8. melléklet [7. melléklet 7.5. az 51/2012. (XII. 21.) EMMI rendelethez] 7.5. Matematika speciális tagozat kerettanterve

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "8. melléklet [7. melléklet 7.5. az 51/2012. (XII. 21.) EMMI rendelethez] 7.5. Matematika speciális tagozat kerettanterve"

Átírás

1 8. melléklet [7. melléklet 7.5. az 51/2012. (XII. 21.) EMMI rendelethez] 7.5. Matematika speciális tagozat kerettanterve Kerettantervek: a négyévfolyamos képzéshez a hatévfolyamos képzéshez

2 MATEMATIKA évfolyam, speciális tagozat Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika tanulása érzelmi és motivációs vonatkozásokban is formálja, gazdagítja a személyiséget, fejleszti az önálló, rendszerezett gondolkodást, és alkalmazásra képes tudást hoz létre. A matematikai gondolkodás fejlesztése segíti a gondolkodás általános kultúrájának kiteljesedését. A matematikatanítás feladata a matematika különböző arculatainak bemutatása. A matematika: kulturális örökség; gondolkodásmód; alkotó tevékenység; a gondolkodás örömének forrása; a mintákban, struktúrákban tapasztalható rend és esztétikum megjelenítője; önálló tudomány; más tudományok segítője; a mindennapi élet része és a szakmák eszköze. A tanulók matematikai gondolkodásának fejlesztése során alapvető cél, hogy mindinkább ki tudják választani és alkalmazni tudják a természeti és társadalmi jelenségekhez illeszkedő modelleket, gondolkodásmódokat (analógiás, heurisztikus, becslésen alapuló, matematikai logikai, axiomatikus, valószínűségi, konstruktív, kreatív stb.), módszereket (aritmetikai, algebrai, geometriai, függvénytani, statisztikai stb.) és leírásokat. A matematikai nevelés sokoldalúan fejleszti a tanulók modellalkotó tevékenységét. Ugyanakkor fontos a modellek érvényességi körének és gyakorlati alkalmazhatóságának eldöntését segítő képességek fejlesztése. Egyaránt lényeges a reproduktív és a problémamegoldó, valamint az alkotó gondolkodásmód megismerése, elsajátítása, miközben nem szorulhat háttérbe az alapvető tevékenységek (pl. mérés, alapszerkesztések), műveletek (pl. aritmetikai, algebrai műveletek, transzformációk) automatizált végzése sem. A tanulás elvezethet a matematika szerepének megértésére a természet- és társadalomtudományokban, a humán kultúra számos ágában. Segít kialakítani a megfogalmazott összefüggések, hipotézisek bizonyításának igényét. Megmutathatja a matematika hasznosságát, belső szépségét, az emberi kultúrában betöltött szerepét. Fejleszti a tanulók térbeli tájékozódását, esztétikai érzékét. A tanulási folyamat során fokozatosan megismertetjük a tanulókkal a matematika belső struktúráját (, axiómák, tételek, bizonyítások elsajátítása). Mindezzel fejlesztjük a tanulók absztrakciós és szintetizáló képességét. Az új alkotása, az összefüggések felfedezése és az ismeretek feladatokban való alkalmazása fejleszti a kombinatív készséget, a kreativitást, az önálló gondolatok megfogalmazását, a felmerült problémák megfelelő önbizalommal történő megközelítését, megoldását. A diszkussziós képesség fejlesztése, a többféle megoldás keresése, megtalálása és megbeszélése a többféle nézőpont érvényesítését, a komplex problémakezelés képességét is fejleszti. A folyamat végén a tanulók eljutnak az önálló, rendszerezett, logikus gondolkodás bizonyos szintjére. A műveltségi terület a különböző témakörök szerves egymásra épülésével kívánja feltárni a matematika és a matematikai gondolkodás világát. A, összefüggések érlelése és a matematikai gondolkodásmód kialakítása egyre emelkedő szintű spirális felépítést indokol az életkori, egyéni fejlődési és érdeklődési sajátosságoknak, a bonyolódó ismereteknek, a fejlődő absztrakciós képességnek megfelelően. Ez a felépítés egyaránt lehetővé teszi a lassabban haladókkal való foglalkozást és a tehetség kibontakoztatását. A matematikai értékek megismerésével és a matematikai tudás birtokában a tanulók hatékonyan tudják használni a megszerzett kompetenciákat az élet különböző területein. A matematika a maga hagyományos és modern eszközeivel segítséget ad a természettudományok, az informatika, a technikai, a humán műveltségterületek, illetve a választott szakma ismeretanyagának tanulmányozásához, a mindennapi problémák értelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a

3 képességgel és készséggel, hogy alkalmazni tudják matematikai tudásukat, és felismerjék, hogy a megismert at és tételeket változatos területeken használhatjuk. Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban segítheti a mindennapokban, és különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése. A tanulóktól megkívánjuk a szaknyelv életkornak megfelelő, pontos használatát, a jelölésrendszer helyes alkalmazását írásban és szóban egyaránt. A tanulók rendszeresen oldjanak meg önállóan feladatokat, aktívan vegyenek részt a tanítási, tanulási folyamatban. A feladatmegoldáson keresztül a tanulók képessé válhatnak a pontos, kitartó, fegyelmezett munkára. Kialakul bennük az önellenőrzés igénye, a sajátjukétól eltérő szemlélet tisztelete. Mindezek érdekében is a tanítás folyamában törekedni kell a tanulók pozitív motiváltságának biztosítására, önállóságuk fejlesztésére. A matematikatanítás, -tanulás folyamatában egyre nagyobb szerepet kaphat az önálló ismeretszerzés képesség fejlesztése az ajánlott, illetve az önállóan megkeresett, nyomtatott és internetes szakirodalom által. A matematika a lehetőségekhez igazodva támogatni tudja az elektronikus eszközök (zsebszámológép, számítógép, grafikus kalkulátor), internet, oktatóprogramok stb. célszerű felhasználását, ezzel hozzájárul a digitális kompetencia fejlődéséhez. A tananyag egyes részleteinek csoportmunkában történő feldolgozása, a feladatmegoldások megbeszélése az együttműködési képesség, a kommunikációs képesség fejlesztésének, a reális önértékelés kialakulásának fontos területei. Ugyancsak nagy gondot kell fordítani a kommunikáció fejlesztésére (szövegértésre, mások szóban és írásban közölt gondolatainak meghallgatására, megértésére, saját gondolatok közlésére), az érveken alapuló vitakészség fejlesztésére. A matematikai szöveg értő olvasása, tankönyvek, lexikonok használata, szövegekből a lényeg kiemelése, a helyes jegyzeteléshez szoktatás a felsőfokú tanulást is segíti. Változatos példákkal, feladatokkal mutathatunk rá arra, hogy milyen előnyöket jelenthet a mindennapi életben, ha valaki jártas a problémamegoldásban. A matematikatanítás alapvető feladata a pénzügyi-gazdasági kompetenciák kialakítása. Életkortól függő szinten rendszeresen foglakozzunk olyan feladatokkal, amelyekben valamilyen probléma legjobb megoldását keressük. Szánjunk kiemelt szerepet azoknak az optimumproblémáknak, amelyek gazdasági kérdésekkel foglalkoznak, amikor költség, kiadás minimumát; elérhető eredmény, bevétel maximumát keressük. Fokozatosan vezessük be matematikafeladatainkban a pénzügyi at: bevétel, kiadás, haszon, kölcsön, kamat, értékcsökkenés, -növekedés, törlesztés, futamidő stb. Ezek a feladatok erősítik a tanulókban azt a tudatot, hogy matematikából valóban hasznos ismereteket tanulnak, illetve, hogy a matematika alkalmazása a mindennapi élet szerves része. Az életkor előrehaladtával egyre több példát mutassunk arra, milyen területeken tud segíteni a matematika. Hívjuk fel a figyelmet arra, hogy milyen matematikai ismereteket alkalmaznak az alapvetően matematikaigényes, illetve a matematikát csak kisebb részben használó szakmák (pl. informatikus, mérnök, közgazdász, pénzügyi szakember, biztosítási szakember, valamint pl. vegyész, grafikus, szociológus), ezzel is segítve a tanulók pályaválasztását. A matematikához való pozitív hozzáállást nagyban segíthetik a matematikai tartalmú játékok és a matematikához kapcsolódó érdekes problémák és feladványok. A matematika a kultúrtörténetnek is része. Segítheti a matematikához való pozitív hozzáállást, ha bemutatjuk a tananyag egyes elemeinek a művészetekben való alkalmazását. A motivációs bázis kialakításában komoly segítség lehet a matematikatörténet egy-egy mozzanatának megismertetése, a máig meg nem oldott, egyszerűnek tűnő matematikai sejtések megfogalmazása, nagy matematikusok életének, munkásságának megismerése. Minden életkori szakaszban fontos a differenciálás. Ez nemcsak az egyéni igények figyelembevételét jelenti. Sokszor az alkalmazhatóság vezérli a tananyag és a tárgyalásmód

