a tisztított DNS oldatot µl steril desztillált vízben oldottuk fel. 20

21 4.8. Agaróz gélelektroforézis és restrikciós endonukleázok alkalmazása A tisztított plazmid DNS mintából 0,2-0,5 µg-ot, a bakteriofág DNS preparátumból 1-2 µg-ot használtunk fel restrikciós endonukleázokkal történő emésztésekhez. A mintákat 1-2 U mennyiségű FERMENTAS enzim, megfelelő enzimpuffer és steril desztillált víz jelenlétében 1-2 óráig 37 ºC-on inkubáltuk. Az emésztés végén a reakcióelegybe 1/5 rész mintafelviteli puffert (10 % ficoll; 0,25 M EDTA; ph 8,0; 0,2 % brómfenolkék) mértünk. (Maniatis et al., 1982) A restrikciós endonukleázokkal hasított minták fragmentjeit agaróz gélen választottuk el. A gél készítéséhez az agarózt 0,5xTBE pufferben (5,4 g TRIS; 2,75 g bórsav; 2 ml 0,5 M EDTA/1000 ml; ph 8,0) oldottuk fel, majd 100 µg/ml koncentrációjú etídiumbromidot mértünk bele, így a gél végkoncentrációja etídium-bromidra nézve 0,1 µg/ml lett. Munkánk során többnyire 1%-os gélt készítettünk. A gél dermedése (40-60 perc) után a fragmenteket 0,5xTBE pufferben V-on, fragmentizolálás esetén V- on szeparáltuk. Az elektroforézis során molekulatömeg-standardként PstI enzimmel hasított lambda fág DNS mintát alkalmaztunk. A kiértékelést UV fény segítségével végeztük és az eredményeket dokumentáltuk Fragmentizolálás A megfelelő restrikciós endonukleázokkal hasított fragmenteket elektroforézissel választottuk szét. Az izolálni kívánt fragment elé a gélbe Whatman DE 81 papírt tettünk. 20 perces 60 V feszültség mellett történő futtatás után az izolálandó fragment a papírra került, amelyről 2x50 µl 1M NaCl oldattal távolítottuk el. A DNS-t ezután 0,1 térfogat 3M nátrium-acetát oldat (ph 7,0) és 0,6 térfogat izopropanol hozzáadásával csaptuk ki. 20 perces (vagy éjszakán át) 20 ºC-on történő inkubáció után a mintát lecentrifugáltuk, 400 µl 70 %-os etanolban mostuk, szárítottuk és a keletkezett csapadékot 20 µl steril desztillált vízben oldottuk fel Ligálási reakció A ligálási elegyet vektor DNS oldat, fragment DNS oldat, 5x ligáz puffer (500 mm Tris HCl; 100 mm MgCl 2 ; 10 mm ATP; ph 7,6), steril desztillált víz és T4 ligáz enzim 21

22 felhasználásával állítottuk össze 15 µl végtérfogatra. A vektor és a fragment mennyiségét az ellenőrző emésztés eredményétől függően állapítottuk meg. A reakcióban a ligálandó végek minősége alapján kétféle T4 DNS ligáz enzimet használtunk: tompa végek esetében tömény, ragadós végek esetében higított ligázt alkalmaztunk. A ligálási elegyet ezután legalább 1 óráig szobahőmérsékleten inkubáltuk Kompetens sejtek készítése A kompetens sejtek készítéséhez E. coli XL1-blue törzset használtunk. 200 ml SOB táptalajban (2 % Bacto trypton; 0,5 % Yeast extract; 10 mm NaCl; 2,5 mm KCl; ph 7,0) 22 C-on történő erős rázatás mellett, 24 óráig növesztett baktériumkultúrát (OD= 0,5-0,6) 10 percre jégre tettünk, ezután mindig 0 ºC-on dolgoztunk. A sejteket 10 perces centrifugálással (4000 rpm) gyűjtöttük össze, majd 80 ml hideg TB pufferben (10 mm PIPES; 15 mm CaCl 2 ; 250 mm KCl; ph 6,7) szuszpendáltuk fel. A következő lépésben a mintát újra 10 percig jégen inkubáltuk, lecentrifugáltuk, majd 20 ml 0 C-os TB pufferben vettük fel. A szuszpenzióhoz 1,5 ml DMSO-t adtunk, a sejteket Eppendorfcsövekbe szétosztva transzformációig 80 C-on tároltuk. (Inoue et al.,1990) Transzformáció Egy transzformáláshoz 100 µl kompetens sejtet használtunk fel. A sejteket 80 C-ról jégre tettük, és 15 perc elteltével hozzáadtuk a transzformációhoz használt vektorba ligált DNS fragmentet, amelyet ezután 30 percig jégen inkubáltunk, majd 3 percig 37 C-os hősokkot alkalmaztunk. A hősokk után 400 µl SOC oldatot (2 % Bacto trypton; 0,5% Yeast extract; 10 mm NaCl; 2,5 mm KCl; 20 mm glükóz; ph 7,0) adtunk a sejtekhez. Egy óra 37 C-on történő inkubáció után a sejteket szelektív LB táptalajra szélesztve másnapig 37 C-on inkubáltuk. A táptalaj 100 µl megfelelő antibiotikumot, 40 µl IPTG (100 mm) és 40 µl X-gal (2%, DMSO) oldatot tartalmazott. A másnapra felnövő telepek közül kék-fehér screen segítségével választottuk ki az inszertet tartalmazókat (fehér), vagyis amelyeknél nem figyelhető meg β galaktozidáz (lacz gén) aktivitás. A kiválasztott telepekkel további kísérleteket végeztünk. 22

23 4.13. Polimeráz láncreakció (PCR) A reakcióelegy 25 µl végtérfogatába: 1 µl higított (100x) templát DNS oldatot, 1-1 µl oligonukleotid primert [h31 (62,2 nmol); h51 (31,3 nmol); h32 (61,4 nmol); h52 (48,7 nmol)], 6 µl PCR-mixet (4x Taq puffer; 0,8 mm dntp; 6 mm MgCl 2 ), 15 µl steril desztillált vizet, 1 µl (2-5 U) Taq polimeráz enzimet mértünk. A reakció során előre megtervezett programot használtuk. A program leírása a 3. táblázatban olvasható. 3. táblázat: A kísérlet során alkalmazott PCR program C 2 perc C 30 mp C 30 mp C 1 perc 5. 35x GO TO C 1 perc 7. END A PCR reakcióban felsokszorozni kívánt szekvenciához oligonukleotid primereket terveztünk. A primereket és azok nukleotidsorrendjét az 4. táblázat tartalmazza. 4. táblázat: Alkalmazott primerek és szekvenciáik. primerek h31 h51 h32 h52 szekvenciáik gcgggctgcaaaatccaga caactgccgcggagatgg ccgccagaaacgacttcc gccattgcccgatgagg Az oligonukleotid primerek reakcióban elfoglalt helyzetét a 5. ábra mutatja. 23

24 4.14. DNS szekvencia meghatározás A munkánk során tisztított plazmid DNS minták és PCR fragmentumok nukleotidszekvenciáját a megfelelő oligonukleotidok segítségével a MTA Szegedi Biológiai Központ DNS Szekvenáló Laboratóriumában határozták meg. A szekvenálást Sanger-féle láncterminációs módszer alapján működő reakcióval készítették elő és ABI PRISM automata szekvenáló berendezéssel végezték Számítógépes szekvencia analízis A meghatározott DNS részszekvenciákat számítógép segítségével összeillesztettük és megvizsgáltuk mind a hat leolvasási keretben a kódoló kapacitásukat (LaserGene programcsomag, DNA Star Inc., USA). 24

