TDK dolgozat. Korlátosság vizsgálata irány-hossz vegyes gráfok esetén

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "TDK dolgozat. Korlátosság vizsgálata irány-hossz vegyes gráfok esetén"

Átírás

1 TDK dolgozat Korlátosság vizsgálata irány-hossz vegyes gráfok esetén Szabó Botond Alkalmazott matematikus szak Eötvös Loránd Tudományegyetem Természettudományi Kar 2009 Témavezet : Jordán Tibor, egyetemi tanár ELTE TTK Matematikai Intézet Operációkutatási Tanszék

2 Contents 1 Bevezetés Általános bevezetés Jelölések Tételek az algoritmushoz 10 3 Az algoritmus Az algoritmus megadása Generikusan nem korlátos gráf tetsz legesen nagy realizációja Következmények, kapcsolatok A kétféle modell ekvivalenciája Gráfelméleti karakterizáció a korlátosságra

3 Absztrakt Irány-hossz rendszernek nevezzük azon (G, p) rendezett párokat, ahol a G = (V ; D, L) vegyes gráf, melyben V jelöli a csúcsok, D az "irány élek", L a "hossz élek" halmazát és p egy leképezés V -b l a d dimenziós Euklideszi térbe. Egy uv él címkéje egy hossz vagy irány korlátozást fog adni p(u) és p(v) között. A hossz korlátozás lehet fels határ vagy pontos távolság megadás és az így megadott két fajta deníció alapján lehet kötél illetve rúd modellr l beszélni. A dolgozat során a kötél modell korlátosságával foglalkoztam majd végül beláttam, hogy a kapott állítások rúd modellre is alkalmazhatóak. Els ként egy algoritmust adtam meg, mely eldönti, hogy egy (G, p) rendszer korlátos-e, majd nem korlátos esetben tetsz leges nagyságú gráf elkészítésére adtam egy eljárást. Az algoritmus felhasználásával beláttam, hogy a kötél és rúd modell korlátosságának feltétele megegyezik, azaz az algoritmus mindkét modellre alkalmazható. Végül igazoltam, hogy az algoritmus pontosan azon gráfokat adja korlátosnak, melyek Bill Jackson és Peter Keevash (2009a) cikkében szerepl korlátosság feltételeket is teljesítik, azaz az eljárásnak és a cikknek a (G, p) rendezett pár korlátosságára adott feltételrendszere megegyezik. A dolgozat során az általánosan használt rúd modell helyett bevezetett kötél modell segítségével egyszer síteni tudtam a problémát és a matroid elméletet kikerülve elemi operációkutatási módszereket alkalmazva sikerült a gráf korlátosságával ekvivalens feltételt megadni. A két modell korlátosságának ekvivalenciája miatt a kapott módszer segítséget nyújthat összetettebb problémák vizsgálatánál. 2

4 1 Bevezetés 1.1 Általános bevezetés A geometriai megkötésekkel megadott szerkezeteket gyakorlati problémák széles skálájának modellezésére alkalmazzák, mint például szenzor rendszereknél, molekulák rugalmasságánál és számítógépes formatervezésnél. A G gráf bizonyos éleire irány (D, irány-élek) illetve hossz (hossz-élek) megkötéseket tehetünk és az így keletkezett rendszerrel kapcsolatban számos érdekes kérdés merül fel. Vizsgálhatunk olyan rendszereket, melyekben csak az élek hosszára (Laman (1970)) vagy irányára van megkötés (Whiteley (1996)), illetve a vegyes gráfok esetét, melyben mindkett fajta megkötés el fordulhat (Servatius and Whiteley (1999)). A hossz-éleket kétféleképpen deniálhatjuk. Az általánosan bevett gyakorlat szerint rúdnak (L) nevezzük azon hossz-éleket, melyekben az él hossza x, míg a dolgozatban bevezetett deníció szerint kötélnek (K) nevezzük azon hossz-éleket, melyekben az él hosszára fels korlát van megadva. A dolgozat során belátjuk, hogy az általunk vizsgált tulajdonságok egybeesnek a különböz denícióval megadott modellekben. Az él korlátozásokkal megadott gráfok esetén természetesnek t nik annak a kérdése, hogy az adataink tartalmaznak-e ellentmondást vagy létezik a feltételeket kielégít realizációja a gráfnak. Létezés esetén továbbá felmerül az egyértelm ség kérdése. Jelentse a (G, p) rendezett pár a G = (V, E) gráf egy realizációját a d dimenziós Euklideszi térben, ahol p : V R d függvény a csúcsok helyét jelöli. A kizárólag csak élek hosszára vonatkozó megkötéseket tartalmazó G = (V ; L) rúd-gráf két (G, p) és (G, q) realizációját rúd-ekvivalensnek nevezzük, ha minden élük egyenl hosszú illetve rúd-kongruensnek nevezzük ket, ha tetsz leges u, v V csúcsra teljesül, hogy p(u) p(v) = q(u) q(v). Ezek segítségével deniálhatjuk a realizáció unicitásának különböz szintjeit. Egy (G, p) realizációt globálisan rúd-merevnek hívunk, ha bármely vele rúdekvivalens (G, q) realizáció egyúttal rúd-kongruens is lesz vele. Továbbá rúdmerevnek nevezzük (G, p)-t, ha létezik olyan ɛ > 0 környezet, hogy bármely vele rúd-ekvivalens (G, q) realizációra, melyre teljesül, hogy q(u) p(u) < ɛ minden u V csúcsra, a két realizáció egyúttal rúd-kongruens is lesz. Saxe (1979) bebizonyította, hogy a csak hossz megkötéseket tartalmazó gráfok esetén mind a létezés, mind a globális egyértelm ség eldöntése NP-nehéz feladat. Ennek oka, hogy bizonyos speciális esetek megnehezítik a probléma eldön- 3