4 megválasztását, más esetekben a tudományos igényesség szintje szerinti differenciálás szükséges. Egy adott osztály matematikatanítása során a célok, feladatok teljesíthetősége igényli, hogy a tananyag megválasztásában a tanulói érdeklődés és a pályaorientáció is szerepet kapjon. A matematikát alkalmazó pályák felé vonzódó tanulók gondolkodtató, kreativitást igénylő versenyfeladatokkal motiválhatók, a humán területen továbbtanulni szándékozók számára érdekesebb a matematika kultúrtörténeti szerepének kidomborítása, másoknak a középiskolai matematika gyakorlati alkalmazhatósága fontos. A fokozott szaktanári figyelem, az iskolai könyvtár és az elektronikus eszközök használatának lehetősége segíthetik az esélyegyenlőség megvalósulását. Ez a kerettanterv a négy évfolyamos speciális matematikatanítás számára készült. Ennek nagy szerepe van a tudósutánpótlás biztosításában, de nagy a hatása gazdasági élet szakember-utánpótlására is. Elsődleges célunk, hogy megőrizzük a matematika tagozatos osztályok haladó hagyományait, ugyanakkor azt is várjuk, hogy az e tanterv alapján tanuló diákok a felsőoktatásban jól hasznosítható ismeretekkel hagyják el a középiskolát. A rendelkezésre álló nagyobb órakeretet hatékonyabb, de időigényes módszerek (pl. önálló felfedeztetés, differenciált feladatok) alkalmazására is fel kívánjuk használni, hasonlóképpen gondot fordítunk a felmerülő problémák részletesebb elemzésére. A tapasztalatok azt mutatták, hogy a fenti célú mérsékelt tananyag-növekedés az elért szemléletfejlődéssel és a megnövekedett gyakorlási időkkel jelentős teljesítményjavulást eredményez. Emelt szintű matematika kerettanterv szerint már ötödik (esetleg hetedik) osztálytól tanulhatnak az általános iskolások. Azonban e kerettanterv készítésekor nem tételeztük fel az általános iskolás emelt szintű tananyag ismeretét, célszerűnek látjuk az egyes témák tárgyalásának kezdetén az emelt szintű általános iskolai legfontosabb kiegészítő ismeretek áttekintését évfolyam A matematika kerettantervnek ez a fejezete a négyosztályos gimnáziumok azon tanulóinak szól, akik matematikából speciális tantervű képzést választottak. Ezért a tananyag összeállításánál feltételezhetjük, hogy kiemelkedő matematikai képességű, érdeklődőbb tanulóknak szól. A normál osztályokéhoz képest kiegészítő elemek kerülnek a tananyagba. Ezek egy része motivációs erejű, vannak olyanok, amelyek az emelt szintű érettségi vizsgára való felkészülést segíthetik, vannak olyanok is, amelyek a felsőoktatásban lesznek majd hasznosíthatók. Olyan tananyagelemeket is szerepeltetünk ezeken az évfolyamokon, amelyek biztosabbá teszik a tanulók ismereteit, kitekintést nyújtanak egy-egy témakör szélesebb körű alkalmazásaira, segíthetik a versenyeken való eredményesebb szereplésüket. Nem feltétlenül törekszünk a tananyag erőszakos növelésére, a korosztálynak megfelelő, mélyebb tárgyalást tartjuk elsődlegesnek. A középiskola első két évfolyamán sok, korábban már szereplő ismeret, összefüggés, fogalom újra előkerül úgy, hogy a definiálásán, a tételek igazolásán, rendszerezésén, kapcsolataik feltárásán és alkalmazási lehetőségeik megismerésén lesz a hangsúly. A kerettantervben szereplő tételek nagy többségét is bizonyítani kell. Ezért a tanulóknak meg kell ismerkedniük a tudományos feldolgozás alapvető módszereivel. (Mindenki által elfogadott alapelvek/axiómák, már bizonyított állítások, új sejtések, állítások megfogalmazása és azok igazolása, a fentiek összegzése, a nyitva maradt kérdések felsorolása, a következmények elemzése.) A fenti célok az általános iskolai matematikatanítás hoz képest jelentős többletet jelentenek. Fontos, hogy változatos módszertani megoldásokkal tegyük könnyebbé az

5 átmenetet. Hasznosak lehetnek ebből a szempontból a matematikai alapú játékok is. A gyerekek szívesen játszanak maradékos osztáson, oszthatósági szabályokon alapuló számjátékokat és szimmetriákon alapuló geometriai, rajzos játékokat. Nyerni akarnak, ezért természetes módon elemezni kezdik a szabályokat, lehetőségeket. Olyan következtetésekre jutnak, olyan elemzéseket végeznek, amilyeneket hagyományos feladatokkal nem tudnánk elérni. A geometria egyes területeinek (szimmetriák, aranymetszés) a művészetekben való alkalmazásait bemutatva világossá tehetjük a tanulók előtt, hogy a matematika a kultúra elválaszthatatlan része. A témakör egyes elemeihez kapcsolódva mutassuk be néhány matematikus életútját! Az ezekre a témákra fordított idő bőven megtérül az ennek következtében növekvő érdeklődés, javuló motiváció miatt. Változatos példákkal, feladatokkal mutathatunk rá arra, hogy milyen előnyöket jelenthet a mindennapi életben, ha valaki jól tud problémákat megoldani. Gazdasági, sport témájú feladatokkal, számos geometriai és algebrai szélsőérték-feladattal lehet gyakorlati kérdésekre optimális megoldásokat keresni. A középiskolás kor már alkalmassá teszi a tanulókat az önálló ismeretszerzésre. Legyen követelmény, hogy egyes adatoknak, nak, ismereteknek könyvtárban, interneten nézzenek utána. Ez a kutatómunka hozzájárulhat a tanulók digitális kompetenciájának fejlesztéséhez, ugyanezt szolgálhatja a geometriai és egyéb matematikai programok használata is. Gondolkodási módszerek, halmazok, matematikai logika, kombinatorika, gráfok Halmazok, ponthalmazok 62 óra Csoportosítás különböző szempontok alapján. Halmazműveletek véges halmazokon. Halmazábra. Számhalmazok, ponthalmazok. Matematikai állítások elemzése, igaz és hamis állítások. A halmaz fogalmának ismerete, alkalmazása problémamegoldásra, matematikai modellek alkotására. Több szempont alkalmazása megosztott figyelem fejlesztése. Feladatmegoldási rutin mélyítése. Definíciók, jelölések használata az emlékezet fejlesztése. Halmazok. Halmazokkal kapcsolatos ismeretek: üres halmaz, részhalmaz, halmazok egyenlősége. Halmazműveletek: unióképzés, metszetképzés, különbségképzés, szimmetrikus differencia, komplementer halmaz. Descartes-féle szorzat. A ismétlése, alkalmazása több halmazra. Pontos definíciók, jelölések használata. Reláció és műveleti tulajdonságok bizonyítása. Halmazok felbontása diszjunkt halmazok uniójára. A halmazműveletek tulajdonságai. Halmazok számossága. Számosság és halmazműveletek. Logikai szita formula. n elemű halmaz részhalmazainak a száma. Véges és végtelen halmazok. (Csak szemléletes szinten, Informatika: könyvtárszerkezet a számítógépen; adatbázis-kezelés, adatállományok, adatok szűrése különböző szempontok szerint. Magyar nyelv és irodalom: mondatok, szavak, hangok rendszerezése. Biológia-egészségtan: rendszertan.