25 5. KÍSÉRLETI EREDMÉNYEK ÉS MEGVITATÁSUK 5.1. Egy host-range mutáció jellemzése Munkám kezdetekor folytak a vad típusú 16-3 fág h génjének DNS-szekvencia meghatározására vonatkozó kísérletek. Emellett fontosnak tűnt a 16-3 fág farki rost fehérjéjét kódoló génben hibás, mutáns allélek (h 5, h 15 allél) pontos szerkezetének felderítése is. A fágrezisztens receptor-mutáns baktériumon (GH4046) a rezisztencia-tesztben vizsgált vad típusú populáció (kb. 5x10 9 ) egy töredéke visszanyerte fertőzőképességét. Ez esetben a fágpopulációban feltételezéseink szerint olyan spontán mutációk jöhetnek létre a baktériumfelszínt felismerő H farki rost fehérjét kódoló génben, amelyek révén a fág adaptálódik a baktérium megváltozott, RkpM4046 receptorfehérjéjéhez. A baktérium részéről jelen kell lennie valamilyen sejtfelszíni struktúrának, amelyhez a bakteriofág kötődni képes. Az is bizonyos, hogy ezeknél a mutánsoknál (GH4046, GH4178) a fágreceptor valamelyest különbözik a vad típusú baktériumtörzsétől (RM41), hiszen a vad típusú fág nem képes azt felismerni. Megvizsgáltuk az izolált fágplakkok morfológiáját, majd az azonos fenotípusú és nagy számú plakkot adó fágokat választottuk ki kísérleteink folytatására. Az ilyen módon izolált fágokat tisztítottuk és a bennük található feltételezett h allélt h 5 és h 15 allélnek neveztük el, majd mindkét törzsből DNS preparátumot készítettünk. Ezután azt vizsgáltuk, hogy a h génen belül megtalálhatók-e az újonnan izolált hostrange mutációk, illetve mi azoknak a pontos helyzete. Ennek érdekében PCR reakció során felsokszoroztuk a h régiót két erre a célra tervezett oligonukleotid primer segítségével (5. ábra). A tisztított PCR fragmentek nukleotid-szekvenciáját ezekkel és két további primert használva határoztuk meg (5. ábra). Az oligonukleotid primerek szekvenciája a fejezetben található. 25

26 5. ábra: A 16-3 fág h 5 és h 15 alléljében található mutáció helyzetének meghatározása. Az ábra felső része a 16-3 fág illetve a h régió fizikai térképét mutatja, összefoglalva a h régió elemzése során nyert következtetéseket (Dorgai et al., 1983). Az alsó részen a PCR kísérlethez használt primerek elhelyezkedését és a mutáns allélekben talált változás természetét foglaltuk össze. A kapott szekvencia (6. ábra) elemzésekor csak egyféle host-range mutációt, egy változást találtunk az általunk H fehérjét kódoló régiónak tartott szakaszon. Természetét tekintve ez egy missense mutáció, ami olyan aminosavcserét jelent, amely a H fehérje hosszát nem, de a fág baktériumhoz történő kötődését megváltoztatja. Esetünkben ez a következőképpen alakult. A vad típusú bakteriofág h génjében ggc, azaz glicint kódoló triplet található, míg a mutáns fág h génjének ugyanezen helyén gac bázishármast azonosítottunk, ami már nem glicint, hanem aszparaginsavat kódol. 26

27 vad típusú bakteriofág h 5 mutáns allélt hordozó bakteriofág h 15 mutáns allélt hordozó bakteriofág h 109 mutáns allélt hordozó bakteriofág h 111 mutáns allélt hordozó bakteriofág h 114 mutáns allélt hordozó bakteriofág 6. ábra: A vad típusú bakteriofág, illetve a h 5, h 15, h 109, h 111 és h 114 mutáns allélt hordozó fágok h génjének szekvenciarészlete ( bp). A zöld téglalapok jelölik az egyes fágok szekvenciájában található eltérő bázishármas pozícióját. 27

28 Ez az eredmény több dolgot is jelentett számunkra: egyrészt alátámasztotta, hogy ez a feltételezett gén valóban a H farki rost fehérjét kódoló ORF, és ez a fehérje a host-range jelenség kialakulását befolyásolja. Azt vártuk, hogy a h génben és az általa expresszált fehérjében olyan változás alakuljon ki, amivel a fág alkalmazkodni tud a baktérium szintén mutáció által megváltozott fágfelismerő felszínéhez és ezt meg is találtuk. (A baktériummutánsok izolálása, illetve azok vizsgálata Deák Veronika és Pálvölgyi Adrienn diplomadolgozatában olvasható.) a másik fontos megállapítás a mutáció és az aminosavcsere helye, amit kísérleteink alapján a gén által kódolt H fehérje C-terminális részén lokalizáltunk. Ebből azt a következtetést vonhatjuk le, hogy ez a C-terminális rész funkcionálisan fontos szerepet tölt be a fág baktériumfelszínhez történő tapadásában Újabb host-range fágmutánsok azonosítása A fág baktériumfelszínt felismerő fehérjéje és a baktérium fágreceptora között létrejövő kölcsönhatás pontosabb megismerése érdekében a már elmondott elvek alapján (5.1. fejezet) újabb receptor-mutáns baktériumokat és host-range fágmutánsokat izoláltunk. A kísérlet eredményét a 5. táblázat mutatja be. 5. táblázat: A host-range fágmutánsok megjelenése a különböző baktériumtörzseken. A fertőzésnél minden esetben ugyanazt a fágpopulációt alkalmaztuk. Baktériumtörzs RM41 GH4046 GH4178 GH fágpopulációval (5x10 9 ) való fertőzés után, egy lemezen lévő plakkok száma 5x10 9 plakk 50 plakk 50 plakk 200 plakk 28

29 Az 5. táblázat adatai alapján azt a következtetést vonhatjuk le, hogy valószínűleg két eltérő fenotípusú fágot tartalmazott a vizsgált lizátum (a vad típusú fág nagy többsége mellett). Az egyik a GH4046, illetve a GH4178 törzsön 50 plakk által képviselt fág. Ezen felül (vagy kívül) a GH4180 baktériumot egy további, a kísérletben 150 (200) plakkot adó fágmutáns is képes volt fertőzni. Azonban a GH4180 törzsön szaporodó fágok 75%-a (150) nem képes a másik két baktériumtörzshöz (GH4046, GH4178) kapcsolódni. Ezért mondhatjuk, hogy két különböző mutáns fágot sikerült kimutatnunk. A mutánsok közül hármat kiválasztottunk és h 109, h 111, h 114 jelzéssel láttuk el őket. E fágok további jellemzését a 6. táblázat mutatja. A táblázatban összehasonlításképpen feltüntettük az elsődlegesen izolált mutáns fágok fertőzőképességét is. 6. táblázat: A különböző host-range fág, receptor-mutáns és vad típusú baktérium gazdaspecifitása. A (-) jel a fágra való rezisztenciát, a (+) az érzékenységet jelenti. Host-range bakteriofág-mutánsok h 109 h 111 h 114 h 5 h 15 Receptormutáns baktériumok GH GH GH RM A kapott eredményeket elemezve elmondható, hogy abban az esetben, ha a h 114 -es fágtörzzsel fertőztük az rkpm 4046 allélt tartalmazó baktériumot (GH4046), pozitív eredményt kaptunk, vagyis a h 114 -es törzs mindkét baktériummutánson ugyanúgy képes szaporodni, ahogy azt a h 5 és h 15 allélt tartalmazó fágok esetében is megállapítottuk. Ez azt jelentheti, hogy e három bakteriofágban (h 5, h 15, h 114 ) a mutáció ugyanabban a régióban helyezkedhet el. (Az erre vonatkozó kísérletek és eredmények az 5.3. fejezetben találhatók.) A táblázat adatai alapján a h 109, h 111 allélt hordozó fágok az eredeti mutáns baktériumot (GH4046) nem, de az újonnan izolált mutánst (GH4180) képesek fertőzni. Tehát feltételezhető, hogy a h 109, h 111 -es törzsekben a mutáció legalábbis más aminosavcserét eredményez a h génen belül, vagy más gént érint. 29