5 tését. Ebb l kifolyólag a gráfnak csak a generikus (G, p) realizációit vizsgáljuk, melynek pontos denícióját a 1.2 alfejezetben adjuk meg. Egy G = (V ; L) rúdgráfot rúd-merevnek, illetve globálisan rúd-merevnek hívunk, ha minden generikus (G, p) realizációja rúd-merev, illetve globálisan rúd-merev. A speciális kétdimenziós esetben a G gráf rúd-merevségre (Laman (1970)) és a globális rúd-merevségére (Jackson és Jordán (2005)) adott kombinatorikus karakterizációt. Magasabb dimenzióban nem ismert kombinatorikai karakterizáció az unicitás kérdésére. A csak irány-élekkel deniált G = (V ; D) irány-gráfra egy (G, p) és egy (G, q) realizációt irány-ekvivalensnek mondunk, ha bármely e = uv D élhez tartozó p(u) p(v) és q(u) q(v) egymás konstansszorosai, valamint iránykongruensnek nevezzük ket, ha a fenti állítás tetsz leges u, v V csúcspárra teljesül. A (G, p) szerkezet irány-merev, ha tetsz leges vele irány-ekvivalens (G, q) szerkezet egyúttal irány-kongruens is lesz vele. A G irány-gráf iránymerev, ha tetsz leges generikus (G, p) realizációja irány-merev lesz. A generikusan merev G irány-gráfokra d-dimenzióban Whiteley (1996) adott kombinatorikus karakterizációt. A speciális kétdimenziós esetre az alábbi kapcsolat áll fent a rúd-merevséggel: Tétel 1.1. Kétdimenzióban a G = (V ; L) rúd-gráf pontosan akkor rúd-merev, ha a G = (V ; D) irány-gráf irány-merev. (A két gráfban a rúd illetve az irány-élek halmaza megegyezik). Laman (1970) speciális kétdimenziós esetre adott karakterizációja a merevségre: Tétel 1.2. Egy D = 2n 3 él csak irány-élekb l álló gráf akkor és csak akkor irány-merev, ha D 2 V (D ) 3 minden nemüres D részhalmazára D-nek. Ezzel ekvivalens leírást ad Lovász és Yemini (1982) tétele: Tétel 1.3. Egy G = (V, E), 2n 3 irány-élb l álló gráf akkor és csak akkor irány-merev, ha minden e E él esetén a G gráfból az e él megduplázásával készített új gráf élhalmaza felbomlik két éldiszjunkt feszít fa uniójára. Az irány-éleket és rudakat is tartalmazó G = (V ; D, L) vegyes gráf (G, p) és (G, q) realizációját irány-rúd ekvivalensnek nevezzük, ha bármely uv D irány-élre a p(u) p(v) és q(u) q(v) vektorok egymás konstansszorosai 4

6 valamint bármely zw L rúdra p(z) p(w) = q(z) q(w). A két szerkezetet továbbá irány-rúd kongruensnek hívjuk, ha (G, p)-b l csak eltolás és ±1-szeres nagyítás segítségével megkaphatjuk (G, q)-t, azaz G bármely két csúcsának távolsága megegyezik a két realizációban, illetve a csúcsok különbség vektorai egymás ±1-szeresei. Az irány-rúd merevség és globális irány-rúd merevségség deniálása a (G, p) rúd-szerkezet esetéhez hasonlóan történik. A következ ábrán egy olyan (G, p) szerkezetet láthatunk, mely irány-rúd merev, de nem globálisan irány-rúd merev (hiszen létezik olyan (G, q) vele irány-rúd ekvivalens realizáció, amely nem irány-rúd kongruens vele). Az ábrákon szaggatott piros szakaszok jelölik a rudakat és fekete folytonos szakaszok jelölik az irány-éleket. Figure 1: (G, p) realizációja G- nek Figure 2: (G, q) realizációja G-nek A G = (V ; D, L) gráfot irány-rúd merevnek, illetve globálisan irány-rúd merevnek nevezzük, ha tetsz leges generikus (G, p) realizációja irány-rúd merev illetve globálisan irány-rúd merev. Fontos és sokat vizsgált tulajdonsága a gráfnak a redundáns irány-rúd merevség. Egy G = (V ; D, L) vegyes gráfot redundánsan irány-rúd merevnek nevezünk, ha tetsz leges él elvétele után irányrúd merev marad a gráf. A G vegyes gráf kétdimenziós irány-rúd merevségére Servatius és Whiteley (1999) adott kombinatorikus karakterizációt. A globális irány-rúd merevség kérdése a mai napig nyitott. Egy (G, p) szerkezetet korlátosnak mondunk, ha létezik olyan K > 0 konstans, hogy bármely vele ekvivalens (G, q) szerkezet esetén tetsz leges u, v V csúcspárra q(u) q(v) K teljesül. Egy G = (V ; E) (ahol E-ben lehetnek irány- és/vagy hossz-élek) gráfot generikusan korlátosnak nevezünk, ha bármely generikus (G, p) realizációja korlátos. A szakirodalomban el forduló fontos kérdés a globális irány-rúd merevség és redundáns irány-rúd merevség kapcsolata, miután a kapcsolat leírása elvezethet a globális irány-rúd merevség jellemzéséhez. A fenti kérdés többek között felvet dött már Jackson és Jordán (2005)-ös cikkében is. Jackson és Keevash 5

7 (2009b) cikke a korlátosság segítségével ad kapcsolatot a két fogalomra a két dimenziós esetben. Az els tétel rúd, a második tétel irány-él elhagyása utáni irány-rúd merevséget vizsgálja. Tétel 1.4. Tegyük fel, hogy G = (V ; D, L) globálisan irány-rúd merev és L d, ekkor G\{e} irány-rúd merev lesz minden e L esetében. Tétel 1.5. Legyen G = (V ; D, L) globálisan irány-rúd merev gráf és tekintsük a d = 2 dimenziós esetet. Tegyük fel, hogy az e D élre G\{e}-nek van nem egy csúcsot tartalmazó irány-rúd merev részgráfja. Ekkor a G\{e} irány-rúd merev vagy generikusan nem korlátos. Mindkét tétel bizonyításához szükséges a generikus korlátosság jellemzése. Ez motiválta a dolgozatunkat, illetve Bill Jackson and Peter Keevash (2009a) cikkét is, melyek egymástól függetlenül, egyid ben, különböz technikák felhasználásával készültek. A dolgozat célja tehát egy algoritmus és ezáltal kombinatorikus karakterizáció megadása tetsz leges vegyes gráf generikus korlátosságának eldöntésére. Fontos, hogy generikus (G, p) realizációk korlátosságát vizsgáljuk csak, máskülönben nem tudnánk a G gráf korlátosságára kombinatorikus karakterizációt adni. Ezt egy rövid példán keresztül szemléltetjük: Figure 3: Nem korlátos (G, p) realizációja G-nek Figure 4: Korlátos (G, p) realizációja G-nek A G generikusan korlátos gráf 3. ábrán látható (G, p) realizációja nem generikus, mert az AB és DC élek párhuzamosak. Ebben az esetben a realizáció korlátos sem lesz az el bb említett élek párhuzamossága miatt. Ezzel ellentétben a 4. ábrán szerepl generikus (G, p) szerkezet már korlátos. A dolgozat a következ képpen épül fel. A bevezet második felében a dolgozat során felhasznált deníciókat és jelöléseket adjuk meg, majd a második fejezetben az algoritmus helyes m ködésének igazolásához szükséges állításokat látjuk be. A harmadik fejezet els részében megadjuk az algorimusunkat és felhasználva az el z fejezet eredényeit belátjuk helyességét. A fejezet második 6