6 később részletese tárgyaljuk.) Matematikatörténet: Georg Cantor. Konstrukciók. Lehetetlenségi bizonyítások. Adott tulajdonságú objektumok konstruálása. Adott tulajdonságú halmazok konstruálása. Ábrák színezése, lefedése adott feltételek szerint. Annak indoklása, hogy valamely konstrukció nem hozható létre. (Invariáns mennyiség keresése.) Logika. Logikai műveletek (negáció, konjukció, diszjunkció, implikáció, ekvivalencia) és tulajdonságaik Összevetés a halmazműveletek tulajdonságaival. Rendszerező ismétlés feladatokon keresztül. A köznapi szóhasználat és a matematikai szóhasználat összevetése. Logikai és halmazelméleti műveletek kapcsolata. Következtetések. Normálformák. A logikai áramkörök elméletének elemei. Matematikatörténet: Pólya György, George Boole. Kombinatorika. Permutáció ismétlés nélkül és ismétléssel. Variáció ismétlés nélkül és ismétléssel. Kombináció ismétlés nélkül és ismétléssel Jelek használata: n!, n. k Binomiális együtthatók, egyszerű tulajdonságaik. Pascal-háromszög és tulajdonságai. Binomiális tétel. Matematikatörténet: Blaise Pascal, Erdős Pál. Néhány kombinatorikus geometriai feladat. n pont maximum hány egyenest határoz meg? n egyenesnek maximum hány metszéspontja lehet? n egyenes maximum hány részre osztja a síkot? Gráfok. Néhány probléma ábrázolása gráfokkal. Gráfelméleti alap. Vonalak, körök, utak (séta, vonal, út, kör). Euler-vonal. Euler-körvonal. Hamilton-kör. Hamilton-út. Kulcs/ Véges és végtelen halmaz, unió, metszet, különbség, komplementer halmaz. Permutáció, variáció, kombináció, logikai művelet, gráf.

7 Számelmélet, algebra Valós számok 32 óra Természetes számok, egész számok, racionális számok halmaza. Műveletek elvégzése a racionális számok halmazán fejben, írásban, számológéppel. Műveletek sorrendje, zárójelek használata. Hatványozás. Számkörbővítés elveinek megértése, a valós számok halmazának ismerete. Gondolkodás: ismeretek rendszerezésének fejlesztése. Indirekt bizonyítási módszer alkalmazása. Absztrakciós készség fejlesztése. Számhalmazok: természetes számok, egész számok, racionális számok, irracionális számok, valós számok. Mely műveletek nem vezetnek ki az egyes számhalmazokból? A racionális számok halmazán végzett műveletek biztonságos elvégzése ismétlés, gyakorlás. Műveleti tulajdonságok alkalmazása: kommutativitás, asszociativitás, disztributivitás. Számok tizedes tört alakja. Véges, végtelen szakaszos, végtelen nem szakaszos tizedes törtek. Irracionális szám kétoldali közelítése racionális számokkal. Hatványozás és azonosságai egész kitevőre. Számok normálalakja. Számolás normálalakban felírt számokkal. Normálalak a számológépen. A valós számok és a számegyenes kapcsolata. A racionális számok halmaza nem elegendő a számegyenes pontjainak jelölésére. Négyzetgyök fogalma. A négyzetgyökvonás azonosságai. Kivitel a gyökjel alól, bevitel a gyökjel alá. Nevező gyöktelenítése. n irracionális, ha n nem négyzetszám. Indirekt bizonyítás. Az n-edik gyök fogalma. A gyökvonás azonosságai. Páros és páratlan gyökkitevő. Bevitel a gyökjel alá. Kivitel a gyökjel alól. A szerkeszthetőség néhány kérdése. Permanenciaelv. A racionális kitevőjű hatványok. Fizika, kémia, biológia-egészségtan: a tér, az idő, az anyagmennyiség nagy és kis méreteinek megadása normálalakkal. Technika, életvitel és gyakorlat: zajszennyezés. Kémia: ph-számítás.

8 Számolás racionális kitevőjű hatványokkal, gyökös kifejezésekkel. A hatványfogalom kiterjesztése irracionális kitevőre. Hatványozás kiterjesztése valós kitevőre. A logaritmus fogalma. Logaritmus értékének meghatározása a definíció alapján és számológéppel. A logaritmus azonosságai. Szorzat, hányados, hatvány logaritmusa, áttérés más alapú logaritmusra. Az értelmezési tartomány változásának vizsgálata az azonosságok kétirányú alkalmazásánál. A logaritmus azonosságainak alkalmazása kifejezések számértékének meghatározására, kifejezések átalakítására. Logaritmustáblázat. Matematikatörténet: Napier, Kepler. A logaritmus fogalmának kialakulása. Kulcs/ Valós szám, normálalak, négyzetgyök, n-edik gyök, logaritmus. Számelmélet, algebra Algebrai kifejezések használata Összefüggések leírása algebrai kifejezésekkel, helyettesítési érték, zárójelfelbontás. 2 ( a b), 31 óra 2 2 a b, Algebrai kifejezések biztonságos használata, célszerű átalakítási módok megtalálása, elvégzése. Algebrai kifejezések. Polinomok, törtkifejezések. Racionális és nem racionális kifejezések. Nevezetes azonosságok: 2 2 ( a b), ( a b c), 2 2 a b, 3 3 a b, 3 3 a b. n n a b, a k b k Geometria: azonosságok rajzos igazolása. Azonos átalakítások. Polinomok összeadása, kivonása. Polinomok szorzása, hatványozása. Szorzattá alakítás különböző módszerei. Polinomok maradékos osztása. Algebrai törtekkel végzett műveletek. Algebrai törtek egyszerűsítése, összeadása, kivonása, Fizika; kémia: mennyiségek kiszámítása képlet alapján, képletek átrendezése.

9 szorzása, osztása. Kifejezések legnagyobb közös osztója, legkisebb közös többszöröse. Matematikatörténet: algebra Al-Hvarizmi. Számtani, mértani, négyzetes és harmonikus közép, hatványközép, és a köztük lévő egyenlőtlenség. Algebrai bizonyítás két és több tagra. Szélsőérték-feladatok közepek segítségével. Kapcsolat: másodfokú függvények vizsgálata. Kulcs/ Algebrai kifejezés, polinom, algebrai tört, azonosság, közép. Számelmélet, algebra Oszthatóság 42 óra Osztó, többszörös, prímszám, prímtényezős felbontás, legnagyobb közös osztó, legkisebb közös többszörös. A korábbi években szerzett ismeretek elmélyítése, bővítése. Osztó, többszörös, oszthatóság, oszthatósági szabályok. Az oszthatósági szabályok. Analógiák nem tízes alapú számrendszerek oszthatósági szabályaiban. NIM-játék. Algebrai azonosságok alkalmazása oszthatósági feladatokban. Teljes indukció alkalmazása oszthatósági feladatokban. Prímszám, összetett szám, prímtényezős felbontás. A számelmélet alaptétele. Osztójáték. Végtelen sok prímszám van. Néhány további tétel és sejtés a prímszámok elhelyezkedéséről. Legkisebb közös többszörös, legnagyobb közös osztó. Euklideszi algoritmus. Osztók számának, összegének, szorzatának meghatározása a prímtényezős felbontásból. Euler-féle függvény. Kis Fermat-tétel. Wilson-tétel. Néhány speciális prím (Mersenne-prímek, Fermat-prímek). Tökéletes számok. Kongruenciák és tulajdonságai. Maradékosztályok. Diofantoszi egyenletek. Informatika: nagy prímek szerepe a titkosításban.