30 5.3. A fág baktériumfelszín felismerésében más fágfehérje is szerepet játszhat Az 5.2. fejezetben olvasható feltevések bizonyítása érdekében meghatároztuk az újonnan izolált bakteriofágok (h 109, h 111, h 114 ) h régiójának nukleotid-szekvenciáját is, hasonlóan mint a h 5 és h 15 allél esetében (5.1. fejezet). Azt az eredményt kaptuk, hogy a h 114 mutáns allélben pontosan ugyanott és ugyanolyan mutáció található, mint az előzőleg izolált mutánsoknál (h 5, h ábra), viszont a h 109 és h 111 alléleket hordozó fágok h régiójának egész területén nem találtunk változást (6. ábra). Tehát a mutáció egy másik gén területére esik, ami azt feltételezi, hogy a fág baktérium kölcsönhatásban a fág több fehérjéje is részt vesz. Ezt a feltételezést alátámasztják a fág kezdeti vizsgálatakor kapott eredmények, miszerint a h génben talált mutáción kívül egy Ant mutáció is izolálható és térképezhető volt, amely a fág poliklonális ellenanyagokkal való reakcióját lényegesen gyengítette. Ezek ismeretében elképzelhető, hogy az általunk izolált 16-3 h 109 és h 111 az ant gén mutáns allélje. Ennek megállapítására vonatkozó kísérleteket a h 109 allélt tartalmazó törzs esetében terveztünk. Eredményeink nagyon hasonlítanak az E. coli lambda fág rendszerben tapasztaltakhoz. Mint ismeretes a lambda fág farki rost fehérjéjét (J) a j gén kódolja. E gén 3 végén szintén missense mutációt azonosítottak. A mutációt hordozó fágok csak a receptor-mutáns baktériumokat képesek fertőzni. E baktériumokban a fág-baktérium kapcsolat kialakításáért a malb gén által kódolt fehérje (MalB) felelős. A malb génben szintén egy missense mutációt detektáltak a C-terminális részen. Tehát mind a fág, mind a baktérium részéről a fehérjék C-terminális része fontos szerepet játszik a felismerés folyamatában (Wang et al., 1998) (Werts et al., 1994). A 16-3 fág S. meliloti kapcsolatban szintén a fehérje C-terminális része alakít ki kapcsolatot a fág és a baktérium között. Azonban a lambda fág esetében mindkét oldalról egy-egy fehérje, míg a 16-3 fág S. meliloti rendszerben legalább két fehérje vesz részt a tapadásban A h mutáns fágok baktériumhoz történő kötődésének vizsgálata A receptor-mutáns baktériumon újonnan izolált fágmutánsok (16-3 h 109 ) kötődésének megismerése céljából tervezett fágkötési tesztben a felnövesztett spontán mutáns baktériumokat ismert titerű 16-3 fág szuszpenzióval inkubáltuk, majd a sejtek lecentrifugálása után a felülúszót vad típusú KPS-t termelő (RM41) törzsön titráltuk 30

31 (4.4. fejezet). A tesztben a kontroll oldatokban nem található baktérium, így a belőlük nyert felülúszóból a fágok teljes mennyisége számolható. A baktériumokat is tartalmazó elegyben pedig a fágok egy része hozzá tud tapadni a baktériumok sejtfelszíni receptorához a fág kötődésének mértékétől függően. Így a felülúszóban csak azok a fágok találhatók, amelyek nem képesek a baktérium fágreceptorához kapcsolódni. A fág titerének nagymértékű csökkenése azt jelzi, hogy a vizsgált baktérium megkötötte a fágot. Ellenkező esetben (ha a fág képtelen a baktériumhoz kötődni), a titer nem változik jelentősen. 7. táblázat: Az izolált bakteriofágok kötődésének vizsgálata mutáns allélt tartalmazó (GH4046, GH4178, PP2511) és nem hordozó baktériumokon (RM41). A kontroll oldatok baktériumot nem tartalmaztak. Bakteriofágok Baktériumok h h 109 RM41 GH4046 kontroll RM h h 109 kontroll GH GH h h 109 kontroll GH GH h h 109 kontroll GH PP h h 109 kontroll PP

32 A 7. táblázat adatai alapján elmondható, hogy a vad típusú baktériumot (RM41) mindhárom fág körülbelül ugyanolyan mértékben (100%) képes fertőzni. A baktérium fágreceptorában nem történt változás, így a fágok felismerik azt és kromoszómájukat a baktérium genomjába tudják juttatni (profág). Különös eredményt kaptunk a fágok kötődését a GH4046 és a GH4178 baktériumon összehasonlítva. A GH4178 egy újonnan izolált mutáns, amely SDSpoliakrilamid gélelektroforézissel vizsgálva ugyanolyan KPS-t termel, mint a GH4046 (7. ábra). Az rkpm gén ugyanazon mutáns allélját hordozza, mint a GH4046 baktériumtörzs. Mégis a tesztben a fágok GH4046 és GH4178 baktériumokhoz kötődésében szignifikáns eltérés mutatkozott. Az eltérés oka feltételezéseink szerint a GH4178 baktérium kromoszómáján más régióban bekövetkezett mutáció lehet, amely erősebb kötődés létrejöttét engedélyezi. Ezt a hipotézist a GH4178 baktériummutánson végzett további kísérletekkel szeretnénk alátámasztani. 7. ábra: A mutáns baktériumok sejtfelszínén található kapszuláris poliszacharidok. Az ábrán Dr. Kerepesi Ildikó által készített SDS-poliakrilamid gél látható. Az ábra felső részén a KPS nagy molekulasúlyú, alsó részén a kis molekulasúlyú alkotója látható. A gélek felett a megfelelő mutáns törzsek számát tüntettük fel, amelyekből a KPS preparátum készült. A GH4178 baktériummal egyidőben izolált mutáns törzsön (GH4180) mindhárom fág erősebb kötődése észlelhető, mint a GH4046 vagy a GH4178 esetében, ami arra vezethető vissza, hogy az újonnan izolált baktérium eddigi mutánsokétól eltérő 32

A növény inváziójában szerepet játszó bakteriális gének

A növény inváziójában szerepet játszó bakteriális gének A növény inváziójában szerepet játszó bakteriális gének merisztéma korai szimbiotikus zóna késői szimbiotikus zóna öregedési zóna gyökér keresztmetszet NODULÁCIÓ növényi jel Rhizobium meliloti rhizobium

Részletesebben

A 16-3 bakteriofág h génje

A 16-3 bakteriofág h génje A 16-3 bakteriofág h génje Diplomamunka Békási Krisztina biológus hallgató témavezető: Dr. Putnoky Péter PTE TTK Genetikai és Molekuláris Biológiai Tanszék Pécs, 2004. A 16-3 fág h génje - 2 TARTALOM OLDAL

Részletesebben

Az RkpM fehérje funkciójának elemzése

Az RkpM fehérje funkciójának elemzése Az RkpM fehérje funkciójának elemzése DIPLOMAMUNKA Készítette: PÁLVÖLGYI ADRIENN Biológus hallgató Témavezető: DR. PUTNOKY PÉTER Pécsi Tudományegyetem, Természettudományi Kar Genetikai és Molekuláris Biológiai

Részletesebben

PÉCSI TUDOMÁNYEGYETEM. A kapszuláris poliszacharid bioszintézis és a 16-3 bakteriofág receptor Sinorhizobium meliloti 41 baktériumban

PÉCSI TUDOMÁNYEGYETEM. A kapszuláris poliszacharid bioszintézis és a 16-3 bakteriofág receptor Sinorhizobium meliloti 41 baktériumban PÉCSI TUDOMÁNYEGYETEM Biológia Doktori Iskola A kapszuláris poliszacharid bioszintézis és a 16-3 bakteriofág receptor Sinorhizobium meliloti 41 baktériumban Ph.D. értekezés tézisei Pálvölgyi Adrienn Témavezető:

Részletesebben

DNS-szekvencia meghatározás

DNS-szekvencia meghatározás DNS-szekvencia meghatározás Gilbert 1980 (1958) Sanger 3-1 A DNS-polimerázok jellemzői 5'-3' polimeráz aktivitás 5'-3' exonukleáz 3'-5' exonukleáz aktivitás Az új szál szintéziséhez kell: templát DNS primer

Részletesebben

Ph.D. értekezés tézisei. A c-típusú citokrómok biogenezisében résztvevő fehérjék. szerepe és génjeik szabályozása Sinorhizobium meliloti-ban

Ph.D. értekezés tézisei. A c-típusú citokrómok biogenezisében résztvevő fehérjék. szerepe és génjeik szabályozása Sinorhizobium meliloti-ban Ph.D. értekezés tézisei A c-típusú citokrómok biogenezisében résztvevő fehérjék szerepe és génjeik szabályozása Sinorhizobium meliloti-ban Készítette: Cinege Gyöngyi Témavezető: Dr. Dusha Ilona MTA Szegedi

Részletesebben

Fehérje expressziós rendszerek. Gyógyszerészi Biotechnológia

Fehérje expressziós rendszerek. Gyógyszerészi Biotechnológia Fehérje expressziós rendszerek Gyógyszerészi Biotechnológia Expressziós rendszerek Cél: rekombináns fehérjék előállítása nagy tisztaságban és nagy mennyiségben kísérleti ill. gyakorlati (therapia) felhasználásokra

Részletesebben

A szamóca érése során izolált Spiral és Spermidin-szintáz gén jellemzése. Kiss Erzsébet Kovács László

A szamóca érése során izolált Spiral és Spermidin-szintáz gén jellemzése. Kiss Erzsébet Kovács László A szamóca érése során izolált Spiral és Spermidin-szintáz gén jellemzése Kiss Erzsébet Kovács László Bevezetés Nagy gazdasági gi jelentıségük k miatt a gyümölcs lcsök, termések fejlıdésének mechanizmusát

Részletesebben

Az RkpK fehérje termeltetése

Az RkpK fehérje termeltetése DIPLOMAMUNKA Az RkpK fehérje termeltetése Készítette: HARCI ALEXANDRA biológus hallgató Témavezetők: PÁLVÖLGYI ADRIENN, DR. PUTNOKY PÉTER Pécsi Tudományegyetem, Természettudományi Kar Genetikai és Molekuláris

Részletesebben

Klónozás: tökéletesen egyforma szervezetek csoportjának előállítása, vagyis több genetikailag azonos egyed létrehozása.