8 részében megadunk egy eljárást, mely segítségével nem korlátos (G, p) realizáció esetén tetsz leges nagyságú, vele ekvivalens (G, q) realizációt tudunk készíteni. A harmadik fejezet els felében a tetsz leges nagyságú realizációt készít eljárás segítségével bebizonyítjuk, hogy a két különböz hossz-él denícióra felírt korlátossági probléma ekvivalens. A fejezet második felében belátjuk, hogy a kapott algoritmus ugyanazt a szükséges és elégséges feltételt generálja, mint ami Bill Jackson és Peter Keevash (2009a) cikkében is szerepel. 1.2 Jelölések A következ kben G = (V ; D, K) vegyes gráfokkal foglalkozunk, melyek olyan élcímkézett irányítatlan gráfok, ahol az élek irány-élek (D) és kötelek (K és számuk legyen m) lehetnek. A csak irány-éleket tartalmazó gráfot irány-gráfnak, míg a csak köteleket tartalmazó gráfot kötél-gráfnak nevezzük. Egy (G, p) szerkezetet triviális realizációnak hívunk, ha minden u, v V -re p(u) = p(v). Általában triviális realizáció alatt a (0,0,..,0)-ba eltolt változatot szoktuk érteni. A (G, p) szerkezetet generikusnak nevezzük, ha a realizáció tetsz leges csúcsát (0,0,...,0)- ba eltolva a többi csúcs koordinátáinak halmaza a racionális számtest fölött algebrailag független, azaz nem létezik olyan egész együtthatós, többváltozós, nem azonosan nulla polinom, melynek van a koordináták halmazából kikerül gyöke. A (G, p) és (G, q) szerkezetek irány-kötél ekvivalensek, ha minden uv D irány-élre teljesül q(u) q(v) = λ(p(u) p(v)) valamilyen λ skalárral és minden uv K kötélre fennáll p(u) p(v) c uv és q(u) q(v) c uv valamilyen el re megadott c uv konstanssal. A korlátosság vizsgálata szempontjából ez a feltétel lényegében egyenérték azzal, hogyha a kötél csúcsainál koordinátánként követeljük meg a korlátos távolságot, azaz c uv p i (u) minden uv K-ra és i {1,..., d}-re. Ennek oka, hogy ha p i (v) c uv p(u) p(v) 2 c 2 uv, akkor p i (u) p i (v) c uv, valamint ha p i (u) p i (v) c uv minden i {1,..., d}-re, akkor p(u) p(v) 2 dc 2 uv. Tehát megválaszthatóak a konstansok úgy, hogy az egyik féleképpen megadott kötél feltételt teljesít realizációk automatikusan teljesítsék a másik módon megadott kötél feltételt. Miután a korlátosság kérdése nem függ a konstansok pontos értékét l, ezért a kétfajta megadása a feltételnek ugyanazt a korlátossági kérdést adja. Vegyük a G = (V ; D) irány-gráf egy olyan (G, p) realizációját, melyben 7

9 p(1) = (0, 0,..., 0), azaz az 1-essel jelölt csúcs helye a d-dimenziós térben a (0,0,...,0) koordinátájú pont. Tekintsünk egy olyan (d 1) D (d V d)-es mátrixot, melyben minden egyes D-beli élhez d 1 sor és minden u V (u 1) csúcshoz d darab egymás melletti oszlop tartozik (az i + 1-edik (i>0) sorszámú csúcshoz a d(i 1) + 1,...,di-edik oszlop tartozik). Ezután vegyük minden e = uv D élhez tartozó p(u) p(v) tér egy B e = (p 1 (e) T, p 2 (e) T,..., p d 1 (e) T ) T bázisát (ahol B e (d 1) d-es mátrix), és az e élhez tartozó sor u csúcscsal címkézett d darab oszlopába írjuk be B e -t, míg a v csúccsal címkézett d oszlopába B e -t. Az u = 1 esetben B e, míg v = 1 esetén B e nem kerül bele a mátrixba. A maradék részét a mátrixnak töltsük fel 0-kal. Az így kapott mátrixot nevezzük a (G, p) realizáció irány-mátrixának és jelöljük D(G, p)-vel. Könnyen észrevehet, hogy a (G, p) realizáció csúcsaiból képzett x = ( p(2), p(3),..., p( V ) ) T oszlopvektor kielégíti a D(G, p)x = 0 egyenletrendszert. Továbbá elmondható, hogy egy (G, q) szerkezet, melynek egyes sorszámú csúcsa a (0, 0,..., 0)-ba van eltolva, pontosan akkor irány-ekvivalens (G, p)-vel, ha a (G, q) realizációból képzett y vektor kielégíti a D(G, p)y = 0 egyenletrendszert. Ezután vezessük be a váz denícióját. A (H, f) rendezett párt váznak nevezzük, ahol H = (V, E) gráf és f : E R d leképezés. A váz F (H, f) incidencia mátrixa egy E d( V 1) mátrix, ahol a sorokat a H gráf éleinek segítségével indexeljük, míg oszlopainak d méret csoportjait a csúcsok szerint (az egyes sorszámú csúcshoz tartozó oszlopokat kihagyjuk a mátrixból). Hasonlóan az irány-mátrixhoz, az e = uv E élhez tartozó sor u csúcshoz tartozó szakaszába f(e)-t, míg v-hez tartozó szakaszába f(e)-t írunk, végül a mátrixot 0-kal töltjük fel. Legyen H = (d 1)G = (V, (d 1)D) a G = (V, D) irány-gráf éleinek d 1-szerezésével gráf. Megjegyezzük, hogy a (G, p) szerkezet D(G, p) irány-mátrixa egyben a (H, f) váz (H = (d 1)G) egy F (H, f) incidencia mátrixa is, ahol az f : (d 1)D R d függvény értékeit a p(u) p(v) altér egy tetsz leges bázisa adja. A bázis megadható úgy, hogy minden bázisvektor koordinátája a p(u) p(v) vektor koordinátáinak ±1-szeresei és a 0 érték közül kerüljenek ki. Az F (H, f) mátrix sorai nem feltétlenül függetlenek, azaz tartalmazhatnak fölösleges információt. A Bill Jackson (2007) 1.4. tételéb l következ en független sorokból álló incidencia mátrixot hozhatunk létre, amelynek rangja megegyezik az irány-mátrix rangjával. Ezt a mátrixot nevezzük minimális incidencia mátrixnak. Jelöljük i E (X)-szel a G = (V, D) irány-gráf E D élhalmazából azon 8