10 Lineáris diofantoszi egyenlet. Az ax + by + cxy = d típusú diofantoszi egyenlet. Szöveges feladatok megoldása diofantoszi egyenlettel. Pitagoraszi számhármasok. Matematikatörténet: Diophantosz, Eukleidész, Eratoszthenész, Euler, Fermat. Kulcs/ Osztó, többszörös, prím, prímtényezős felbontás, a számelmélet alaptétele, legnagyobb közös osztó, legkisebb közös többszörös, számelméleti függvény, kongruencia, maradékosztály. Számelmélet, algebra Egyenlet, egyenlőtlenség, egyenletrendszer 90 óra Egyismeretlenes, elsőfokú egyenletek, egyenlőtlenségek megoldása. Alaphalmaz vizsgálata, ellenőrzés. Azonosság. Szöveges feladatok matematikai modell alkotása. Gyakorlati problémák matematikai modelljének felállítása, a modell hatókörének vizsgálata, a kapott eredmény összevetése a valósággal; az ellenőrzés fontossága. A problémához illő számítási mód kiválasztása, eredmény kerekítése a problémának megfelelően. Számológép használata. Az önellenőrzés képességének fejlesztése. Egyenletek. Alaphalmaz, megoldáshalmaz, igazsághalmaz. Egyenletek megoldása grafikus módszerrel, alaphalmaz és értékkészlet vizsgálatával, algebrai módszerekkel. Egyenletek ekvivalenciája. Elsőfokú egyenletek. Elsőfokú egyenlettel megoldható szöveges feladatok. A korábban tanult módszerek elmélyítése. További módszerek szöveges feladatok megoldására. Példák egyenlet nélküli megoldási módszerekre. Törtes egyenletek, egyenlőtlenségek. Értelmezési tartomány vizsgálata, hamis gyök. Mikor lesz egy tört értéke nulla, pozitív, negatív? Elsőfokú paraméteres egyenletek és egyenlőtlenségek. Abszolút értéket tartalmazó egyenletek. (Több abszolút értéket tartalmazók is.) Abszolút értéket tartalmazó egyenlőtlenségek. Algebrai és grafikus megoldás. Elsőfokú egyenletrendszerek. Egyenletrendszerek grafikus megoldása. Behelyettesítő módszer. Fizika; kémia: képletek értelmezése, egyenletek rendezése. Fizika: kinematika, dinamika. Kémia: oldatok összetétele. Fizika: a mérés hibája. Informatika: számítógépes program használata.

11 Egyenlő együtthatók módszere. Új ismeretlen bevezetése. Gauss-elimináció. Elsőfokú paraméteres egyenletrendszerek. Egyenletrendszerrel megoldható szöveges feladatok. A kapott eredmény értelmezése, valóságtartalmának vizsgálata. Elsőfokú egyenlőtlenségek. Egyenlőtlenségek grafikus megoldása. Egyismeretlenes egyenlőtlenségrendszer. Másodfokú függvények vizsgálata. Teljes négyzetté alakítás használata. Másodfokú egyenletek. Grafikus megoldás. Teljes négyzetté kiegészítés. Egyenletmegoldás szorzattá alakítással. A másodfokú egyenlet megoldóképlete. A megoldóképlet készségszintű alkalmazása. Számológép használata. A másodfokú egyenlet diszkriminánsa. Diszkusszió. Önellenőrzés. Gyöktényezős alak, Viète-formulák. Másodfokúra visszavezethető egyenletek. Új ismeretlen bevezetése. Racionális gyökök keresése. Viète-formulák. Néhány további módszer az egyenlet speciális tulajdonságainak felhasználásával. Szélsőérték-feladatok Másodfokú függvény vizsgálatával. Kapcsolat: számtani és mértani közép közötti egyenlőtlenség felhasználásával történő megoldás. Optimális megoldásokra törekvés. Másodfokú egyenlettel megoldható szöveges feladatok. Modellalkotás, megoldási módszerek. Másodfokú egyenlőtlenségek. A megoldás megadása másodfokú függvény vizsgálatával. Többféle megoldási módszer összevetése. Másodfokú egyenletrendszer. Másodfokú egyenletrendszerrel megoldható szöveges feladatok. Emlékezés korábban megismert módszerekre, alkalmazás az adott környezetben. Fizika: fizikai tartalmú minimum- és maximumproblémák. Filozófia: egy adott rendszeren belül megoldhatatlan problémák létezése. Fizika: egyenletesen gyorsuló mozgás leírása. Informatika: számítógépes program használata. Fizika: ütközések.

12 Gyökös egyenletek, egyenlőtlenségek, egyenletrendszerek. Ekvivalens és nem ekvivalens egyenlet-megoldási lépések. Hamis gyök, gyökvesztés. Önellenőrzés képességének fejlesztése. Paraméteres másodfokú és másodfokúra visszavezethető egyenletek. Esetszétválasztások, divergens gondolkodás fejlesztése. Paraméteres másodfokú egyenlőtlenségek. Magasabb fokú egyenletek. Egész együtthatós polinom egész és racionális gyökei. Bezout tétele. Gyökök és együtthatók közti összefüggés. Horner-elrendezés. Matematikatörténet: magasabb fokú egyenletek megoldhatósága. Cardano, Galois, Abel. Exponenciális egyenletek, egyenletrendszerek, egyenlőtlenségek. Megoldás a definíció és az azonosságok alkalmazásával. Exponenciális egyenletre vezető valós problémák megoldása. Logaritmikus egyenletek egyenlőtlenségek, egyenletrendszerek Megoldás a definíció és az azonosságok alkalmazásával. Értelmezési tartomány vizsgálatának fokozott szükségessége logaritmusos egyenleteknél. Paraméteres exponenciális és logaritmusos egyenletek. Kulcs/ Földrajz: globális problémák (pl. demográfiai mutatók, a Föld eltartó képessége és az élelmezési válság, betegségek, világjárványok, túltermelés és túlfogyasztás). Kémia: ph-számítás Elsőfokú egyenlet, egyenlőtlenség, értelmezési tartomány, azonosság. Ekvivalens átalakítás, hamis gyök. Másodfokú egyenlet, egyenlőtlenség, megoldóképlet, diszkrimináns. Egyenletrendszer. Négyzetgyökös egyenlet. Paraméteres egyenlet. Magasabb fokú egyenletek. Exponenciális és logaritmikus egyenlet, egyenlőtlenség, egyenletrendszer. Geometria Alap, ponthalmazok, egybevágósági transzformációk 53 óra Térelemek kölcsönös helyzete, távolsága. Háromszögek, négyszögek, sokszögek tulajdonságai. Speciális háromszögek, négyszögek elnevezése, felismerése, tulajdonságaik. Háromszögek szerkesztése alapadatokból.. A Pitagorasz-tétel ismerete. Geometriai transzformációk, a szimmetria felismerése környezetünkben, alkalmazásuk egyszerű feladatokban.

13 A tematikai egység nevelésifejlesztési A geometriai szemlélet, látásmód fejlesztése. A definíciók és tételek pontos ismerete. Bizonyítások gyakorlása. A szükséges és az elégséges feltétel felismerése. Összetett számítási probléma lebontása, számítási terv készítése (megfelelő részlet kiválasztása, a részletszámítások logikus sorrendbe illesztése). A geometriai transzformációk átfogó ismerete, alkalmazása problémamegoldásban. Szimmetria szerepének felismerése a matematikában, a művészetekben. Tájékozódás valóságos viszonyokról térkép és egyéb vázlatok alapján. Valós probléma geometriai modelljének megalkotása, számítások a modell alapján, az eredmények összevetése a valósággal. Számítógép használata geometriai feladatokban. Geometriai alap, axiómák. Térelemek; kölcsönös helyzete, távolsága, szöge síkban és térben. Skatulyaelvvel megoldható geometriai feladatok. Háromszögek szögei, oldalai közti összefüggések. Négyszögek. Sokszögek szögösszege, átlók száma. Nevezetes ponthalmazok rendszerezése. adott térelemtől adott távolságra lévő pontok halmaza síkban és térben; két térelemtől egyenlő távolságra lévő pontok halmaza síkban és térben. Parabola, ellipszis, hiperbola. Egyenlőtlenséggel meghatározott ponthalmazok. Ponthalmazok a koordinátasíkon. Koordinátákkal megadott feltételek. Matematikatörténet: Descartes. Két vagy három feltételnek megfelelő ponthalmazok szerkesztése. Háromszög beírt, körülírt, hozzáírt körei. Háromszög további nevezetes vonalai. Középvonalak.(Négyszögek középvonalai is.) Varignon-tétel. Magasságok magasságpont. Súlyvonalak súlypont. Geometriai szerkesztőprogram használata, bemutatása grafikus programmal. Pitagorasz tétele és a tétel megfordítása. Számítási feladatok síkban és térben. Pitagorasz tételének alkalmazása bizonyítási feladatokban. Mikor hegyesszögű, illetve tompaszögű a háromszög? Két pont távolsága koordináta-rendszerben. A paralelogramma oldalainak négyzetösszege egyenlő az átlók négyzetösszegével. Négyszög átlói merőlegességének feltétele. Matematikatörténet: Pitagorasz. Thalész tétele és a tétel megfordítása. Szerkesztési és bizonyítási feladatok. Körérintő szerkesztése. Fizika: szögsebesség, szöggyorsulás. Vizuális kultúra: térbeli viszonyok. Fizika: parabolatükör. Informatika: geometriai szerkesztőprogram használata. Fizika: égitestek pályája; izotermikus állapotváltozás. Fizika: vektor felbontása merőleges összetevőkre.