Klónozás: tökéletesen egyforma szervezetek csoportjának előállítása, vagyis több genetikailag azonos egyed létrehozása. Növények klónozása Klónozás Klónozás: tökéletesen egyforma szervezetek csoportjának előállítása, vagyis több genetikailag azonos egyed létrehozása. Görög szó: klon, jelentése: gally, hajtás, vessző. Ami

Részletesebben

A molekuláris biológia eszközei

A molekuláris biológia eszközei A molekuláris biológia eszközei I. Nukleinsavak az élő szervezetekben Reverz transzkripció replikáció transzkripció transzláció DNS DNS RNS Fehérje DNS feladata: információ tárolása és a transzkripció

Részletesebben

A 16-3 bakteriofág receptorának elemzése

A 16-3 bakteriofág receptorának elemzése 1 DIPLOMAMUNKA A 16-3 bakteriofág receptorának elemzése DEÁK VERONIKA biológus hallgató Témavezető: DR. PUTNOKY PÉTER Pécsi Tudományegyetem Biológiai Intézet Genetikai és Molekuláris Biológiai Tanszék

Részletesebben

NITROGÉNKÖTŐ ENDOSZIMBIÓZISOK 1

NITROGÉNKÖTŐ ENDOSZIMBIÓZISOK 1 NITROGÉNKÖTŐ ENDOSZIMBIÓZISOK 1 Frankia baktériumfajok (Actinomycetales) filamentumok v. fonalak, (Streptomyces rokonok) növények: Alnus (Alnus glutinosa lásd a képet) Casuarina mediterrán fajok Eleagnus

Részletesebben

A 16-3 FÁG SZABÁLYOZÓ RÉGIÓI: REPRESSZOROK ÉS OPERÁTOROK

A 16-3 FÁG SZABÁLYOZÓ RÉGIÓI: REPRESSZOROK ÉS OPERÁTOROK SZENT ISTVÁN EGYETEM A 16-3 FÁG SZABÁLYOZÓ RÉGIÓI: REPRESSZOROK ÉS OPERÁTOROK Doktori értekezés tézisei Csiszovszki Zsolt Gödöllő 2003 A doktori iskola Megnevezése: Biológiatudományi Doktori Iskola Tudományága:

Részletesebben

GÉNTECHNOLÓGIA ÉS PROTEIN ENGINEERING GYAKORLAT

GÉNTECHNOLÓGIA ÉS PROTEIN ENGINEERING GYAKORLAT GÉNTECHNOLÓGIA ÉS PROTEIN ENGINEERING GYAKORLAT 2018 A gyakorlat célja az alapvető DNS technikák gyakorlása és egy látványos fehérje expressziós kísérlet elvégzése. A hallgatók párosával végzik a gyakorlatot.

Részletesebben

A szimbiotikus gümő inváziójában szerepet játszó bakteriális gének

A szimbiotikus gümő inváziójában szerepet játszó bakteriális gének MTA DOKTORI ÉRTEKEZÉS A szimbiotikus gümő inváziójában szerepet játszó bakteriális gének Dr. Putnoky Péter Pécsi Tudományegyetem, TTK Genetikai és Molekuláris Biológiai Tanszék Pécs, 2003. 2 Családomnak

Részletesebben

Molekuláris biológiai eljárások alkalmazása a GMO analitikában és az élelmiszerbiztonság területén

Molekuláris biológiai eljárások alkalmazása a GMO analitikában és az élelmiszerbiztonság területén Molekuláris biológiai eljárások alkalmazása a GMO analitikában és az élelmiszerbiztonság területén Dr. Dallmann Klára A molekuláris biológia célja az élőlények és sejtek működésének molekuláris szintű

Részletesebben

A bioinformatika gyökerei

A bioinformatika gyökerei A bioinformatika gyökerei 1944: Avery a transforming principle a DNS 1952: Hershey és Chase perdöntő bizonyíték: a bakteriofágok szaporodásakor csak a DNS jut be a sejtbe 1953: Watson és Crick a DNS szerkezete

Részletesebben

A basidiomycota élesztőgomba, a Filobasidium capsuligenum IFM 40078 törzse egy olyan

A basidiomycota élesztőgomba, a Filobasidium capsuligenum IFM 40078 törzse egy olyan A basidiomycota élesztőgomba, a Filobasidium capsuligenum IFM 40078 törzse egy olyan fehérjét (FC-1 killer toxint) választ ki a tápközegbe, amely elpusztítja az opportunista patogén Cryptococcus neoformans-t.

Részletesebben

7. A b-galaktozidáz indukciója Escherichia coliban

7. A b-galaktozidáz indukciója Escherichia coliban 7. A b-galaktozidáz INDUKCIÓJA ESCHERICHIA COLIBAN 7. A b-galaktozidáz indukciója Escherichia coliban dr. Bauer Pál 7.1. Az enzimindukció jelensége Az élõlények valamennyi génjének állandó és folyamatos

Részletesebben

Egy 10,3 kb méretű, lineáris, a mitokondriumban lokalizált DNS-plazmidot izoláltunk a

Egy 10,3 kb méretű, lineáris, a mitokondriumban lokalizált DNS-plazmidot izoláltunk a Egy 10,3 kb méretű, lineáris, a mitokondriumban lokalizált DNS-plazmidot izoláltunk a Fusarium proliferatum (Gibberella intermedia) ITEM 2337-es törzséből, és a plazmidot pfp1- nek neveztük el. Proteináz

Részletesebben

transzláció DNS RNS Fehérje A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti fehérjék, transzportfehérjék

transzláció DNS RNS Fehérje A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti fehérjék, transzportfehérjék Transzláció A molekuláris biológia centrális dogmája transzkripció transzláció DNS RNS Fehérje replikáció Reverz transzkriptáz A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti

Részletesebben

Kromoszómák, Gének centromer

Kromoszómák, Gének centromer Kromoszómák, Gének A kromoszóma egy hosszú DNS szakasz, amely a sejt életének bizonyos szakaszában (a sejtosztódás előkészítéseként) tömörödik, így fénymikroszkóppal láthatóvá válik. A kromoszómák két

Részletesebben

Szimbiotikus nitrogénkötés

Szimbiotikus nitrogénkötés Szimbiotikus nitrogénkötés Nitrogén körforgalom, kémiai és biológiai nitrogénkötés - szabadonélő, asszociatív és szimbiotikus nitrogénkötés. Növény-baktérium kapcsolatok: az agrobaktériumok és a rhizobiumok

Részletesebben

Agrobacterium vitis rezisztencia kialakítása az iaam szekvencia segítségével DIPLOMAMUNKA

Agrobacterium vitis rezisztencia kialakítása az iaam szekvencia segítségével DIPLOMAMUNKA Agrobacterium vitis rezisztencia kialakítása az iaam szekvencia segítségével DIPLOMAMUNKA készítette: GALAMBOS ANIKÓ biológus hallgató témavezető: Dr. PUTNOKY PÉTER PTE TTK Biológiai Intézet Genetikai

Részletesebben

NANOTECHNOLOGIA 6. előadás

NANOTECHNOLOGIA 6. előadás NANOTECHNOLOGIA 6. előadás A plazmid: Ha meg akarjuk ismerni egy fehérje működését, akkor sokat kell belőle előállítanunk. Ezt akár úgy is megtehetjük, hogy a kívánt géndarabot egy baktérumba ültetjük

Részletesebben

A termesztett búza diploid őseinek molekuláris citogenetikai elemzése: pachytén- és fiber-fish.

A termesztett búza diploid őseinek molekuláris citogenetikai elemzése: pachytén- és fiber-fish. OTKA K67808 zárójelentés 2012. A termesztett búza diploid őseinek molekuláris citogenetikai elemzése: pachytén- és fiber-fish. A fluoreszcens in situ hibridizáció (FISH) olyan technikai fejlettséget ért

Részletesebben

Mivel korábban már végeztünk mikroszatellit elemzést (Liker et al 2009), a kiértékeléshez szükséges szoftverek és tapasztalat rendelkezésre áll.