10 irány-élek számát, melyek mindkét végpontja az X V csúcshalmazból kerül ki. Legyen H = (V, E) egy tetsz leges gráf és I(H) = {D E : i D (X) d X (d + 1) X V, ahol X 2} (1.1) élek egy halmazarendszere. Legyen B = arg max D (1.2) D I(H) és jelöljük H = (V, B)-vel az ezen élek által meghatározott gráfot. Ezentúl a (H, f ) váz alatt a (H, f) váz B-beli élek által meghatározott részét értjük. Tétel 1.6. A fenti jelöléseket használva teljesülni fog, hogy ahol r(a) az A mátrix rangját jelöli. r ( D(G, p) ) = r ( F (H, f ) ), (1.3) A fent megadott H gráf azért is érdekes, mert teljesíti Nash-Williams tételében (Nash-Williams (1964)) szerepl feltételt, azaz: Tétel 1.7. Egy G = (V, E) gráf, melyben E = d V d akkor és csak akkor bomlik fel d darab éldiszjunkt feszít fa uniójára, ha i E (X) d X d. Legyen G = (V, D) irány-gráf és (G, p) egy generikus realizációja. Azt mondjuk, hogy a (G, p) realizáció teljesíti a (H, f) vázban meghatározott feltételeket, ha a realizáció csúcsaiból készített d( V 1) dimenziós ( p(2), p(3),...., p( V ) ) T oszlopvektor megoldása az F (H, f)x = 0 egyenletrendszernek. Végül deniáljuk az összehúzás m veletét. Rendezzük tetszés szerint csoportokba a G = (V, D) gráf csúcsait, majd húzzuk össze a csoportok tagjait egy-egy új csúcsba. Az így kapott G + = (V +, D + ) gráf élei az eredeti G gráf azon élei lesznek, melyek a csoportok között vezettek. Ezt a m veletet nevezzük a G gráf összehúzásának. A (H, f) váz összehúzása is hasonlóan történik, annyi különbséggel, hogy itt egy új f + : D + R d függvényünk lesz, mely az eredeti f függvényünk D + D élhalmazra vett megszorítása. 9

11 2 Tételek az algoritmushoz Ebben a fejezetben el készületeket teszünk egy tetsz leges G = (V ; D, K) vegyes gráf generikus korlátosságát eldönt algoritmus megadására. Lemma 2.1. Legyen G = (V, D) tetsz leges irány-gráf és jelöljük H = (V, D )- vel a (d 1)G gráfot. Legyen B D a maximális nagyságú élhalmaz I(H)-ban és H = (V, B). Ekkor tetsz leges (H, f) vázhoz van olyan nemtriviális (G, p) realizációja a G gráfnak mely teljesíti a vázban foglalt feltételeket. Bizonyítás: A G irány-gráfhoz tartozó váz incidencia mátrixának d V d oszlopa és D d V d 1 sora van. Miután az F (H, f)x = 0 egyenletrendszer homogén ez maga után vonja, hogy végtelen sok megoldása lesz az egyenletrendszernek. Tetsz leges nem azonosan nulla megoldása pedig meghatározza egy nemtriviális, a (H, f) vázban szerepl megkötéseket teljesít (G, p) realizációját a G gráfnak. Állítás 2.2. Legyen (G, p) a G = (V, D) irány-gráf generikus realizációja, továbbá jelöljük (H, f)-fel a (G, p) által meghatározott minimális vázat és F (H, f)- fel a minimális incidencia mátrixot. Tekintsük a G gráf egy G = (V, D ) összehúzottját, amely egyben meghatározza a (H, f) váz egy (H, f ) összehúzását is, és tegyük fel, hogy a H = (V, E ) gráfra teljesül a következ két összefüggés: E d V d, (2.1) i E (X) d X d X V. (2.2) Ekkor a G gráfnak csak a triviális lesz az egyetlen olyan realizációja, mely teljesíti a (H, f ) vázban foglalt feltételeket. Bizonyítás: Tegyük fel indirekten, hogy létezik olyan nem triviális (G, p ) szerkezet, melyb l készült x = ( p 1(2),..., p d (2),..., p 1( V ),..., p d ( V ) ) T oszlopvektor kielégíti az F (H, f )x = 0 egyenletrendszert. Els lépésként belátjuk, hogy a H gráf tetsz leges összehúzottjára is teljesülni fog a (2.1) feltétel. Az 1.7. tételb l következ en H -ban van d éldiszjunkt feszít fa. Tetsz leges összehúzását véve a gráfnak, az összehúzott gráfban is lesz d éldiszjunkt feszít fa, így teljesülni fog rá a (2.1) feltétel. Csoportosítsuk ezután a G gráf csúcsait aszerint, hogy a (G, p ) realizációban egy pontba esnek-e. A H gráf csúcshalmaza megegyezik a G gráf 10

12 csúcshalmazával, így a H gráfban az el bb kapott csúcscsoportokat összehúzva a (2.1) feltételt teljesít gráfot kapunk. Ezentúl a G és H gráfokból a fenti csoportok összehúzásával kapott gráfokkal fogunk tovább dolgozni és az egyszer ség kedvéért ezen gráfokat fogjuk G -gal és H -gal jelölni. Tehát összefoglalva a G gráf olyan (G, p ) realizációjával dolgozunk ezentúl, melyre tetsz leges u, v V csúcspárra p (u ) p (v ) teljesül és a G -hoz tartozó H = (V, E ) gráfra teljesülni fog a (2.1) feltétel. A (2.1) feltételb l következik, hogy az F (H, f ) mátrix sorainak száma legalább akkora, mint oszlopainak száma. Az indirekt feltevés szerint az F (H, f )x = 0 egyenletrendszernek létezik nem triviális megoldása, így létezik olyan e = u v E éle a H gráfnak, melyhez tartozó F (H, f ) mátrixbeli sor benne van a többi sor által generált altérben. Jelöljük A V -val az u illetve B V -vel a v csúcshoz tartozó, G gráfbeli csúcshalmazokat. Különböztessünk meg két esetet az A és B csúcshalmazok között vezet irány-élek száma szerint. Az els esetben tegyük fel, hogy két vagy több irány-él vezet A és B között G-ben. A (G, p) realizáció generikuságából következik, hogy ezek páronként nem párhuzamosak. Minden ilyen élhez (H, f) egy d 1-dimenziós normálalteret határoz meg, amelyek így páronként különböznek. Összehúzás hatására az élekhez tartozó normálalterek nem változnak meg, így e élhez egy d dimenziós normálalteret fog a (H, f ) váz meghatározni, ami ellentmond a p (u) p (v) feltevésünknek. Második esetben tegyük fel, hogy az A és B csúcshalmazok között csak egy irány-él vezet a G gráfban és legyen ez uv D. Jelöljük Ĥ -gal a H gráfból az e él elhagyásával kapott gráfot, e E-vel az e él H gráfbeli megfelel jét és Ĥ-pal a H gráfból az e él elhagyásával nyert gráfot. A jelöléseket alkalmazva elmondható, hogy a (Ĥ, f) váz összehúzásával kapjuk a (Ĥ, f ) vázat, amelyhez tartozó F (Ĥ, f ) incidencia mátrix sorai meghatározzák az egész F (H, f ) mátrixot. A (H, f) minimális váz deníció szerint a G gráf minden g D irány-éléhez egy d 1 dimenziós normálalteret határoz meg, így a (H, f ) összehúzott váz is a G gráf minden g D éléhez egy d 1 dimenziós normálalteret határoz meg. A p (u ) p (v ) feltevésb l következik, hogy a (H, f ) váz az u v D élnek egy pontosan d 1 dimenziós alterét fogja meghatározni. A vázak összehúzása során az irányfeltételek nem változhatnak meg, így elmondhatjuk, hogy az uv D élnek a (H, f) váz által meghatározott d 1 dimenziós normálaltere megegyezik u v D él (H, f ) váz által 11