14 Matematikatörténet: Thalész. Geometriai transzformáció fogalma. Egybevágósági transzformációk rendszerező ismétlése. Tengelyes tükrözés, középpontos tükrözés, forgatás, eltolás, identitás. A geometriai transzformációk tulajdonságai: fixpont, fix egyenes, fix sík, szögtartás, távolságtartás, irányítástartás. Szimmetrikus ponthalmazok, szimmetrián alapuló játékok. Geometriai transzformációk szorzata. Geometriai szélsőérték-feladatok. Háromszögbe írt minimális kerületű háromszög. Izogonális pont. Az egybevágóság fogalma. Ponthalmazok egybevágósága. A háromszögek egybevágóságának alapesetei. Műveletek vektorokkal: Összeadás, kivonás, számmal való szorzás. Vektorfelbontás tétele. Osztópont helyvektora, háromszög súlypontjának helyvektora. Feuerbach-kör. Vektorok térben. Vektor koordinátái. Analógia a számhalmazokon végzett műveletekkel. Kulcs/ Informatika: geometriai szerkesztőprogram használata. Földrajz: minimális utak meghatározása. Fizika: vektormennyiségek: erő, sebesség, gyorsulás, térerősség. Térelem, sokszög, Pitagorasz-tétel, Thalész-tétel, egybevágósági transzformáció. Vektor. Geometria Hasonlóság és kapcsolódó tételek 56 óra Egybevágósági transzformációk. A háromszögek egybevágóságának alapesetei. Számtani és mértani közép. A számtani és a mértani közép közötti egyenlőtlenség. A geometriai szemlélet, látásmód fejlesztése. A definíciók és tételek pontos ismerete. Bizonyítások gyakorlása. Tájékozódás valóságos viszonyokról térkép és egyéb vázlatok alapján. Valós probléma geometriai modelljének megalkotása, számítások a modell alapján, az eredmények összevetése a valósággal. Számítógép használata geometriai feladatokban. A párhuzamos szelők tétele és megfordítása, következmények. Szögfelező tétel. A párhuzamos szelőszakaszok tétele. Szakasz arányos osztása. Negyedik arányos szerkesztése.

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

Az osztályozó vizsgák tematikája matematikából

Az osztályozó vizsgák tematikája matematikából Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama

Részletesebben

Az osztályozó vizsgák tematikája matematikából 7-12. évfolyam

Az osztályozó vizsgák tematikája matematikából 7-12. évfolyam Az osztályozó vizsgák tematikája matematikából 7-12. évfolyam Matematikából a tanulónak írásbeli és szóbeli osztályozó vizsgán kell részt vennie. Az írásbeli vizsga időtartama 60 perc, a szóbelié 20 perc.

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

Helyi tanterv. Ciszterci Rend Nagy Lajos Gimnáziuma és Kollégiuma. Matematika Munkaközösség 2013.05.20 1

Helyi tanterv. Ciszterci Rend Nagy Lajos Gimnáziuma és Kollégiuma. Matematika Munkaközösség 2013.05.20 1 Helyi tanterv Matematika Munkaközösség 2013.05.20 1 Tartalomjegyzék Bevezető... 3 7 8. évfolyam... 5 9 12. évfolyam, speciális tagozat, emelt szintű felkészítés... 6 9 10. évfolyam... 9 11 12. évfolyam...

Részletesebben

209-1686, fax: 361-4427, web: www.jagbp.hu, e-mail: titkarsag@jagbp.sulinet.hu, OM: 034 982. Az József Attila Gimnázium. helyi tanterve.

209-1686, fax: 361-4427, web: www.jagbp.hu, e-mail: titkarsag@jagbp.sulinet.hu, OM: 034 982. Az József Attila Gimnázium. helyi tanterve. Klebelsberg Intézményfenntartó Központ Budapesti XI. Tankerülete Újbudai József Attila Gimnázium 1117 Budapest, Váli u. 1. 209-1686, fax: 361-4427, web: www.jagbp.hu, e-mail: titkarsag@jagbp.sulinet.hu,

Részletesebben

MATEMATIKA HELYI TANTERV Kéttannyelvű magyar-francia előkészítő év számára

MATEMATIKA HELYI TANTERV Kéttannyelvű magyar-francia előkészítő év számára MATEMATIKA HELYI TANTERV Kéttannyelvű magyar-francia előkészítő év számára Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

MATEMATIKA 7. évfolyam

MATEMATIKA 7. évfolyam MATEMATIKA 7. évfolyam 1. Gondolkodási módszerek, halmazok, matematikai logika, kombinatorika Halmazba rendezés több szempont alapján a halmazműveletek alkalmazásával. Két véges halmaz uniója, különbsége,

Részletesebben

Helyi tanterv MATEMATIKA

Helyi tanterv MATEMATIKA Helyi tanterv MATEMATIKA 11 12. évfolyam emelt szintű képzés (fakultáció) Ez a szakasz az eddigi matematikatanulás szintézisét adja, és egyben kiteljesíti a kapcsolatokat a többi tantárggyal, valamint

Részletesebben

A MATEMATIKA TANTÁRGY NÉGYÉVFOLYAMOS HELYI TANTERVE. Bevezető

A MATEMATIKA TANTÁRGY NÉGYÉVFOLYAMOS HELYI TANTERVE. Bevezető Bevezető Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika tanulása

Részletesebben

11. évfolyam. Emelt szintű heti 6+6 óra 11 12. évfolyam. További célok:

11. évfolyam. Emelt szintű heti 6+6 óra 11 12. évfolyam. További célok: Emelt szintű heti 6+6 óra 11 12. évfolyam További célok: Ez a szakasz az eddigi matematikatanulás szintézisét adja, és egyben kiteljesíti a kapcsolatokat a többi tantárggyal, valamint a mindennapi élet

Részletesebben

Célok, feladatok Fejlesztési terület Ismeretanyag. A kilencedik osztályos tananyagra támaszkodva egy nyílt végű feladat megoldása, megbeszélése.

Célok, feladatok Fejlesztési terület Ismeretanyag. A kilencedik osztályos tananyagra támaszkodva egy nyílt végű feladat megoldása, megbeszélése. Matematika 10. első kötet Témák Az óra témája (tankönyvi 1. Bevezető óra (101. Ismerkedés a tankönyvvel 2. Nyílt végű feladat: Szálloda tervezése (102. 3. Matematikai logika: Igaz vagy hamis (103. 4. Matematikai

Részletesebben

MATEMATIKA HELYI TANTERV 9/AJTP évfolyam

MATEMATIKA HELYI TANTERV 9/AJTP évfolyam MATEMATIKA HELYI TANTERV 9/AJTP évfolyam Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi

Részletesebben

Témakörök Témakör óraszáma Ismeretanyag Kompetenciák, nevelési célok, kapcsolódások 1. Gondolkodási és megismerési módszerek

Témakörök Témakör óraszáma Ismeretanyag Kompetenciák, nevelési célok, kapcsolódások 1. Gondolkodási és megismerési módszerek 11.évfolyam éves óraszáma: 108 óra Témakörök Témakör óraszáma Ismeretanyag Kompetenciák, nevelési célok, kapcsolódások 1. Gondolkodási és megismerési módszerek 12 óra Vegyes kombinatorikai feladatok, kiválasztási

Részletesebben

A Baktay Ervin Gimnázium emelt szintű matematika tanterve a 11-12. évfolyamok számára

A Baktay Ervin Gimnázium emelt szintű matematika tanterve a 11-12. évfolyamok számára A Baktay Ervin Gimnázium emelt szintű matematika tanterve a 11-12. évfolyamok számára 11. 12. heti óraszám 6 6 éves óraszám 216 180 Ez a szakasz az érettségire felkészítés időszaka is, ezért a fejlesztésnek

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

9-12. ÉVFOLYAM. Fejlesztési követelmények Az általános fejlesztési követelményeket az alsóbb évfolyamokhoz hasonlóan öt csoportba soroljuk.