Mivel korábban már végeztünk mikroszatellit elemzést (Liker et al 2009), a kiértékeléshez szükséges szoftverek és tapasztalat rendelkezésre áll. Genetikai változatosság (állat csoportok) Pénzes Zsolt, Bihari Péter és Raskó István SZBK Genetika Intézet A pályázati munkatervnek megfelelően első évben elsősorban a részletes elemzésre kiválasztott

Részletesebben

Natív antigének felismerése. B sejt receptorok, immunglobulinok

Natív antigének felismerése. B sejt receptorok, immunglobulinok Natív antigének felismerése B sejt receptorok, immunglobulinok B és T sejt receptorok A B és T sejt receptorok is az immunglobulin fehérje család tagjai A TCR nem ismeri fel az antigéneket, kizárólag az

Részletesebben

Agrobacterium rezisztens növények létrehozása géncsendesítéssel

Agrobacterium rezisztens növények létrehozása géncsendesítéssel Agrobacterium rezisztens növények létrehozása géncsendesítéssel DIPLOMAMUNKA Készítette: CSEH ATTILA Biológus MSc szakos hallgató Témavezetők: GALAMBOS ANIKÓ, DR. PUTNOKY PÉTER PTE TTK Biológiai Intézet

Részletesebben

A 16-3 FÁG DNS PAKOLÁSÁNAK KULCSFONTOSSÁGÚ ELEMEI

A 16-3 FÁG DNS PAKOLÁSÁNAK KULCSFONTOSSÁGÚ ELEMEI SZENT ISTVÁN EGYETEM A 16-3 FÁG DNS PAKOLÁSÁNAK KULCSFONTOSSÁGÚ ELEMEI Doktori (PhD) értekezés Ganyu Anita Gödöllő 2005 A doktori iskola megnevezése: Biológia Tudományi Doktori Iskola tudományága: Biológia

Részletesebben

A kromoszómák kialakulása előtt a DNS állomány megkettőződik. A két azonos információ tartalmú DNS egymás mellé rendeződik és egy kromoszómát alkot.

A kromoszómák kialakulása előtt a DNS állomány megkettőződik. A két azonos információ tartalmú DNS egymás mellé rendeződik és egy kromoszómát alkot. Kromoszómák, Gének A kromoszóma egy hosszú DNS szakasz, amely a sejt életének bizonyos szakaszában (a sejtosztódás előkészítéseként) tömörödik, így fénymikroszkóppal láthatóvá válik. A kromoszómák két

Részletesebben

GÉNKLÓNOZÁS ÉS GÉNMANIPULÁCIÓ

GÉNKLÓNOZÁS ÉS GÉNMANIPULÁCIÓ GÉNKLÓNOZÁS ÉS GÉNMANIPULÁCIÓ Génklónozás Bármilyen klónozási eljárás célja, hogy egy ún. klónt, azaz tökéletesen egyforma szervezetek csoportját állítsák elő. Néhány növény, egyszerűen dugványozással

Részletesebben

MOLEKULÁRIS BIOLÓGIAI GYAKORLATOK

MOLEKULÁRIS BIOLÓGIAI GYAKORLATOK Molekuláris biológiai gyakorlatok - 1 MOLEKULÁRIS BIOLÓGIAI GYAKORLATOK Putnoky Péter PTE, TTK Genetikai és Molekuláris Biológiai Tanszék Tartalom Balesetvédelem 2. 3. DNS koncentráció meghatározás 10.

Részletesebben

12/4/2014. Genetika 7-8 ea. DNS szerkezete, replikáció és a rekombináció. 1952 Hershey & Chase 1953!!!

12/4/2014. Genetika 7-8 ea. DNS szerkezete, replikáció és a rekombináció. 1952 Hershey & Chase 1953!!! Genetika 7-8 ea. DNS szerkezete, replikáció és a rekombináció 1859 1865 1869 1952 Hershey & Chase 1953!!! 1879 1903 1951 1950 1944 1928 1911 1 1. DNS szerkezete Mi az örökítő anyag? Friedrich Miescher

Részletesebben

A genetikai lelet értelmezése monogénes betegségekben

A genetikai lelet értelmezése monogénes betegségekben A genetikai lelet értelmezése monogénes betegségekben Tory Kálmán Semmelweis Egyetem, I. sz. Gyermekklinika A ~20 ezer fehérje-kódoló gén a 23 pár kromoszómán A kromoszómán található bázisok száma: 250M

Részletesebben

Engedélyszám: 18211-2/2011-EAHUF Verziószám: 1. 2460-06 Humángenetikai vizsgálatok követelménymodul szóbeli vizsgafeladatai

Engedélyszám: 18211-2/2011-EAHUF Verziószám: 1. 2460-06 Humángenetikai vizsgálatok követelménymodul szóbeli vizsgafeladatai 1. feladat Ismertesse a gyakorlaton lévő szakasszisztens hallgatóknak a PCR termékek elválasztása céljából végzett analitikai agaróz gélelektroforézis során használt puffert! Az ismertetés során az alábbi

Részletesebben

Biomassza alapú bioalkohol előállítási technológia fejlesztése metagenomikai eljárással

Biomassza alapú bioalkohol előállítási technológia fejlesztése metagenomikai eljárással Biomassza alapú bioalkohol előállítási technológia fejlesztése metagenomikai eljárással Kovács Zoltán ügyvezető DEKUT Debreceni Kutatásfejlesztési Közhasznú Nonprofit Kft. Problémadefiníció Első generációs

Részletesebben

NÖVÉNYÉLETTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

NÖVÉNYÉLETTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 NÖVÉNYÉLETTAN Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 Sejtfal szintézis és megnyúlás Környezeti tényezők hatása a növények növekedésére és fejlődésére Előadás áttekintése

Részletesebben

TRIPSZIN TISZTÍTÁSA AFFINITÁS KROMATOGRÁFIA SEGÍTSÉGÉVEL

TRIPSZIN TISZTÍTÁSA AFFINITÁS KROMATOGRÁFIA SEGÍTSÉGÉVEL TRIPSZIN TISZTÍTÁSA AFFINITÁS KROMATOGRÁFIA SEGÍTSÉGÉVEL Az egyes biomolekulák izolálása kulcsfontosságú a biológiai szerepük tisztázásához. Az affinitás kromatográfia egyszerűsége, reprodukálhatósága

Részletesebben

Génszerkezet és génfunkció

Génszerkezet és génfunkció Általános és Orvosi Genetika jegyzet 4. fejezetének bővítése a bakteriális genetikával 4. fejezet Génszerkezet és génfunkció 1/ Bakteriális genetika Nem szükséges külön hangsúlyoznunk a baktériumok és

Részletesebben

5. Molekuláris biológiai technikák

5. Molekuláris biológiai technikák 5. Molekuláris biológiai technikák DNS szaporítás kémcsőben és élőben. Klónozás, PCR, cdna, RT-PCR, realtime-rt-pcr, Northern-, Southernblotting, génexpresszió, FISH 5. Molekuláris szintű biológiai technikák

Részletesebben

DNS molekulák elválasztása agaróz gélelektroforézissel és kapilláris elektroforézissel

DNS molekulák elválasztása agaróz gélelektroforézissel és kapilláris elektroforézissel DNS molekulák elválasztása agaróz gélelektroforézissel és kapilláris elektroforézissel Gyakorlat helye: BIOMI Kft. Gödöllő, Szent-Györgyi A. u. 4. (Nemzeti Agrárkutatási és Innovációs Központ épülete volt

Részletesebben

avagy az ipari alkalmazhatóság kérdése biotechnológiai tárgyú szabadalmi bejelentéseknél Dr. Győrffy Béla, Egis Nyrt., Budapest

avagy az ipari alkalmazhatóság kérdése biotechnológiai tárgyú szabadalmi bejelentéseknél Dr. Győrffy Béla, Egis Nyrt., Budapest Iparilag alkalmazható szekvenciák, avagy az ipari alkalmazhatóság kérdése biotechnológiai tárgyú szabadalmi bejelentéseknél Dr. Győrffy Béla, Egis Nyrt., Budapest Neutrokin α - jelentős kereskedelmi érdekek

Részletesebben

A T sejt receptor (TCR) heterodimer

A T sejt receptor (TCR) heterodimer Immunbiológia - II A T sejt receptor (TCR) heterodimer 1 kötőhely lánc lánc 14. kromoszóma 7. kromoszóma V V C C EXTRACELLULÁRIS TÉR SEJTMEMBRÁN CITOSZÓL lánc: VJ régió lánc: VDJ régió Nincs szomatikus

Részletesebben

Baktérium- és fággenetika

Baktérium- és fággenetika Baktérium- és fággenetika Baktériumok A prokarióták egysejtű organizmusok haploid, cirkuláris dsdns genom 70 S riboszóma plazmamembrán, citoplazma nincs mag, ER, Golgi, mitokondrium aszexuális szaporodás

Részletesebben

DNS klónozása DNS klóntárak előállítása és szűrése

DNS klónozása DNS klóntárak előállítása és szűrése DNS klónozása DNS klóntárak előállítása és szűrése Lontay Beáta 2016. Klónozás: A genetikai információt az egyik élőlényből (állat, növény, mikroorganizmus) mesterségesen visszük át egy másik organizmusba.