13 meghatározott pontosan d 1 dimenziós normálalterével. Összefoglalva az eddigieket a (Ĥ, f) váz egyértem en meghatározza az u v D élhez tartozó d 1 dimenziós normálalteret, ami megegyezik az uv D élhez tartozó d 1 dimenziós normálaltérrel, tehát a (Ĥ, f) váz meghatározza az uv D élhez tartozó d 1 dimenziós normálalteret. Különböztessünk meg két alesetet. Amennyiben f(e) benne van a (Ĥ, f) váz által meghatározott d 1 dimenziós alterében az uv D élnek, úgy ellentmondásra jutottunk azzal, hogy a (H, f) minimális váz F (H, f) minimális incidencia mátrixának sorai lineárisan függetlenek. A második esetben tegyük fel, hogy az f(e) vektor nincs benne a d 1 dimenziós normálaltérben. Ekkor azonban a (H, f ) váz az u v élre egy d dimenziós normálalteret határoz meg, ami azt jelenti, hogy az u és v csúcs minden realizációban egybe kell essen. Ez viszont ellentmond a (G, p ) realizációra tett feltevésünknek. Tehát csak triviális megoldása van a F (H, f )x = 0 egyenletrendszernek, azaz csak a triviális (G, p ) realizáció elégíti ki a (H, f ) vázban foglalt irány feltételeket. Frank András (2008)-as jegyzetének tétele kimondja, hogy: Tétel 2.3. Egy R = {x : Qx b} nemüres poliéderre a következ k ekvivalensek: (1) Q oszlopai lineárisan függetlenek. (2) R egyenes-mentes. A fenti tétel segítségével lássuk be a f tételünket. Tétel 2.4. A (G, p) irány-kötél szerkezet pontosan akkor nem korlátos, ha a G gráfnak van olyan G + összehúzottja, amelyben már csak irány-élek szerepelnek és létezik olyan (G +, q) nem triviális realizációja, amely teljesíti a (G, p) szerkezet által meghatározott (H, f) minimális váz összehúzásával kapott (H +, f + ) vázban meghatározott feltételeket, azaz a realizáció csúcsaiból képzett ( q(2),..., q( V + ) ) T d( V + 1) dimenziós oszlopvektor megoldása az F (H +, f + )x = 0 egyenletrendszernek. Bizonyítás: Könnyen látható, hogy egy (G, p) szerkezet pontosan akkor nem korlátos, ha tetsz leges w V csúcsot kiválasztva teljesül, hogy minden M természetes számhoz létezik olyan vele irány-kötél ekvivalens (G, q) realizáció, melyben van legalább egy z V csúcs és annak legalább egy i {1,..., d} koordinátája, melyre q i (w) q i (z) > M teljesül. Válasszuk ki így az egyes sorszámú csúcsot és legyen q(1) = (0, 0,..., 0) minden (G, p)-vel ekvivalens 12

14 realizáció esetén. Tehát a (G, p) szerkezet pontosan akkor nem korlátos, ha minden M természetes számhoz létezik olyan vele ekvivalens (G, q) szerkezet és a G vegyes gráfban olyan u V csúcs, hogy q i (u) > M teljesül valamely i {1,..., d} koordinátára. Készítsük el a (G, p) irány-kötél szerkezet által meghatározott irány-kötél mátrixot, mely az összes szükséges információt tartalmazza a (G, p) szerkezetr l. Els lépésben tekintsük az irány-élek által meghatározott részgráfot. A G = (V, D) G irány-élek alkotta részgráfnak egy (G, p) realizációja meghatároz egy F (H, f) minimális incidencia mátrixot. Legyen k a (H, f) minimális vázban az élek száma. Ez a mátrix alkotja az irány-kötél mátrix fels részét. Ezután a következ 2dm sorba a kötél feltételek szerepelnek, miszerint c uv p j (u) p j (v) c uv, ha uv K valamely el re adott c uv > 0 konstanssal. Így az irány-kötél mátrixunk az alábbi alakú lesz: f 1 (e 1 )... f d (e 1 ) f 1 (e 1 )... f d (e 1 ) f 1 (e k )... f d (e k ) A = Legyenek továbbá d( V 1) dimenziós oszlopvektorok, és x = (q(2), q(3),..., q(n)) T, (2.3) 0 = (0, 0,..., 0) T (2.4) b = (0, 0,..., 0, c 1,..., c 1, c 2,..., c 2,..., c m,..., c m ) T k + 2dm dimenziós oszlopvektorok. A G gráf (G, p)-vel ekvivalens (G, q) realizációiból képzett (2.3) alakú vektorok alkotják az Ax b egyenletrendszer megoldásainak halmazát, ahol az els k darab egyenl tlenség helyett egyenl ség áll fenn. A (G, q) realizációk 13

15 els csúcsát (0,0,...,0)-ba lerögzítettük, így pontosan akkor korlátos a (G, p) realizáció, ha a fenti Ax b egyenletrendszerrel meghatározott poliéder nem tartalmaz félegyenest. Az irány-kötél mátrix egy szimmetrikus poliédert határoz meg, így a (G, p) szerkezet korlátossága ekvivalens az {x : Ax b} poliéder egyenesmentességével. A 2.3 Tételb l következ en az egyenesmentesség ekvivalens az irány-kötél mátrix oszlopainak függetlenségével, azaz hogy az Ax = 0 egyenletrendszernek csak a triviális a jó megoldása. Próbáljuk gráfok segítségével megoldani az átfogalmazott problémát, azaz nézzük meg, hogy milyen esetben lesz végtelen sok megoldása az egyenletrendszernek. Tekintsük a z oszlopvektort (2.3) alakban, azaz mintha V 1 darab d dimenziós csúcsot egy vektorba tárolnánk egymás után. Az A mátrix els k sora a (G, p) realizáció irány-éleire vonatkozó megkötéseket tartalmazza, azaz olyan (G, q) realizációt keresünk, melyre az irány feltételek teljesülnek. Itt fontos megjegyeznünk, hogy két csúcs közötti irány-él feltétel nem sérül, ha a két csúcs a realizációban egy pontba esik. A következ dm sor pedig azt fejezi ki az Ax = 0 egyenletrendszerben, hogy a kötelek végpontjai egybeesnek. Azaz átfogalmazva a problémát olyan összehúzását keressük a gráfnak, melyben csak irány-élek szerepelnek (tehát a kötelek csúcsai össze vannak húzva) és van nem triviális realizációja az összehúzásnak. Amennyiben találunk ilyent, a (G, p) realizációnk nem korlátos, ellenkez esetben pedig korlátos. 14