9-12. ÉVFOLYAM. Fejlesztési követelmények Az általános fejlesztési követelményeket az alsóbb évfolyamokhoz hasonlóan öt csoportba soroljuk. Esti tagozat 9-12. ÉVFOLYAM Célok és feladatok A felnőttoktatás középiskoláiba valószínűleg két fő ok miatt jelentkeznek a tanulók. Az egyik ok, hogy a pillanatnyi szakterületükön való további megfelelés

Részletesebben

MATEMATIKA. 9-10. évfolyam. Célok és feladatok

MATEMATIKA. 9-10. évfolyam. Célok és feladatok MATEMATIKA 9-10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerő, alkalmazásra képes matematikai mőveltségét, biztosítsa a többi tantárgy

Részletesebben

Berzsenyi Dániel Gimnázium. Matematika helyi tanterv Fizika tagozat 9-12. évfolyam

Berzsenyi Dániel Gimnázium. Matematika helyi tanterv Fizika tagozat 9-12. évfolyam Általános szerkezet Berzsenyi Dániel Gimnázium Matematika helyi tanterv Fizika tagozat 9-12. évfolyam Cél: az emelt szintű érettségi követelményekben szereplő tananyag megtanítása, néhány részen kiegészítve

Részletesebben

Helyi tanterv Matematika 9 12. évfolyam Felnőttoktatási tagozat

Helyi tanterv Matematika 9 12. évfolyam Felnőttoktatási tagozat MATEMATIKA Iskolánk felnőttoktatási tagozatán kétféle munkarend szerint tanítjuk a matematikát. Az esti munkarend szerint heti három órában minden évfolyamon. Ez évente összesen 111/96 órát jelent, ami

Részletesebben

Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Szabadon választható tantárgy: matematika előkészítő 11-12. évfolyam

Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Szabadon választható tantárgy: matematika előkészítő 11-12. évfolyam 1 Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Szabadon választható tantárgy: matematika előkészítő 11-12. évfolyam 2 Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról

Részletesebben

Melléklet a Matematika című részhez

Melléklet a Matematika című részhez Melléklet a Matematika című részhez Az arányosság bemutatása Az első könyvsorozatban 7. osztály, Tk-2 és Tk-3-ban 6. osztály, Tk-3b-ben 5. osztály(!), Tk-4-ben ismét 6. osztály, és végül Tk-4b-ben 5-6.

Részletesebben

MATEMATIKA HELYI TANTERV (3+3+3+4)

MATEMATIKA HELYI TANTERV (3+3+3+4) Matematika MATEMATIKA HELYI TANTERV (3+3+3+4) Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi

Részletesebben

MATEMATIKA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK

MATEMATIKA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK MATEMATIKA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell

Részletesebben

Miskolci Magister Gimnázium

Miskolci Magister Gimnázium Miskolci Magister Gimnázium matematika 12. évfolyam 2013/2014 110/2012./VI.4./Kormányrendelet, és az 51/2012/XII.21./ EMMI kerettanterv alapján Készítette: Literáti Márta Helyi tanterv Jelen helyi tanterv

Részletesebben

MATEMATIKA (4+3+3+4)

MATEMATIKA (4+3+3+4) MATEMATIKA (4+3+3+4) (Írta: Pálffy Zoltán, 2013, Nemzedékek Tudása Tankönyvkiadó Zrt.) Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos

Részletesebben

Ciszterci Rend Nagy Lajos Gimnáziuma és Kollégiuma Helyi tanterv Matematika

Ciszterci Rend Nagy Lajos Gimnáziuma és Kollégiuma Helyi tanterv Matematika 1. oldal Tartalomjegyzék Tartalom Helyi tantervünk kerettantervi háttere... 2 A hatosztályos képzés... 2 A hatosztályos képzés 7-8. osztályainak helyi tanterve... 5 A hatosztályos képzés 9-10. osztályainak

Részletesebben

MAGISTER GIMNÁZIUM MATEMATIKA 9. ÉVFOLYAM

MAGISTER GIMNÁZIUM MATEMATIKA 9. ÉVFOLYAM MAGISTER GIMNÁZIUM MATEMATIKA 9. ÉVFOLYAM Heti 4 óra Készítette: Literáti Márta Ellenőrizte:.. matematika tanár igazgató 1 Alapdokumentumok: EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet

Részletesebben

MISKOLCI MAGISTER GIMNÁZIUM TANMENET

MISKOLCI MAGISTER GIMNÁZIUM TANMENET MISKOLCI MAGISTER GIMNÁZIUM TANMENET MATEMATIKA 10. osztály 2013/2014 Készítette: Literáti Márta Kerettantervi ajánlás a helyi tanterv készítéséhez: EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet

Részletesebben

HELYI TANTERV MATEMATIKA Tantárgy

HELYI TANTERV MATEMATIKA Tantárgy Energetikai Szakközépiskola és Kollégium 7030 Paks, Dózsa Gy. út 95. OM 036396 75/519-300 75/414-282 HELYI TANTERV MATEMATIKA Tantárgy 4 4 4 4 óraszámokra Készítette: Krizsán Árpád munkaközösség-vezető

Részletesebben

Helyi tanterv. Szigetszentmiklósi Batthyány Kázmér Gimnázium Matematika alap (1+3+4+4+4 óra/hét) 9-13 évfolyam* Készült: 2014 szeptember

Helyi tanterv. Szigetszentmiklósi Batthyány Kázmér Gimnázium Matematika alap (1+3+4+4+4 óra/hét) 9-13 évfolyam* Készült: 2014 szeptember Helyi tanterv Szigetszentmiklósi Batthyány Kázmér Gimnázium Matematika alap (1+3+4+4+4 óra/hét) 9-13 évfolyam* Készült: 2014 szeptember * Azon évfolyamok számára, akik 2013/14 tanév előtt kezdték az kilencedik

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Matematika kerettantervek 2012. augusztus 31.

Matematika kerettantervek 2012. augusztus 31. Matematika kerettantervek 2012. augusztus 31. dr. Frigyesi Miklós bizottsági elnök Régi és új a NAT-ban Ami visszaszorul: Írásbeli műveletvégzés Magas szintű algebrai rutin Ötletes egyenletek, egyenlőtlenségek

Részletesebben

7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015

7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015 7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015 Évi óraszá: 108 óra Heti óraszá: 3 óra 1. téa: Racionális száok, hatványozás 11 óra 2. téa: Algebrai kifejezések 12 óra 1. téazáró dolgozat 3. téa: Egyenletek,

Részletesebben

MATEMATIKA. Négy évfolyamos gimnázium

MATEMATIKA. Négy évfolyamos gimnázium MATEMATIKA Négy évfolyamos gimnázium Évfolyam 9. 10. 11. 12. Heti óraszám 4 3 3 4 Éves óraszám 144 108 108 124 Érettségi felkészítés heti óraszáma 2 2 Érettségi felkészítés éves óraszáma 72 62 2014 MATEMATIKA

Részletesebben

Matematika tantárgyi tanterv a 9-12. évfolyam számára. A kerettanterv alapján készült helyi tanterv óraterve. Általános profilú osztályokban