Részletesebben

Mutáció létrehozása a Sinorhizobium meliloti baktérium phaa2 génjében

Mutáció létrehozása a Sinorhizobium meliloti baktérium phaa2 génjében Mutáció létrehozása a Sinorhizobium meliloti baktérium phaa2 génjében Készítette: ACKERMANN ANDREA Biológia-kémia szakos hallgató Témavezetı: Pálvölgyi Adrienn, Dr. Putnoky Péter Pécsi Tudományegyetem,

Részletesebben

(1) A T sejtek aktiválása (2) Az ön reaktív T sejtek toleranciája. α lánc. β lánc. V α. V β. C β. C α.

(1) A T sejtek aktiválása (2) Az ön reaktív T sejtek toleranciája. α lánc. β lánc. V α. V β. C β. C α. Immunbiológia II A T sejt receptor () heterodimer α lánc kötőhely β lánc 14. kromoszóma 7. kromoszóma 1 V α V β C α C β EXTRACELLULÁRIS TÉR SEJTMEMBRÁN CITOSZÓL αlánc: VJ régió β lánc: VDJ régió Nincs

Részletesebben

A Globális regulátor mutációknak mint az attenuálás lehetőségének vizsgálata Escherichia coli-ban

A Globális regulátor mutációknak mint az attenuálás lehetőségének vizsgálata Escherichia coli-ban A Globális regulátor mutációknak mint az attenuálás lehetőségének vizsgálata Escherichia coli-ban című támogatott kutatás fő célja az volt, hogy olyan regulációs mechanizmusoknak a virulenciára kifejtett

Részletesebben

I. A sejttől a génekig

I. A sejttől a génekig Gén A gének olyan nukleinsav-szakaszok a sejtek magjainak kromoszómáiban, melyek a szervezet működését és növekedését befolyásoló fehérjék szabályozásához és előállításához szükséges információkat tartalmazzák.

Részletesebben

Fény Levegő (O 2, CO 2 ) Víz Tápanyag. Nem helyettesítik egymást

Fény Levegő (O 2, CO 2 ) Víz Tápanyag. Nem helyettesítik egymást Fény Levegő (O 2, CO 2 ) Víz Tápanyag Nem helyettesítik egymást Növény Termésátlag (kg/ha) 2006 2016 között Eltérés (%) minimum maximum Búza 3 590 5 380 150 Kukorica 3 730 8 000 215 Árpa 3 170 5 140 162

Részletesebben

III/3. Gének átvitele vektorokkal

III/3. Gének átvitele vektorokkal III/3. Gének átvitele vektorokkal Vektor: (molekuláris) biológiai rendszer, amely képes új/idegen genetikai információt bejuttatni egy sejtbe. Független szaporodásra képes. Fajtái: Plazmidok (1-10 kb)

Részletesebben

Biológus MSc. Molekuláris biológiai alapismeretek

Biológus MSc. Molekuláris biológiai alapismeretek Biológus MSc Molekuláris biológiai alapismeretek A nukleotidok építőkövei A nukleotidok szerkezete Nukleotid = N-tartalmú szerves bázis + pentóz + foszfát N-glikozidos kötés 5 1 4 2 3 (Foszfát)észter-kötés

Részletesebben

Készült: Módosítva: július

Készült: Módosítva: július Tananyag címe: Transzaminázok vizsgálata Szerző: Dr. Mótyán János András egyetemi tanársegéd Biokémiai és Molekuláris Biológiai Intézet Általános Orvostudományi Kar Debreceni Egyetem Készült: 2014.12.01-2015.01.31.

Részletesebben

2011. január április 10. IPK Gatersleben (Németország) május 17. Kruppa Klaudia

2011. január április 10. IPK Gatersleben (Németország) május 17. Kruppa Klaudia 2011. január 10. 2011. április 10. IPK Gatersleben (Németország) Gatersleben (G-life) Country State District Town Administration Germany Saxony-Anhalt Salzlandkreis Seeland Basic statistics Area 16.00

Részletesebben

Scan 1200 teljesítmény-értékelés evaluation 1/5

Scan 1200 teljesítmény-értékelés evaluation 1/5 evaluation 1/5 interscience Feladat Összefoglalónk célja a Scan 1200 teljesítmény-értékelése manuális és automata telepszámlálások összehasonlításával. Az összehasonlító kísérleteket Petri-csészés leoltást

Részletesebben

MOLEKULÁRIS BIOLÓGIA GYAKORLATOK

MOLEKULÁRIS BIOLÓGIA GYAKORLATOK MOLEKULÁRIS BIOLÓGIA GYAKORLATOK biológia BSc szakos hallgatók számára Dr. Putnoky Péter PTE TTK Biológiai Intézet 2005. A jegyzet elkészítését pályázat támogatta: A kétciklusú képzés bevezetése a magyar

Részletesebben

Pórusos polimer gélek szintézise és vizsgálata és mi a közük a sörgyártáshoz

Pórusos polimer gélek szintézise és vizsgálata és mi a közük a sörgyártáshoz Pórusos polimer gélek szintézise és vizsgálata és mi a közük a sörgyártáshoz Póta Kristóf Eger, Dobó István Gimnázium Témavezető: Fodor Csaba és Szabó Sándor "AKI KÍVÁNCSI KÉMIKUS" NYÁRI KUTATÓTÁBOR MTA

Részletesebben

A DNS replikációban kulcsszerepet játszó PCNA fehérje variánsok előállítása és rekombináns DNS technológia segítségével való kifejezése

A DNS replikációban kulcsszerepet játszó PCNA fehérje variánsok előállítása és rekombináns DNS technológia segítségével való kifejezése A DNS replikációban kulcsszerepet játszó PCNA fehérje variánsok előállítása és rekombináns DNS technológia segítségével való kifejezése PCNA (Proliferating Cell Nuclear Antigen) Csiszár Mónika, Kós Tamás,

Részletesebben

A vira szekvenciák azonosítása Agrobacterium vitis törzsekből

A vira szekvenciák azonosítása Agrobacterium vitis törzsekből A vira szekvenciák azonosítása Agrobacterium vitis törzsekből DIPLOMADOLGOZAT Készítette: RADVÁNYI ATTILA Biológus MSc szakos hallgató Témavezető: DR. PUTNOKY PÉTER PTE TTK Biológiai Intézet Genetikai

Részletesebben

Szabadság tér 1, tel , fax ,

Szabadság tér 1, tel , fax , Génkiütés λ-red rekombinációval Escherichia coli-ban Gene Knockout using λ-red Recombination System in Escherichia Coli Eliminarea genelor în Escherichia coli folosind sistemul de recombinare λ-red FAZAKAS

Részletesebben

NUKLEINSAVAK. Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag

NUKLEINSAVAK. Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag NUKLEINSAVAK Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag RNS = Ribonukleinsav DNS = Dezoxi-ribonukleinsav A nukleinsavak

Részletesebben

Intelligens molekulákkal a rák ellen

Intelligens molekulákkal a rák ellen Intelligens molekulákkal a rák ellen Kotschy András Servier Kutatóintézet Rákkutatási kémiai osztály A rákos sejt Miben más Hogyan él túl Áttekintés Rákos sejtek célzott támadása sejtmérgekkel Fehérjék

Részletesebben

A Hardy-Weinberg egyensúly. 2. gyakorlat

A Hardy-Weinberg egyensúly. 2. gyakorlat A Hardy-Weinberg egyensúly 2. gyakorlat A Hardy-Weinberg egyensúly feltételei: nincs szelekció nincs migráció nagy populációméret (nincs sodródás) nincs mutáció pánmixis van allélgyakoriság azonos hímekben

Részletesebben

Molekuláris genetikai vizsgáló. módszerek az immundefektusok. diagnosztikájában

Molekuláris genetikai vizsgáló. módszerek az immundefektusok. diagnosztikájában Molekuláris genetikai vizsgáló módszerek az immundefektusok diagnosztikájában Primer immundefektusok A primer immundeficiencia ritka, veleszületett, monogénes öröklődésű immunhiányos állapot. Családi halmozódást