16 3 Az algoritmus 3.1 Az algoritmus megadása Ebben a részfejezetben megadunk egy algoritmust, mely eldönti egy G vegyes gráfról, hogy generikusan korlátos-e. Az eljárás helyességének belátásához az el z fejezetben belátott állításokat fogjuk felhasználni. Az algoritmusunk célja, hogy találjon egy megfelel G + összehúzását a G gráfnak. Induljunk ki egy tetsz leges (G, p) generikus szerkezetb l és vegyük az irány-élei által meghatározott (H, f) minimális váz összehúzása után kapott (H, f ) vázat. Olyan G + összehúzott gráfot keresünk, melyhez létezik olyan nem triviális (G +, p + ) realizáció, amely teljesíti a (H, f ) vázban foglalt megkötéseket, azaz a (p + (2),..., p + ( V + )) T oszlopvektor nem triviális megoldása az F (H, f )x = 0 egyenletrendszernek. Amennyiben az algoritmusunk nem talál ilyen G + összehúzást, úgy a G gráfunk generikusan korlátos. Els lépésben a G gráf irány-élei helyett a (1.2)-ban meghatározott élhalmazt írjuk be, így megkapjuk a H gráfunkat. Ezután húzzuk össze a H gráfban a kötelek csúcsait egy-egy pontba. Az így kapott Ĥ gráfban az élek ezentúl az összehúzás után kapott új csúcsok között vezetnek majd. Azon éleket, melyek csúcsait összehúztuk, elhagyhatjuk a Ĥ gráfból, miután semmilyen plusz megkötést nem tartalmaznak. Ezután keressük meg a Ĥ gráf egy olyan H = (V, E ) részgráfját, melyre teljesül E d V d, i E (X) d X d X V, és amint találunk egyet, húzzuk össze egy pontba. (Nevezzük ezentúl ezen részgráfokat túlhatározottaknak.) Folytassuk az eljárásunkat, amíg már nem találunk több ilyen részgráfot. Amennyiben az eljárás végén egy pontot kapunk, úgy az algoritmus a G gráfot generikusan korlátosnak adja, míg ellenkez esetben a gráfot generikusan nem korlátosnak mondja. Az algoritmust röviden összefoglalva az alábbi diagrammot kapjuk: 1. Gráfban a kötelek által meghatározott részgráfok összehúzása 2. Ciklus kezd dik Amíg van túlhatározott részgráf tedd - Húzd össze egy pontba a csúcsait - A túlhatározott részgráfból kiinduló 15

17 élek ebb l a pontból indulnak ezentúl Ciklus vége 3. Ha az eredmény egy pont kiír: Korlátos Különben kiír: Nem korlátos. Tétel 3.1. A fent megadott algoritmusunk helyesen m ködik. Bizonyítás: Az algoritmus kétféle eredménnyel állhat le. Els esetben az algoritmus nem egy pontot ad vissza eredményként, hanem egy olyan H + = (V +, E + ) gráfot, melyre i E +(X) d X (d + 1) X V +. (3.1) Tetsz legesen megválasztva az f + : E + R d függvényt a 2.1 Lemmából következ en létezik olyan (G +, p + ) nem triviális realizáció, mely a (H +, f + ) generikus vázban meghatározott feltételeket teljesíti, azaz a (p + (2),..., p + ( V + )) T oszlopvektor megoldása lesz az F (H +, f + )x = 0 egyenletrendszernek. Így a 2.4. tételb l következ en tetsz leges generikus (G, p) szerkezet nem korlátos lesz, tehát a G gráfunk generikusan nem korlátos. A másik irányhoz be kell látnunk, hogy amennyiben az algoritmus egy pontban áll le, nem lesz olyan nem triviális realizációja az összehúzott G + gráfnak, mely teljesíti tetsz leges generikus (G, p) szerkezet által meghatározott (H +, f + ) vázban foglalt megkötéseket. Az algoritmus során csak olyan részgráfokat húzunk össze, amelyeknek a 2.2 Állításból következ en csak a triviális az egyetlen jó realizációja. Amennyiben ezen eljárás során egy pontot kapunk végeredményül, úgy elmondhatjuk, hogy nem létezik nem triviális realizációjú G + összehúzottja a G gráfnak, tehát a 2.4 Tételb l következ en a G + gráf generikusan korlátos lesz. A következ kben az algoritmus m ködését szemléltetjük egy rövid példán keresztül kétdimenzióban, generikusan nem korlátos G gráf esetén. Induljunk ki az 5. ábrán látható G vegyes gráfból (piros szaggatott élek a köteleket, a fekete élek az irány-éleket jelölik) és húzzuk össze els lépésként a kötelek alkotta részgráfokat. Így megkapjuk a 6. ábrán szerepl gráfot, melyben az {A, C}, {D, F } és {J, H} csúcsok túlhatározott részgráfokat határoznak meg. Ezen részgráfok összehúzása után megkapjuk a 7. ábrát, melyben {D, E} csúcsok által meghatározott részgráf túlhatározott lesz. Ezt összehúzva kapjuk 16

Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós

Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós Lineáris algebra és a rang fogalma (el adásvázlat, 2010. szeptember 29.) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: (1) A mátrixalgebrával kapcsolatban: számtest

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

DiMat II Végtelen halmazok

DiMat II Végtelen halmazok DiMat II Végtelen halmazok Czirbusz Sándor 2014. február 16. 1. fejezet A kiválasztási axióma. Ismétlés. 1. Deníció (Kiválasztási függvény) Legyen {X i, i I} nemüres halmazok egy indexelt családja. Egy

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

Többszörösen redundánsan merev és globálisan merev gráfok a síkban

Többszörösen redundánsan merev és globálisan merev gráfok a síkban Többszörösen redundánsan merev és globálisan merev gráfok a síkban Diplomamunka Írta: Bilics Adrián Alkalmazott matematikus szak Témavezet : Jordán Tibor, tanszékvezet egyetemi tanár Operációkutatási Tanszék

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36 Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás

Részletesebben

Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)

Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel) Kombi/2 Egy bizonyos bulin n lány és n fiú vesz részt. Minden fiú pontosan a darab lányt és minden lány pontosan b darab fiút kedvel. Milyen (a,b) számpárok esetén létezik biztosan olyan fiúlány pár, akik

Részletesebben

Mátrix kiegészítési problémák kombinatorikus vizsgálata. BSc Szakdolgozat. Csikós Mónika Matematika BSc, Alkalmazott matematikus szakirány

Mátrix kiegészítési problémák kombinatorikus vizsgálata. BSc Szakdolgozat. Csikós Mónika Matematika BSc, Alkalmazott matematikus szakirány Mátrix kiegészítési problémák kombinatorikus vizsgálata BSc Szakdolgozat Írta: Csikós Mónika Matematika BSc, Alkalmazott matematikus szakirány Témavezet : Jordán Tibor, egyetemi tanár Operációkutatási

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.

Részletesebben

A lineáris algebra forrásai: egyenletrendszerek, vektorok

A lineáris algebra forrásai: egyenletrendszerek, vektorok A lineáris algebra forrásai: egyenletrendszerek, vektorok 2016. február 23. A lineáris algebra forrásai: egyenletrendszerek, vektorok 2016. február 23. 1 / 75 Tartalom 1 Vektor A 2- és 3-dimenziós tér

Részletesebben

Graph Structures from Combinatorial Optimization and Rigidity Theory

Graph Structures from Combinatorial Optimization and Rigidity Theory Király Csaba Graph Structures from Combinatorial Optimization and Rigidity Theory (Gráf struktúrák kombinatorikus optimalizálásból és merevségelméletb l) cím doktori értekezésének tézisei Eötvös Loránd

Részletesebben

Diszkrét matematika II., 8. előadás. Vektorterek

Diszkrét matematika II., 8. előadás. Vektorterek 1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.

Részletesebben

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2) Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013 UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS

Részletesebben

LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I. éves nappali programtervező informatikus hallgatóknak évi tanév I. félév

LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I. éves nappali programtervező informatikus hallgatóknak évi tanév I. félév LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I éves nappali programtervező informatikus hallgatóknak 2010-2011 évi tanév I félév Vektoriális szorzat és tulajdonságai bizonyítás nélkül: Vegyes szorzat és tulajdonságai

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Gáspár Merse El d. Egy kis rugalmasság a merevségelméletben. Jubileumi Fazekas nap 2012. március 12.

Gáspár Merse El d. Egy kis rugalmasság a merevségelméletben. Jubileumi Fazekas nap 2012. március 12. Egy kis rugalmasság a merevségelméletben Gáspár Merse El d Jubileumi Fazekas nap 2012. március 12. Mottó Az élet er i állandó mozgásban vannak, jaj annak, aki merev és nem enged. [ Eric Van Lustbader ]

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Szemidenit optimalizálás és az S-lemma

Szemidenit optimalizálás és az S-lemma Szemidenit optimalizálás és az S-lemma Pólik Imre SAS Institute, USA BME Optimalizálás szeminárium 2011. október 6. Outline 1 Egyenl tlenségrendszerek megoldhatósága 2 Az S-lemma 3 Szemidenit kapcsolatok

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Bázistranszformáció és alkalmazásai 2.

Bázistranszformáció és alkalmazásai 2. Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja

Részletesebben

Mat. A2 3. gyakorlat 2016/17, második félév

Mat. A2 3. gyakorlat 2016/17, második félév Mat. A2 3. gyakorlat 2016/17, második félév 1. Hány megoldása lehet az alábbi lineáris egyenletrendszereknek a valós számok körében, ha a -ok tetszőleges (nem feltétlenül egyenlő) számokat jelölnek? 0

Részletesebben

1. Homogén lineáris egyenletrendszer megoldástere

1. Homogén lineáris egyenletrendszer megoldástere X HOMOGÉN LINEÁRIS EGYENLET- RENDSZEREK 1 Homogén lineáris egyenletrendszer megoldástere Homogén lineáris egyenletrendszer definíciója már szerepelt Olyan lineáris egyenletrendszert nevezünk homogénnek,

Részletesebben

Haladók III. kategória 2. (dönt ) forduló

Haladók III. kategória 2. (dönt ) forduló Haladók III. kategória 2. (dönt ) forduló 1. Tetsz leges n pozitív egész számra jelölje f (n) az olyan 2n-jegy számok számát, amelyek megegyeznek az utolsó n számjegyükb l alkotott szám négyzetével. Határozzuk

Részletesebben

Rang, sajátérték. Dr. Takách Géza NyME FMK Informatikai Intézet takach/ február 15

Rang, sajátérték. Dr. Takách Géza NyME FMK Informatikai Intézet   takach/ február 15 Diszkrét matematika II, 2 el adás Rang, sajátérték Dr Takách Géza NyME FMK Informatikai Intézet takachinfnymehu http://infnymehu/ takach/ 25 február 5 Gyakorlati célok Ezen el adáson, és a hozzá kapcsolódó

Részletesebben

Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma.

Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma. Vektorterek Több esetben találkozhattunk olyan struktúrával, ahol az összeadás és a (valós) számmal való szorzás értelmezett, pl. a szabadvektorok esetében, vagy a függvények körében, vagy a mátrixok esetében.

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

Kombinatorikus módszerek gráfok és rúdszerkezetek merevségének vizsgálatában OTKA 49671 2005-2008 Témavezető: Jordán Tibor (ELTE)

Kombinatorikus módszerek gráfok és rúdszerkezetek merevségének vizsgálatában OTKA 49671 2005-2008 Témavezető: Jordán Tibor (ELTE) SZAKMAI ZÁRÓJELENTÉS Kombinatorikus módszerek gráfok és rúdszerkezetek merevségének vizsgálatában OTKA 49671 2005-2008 Témavezető: Jordán Tibor (ELTE) Rúdszerkezetek statikai tulajdonságainak matematikai

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK 30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK A gráfos alkalmazások között is találkozunk olyan problémákkal, amelyeket megoldását a részekre bontott gráfon határozzuk meg, majd ezeket alkalmas módon teljes megoldássá

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer

8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer 8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

Matroidok alkalmazása rúdszerkezetek merevségével kapcsolatos kérdésekben. Kézér Tamás Gábor

Matroidok alkalmazása rúdszerkezetek merevségével kapcsolatos kérdésekben. Kézér Tamás Gábor Eötvös Loránd Tudományegyetem Természettudományi Kar Matroidok alkalmazása rúdszerkezetek merevségével kapcsolatos kérdésekben Szakdolgozat Kézér Tamás Gábor Alkalmazott Matematika MSc, Számítástudomány

Részletesebben

Opkut deníciók és tételek

Opkut deníciók és tételek Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy: Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

3. el adás: Determinánsok

3. el adás: Determinánsok 3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12

Részletesebben

Diszkrét matematika 1. középszint

Diszkrét matematika 1. középszint Diszkrét matematika 1. középszint 2017. sz 1. Diszkrét matematika 1. középszint 3. el adás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35 9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

Kódelméleti és kriptográai alkalmazások

Kódelméleti és kriptográai alkalmazások Kódelméleti és kriptográai alkalmazások Wettl Ferenc 2015. május 14. Wettl Ferenc Kódelméleti és kriptográai alkalmazások 2015. május 14. 1 / 11 1 Hibajavító kódok 2 Általánosított ReedSolomon-kód Wettl

Részletesebben

Bázistranszformáció és alkalmazásai

Bázistranszformáció és alkalmazásai Bázistranszformáció és alkalmazásai Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Elmélet Gyakorlati végrehajtás 2 Vektor bevitele a bázisba Rangszámítás Lineáris egyenletrendszer

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó

Részletesebben

rank(a) == rank([a b])

rank(a) == rank([a b]) Lineáris algebrai egyenletrendszerek megoldása a Matlabban Lineáris algebrai egyenletrendszerek a Matlabban igen egyszer en oldhatók meg. Legyen A az egyenletrendszer m-szer n-es együtthatómátrixa, és

Részletesebben

Az állítást nem bizonyítjuk, de a létezést a Paley-féle konstrukció mutatja: legyen H a

Az állítást nem bizonyítjuk, de a létezést a Paley-féle konstrukció mutatja: legyen H a . Blokkrendszerek Definíció. Egy (H, H), H H halmazrendszer t (v, k, λ)-blokkrendszer, ha H = v, B H : B = k, és H minden t elemű részhalmazát H-nak pontosan λ eleme tartalmazza. H elemeit blokkoknak nevezzük.

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 7. gyakorlat Gyakorlatvezet : Bogya Norbert 2012. március 26. Ismétlés Tartalom 1 Ismétlés 2 Koordinátasor 3 Bázistranszformáció és alkalmazásai Vektorrendszer rangja Mátrix

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten LINEÁRIS PROGRAMOZÁS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 4 A lineáris

Részletesebben

Relációk. 1. Descartes-szorzat. 2. Relációk

Relációk. 1. Descartes-szorzat. 2. Relációk Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram. 1. Descartes-szorzat 1. Deníció. Tetsz leges két a, b objektum

Részletesebben

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28 Szinguláris értékek Wettl Ferenc 2015. április 3. Wettl Ferenc Szinguláris értékek 2015. április 3. 1 / 28 Tartalom 1 Szinguláris érték 2 Alkalmazások 3 Norma 4 Mátrixnorma Wettl Ferenc Szinguláris értékek

Részletesebben

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek 10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

2. gyakorlat. A polárkoordináta-rendszer

2. gyakorlat. A polárkoordináta-rendszer . gyakorlat A polárkoordináta-rendszer Az 1. gyakorlaton megismerkedtünk a descartesi koordináta-rendszerrel. Síkvektorokat gyakran kényelmes ún. polárkoordinátákkal megadni: az r hosszúsággal és a φ irányszöggel

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/ Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

Gráfelméleti alapfogalmak

Gráfelméleti alapfogalmak 1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont

Részletesebben

13.1.Állítás. Legyen " 2 C primitív n-edik egységgyök és K C olyan számtest, amelyre " =2 K, ekkor K(") az x n 1 2 K[x] polinomnak a felbontási teste

13.1.Állítás. Legyen  2 C primitív n-edik egységgyök és K C olyan számtest, amelyre  =2 K, ekkor K() az x n 1 2 K[x] polinomnak a felbontási teste 13. GYÖKB½OVÍTÉS GALOIS CSOPORTJA, POLINOMOK GYÖKEINEK ELÉRHET½OSÉGE 13.1.Állítás. Legyen " 2 C primitív n-edik egységgyök és K C olyan számtest, amelyre " =2 K, ekkor K(") az x n 1 2 K[x] polinomnak a

Részletesebben

1. előadás: Halmazelmélet, számfogalom, teljes

1. előadás: Halmazelmélet, számfogalom, teljes 1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

1. A k-szerver probléma

1. A k-szerver probléma 1. A k-szerver probléma Az egyik legismertebb on-line probléma a k-szerver probléma. A probléma általános deníciójának megadásához szükség van a metrikus tér fogalmára. Egy (M, d) párost, ahol M a metrikus

Részletesebben

Síkgráfok. 1. Részgráfok, topológikus részgráfok, minorok

Síkgráfok. 1. Részgráfok, topológikus részgráfok, minorok Gráfelmélet/Diszkrét Matematika MSc hallgatók számára Síkgráfok 2013. El adó: Hajnal Péter 1. Részgráfok, topológikus részgráfok, minorok Emlékeztet. Egy gráf síkba rajzolható, ha lerajzolható úgy, az

Részletesebben

Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával

Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával * Pannon Egyetem, M szaki Informatikai Kar, Számítástudomány

Részletesebben

Gráfokkal megoldható hétköznapi problémák

Gráfokkal megoldható hétköznapi problémák Eötvös Loránd Tudományegyetem Természettudományi Kar Gráfokkal megoldható hétköznapi problémák Szakdolgozat Készítette Vincze Ágnes Melitta Konzulens Héger Tamás Budapest, 2015 Tartalomjegyzék Bevezetés

Részletesebben

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2017/2018-as tanév 2. forduló Haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2017/2018-as tanév 2. forduló Haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 017/018-as tanév. forduló Haladók II. kategória Megoldások és javítási útmutató 1. Egy tanár kijavította egy 1 f s csoport dolgozatait.

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:

Részletesebben

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

Lineáris algebra. =0 iє{1,,n}

Lineáris algebra. =0 iє{1,,n} Matek A2 (Lineáris algebra) Felhasználtam a Szilágyi Brigittás órai jegyzeteket, néhol a Thomas féle Kalkulus III könyvet. A hibákért felelosséget nem vállalok. Hiányosságok vannak(1. órai lin algebrai

Részletesebben

DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ

DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ B szakirány 2014 június Tartalom 1. Fák definíciója ekvivalens jellemzései... 3 2. Hamilton-kör Euler-vonal... 4 3. Feszítőfa és vágás... 6 4. Címkézett

Részletesebben

Deníciók és tételek a beugró vizsgára

Deníciók és tételek a beugró vizsgára Deníciók és tételek a beugró vizsgára (a szóbeli viszgázás jogáért) Utolsó módosítás: 2008. december 2. 2 Bevezetés Számítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést,

Részletesebben

Ítéletkalkulus. 1. Bevezet. 2. Ítéletkalkulus

Ítéletkalkulus. 1. Bevezet. 2. Ítéletkalkulus Ítéletkalkulus Logikai alapfogalmak, m veletek, formalizálás, logikai ekvivalencia, teljes diszjunktív normálforma, tautológia. 1. Bevezet A matematikai logikában az állításoknak nem a tényleges jelentésével,

Részletesebben

7. Előadás. Megyesi László: Lineáris algebra, oldal. 7. előadás Elemi bázistranszformáció

7. Előadás. Megyesi László: Lineáris algebra, oldal. 7. előadás Elemi bázistranszformáció 7. Előadás Megyesi László: Lineáris algebra, 57. 61. oldal. Gondolkodnivalók Bázis, dimenzió 1. Gondolkodnivaló Legyenek a v vektor koordinátái a v 1,..., v n bázisban: (1, α 2,..., α n ). Igazoljuk, hogy

Részletesebben