Matematika tantárgyi tanterv a 9-12. évfolyam számára. A kerettanterv alapján készült helyi tanterv óraterve. Általános profilú osztályokban MATEMATIKA 1 Matematika tantárgyi tanterv a 9-12. évfolyam számára A kerettanterv alapján készült helyi tanterv óraterve 9. osztály 10. osztály 11. osztály 12. osztály 37 hét 37 hét 37 hét 32 hét Otthoni

Részletesebben

2013/2014-es tanévben felmenő rendszerben bevezetésre kerülő helyi tanterv

2013/2014-es tanévben felmenő rendszerben bevezetésre kerülő helyi tanterv 2013/2014-es tanévben felmenő rendszerben bevezetésre kerülő helyi tanterv 1. Bevezetés Matematika 1.1. Kerettantervi bevezető Célok és feladatok A matematikatanítás feladata a matematika különböző arculatainak

Részletesebben

Matematika 9-12. évfolyam

Matematika 9-12. évfolyam Matematika 9-12. évfolyam Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

képességgel és készséggel, hogy alkalmazni tudják matematikai tudásukat, és felismerjék, hogy a megismert fogalmakat és tételeket változatos

képességgel és készséggel, hogy alkalmazni tudják matematikai tudásukat, és felismerjék, hogy a megismert fogalmakat és tételeket változatos MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

MATEMATIKA emelt szintű érettségire felkészítő csoport a 11 12. évfolyamon emelt óraszámmal

MATEMATIKA emelt szintű érettségire felkészítő csoport a 11 12. évfolyamon emelt óraszámmal MATEMATIKA emelt szintű érettségire felkészítő csoport a 11 12. évfolyamon emelt óraszámmal (Forrás - Nemzedékek Tudása Tankönyvkiadó) (Átdolgozta: Dr. Rókáné Rózsa Anikó - Andrássy Gyula Gimnázium és

Részletesebben

209-1686, fax: 361-4427, web: www.jagbp.hu, e-mail: titkarsag@jagbp.sulinet.hu, OM: 034 982. József Attila Gimnázium. helyi tanterve.

209-1686, fax: 361-4427, web: www.jagbp.hu, e-mail: titkarsag@jagbp.sulinet.hu, OM: 034 982. József Attila Gimnázium. helyi tanterve. Klebelsberg Intézményfenntartó Központ Budapesti XI. Tankerülete Újbudai József Attila Gimnázium 1117 Budapest, Váli u. 1. 209-1686, fax: 361-4427, web: www.jagbp.hu, e-mail: titkarsag@jagbp.sulinet.hu,

Részletesebben

Matematika helyi tanterv

Matematika helyi tanterv Matematika helyi tanterv 1 Tartalomjegyzék Matematika helyi tanterv... 1 1 Tartalomjegyzék... 1 2 Bevezetés... 1 2.1 Helyi tanterv :4+4+4+4 óra... 4 2.1.1 9. évfolyam... 5 2.1.2 10. évfolyam... 16 2.1.3

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

Helyi tanterv matematika A matematika tanításának célja és feladatai

Helyi tanterv matematika A matematika tanításának célja és feladatai Helyi tanterv matematika A matematika tanításának célja és feladatai Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

A Baktay Ervin Gimnázium alap matematika tanterve a 4 évfolyamos gimnáziumi osztályok számára

A Baktay Ervin Gimnázium alap matematika tanterve a 4 évfolyamos gimnáziumi osztályok számára A Baktay Ervin Gimnázium alap matematika tanterve a 4 évfolyamos gimnáziumi osztályok számára heti óraszám éves óraszám 9. 10. 11. 12. 3 cs 4 4 4 108 144 144 120 (cs.: csoportbontásban) Témakörök Gondolkodási

Részletesebben

MATEMATIKA HELYI TANTERV Fóti Népművészeti Szakközép-, Szakiskola és Gimnázium. Szakközépiskola

MATEMATIKA HELYI TANTERV Fóti Népművészeti Szakközép-, Szakiskola és Gimnázium. Szakközépiskola MATEMATIKA HELYI TANTERV Fóti Népművészeti Szakközép-, Szakiskola és Gimnázium Szakközépiskola Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről és

Részletesebben

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 3.2.04 Matematika a gimnáziumok 9 12. évfolyama számára

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 3.2.04 Matematika a gimnáziumok 9 12. évfolyama számára EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 3.2.04 Matematika a gimnáziumok 9 12. évfolyama számára EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 6. sz. melléklet 6.2.03

Részletesebben

9-12. ÉVFOLYAM (ESTI TAGOZAT)

9-12. ÉVFOLYAM (ESTI TAGOZAT) 9-12. ÉVFOLYAM (ESTI TAGOZAT) A felnőttek gimnáziumában a matematika oktatásának célja a tanulók matematikai kompetenciájának fejlesztése, amivel természetesen növeljük a tanulóink esélyeit az életben,

Részletesebben

táblázatok, grafikonok értelmezésének megismerése nagyban segítheti a mindennapokban, és különösen a média közleményeiben való reális tájékozódásban.

táblázatok, grafikonok értelmezésének megismerése nagyban segítheti a mindennapokban, és különösen a média közleményeiben való reális tájékozódásban. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 3.2.04 alapján készült. Helyi tanterv. Matematika 9 12.

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 3.2.04 alapján készült. Helyi tanterv. Matematika 9 12. EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 3.2.04 alapján készült Helyi tanterv Matematika 9 12. évfolyama számára Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson

Részletesebben

MATEMATIKA (3+3+3+4 óra)

MATEMATIKA (3+3+3+4 óra) MATEMATIKA (3+3+3+4 óra) Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Érettségi témakörök IRODALOM I. ÉLETMŰVEK: Petőfi Sándor Arany János Ady Endre Babits Mihály Kosztolányi Dezső József Attila

Érettségi témakörök IRODALOM I. ÉLETMŰVEK: Petőfi Sándor Arany János Ady Endre Babits Mihály Kosztolányi Dezső József Attila Érettségi témakörök IRODALOM I. ÉLETMŰVEK: Petőfi Sándor Arany János Ady Endre Babits Mihály Kosztolányi Dezső József Attila II. PORTÉK: Balassi Bálint Berzsenyi Dániel Mikszáth Kálmán Radnóti Miklós III.

Részletesebben

Matematika a gimnáziumok 9 12. évfolyama számára. Matematika a szakközépiskolák 9 12. évfolyama számára

Matematika a gimnáziumok 9 12. évfolyama számára. Matematika a szakközépiskolák 9 12. évfolyama számára Matematika a gimnáziumok 9 12. évfolyama számára és Matematika a szakközépiskolák 9 12. évfolyama számára Alapdokumentumok: EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 3.2.04 Matematika

Részletesebben

Matematika. Padányi Katolikus Gyakorlóiskola 1

Matematika. Padányi Katolikus Gyakorlóiskola 1 Matematika Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

A matematika tantárgy helyi tanterve

A matematika tantárgy helyi tanterve 4024 Debrecen, Liszt Ferenc utca 1. www.ady-debr.sulinet.hu, ady@iskola.debrecen.hu : 52-520-220, : 52-520-221 OM: 031201 A matematika tantárgy helyi tanterve 2013. Készítette: Borsi Erzsébet Szakmailag

Részletesebben

Matematika. Padányi Katolikus Gyakorlóiskola 1

Matematika. Padányi Katolikus Gyakorlóiskola 1 Matematika Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

Matematika. Tankönyvek, tanulmányi segédletek, taneszközök kiválasztásának elvei:

Matematika. Tankönyvek, tanulmányi segédletek, taneszközök kiválasztásának elvei: Matematika Tankönyvek, tanulmányi segédletek, taneszközök kiválasztásának elvei: Az iskolai oktatásban alkalmazott tankönyveket, tanulmányi segédleteket és taneszközöket a helyi tantervben szereplő ajánlati

Részletesebben

TOKAJI FERENC GIMNÁZIUM, SZAKKÖZÉPISKOLA ÉS KOLLÉGIUM

TOKAJI FERENC GIMNÁZIUM, SZAKKÖZÉPISKOLA ÉS KOLLÉGIUM TOKAJI FERENC GIMNÁZIUM, SZAKKÖZÉPISKOLA ÉS KOLLÉGIUM Matematika tantárgyi program A bevezetés tanéve: A bevezetés évfolyama: Alkalmazott osztálytípusok: 2013/2014-es tanévben, felmenő rendszerben 9. évfolyam