Részletesebben

Genetikailag módosított növények detektálása élelmiszerekben polimeráz láncreakcióval

Genetikailag módosított növények detektálása élelmiszerekben polimeráz láncreakcióval Genetikailag módosított növények detektálása élelmiszerekben polimeráz láncreakcióval Szabó Erika és Szamos Jenõ Központi Élelmiszeripari Kutató Intézet, Budapest Érkezett: 2001. június 20. A nemesítõk

Részletesebben

Dr. Nemes Nagy Zsuzsa Szakképzés Karl Landsteiner Karl Landsteiner:

Dr. Nemes Nagy Zsuzsa Szakképzés Karl Landsteiner Karl Landsteiner: Az AB0 vércsoport rendszer Dr. Nemes Nagy Zsuzsa Szakképzés 2011 Az AB0 rendszer felfedezése 1901. Karl Landsteiner Landsteiner szabály 1901 Karl Landsteiner: Munkatársai vérmintáit vizsgálva fedezte fel

Részletesebben

Immunológia alapjai. 10. előadás. Komplement rendszer

Immunológia alapjai. 10. előadás. Komplement rendszer Immunológia alapjai 10. előadás Komplement rendszer A gyulladás molekuláris mediátorai: Miért fontos a komplement rendszer? A veleszületett (nem-specifikus) immunválasz része Azonnali válaszreakció A veleszületett

Részletesebben

Többgénes jellegek. 1. Klasszikus (poligénes) mennyiségi jellegek. 2.Szinte minden jelleg több gén irányítása alatt áll

Többgénes jellegek. 1. Klasszikus (poligénes) mennyiségi jellegek. 2.Szinte minden jelleg több gén irányítása alatt áll Többgénes jellegek Többgénes jellegek 1. 1. Klasszikus (poligénes) mennyiségi jellegek Multifaktoriális jellegek: több gén és a környezet által meghatározott jellegek 2.Szinte minden jelleg több gén irányítása

Részletesebben

Gyógyszerrezisztenciát okozó fehérjék vizsgálata

Gyógyszerrezisztenciát okozó fehérjék vizsgálata Gyógyszerrezisztenciát okozó fehérjék vizsgálata AKI kíváncsi kémikus kutatótábor 2017.06.25-07.01. Témavezetők : Telbisz Ágnes, Horváth Tamás Kutatók : Dobolyi Zsófia, Bereczki Kristóf, Horváth Ákos Gyógyszerrezisztencia

Részletesebben

KUTATÁSI JELENTÉS. DrJuice termékek Ezüstkolloid Hydrogél és Kolloid oldat hatásvizsgálata

KUTATÁSI JELENTÉS. DrJuice termékek Ezüstkolloid Hydrogél és Kolloid oldat hatásvizsgálata KUTATÁSI JELENTÉS A Bay Zoltán Alkalmazott Kutatási Közalapítvány Nanotechnológiai Kutatóintézet e részére DrJuice termékek Ezüstkolloid Hydrogél és Kolloid oldat hatásvizsgálata. E z ü s t k o l l o

Részletesebben

Egy új toxin-antitoxinszerű modul nem tipikus transzkripciós szabályozása és funkciója Bradyrhizobium japonicumban. Miclea Sebastian Paul

Egy új toxin-antitoxinszerű modul nem tipikus transzkripciós szabályozása és funkciója Bradyrhizobium japonicumban. Miclea Sebastian Paul Ph.D disszertáció tézisei Egy új toxin-antitoxinszerű modul nem tipikus transzkripciós szabályozása és funkciója Bradyrhizobium japonicumban Miclea Sebastian Paul Témavezető: Dr. Dusha Ilona Genetikai

Részletesebben

A szója oltás jelentősége és várható hozadékai. Mándi Lajosné dr

A szója oltás jelentősége és várható hozadékai. Mándi Lajosné dr A szója oltás jelentősége és várható hozadékai Mándi Lajosné dr. 2016.12.08. Nitrogén megkötés Rhizobium baktériumokkal Légköri nitrogén (78 %) megkötés. Endoszimbiózis kialakítása, új szerv: nitrogénkötő

Részletesebben

A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk.

A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk. Nukleinsavak Szerkesztette: Vizkievicz András A nukleinsavakat először a sejtek magjából sikerült tiszta állapotban kivonni. Innen a név: nucleus = mag (lat.), a sav a kémhatásukra utal. Azonban nukleinsavak

Részletesebben

Összehasonlító környezetmikrobiológiai. Böddi-szék vizében egy alga tömegprodukció idején

Összehasonlító környezetmikrobiológiai. Böddi-szék vizében egy alga tömegprodukció idején Összehasonlító környezetmikrobiológiai vizsgálatok a Böddi-szék vizében egy alga tömegprodukció idején Czeibert Katalin Témavezető: Dr. Borsodi Andrea Eötvös Loránd Tudományegyetem, Mikrobiológiai Tanszék

Részletesebben

Poligénes v. kantitatív öröklődés

Poligénes v. kantitatív öröklődés 1. Öröklődés komplexebb sajátosságai 2. Öröklődés molekuláris alapja Poligénes v. kantitatív öröklődés Azok a tulajdonságokat amelyek mértékegységgel nem, vagy csak nehezen mérhetők, kialakulásuk kevéssé

Részletesebben

HAPMAP -2010 Nemzetközi HapMap Projekt. SNP GWA Haplotípus: egy kromoszóma szegmensen lévő SNP mintázat

HAPMAP -2010 Nemzetközi HapMap Projekt. SNP GWA Haplotípus: egy kromoszóma szegmensen lévő SNP mintázat HAPMAP -2010 Nemzetközi HapMap Projekt A Nemzetközi HapMap Project célja az emberi genom haplotípus* térképének(hapmap; haplotype map) megszerkesztése, melynek segítségével katalogizálni tudjuk az ember

Részletesebben

NÖVÉNYÉLETTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

NÖVÉNYÉLETTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A NÖVÉNYÉLETTAN Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 Auxinok Előadás áttekintése 1. Az auxinok felfedezése: az első növényi hormon 2. Az auxinok kémiai szerkezete és

Részletesebben

MINTAJEGYZŐKÖNYV A VÉRALVADÁS VIZSGÁLATA BIOKÉMIA GYAKORLATHOZ

MINTAJEGYZŐKÖNYV A VÉRALVADÁS VIZSGÁLATA BIOKÉMIA GYAKORLATHOZ MINTAJEGYZŐKÖNYV A VÉRALVADÁS VIZSGÁLATA BIOKÉMIA GYAKORLATHOZ Feladatok 1. Teljes vér megalvasztása rekalcifikálással 1.1 Gyakorlat kivitelezése 1.2 Minta jegyzőkönyv 2. Referenciasor készítése fehérjeméréshez

Részletesebben

DNS-számítógép. Balló Gábor

DNS-számítógép. Balló Gábor DNS-számítógép Balló Gábor Bevezetés A nukleinsavak az élő szervezetek egyik legfontosabb alkotórészei. Ezekben tárolódnak ugyanis az öröklődéshez, és a fehérjeszintézishez szükséges információk. Bár a

Részletesebben

DNS KLÓNOZÁS: Egy DNS molekula megsokszorozása. In vivo-különféle gazdasejtekben

DNS KLÓNOZÁS: Egy DNS molekula megsokszorozása. In vivo-különféle gazdasejtekben DNS KLÓNOZÁS DNS KLÓNOZÁS: Egy DNS molekula megsokszorozása In vitro-pcr In vivo-különféle gazdasejtekben POLIMERÁZ LÁNCREAKCIÓ (PCR) PCR A POLIMERÁZ LÁNC REAKCIÓ DNS MOLEKULÁK MEGSOKSZOROZÁSÁRA (AMPLIFIKÁLÁSÁRA)

Részletesebben

Genomika. Mutációk (SNP-k) és vizsgálatuk egyszerű módszerekkel. DNS szekvenálási eljárások. DNS ujjlenyomat (VNTR)

Genomika. Mutációk (SNP-k) és vizsgálatuk egyszerű módszerekkel. DNS szekvenálási eljárások. DNS ujjlenyomat (VNTR) Genomika (A genom, génállomány vizsgálata) Mutációk (SNP-k) és vizsgálatuk egyszerű módszerekkel DNS szekvenálási eljárások DNS ujjlenyomat (VNTR) DNS chipek statikus és dinamikus információk vizsgálata

Részletesebben

Az örökítőanyag. Az élőlények örökítőanyaga minden esetben nukleinsav (DNS,RNS) (1)Griffith, (2)Avery, MacLeod and McCarty (3)Hershey and Chase

Az örökítőanyag. Az élőlények örökítőanyaga minden esetben nukleinsav (DNS,RNS) (1)Griffith, (2)Avery, MacLeod and McCarty (3)Hershey and Chase SZTE, Orv. Biol. Int., Mol- és Sejtbiol. Gyak., VIII. Az örökítőanyag Az élőlények örökítőanyaga minden esetben nukleinsav (DNS,RNS) (1)Griffith, (2)Avery, MacLeod and McCarty (3)Hershey and Chase Ez az

Részletesebben

A Telomerase-specific Doxorubicin-releasing Molecular Beacon for Cancer Theranostics

A Telomerase-specific Doxorubicin-releasing Molecular Beacon for Cancer Theranostics A Telomerase-specific Doxorubicin-releasing Molecular Beacon for Cancer Theranostics Yi Ma, Zhaohui Wang, Min Zhang, Zhihao Han, Dan Chen, Qiuyun Zhu, Weidong Gao, Zhiyu Qian, and Yueqing Gu Angew. Chem.

Részletesebben

A GENOM MEGISMERÉSÉNEK MÓDSZEREI

A GENOM MEGISMERÉSÉNEK MÓDSZEREI A GENOM MEGISMERÉSÉNEK MÓDSZEREI 20 GENETIKA ALAPOK 3-1 Jóslatok és a valóság a molekuláris biológiában. Mennyire látható előre a tudomány fejlődése? 1968 Simone de Beauvoir "Minden ember halandó" 1-2

Részletesebben

Az adenovírusok morfológiája I.

Az adenovírusok morfológiája I. Adenovírusok A vírusok Elnevezésük a latin virus szóból ered, amelynek jelentése méreg. A vírusok a legkisebb ismert entitások. Csak elektronmikroszkóppal tanulmányozhatóak, mert méretük 20-400 nanométerig

Részletesebben

Bakteriofág és bakteriális represszor vizsgálata in vivo és in vitro módszerekkel

Bakteriofág és bakteriális represszor vizsgálata in vivo és in vitro módszerekkel SZENT ISTVÁN EGYETEM Bakteriofág és bakteriális represszor vizsgálata in vivo és in vitro módszerekkel Doktori értekezés tézisei Ferenczi Szilamér Imre Gödöllő 2008 A doktori iskola megnevezése: Biológia

Részletesebben

Transzgénikus növények előállítása

Transzgénikus növények előállítása Transzgénikus növények előállítása Növényi biotechnológia Területei: A növények szaporításának új módszerei Növényi sejt és szövettenyészetek alkalmazása Mikroszaporítás Vírusmentes szaporítóanyag előállítása

Részletesebben

DNS replikáció. DNS RNS Polipeptid Amino terminus. Karboxi terminus. Templát szál

DNS replikáció. DNS RNS Polipeptid Amino terminus. Karboxi terminus. Templát szál DNS replikáció DNS RNS Polipeptid Amino terminus Templát szál Karboxi terminus Szuper-csavarodott prokarióta cirkuláris DNS Hisztonok komplexe DNS hisztonokra történő felcsvarodása Hiszton-kötött negatív

Részletesebben

A glükóz reszintézise.

A glükóz reszintézise. A glükóz reszintézise. A glükóz reszintézise. A reszintézis nem egyszerű megfordítása a glikolízisnek. A glikolízis 3 irrevezibilis lépése más úton játszódik le. Ennek oka egyrészt energetikai, másrészt

Részletesebben

Növényvédelmi Tudományos Napok 2014

Növényvédelmi Tudományos Napok 2014 Növényvédelmi Tudományos Napok 2014 Budapest 60. NÖVÉNYVÉDELMI TUDOMÁNYOS NAPOK Szerkesztők HORVÁTH JÓZSEF HALTRICH ATTILA MOLNÁR JÁNOS Budapest 2014. február 18-19. ii Szerkesztőbizottság Tóth Miklós

Részletesebben

A Nimród fehérje- és géncsalád szerepe a mikroorganizmusok felismerésében és bekebelezésében

A Nimród fehérje- és géncsalád szerepe a mikroorganizmusok felismerésében és bekebelezésében A Nimród fehérje- és géncsalád szerepe a mikroorganizmusok felismerésében és bekebelezésében PhD értekezés Szerző: Zsámboki János Témavezető: Dr. Kurucz Éva Biológia doktori iskola MTA Szegedi Biológiai

Részletesebben

ADATBÁNYÁSZAT I. ÉS OMICS

ADATBÁNYÁSZAT I. ÉS OMICS Az élettudományi-klinikai felsőoktatás gyakorlatorientált és hallgatóbarát korszerűsítése a vidéki képzőhelyek nemzetközi versenyképességének erősítésére TÁMOP-4.1.1.C-13/1/KONV-2014-0001 ADATBÁNYÁSZAT

Részletesebben

Flagellin alapú filamentáris nanoszerkezetek létrehozása

Flagellin alapú filamentáris nanoszerkezetek létrehozása Flagellin alapú filamentáris nanoszerkezetek létrehozása Vonderviszt Ferenc PE MÜKKI Bio-Nanorendszerek Laboratórium MTA Enzimológiai Intézete MTA MFA Bakteriális flagellumok Flagelláris filamentum: ~10

Részletesebben

Egy új, a szimbiotikus gümőfejlődésben szerepet játszó ubiquitin ligáz funkcionális jellemzése

Egy új, a szimbiotikus gümőfejlődésben szerepet játszó ubiquitin ligáz funkcionális jellemzése Zárójelentés 76843 sz. pályázat 2009 2012 Egy új, a szimbiotikus gümőfejlődésben szerepet játszó ubiquitin ligáz funkcionális jellemzése A tervezett munka a kutatócsoportunkban korábban genetikai térképezésen

Részletesebben

2.6.16. VIZSGÁLATOK IDEGEN KÓROKOZÓKRA HUMÁN ÉLŐVÍRUS-VAKCINÁKBAN

2.6.16. VIZSGÁLATOK IDEGEN KÓROKOZÓKRA HUMÁN ÉLŐVÍRUS-VAKCINÁKBAN 2.6.16. Vizsgálatok idegen kórokozókra Ph.Hg.VIII. - Ph.Eur.7.0 1 2.6.16. VIZSGÁLATOK IDEGEN KÓROKOZÓKRA HUMÁN ÉLŐVÍRUS-VAKCINÁKBAN 01/2011:20616 Azokhoz a vizsgálatokhoz, amelyekhez a vírust előzőleg

Részletesebben

DNS munka a gyakorlatban. 2012.10.12. Természetvédelmi genetika

DNS munka a gyakorlatban. 2012.10.12. Természetvédelmi genetika DNS munka a gyakorlatban 2012.10.12. Természetvédelmi genetika Munka fázisok DNS kivonás elektroforézis (fakultatív lépés) PCR Elektroforézis Szekvenálás Szekvencia elemzés faji azonosítás; variabilitás,

Részletesebben

A tananyag felépítése: A BIOLÓGIA ALAPJAI. I. Prokarióták és eukarióták. Az eukarióta sejt. Pécs Miklós: A biológia alapjai

A tananyag felépítése: A BIOLÓGIA ALAPJAI. I. Prokarióták és eukarióták. Az eukarióta sejt. Pécs Miklós: A biológia alapjai A BIOLÓGIA ALAPJAI A tananyag felépítése: Környezetmérnök és műszaki menedzser hallgatók számára Előadó: 2 + 0 + 0 óra, félévközi számonkérés 3 ZH: október 3, november 5, december 5 dr. Pécs Miklós egyetemi

Részletesebben

MIKROSZATELIT DNS- VIZSGÁLATOK A MOCSÁRI TEKNŐS NÉGY DUNÁNTÚLI ÁLLOMÁNYÁN

MIKROSZATELIT DNS- VIZSGÁLATOK A MOCSÁRI TEKNŐS NÉGY DUNÁNTÚLI ÁLLOMÁNYÁN MIKROSZATELIT DNS- VIZSGÁLATOK A MOCSÁRI TEKNŐS NÉGY DUNÁNTÚLI ÁLLOMÁNYÁN Molnár Tamás 1, Lanszki József 1, Magyary István 1, Jeney Zsigmond 2, Lehoczky István 2 1 Kaposvári Egyetem Állattudományi Kar,

Részletesebben