Részletesebben

TANANYAGBEOSZTÁS. Kompetencia alapú matematika 6. osztály. A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése

TANANYAGBEOSZTÁS. Kompetencia alapú matematika 6. osztály. A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése TANANYAGBEOSZTÁS TÁMOP 3.1.4. 08/2-2008-0149 A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése Mátészalkán Implementáló pedagógus: Nagy Gusztávné Implementációs terület: Kompetencia alapú matematika

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

1. Halmazok, halmazműveletek, ezek bemutatása természetes számokkal kapcsolatos problémákon

1. Halmazok, halmazműveletek, ezek bemutatása természetes számokkal kapcsolatos problémákon 1. Halmazok, halmazműveletek, ezek bemutatása természetes számokkal kapcsolatos problémákon Halmazok megadása A halmazt alapfogalomnak tekintjük, így nincs definíciója. A halmazokat általában nagybetűkkel

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

MATEMATIKA 11. évfolyam osztályozóvizsga/javítóvizsga témakörei

MATEMATIKA 11. évfolyam osztályozóvizsga/javítóvizsga témakörei MATEMATIKA 11. évfolyam osztályozóvizsga/javítóvizsga témakörei 1.félév I. Kombinatorika, gráfok Permutációk, variációk Ismétlés nélküli kombinációk Binomiális együtthatók, Pascal-háromszög Gráfok pontok,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA

MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA JELÖLÉSEK: Nem szakrendszerű órák jelölése zöld színnel, számok a programterv A 6. évfolyam tanmenetből valók Infokommunikációs technológia

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

HELYI TANTERV MATEMATIKA Tantárgy

HELYI TANTERV MATEMATIKA Tantárgy Energetikai Szakközépiskola és Kollégium 7030 Paks, Dózsa Gy. út 95. OM 036396 75/519-300 75/414-282 HELYI TANTERV MATEMATIKA Tantárgy 4 3 3 3 óraszámokra Készítette: Krizsán Árpád munkaközösség-vezető

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

MATEMATIKA (3+3+3+4)

MATEMATIKA (3+3+3+4) MATEMATIKA (3+3+3+4) (Írta: Pálffy Zoltán, 2013, Nemzedékek Tudása Tankönyvkiadó Zrt.) (Átdolgozta: Dr. Rókáné Rózsa Anikó, Andrássy Gyula Gimnázium és Kollégium) Az iskolai matematikatanítás célja, hogy

Részletesebben

MATEMATIKA B változat

MATEMATIKA B változat MATEMATIKA B változat Ez a kerettanterv heti 4+4+4+3 órára készült. Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

MATEMATIKA. Célok és feladatok

MATEMATIKA. Célok és feladatok MATEMATIKA Célok és feladatok Az középiskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerrıl és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységrıl.

Részletesebben

A matematika tantárgy szakiskolai helyi tanterve

A matematika tantárgy szakiskolai helyi tanterve Mohácsi Radnóti Miklós Szakképző Iskola és Kollégium A matematika tantárgy szakiskolai helyi tanterve Készült az 20/2010 (V. 11.) OM rendelettel módosított 17/2004. (V. 20.) OM rendelettel kiadott kerettanterv

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

MATEMATIKA. Általános érettségi tantárgyi vizsgakatalógus Splošna matura

MATEMATIKA. Általános érettségi tantárgyi vizsgakatalógus Splošna matura Ljubljana 2011 MATEMATIKA Általános érettségi tantárgyi vizsgakatalógus Splošna matura A tantárgyi vizsgakatalógus a 2013. évi tavaszi vizsgaidőszaktól érvényes az új megjelenéséig. A katalógus érvényességéről

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

BEVEZETŐ MATEMATIKA 5-8. Célok, feladatok:

BEVEZETŐ MATEMATIKA 5-8. Célok, feladatok: BEVEZETŐ Célok, feladatok: Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

Könnyebb-a a középszintű érettségi a régi házi érettségi vizsgánál? II.

Könnyebb-a a középszintű érettségi a régi házi érettségi vizsgánál? II. Könnyebb-a a középszintű érettségi a régi házi érettségi vizsgánál? II. Írta: dr. Majoros Mária Ebben a tanulmányban a jelenlegi érettségin kitűzött feladatokat olyan szempontból fogom összehasonlítani,

Részletesebben

ÁLTALÁNOS JELLEMZŐK, FELÉPÍTÉS

ÁLTALÁNOS JELLEMZŐK, FELÉPÍTÉS ÁLTALÁNOS JELLEMZŐK, FELÉPÍTÉS "Az iskola dolga, hogy megtaníttassa velünk, hogyan kell tanulni, hogy felkeltse a tudás iránti étvágyunkat, hogy megtanítson bennünket a jól végzett munka örömére és az

Részletesebben

Matematika Mozaik Kiadó. 5. osztály

Matematika Mozaik Kiadó. 5. osztály Matematika Mozaik Kiadó 5. osztály Tematikai egység címe órakeret Gondolkodási módszerek, halmazok, matematikai logika, 3+folyamatos kombinatorika, gráfok Számtan, algebra 78 Függvények, az analízis elemei

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

MATEMATIKA 5-6. Motiváció és közelítés a mindennapokhoz az OFI kísérleti tankönyveiben

MATEMATIKA 5-6. Motiváció és közelítés a mindennapokhoz az OFI kísérleti tankönyveiben A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 MATEMATIKA 5-6. Motiváció és közelítés a mindennapokhoz az OFI kísérleti

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

MATEMATIKA MOZAIK. 5-8. évfolyam KERETTANTERVRENDSZER AZ ÁLTALÁNOS ISKOLÁK SZÁMÁRA NAT 2003. Készítette: Pintér Klára

MATEMATIKA MOZAIK. 5-8. évfolyam KERETTANTERVRENDSZER AZ ÁLTALÁNOS ISKOLÁK SZÁMÁRA NAT 2003. Készítette: Pintér Klára MOZAIK KERETTANTERVRENDSZER AZ ÁLTALÁNOS ISKOLÁK SZÁMÁRA NAT 2003 MATEMATIKA 5-8. évfolyam Készítette: Pintér Klára A kerettantervrendszert szerkesztette és megjelentette: MOZAIK KIADÓ SZEGED, 2004 TARTALOM

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 005. május 0. MATEMATIKA EMELT SZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 40 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Matematika tanterv (E) a nyelvi előkészítő évfolyama számára

Matematika tanterv (E) a nyelvi előkészítő évfolyama számára Matematika tanterv (E) a nyelvi előkészítő évfolyama számára Ez a tanterv az Országos Közoktatási Intézet tantervi adatbankjában az OKI96PÁLMAT1-12 változat alatt szereplő minősített tanterv alapján a

Részletesebben

MATEMATIKA 5-8. évfolyam

MATEMATIKA 5-8. évfolyam MATEMATIKA 5-8. évfolyam Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03 alapján készült. Helyi tanterv. Matematika 7 8.

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03 alapján készült. Helyi tanterv. Matematika 7 8. EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03 alapján készült Helyi tanterv Matematika 7 8. évfolyama számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles

Részletesebben

Matematika tantárgyi program

Matematika tantárgyi program LOVASSY LÁSZLÓ GIMNÁZIUM Lovassy-László-Gymnasium Pedagógiai Program Matematika tantárgyi program 2010. A TANTÁRGYI PROGRAM RÉSZEI Általános bevezető...1 Matematika 9-13. középszintű tanterv...10 Matematika

Részletesebben

Matematika tanmenet (E) a nyelvi el készít évfolyam számára

Matematika tanmenet (E) a nyelvi el készít évfolyam számára Matematika tanmenet (E) a nyelvi el készít évfolyam számára Ez a tanmenet az OM által jóváhagyott tanterv alapján készült. A tanterv az Országos Közoktatási Intézet tantervi adatbankjában OKI96PÁLMAT1-12

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben