A centrális határeloszlás tétel problémaköre Lie csoportokon

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A centrális határeloszlás tétel problémaköre Lie csoportokon"

Átírás

1 A centrális határeloszlás tétel problémaköre Lie csoportokon Pap yula Doktori értekezés tézisei Debrecen 1997

2 1 Az értekezés tárgya, előzmények Dolgozatomban Lie csoportbeli valószínűségi változókra vonatkozó centrális határeloszlás tételekkel kapcsolatos problémákkal foglalkozok. A témakör fejlődésében az első fontos mérföldkő.a. Hunt [39] 1956 os cikke, melyben Lie csoportokon értelmezett valószínűségi mértékekből álló konvolúciós félcsoportokat vizsgált. Egy ilyen konvolúciós félcsoport úgy is tekinthető, mint egy Lie csoportbeli értékeket felvevő független, stacionárius növekményű sztochasztikus folyamat egy dimenziós eloszlás serege. Sikerült karakterizálnia az infinitézimális generátorukat a klasszikus Lévy Hincsin formula analógjával. Erre támaszkodva D. Wehn [63], [64] 1959 ben adott elégséges feltételeket a centrális határeloszlás tételre kommutatív háromszögrendszer esetén azaz amikor az egy sorban álló mértékek a konvolúciószorzásra nézve felcserélhetőek. Egy korai áttekintés található U. renander [30] 1963 as könyvében. Az eredményeket H. Heyer [35], [36], [37], W. Hazod [31] és E. Siebert [49], [50], [51], [52], [53], [54], [55], [56] általánosította különböző topológikus csoportokra, és a vizsgálatokat kiterjesztették egyéb valószínűségszámítási kérdésekre is. Az 1976 ig elért eredményeket tárgyalja H. Heyer [38] 1977 es monográfiája. A kutatásokban tevékenyen részt vettek magyar matematikusok is; lásd például Prékopa, Rényi és Urbanik [44], Csiszár [21], [22], [23], [24], Major és Shlosman [41] cikkeit, de érdemes megemlíteni Haar Alfréd nevét is, ugyanis a Haar mérték igen fontos szerepet játszik ezeken a csoportokon. A legújabb kutatások kiterjednek félcsoportokra is; ezekről szól Ruzsa és Székely [47] könyve. Egy másik fontos mérföldkő D.W. Stroock és S.R.S. Varadhan [60] 1973 as munkája, melyben funkcionális centrális határeloszlás tételt bizonyítottak Lie csoportokon. Náluk a határfolyamat egy független növekményű auss folyamat volt, melyet a martingál problémával karakterizáltak. Ph. Feinsilver [25] 1978 ban karakterizálta az összes független növekményű folyamatot a martingál problémával, és funkcionális centrális határeloszlás tételt is bizonyított ilyen határfolyamatokkal. Új lendületet adott a kutatásoknak W. Hazod [32] 1984 es cikke, melyben általánosította a stabilis eloszlások fogalmát topológikus csoportokra. Később W. Hazod és E. Siebert [33], [59] 1986 ban megmutatták, hogy a centrális határeloszlás tétel topológikus csoportokon történő vizsgálatában kiemelt szerepet játszanak a nilpotens Lie csoportok, ugyanis ha tekintjük lokálisan kompakt topológikus csoportbeli független, azonos eloszlású valószínűségi változók sorozatát, akkor az automorfizmusokkal alkalmasan normalizált részletszorzatok lehetséges határeloszlásai olyan részcsoportra koncentrálódnak, mely izomorf egy egyszerűen összefüggő nilpotens Lie csoporttal. Érdemes megemlíteni D. Neuenschwander [42] 1996 os könyvét, melyben a legegyszerűbb nem kommutatív nilpotens Lie csoporttal, a Heisenberg csoporttal kapcsolatos eredményeket foglalja össze. Nilpotens Lie csoportokon már V.N. Tutubalin [61] 1964-ben és A.D. Virtser [62] 1974 ben, valamint P. Crépel és A. Raugi [19] 1978 ban bizonyítottak centrális határeloszlás tételeket konvolúcióhatványokra vonatkozóan azaz független, azonos eloszlású valószínűségi változókra, de ezekben a munkákban magas momentumok végességét tételezték fel. Végül A. Raugi [45] adott 1978 ban egy bonyolult, hosszú bizonyítást csak a második homogén 1

3 momentum végességét feltételezve. A konvergenciasebesség vizsgálatával kapcsolatos első lépést P. Crépel és B. Roynette [20] tette meg 1977 ben, de nekik a Heisenberg csoport esetén On 1/3 nál lassabb konvergenciát sikerült bizonyítaniuk az optimális On 1/2 helyett. Az is kiderült, hogy a stabilis eloszlások vonzási tartományának meghatározásánál igen fontos szerepet játszik a következő beágyazási probléma: vajon ha egy valószínűségi mérték beágyazható egy konvolúciós félcsoportba, akkor ez a konvolúciós félcsoport egyértelműen meghatározott? Lásd W. Hazod [32], S. Nobel [43] és H.P. Scheffler [48]. P. Baldi [15] 1985 ben megmutatta, hogy 2 lépéses nilpotens Lie csoportok esetén a auss mértékek egyértelműen ágyazhatók be auss félcsoportba. Kutatásaimra nagy hatással volt E. Siebert [58] 1982 es cikke is, melyben Lie csoportokon értelmezett valószínűségi mértékekből álló konvolúciós hemicsoportokat vizsgált, melyek úgy is tekinthetők, mint egy független növekményű folyamat növekményei eloszlásainak két paraméteres serege. A kiinduló ötlet az volt, hogy ezeket próbáljuk meg infinitézimális generátoroknak egy időparamétertől függő seregével karakterizálni, mely a megfelelő konvolúciós operátor sereg deriváltja. E. Siebert megmutatta, hogy ennek a kapcsolatnak az integrál alakja, az úgynevezett evolúciós integrál egyenletek valóban alkalmasak gyengén Lipschitz folytonos konvolúciós hemicsoportok karakterizálására. Később Born [17] 1990 ben karakterizálta az erősen korlátos változású konvolúciós hemicsoportokat tetszőleges lokálisan kompakt csoport esetén. Ez a munka J.U. Herod és R.W. McKelvey [34] 1980 as cikkére támaszkodott, melyben a Hille Yosida elméletet általánosították olyan evolúciós operátor családokra, melyek Banach terek egymásba ágyazott láncolatán vannak értelmezve, kontraktív operátorokból állnak, és korlátos változásúak a láncra nézve. 2 Az értekezés felépítése és főbb eredményei Az értekezés nyolc fejezetből áll, ezek közül az első a bevezetés, a másodikban pedig a gyakrabban használatos fogalmak és jelölések találhatók. A harmadik fejezetben, mely a [2] és [3] cikkek eredményein alapul, kommutatív háromszögrendszerekkel foglalkozunk. Először Raugi [45] centrális határeloszlás tételére adunk egy egyszerű, rövid bizonyítást lépcsős Lie csoport esetén Tétel. Legyen egy lépcsős Lie csoport. Jelölje δ t t>0 a természetes dilatációiból álló egy paraméteres automorfizmus csoportot. Legyen µ egy centrált valószínűségi mérték n véges második homogén momentummal. Ekkor ahol ν = aussµ. δ 1/ n µ n ν, aussµ azt az egyértelműen meghatározott auss mértéket jelöli, melynek első és másodfokú homogén momentumai ugyanazok, mint a µ mértéknek. A következő cél Lindeberg Feller típusú centrális határeloszlás tétel bizonyítása, azaz szükséges és elégséges feltétel keresése háromszögrendszerek konvergenciájára. Ehhez először 2

4 a korlátlanul osztható eloszlások konvergenciájáról szóló klasszikus tétel lásd nedenko és Kolmogorov [28, 19, Theorem 1, Theorem 2] analógját kell megtalálni lásd Tétel, mely konvolúciós félcsoportok konvergenciájára ad szükséges és elegendő feltételt ami a Lévy Hincsin formulában szereplő mennyiségek megfelelő értelemben vett konvergenciája. Ennek segítségével a kísérő Poisson-sorozatot használva és Fourier-transzformáltakat alkalmazva sikerült szükséges és elégséges feltételt kapni szimmetrikus mértékek esetén. Legyen egy Lie csoport L Lie algebrával. Jelölje M 1 a valószínűségi mértékek halmazát. Jelölje Ue az e egységelem mérhető környezeteinek rendszerét. Egy X L elem tekinthető például bal invariáns differenciáloperátornak is a csoporton: 1 Xfx := lim fx exptx fx. t 0 t Legyen {X 1,..., X d } egy bázis L ben. Legyen x 1,..., x d D egy olyan elsőfajú kanonikus koordináta rendszer ben, mely adaptált az {X 1,..., X d } bázishoz és érvényes az egységelem valamely U 0 kompakt környezetben, azaz y = exp d x iyx i ha y U0, továbbá legyen ϕ : [0, 1] egy Hunt függvény a csoporton, azaz 1 ϕ D, és ϕy = d x iy 2 ha y U 0. Jelölje M + d a d d valós, szimmetrikus, pozitív szemidefinit mátrixok halmazát Tétel. Legyen I = µ nl,...,kn;n 1 egy szimmetrikus mértékekből álló kommutatív háromszögrendszer n. Legyen b ij i,j=1,...,d M + d. Ekkor a következő állítások ekvivalensek: i a lim b lim k n k n µ nl \ U = 0 ha U Ue, ii a I infinitézimális, k n b sup ϕy µ nl dy <, n 1 x i yx j y µ nl dy = b ij ha i, j = 1,..., d. c lim µ n1 µ nkn = ν ahol ν = ν 1, ν t t 0 az a auss félcsoport, melynek infinitézimális generátora 1 d b ij Xi Xj. 2 i,j=1 A szimmetrizáció módszerével ezt sikerült általánosítani normális háromszögrendszerekre is Tétel. Lépcsős Lie csoportokon a Lindeberg Feller tétel szokásos alakját kapjuk Tétel. Ezután levezetünk egy Lindeberg tételt abban az esetben, amikor a határeloszlás olyan auss mérték, mely stabilis a δ t t>0 természetes dilatációra nézve Tétel. Ebből egyrészt könnyen származtatható a Tétel, másrészt egy Lindeberg tétel a H Heisenberg csoporton adott valószínűségi mértékek µ 1 µ n n szeres konvolúciószorzatának alkalmas automorfizmusokkal standardizált sorozatának auss mértékhez való konvergenciájáról Tétel. 3

5 A negyedik fejezetben, mely az [1], [9] és [10] cikkek eredményein alapul, auss mértékekkel való közelítés pontosságával foglalkozunk lépcsős nilpotens Lie csoportokon, mégpedig a centrális határeloszlás tételbeli konvergencia sebességével. Először a standard esetben homogén gömbökön, azaz Ba, r := {x : a 1 x < r}, a, r > 0 alakú halmazokon bizonyítunk On 1/2 konvergencia sebességet bizonyos analitikus feltételeket kielégítő homogén normák esetén Tétel: egy s lépcsős nilpotens Lie csoport esetén δ1/ n µ n Ba, r νba, r Cκa, rβ3 µ, ν + β 3s µ, νn 1/2, ahol κa, r := 1 + a s a /r} 3s 1 és β k µ, ν := x k µ ν dx, ahol µ ν a µ ν előjeles mérték totális variációját jelöli. Ezután sima függvények integráljaira vonatkozó Berry Esseen egyenlőtlenséget bizonyítunk, amelyben csak a szokásos momentumfeltétel szerepel, és az alakja is optimális Tétel. A legfontosabb következmény az, hogy ha m 3 µ <, akkor fxδ 1/ n µ n dx fx νdx C f 3s,hom1 + m 3s 1 νm 3 µn 1/2, ahol egy γ mérték esetén m k γ := x k γdx. Valószínűségi mértékek konvolúció hatványainak auss mértékekkel történő közelítésének pontosságáról ad még több információt az Edgeworth sorfejtés. A Tétel a rövid alakot írja le, azaz amikor a sorfejtés csak egy tagot tartalmaz a auss mérték után. Egy I Z d + multiindex esetén használni fogjuk az S I := 1 I! [j 1 ]+ +[j I ]=I X j1... X j I jobb invariáns differenciáloperátort, mely tekinthető X I szimmetrizáltjának. Itt [j] azt a multiindexet jelöli, melynek a j edik koordinátája 1, és a többi 0. Az Edgeworth sorfejtés legegyszerűbb alakja m 4 µ < esetén fxδ 1/ n µ n dx = fxνdx + αn 1/2 + On 1, ahol α := 1 di=3 0 S I g x,z eν t dxν 1 t dzdt y I µ νdy, ν t t 0 az a auss félcsoport, melyre ν 1 = ν, és g x,z : R, g x,z y := fxyz, y. Érdemes megemlíteni azt is, hogy S I g x,z e = PJ I x, z J fxz, ahol P I J dj di, J I olyan homogén polinom, melynek homogén foka dj di. A Tételben megadjuk a tetszőleges hosszúságú Edgeworth sorfejtést, melynek bizonyítása az Euler Maclaurin féle összegzési formulának bizonyos többdimenziós szimplexekre 4

6 történő általánosítását használja lásd Tétel, mely önmagában is érdeklődésre tarthat számot. Az ötödik fejezet, mely a [4], [5] és [11] cikkek eredményein alapul, az előzményekben megfogalmazott beágyazási problémával kapcsolatos. Egy lehetőség a beágyazási probléma megközelítésére a konvolúciós félcsoportok struktúrájának felderítése. Ezzel függ össze az a kérdés, melyet Ph. Feinsilver és R. Schott [26], [27] vetettek fel: hogy néz ki egy független, stacionárius növekményű sztochasztikus folyamat, mely értékeit egy Lie csoportban veszi fel? Az Tétel válasza az, hogy egy d dimenziós exponenciális Lie csoport esetén azaz amikor az exponenciális leképezés egy analitikus diffeomorfizmus ha veszünk egy független, stacionárius növekményű folyamatot, és úgy tekintjük, mint egy R d beli értékű folyamatot, akkor az egy idő homogén diffúzió ugrásokkal J. Jacod és A.N. Shiryayev [40, p. 142] értelmében, azaz egy olyan általánosított sztochasztikus differenciál egyenlet egyértelmű, erős megoldása, melyet egy Wiener folyamat és egy véletlen stacionárius Poisson mérték hajt meg; az egyenletet a folyamat infinitézimális generátorával explicit módon megadjuk. Ennek segítségével az Tételben explicit konstrukciót adunk tetszőleges nilpotens Lie csoportbeli értékeket felvevő független, stacionárius növekményű folyamatra, mellyel általánosítjuk B. Roynette [46] rekurzív formuláját, mely a Brown mozgás esetére érvényes. P. Baldi [15] tételét sikerült 2 lépéses nilpotens Lie csoportról tetszőleges nilpotens Lie csoportra általánosítani: Tétel. Legyenek µ t t 0 és ν t t 0 olyan auss félcsoportok egy egyszeresen összefüggő, nilpotens Lie csoporton, hogy µ 1 = ν 1. Ekkor µ t = ν t minden t 0 esetén. Megpróbáltam a beágyazási problémát úgy is megközelíteni, hogy karakterizációs tulajdonságokat kerestem auss mértékekre. Carnal [18] bizonyított ilyet kompakt Lie csoportokon. Ennek az eredménynek adjuk meg az analógját tetszőleges Lie csoporton az Tételben, de ez auss félcsoportokat karakterizál. A disszertáció utolsó három fejezete a funkcionális centrális határeloszlás tétel problémakörével foglalkozik, mely egy topológikus csoporton a következő módon fogalmazható meg. Legyenek {ξ nl : n, l N 2 } beli értéket felvevő, soronként független valószínűségi változók, és legyenek {k n : n N} olyan növekvő, jobbról folytonos k n : R + Z + függvények, hogy k n 0 = 0, és minden t R + és minden U Ue esetén teljesül a lim infinitézimalitási feltétel. Képezzük a ξ n t := max P ξ nl U = 0 1 l k n t k n t ξ nl := ξ n1 ξ n2 ξ n,knt szorzatokat, és tekintsük a ξ n = ξ n t t 0, n = 1, 2,... sztochasztikus folyamatokat, melyeknek a trajektóriái nyilván a DR +, Szkorohod térbe esnek. Feltételeket keresünk a háromszögrendszerre ahhoz, hogy teljesüljön a véges dimenziós eloszlások ξ n ξ L konvergenciája, vagy a Szkorohod térben indukált eloszlások ξ n ξ konvergenciája, ahol ξ = ξt t 0 egy olyan beli értéket felvevő folyamat, melynek trajektóriái majd- 5 L f

7 nem biztosan a Szkorohod térbe esnek. Szükségképpen a ξ = ξt t 0 folyamat független bal növekményű, azaz ξ0 = e és tetszőleges 0 t 1 t 2... t n időpontokra a ξt 1, ξt 1 1 ξt 2,..., ξt n 1 1 ξt n bal növekmények függetlenek. Csak olyan limesz folyamatok érdekelnek bennünket, melyek sztochasztikusan folytonosak ami most azzal ekvivalens, hogy nincsenek rögzített idejű szakadási pontjai. A feladatok pontosabban megfogalmazva a következők: parametrizáljuk a beli értékű, független bal növekményű, sztochasztikusan folytonos folyamatok által a DR +, Szkorohod téren indukált valószínűségi mértékek PII c halmazát, azaz adjunk meg egy bijekciót PII c és valamely alkalmas PR +, paramétertér között; feleltessünk meg alkalmas K n mennyiségeket a {ξ nl : 1 l k n t}, t R +, n N, sorokhoz úgy, hogy L? ξ K n K, ξ n ahol K PR +, az a paraméter, ami a ξ limesz folyamathoz tartozik, és a K n K konvergencia megfelelően van értelmezve. A hatodik fejezetben, mely a [12] cikken alapul, először megfogalmazzuk a fenti kérdésekre a = R d, + csoport esetén a jól ismert válaszokat. Ekkor ugyanis a karakterisztikus függvények segítségével belátható, hogy a PR +, R d paramétertér választható a következő módon: azon a, B, η hármasok halmaza, ahol a : R + R d folytonos és a0 = 0, B : R + M + d monoton növekvő, folytonos és B0 = 0, valamint η LR +, R d ahol LR +, R d olyan η M + R d R + mértékek halmaza, melyekre η{0} R + = 0 és a t y 2 1 ηdy [0, t] leképezés folytonos. Egy a, B, η PR +, R d hármashoz az a mérték tartozik a DR +, R d Szkorohod téren, mely szerint az xt xs növekmény eloszlása egy olyan korlátlanul osztható eloszlás R d n, melynek a Lévy Hincsin reprezentációjában az at as, Bt Bs, η ]s, t] mennyiségek szerepelnek. A második kérdésre pedig az a válasz = R d, + esetén, hogy a konvergencia ekvivalens azzal, hogy k n ξ nl L ξ a b c k nt k nt k nt Ehξ nl at egyenletesen t [0, T ] ben minden T > 0 esetén, Covhξ nl Bt ha t D, Efξ nl fy ηdy [0, t] ha t D, f C 0 R d, 6

8 ahol egy topológikus csoport esetén C e a C b térnek azt az alterét jelöli, mely az egységelem valamely környezetében eltűnő függvényekből áll, h : R d R d egy nyírófüggvény, azaz folytonos, kompakt tartójú és hx = x teljesül a 0 R d valamely környezetében, továbbá Bt = bi, jt i,j=1,...,d, bi, jt := bi, jt + h i yh j y ηdy [0, t]. Az a célunk, hogy megkeressük ezen tételek általánosítását Lie csoportokra. A PII c halmaz parametrizálása reménytelennek tűnik Fourier transzformáltak segítségével, ezért inkább a konvolúciós operátorokat fogjuk használni. Egy µ mérték konvolúciós operátora az a T µ operátor, mely a n értelmezett valós, korlátos, folytonos, végtelenben eltűnő függvények szuprémum normával ellátott C 0 Banach terén van értelmezve a következő módon: T µ fx := fxy µdy ha x. Először is rávilágítunk a konvolúciós hemicsoportokkal való kapcsolatra. Vezessük be az S := {s, t R 2 : 0 s t} jelölést. Valószínűségi mértékeknek egy µs, t s,t S családját folytonos konvolúciós hemicsoportnak nevezünk, ha µs, r µr, t = µs, t teljesül minden s, r, r, t S esetén, µt, t = ε e minden t R esetén, és az s, t µs, t leképezés folytonos. Ha ξt t 0 egy beli értékeket felvevő független bal növekményű sztochasztikusan folytonos folyamat, akkor a ξs 1 ξt, s, t S bal növekmények eloszlásai egy konvolúciós hemicsoportot alkotnak. Fordítva: ha µs, t s,t S egy konvolúciós hemicsoport, akkor létezik olyan ξt t 0 beli értékeket felvevő független bal növekményű, sztochasztikusan folytonos, DR +, beli trajektóriájú folyamat, hogy minden s, t S esetén a ξs 1 ξt bal növekmény eloszlása µs, t. A konvolúciós operátorokkal létesített µ T µ reláció pedig létrehoz egy bijekciót a µs, t s,t S konvolúciós hemicsoportok és azon T s, t s,t S evolúciós operátor családok között, melyek a C 0 Banach téren értelmezett pozitív, balinvariáns, 1 normájú korlátos, lineáris operátorokból állnak. Egy E Banach tér korlátos, lineáris operátoraiból álló T s, t s,t S halmazt evolúciós operátor családnak nevezzük, ha T s, rt r, t = T s, t teljesül minden s, r, r, t S esetén, T t, t = I minden t R + esetén, és az s, t T s, t leképezés erősen folytonos. A Hille Yosida elmélet alapján tudjuk, hogy kölcsönösen egyértelmű kapcsolat van egy E Banach téren értelmezett T t t 0 erősen folytonos egy paraméteres operátor félcsoport és annak N, DomN infinitézimális generátora között, ahol T hf f Nf := lim, f DomN. h 0 h Ez alapján azt várnánk, hogy egy T s, t s,t S evolúciós operátor család leírható infinitézimális generátoroknak valamely Ñt t 0 seregével, ahol Ñt az evolúciós család deriváltja t ben. Többféle kapcsolat lehetséges egy T s, t s,t S evolúciós operátor család és infinitézimális generátorok valamely Ñt t 0 serege között lásd Heyer [38], Born [17]. A hatodik fejezetben az derül ki, hogy a gyengén korlátos változású konvolúciós 7

9 hemicsoportok paraméterezésére az a kapcsolat alkalmas, melyet a gyenge evolúciós integrálegyenletek létesítenek. Ezek azért gyengék, mert csak pontonként kell teljesülniük. Jelölje P bv R +, azon a, B, η hármasok halmazát, ahol a : R + R d folytonos, korlátos változású és a0 = 0, B : R + M + d monoton növekvő, folytonos és B0 = 0, valamint η LR +,, ahol LR +, azon η M + R + mértékek halmazát jelöli, melyekre η{e} R + = 0 és a t ϕy ηdy [0, t] leképezés folytonos. Jelölje A az összes µ t t 0 konvolúciós félcsoport generáló funkcionáljából álló halmazt. Egy A : R + A leképezés akkor és csak akkor monoton növekvő, folytonos és korlátos változású, ha létezik olyan a, B, η P bv R +, hármas, hogy at, Bt, ηt az At generáló funkcionál kanonikus dekompozíciójában szereplő mennyiségek, ahol ηtdy := ηdy [0, t]. Ekkor g τ C 2, τ R +, és s, t S esetén legyen ]s,t] Adτg := + d ]s,t] ]s,t] X i g τ e aidτ g τ y g τ e d d i,j=1 ]s,t] X i X j g τ e bi, jdτ X i g τ ex i y ηdy dτ, amennyiben a jobboldalon álló integrálok léteznek. Azt mondjuk, hogy egy µs, t s,t S hemicsoport és egy a, B, η P bv R +, hármas kapcsolatosak egymással a gyenge backward evolúciós egyenlet szerint, ha minden s, t S és f D esetén T µs,t Ife = AdτT µτ,t f, ahol A : R + A az a monoton növekvő, folytonos, korlátos változású leképezés, melynek kanonikus dekompozíciója at, Bt, ηt t 0. A és Tételek szerint a µs, t s,t S folytonosan gyengén korlátos változású konvolúciós hemicsoportok és az a, B, η P bv R +, paraméterek között bijekciót hoz létre a gyenge backward evolúciós egyenlet. A µs, t s,t S hemicsoport a hozzá tartozó A leképezést a következő explicit módon határozza meg: minden f X 2 és t R + esetén [nt] Atf = lim f fe dµ l 1, l n n. Az az érdekesség, hogy először a konvergencia tételt bizonyítjuk be, melyben elegendő feltételeket adunk beli háromszögrendszerből konstruált véletlen lépcsősfüggvények növekményeinek valamely gyengén korlátos változású konvolúciós hemicsoporthoz való konvergenciájára. Azt is érdemes megemlíteni, hogy a gyenge forward evolúciós egyenlet is teljesül ugyanis a Tételt ugyanúgy lehet bizonyítani ebben az esetben is, de a gyenge backward evolúciós egyenletnek meg van az az előnye, ami a unicitási tételből derül ki: közvetlenül, azaz a konvergencia tétel felhasználása nélkül belátható, hogy egy adott paraméterhez a gyenge backward evolúciós egyenlettel legfeljebb egy konvolúciós hemicsoportot lehet megfeleltetni. ]s,t] 8

10 A hetedik fejezetben, mely a [13] cikk eredményeit tartalmazza, egy kis kitérőt teszünk: megmutatjuk, hogy a hatodik fejezet eredményei átvihetők Lie projektív csoportokra is. Ez azért jelentős, mert így többek között az összes nem feltétlenül kommutatív kompakt topológikus csoport le van fedve. Végül a nyolcadik fejezetben, mely a [14] kéziraton alapul, a hatodik fejezet eredményeire támaszkodva választ adunk a fent megfogalmazott két kérdésre tetszőleges Lie csoport esetén. A és Tételekben parametrizáljuk az összes beli értékű, független bal növekményű, sztochasztikusan folytonos folyamatot, azaz az összes konvolúciós hemicsoportot azzal a PR +, paraméterhalmazzal, mely olyan m, B, η hármasokból áll, ahol m : R + folytonos és m0 = e, B : R + M + d monoton növekvő, folytonos és B0 = 0, valamint η LR +,. A bijekciót az eltolt gyenge backward evolúciós egyenlet teremti meg: minden s, t S és f D esetén T µ s,t Ife = Ãdτg τ,t, ]s,t] ahol µs, t := ε ms µs, t ε mt 1, g τ,t y := T µ τ,t fmτymτ 1, és à : R + A az a monoton növekvő, folytonos, korlátos változású leképezés, melynek kanonikus dekompozíciója 0, Bt, ηt t 0. Ennek az eltolásnak az a szerepe, hogy ki kell operálni azt a részt, amely nem feltétlenül korlátos változású. Ugyanúgy, ahogy a hatodik és hetedik fejezetben, most is először egy konvergenciatételt bizonyítunk: elegendő feltételeket adunk tetszőleges hemicsoporthoz való konvergenciára. Az alapötlet az, hogy a µ nl mértékeket a lokális várhatóértékükkel toljuk el. Azt mondjuk, hogy a µ M 1 mértéknek az m U 0 pont lokális várhatóértéke, amennyiben x i m = x i y µdy ha i {1,..., d}. Ha a µ M 1 mértéknek létezik m lokális várhatóértéke, akkor definiálhatjuk a lokális kovariancia mátrixát is a következő módon: B = b ij i,j=1,...,d, b ij := x i y x i mx j y x j m µdy Tétel. Legyenek {µ nl : n, l N 2 } valószínűségi mértékek egy Lie csoporton. Minden n N esetén legyen k n : R + Z + egy olyan monoton növekvő, balról folytonos függvény, melyre k n 0 = 0 és k n R + = Z +. Jelölje m nl és B nl a µ nl mérték lokális várhatóértékét, illetve lokális kovarianciamátrixát. Vezessük be az m n : R + és B n : R + M + d, B nt = b n i, jt i,j=1,...,d függvényeket: m n t := k n t m nl, B n t := Legyen D egy sűrű halmaz R + ban. Tegyük fel, hogy k n t B nl. 9

11 i létezik olyan η 0 LR +, mérték, hogy minden t D és f C e esetén k n t lim fy µ nl dy = fy η 0 dy [0, t], ii létezik olyan B 0 : R + M d, B 0 t = b 0 i, jt i,j=1,...,d, folytonos függvény, hogy minden t D és i, j {1,..., d} esetén lim b ni, jt = b 0 i, jt + x i yx j y η 0 dy [0, t]. Ekkor 0, B 0, η 0 P bv R +, és *knt l=k n s+1 µ nl ε m 1 nl νs, t ha s, t S, ahol νs, t s,t S egy olyan folytonosan gyengén korlátos változású hemicsoport M 1 ben, mely a 0, B 0, η 0 P bv R +, paraméternek felel meg a gyenge backward evolúciós egyenlet szerint. Továbbá a νs, t s,t S hemicsoport megfelel az e, B 0, η 0 PR +, paraméternek az eltolt gyenge backward evolúciós egyenlet szerint. Ha még azt is feltesszük, hogy iii létezik olyan m 0 : R + folytonos függvény, hogy minden t D esetén iv minden T > 0 és i {1,..., d} esetén akkor lim lim sup δ 0 lim m nt = m 0 t, sup t s δ 0 s t T xi mn s 1 m n t = 0, *knt µ nl µs, t ha s, t S l=k n s+1 ahol µs, t s,t S egy olyan hemicsoport, mely az m 0, B 0, η 0 PR +, paraméternek felel meg az eltolt gyenge backward evolúciós egyenlet szerint. Megjegyezzük, hogy az i feltétel teljesülése esetén minden T > 0, minden elegendően nagy n N és minden l {1,..., k n T } esetén a µ nl mértéknek létezik lokális várhatóértéke. A 8.6 paragrafusban azt is belátjuk, hogy a gyenge backward evolúciós egyenlettel létesített reláció ekvivalens azzal, hogy a folyamat által a DR +, Szkorohod téren indukált mérték az illető paraméterhez tartozó eltolt martingálprobléma megoldása lásd D.W. Stroock és S.R.S. Varadhan [60], valamint Ph. Feinsilver [25]: azt modjuk, hogy egy ξt t 0 folyamat által a DR +, Szkorohod téren indukált mérték az m, B, η 10

12 PR +, hármashoz tartozó eltolt martingálprobléma megoldása, ha minden f D függvény esetén az fξtmt 1 ÃdτL ξτ R mτ 1f [0,t] folyamat martingál a természetes filtrációval, ahol à : R + A az a monoton növekvő, folytonos, korlátos változású leképezés, melynek kanonikus dekompozíciója 0, Bt, ηt t 0. Ha f : R és y, akkor L y f és R y f a következő függvényeket jelöli: L y fx := fyx, R y fx := fxy, x. A 8.7 paragrafusban kiderül, hogy a Tételben megadott feltételek szükségesek is. Először tekintsük a globális centrálást. Legyenek {ξ nl : n, l N 2 } soronként független valószínűségi változók. Minden n N esetén legyen k n : R + Z + olyan monoton növekvő, balról folytonos függvény, hogy k n 0 = 0, k n R + = Z +, és teljesüljön a lim max P ξ nl U = 0 1 l k n t infinitézimalitási feltétel minden U Ue és t R + ξ n = ξ n t t 0, ξ n t := k nt ξ nl esetén. Tekintsük n N esetén a sztochasztikus folyamatot. Jelölje µ nl a ξ nl eloszlását. Definiáljuk az m n : R + és B n : R + M + d függvényeket úgy, mint a Tételben. Egy m, B, η PR +, hármas esetén legyen B : R + M + d, Bt = bi, jti,j=1,...,d, bi, jt := bi, jt + x i yx j y ηdy [0, t] Tétel. Legyen ξ = ξt t 0 egy olyan beli értékű, sztochasztikusan folytonos, független bal növekményű folyamat, mely az m, B, η PR +, hármassal kapcsolatos az eltolt gyenge evolúciós egyenlet szerint. Legyen D egy sűrű halmaz R + ban. Ekkor a következő állítások ekvivalensek: i a m n t mt egyenletesen t [0, T ] ben minden T > 0 esetén, b B n t Bt ha t D, k n t c fy µ nl dy fy ηdy [0, t] ha t D, f C e. ii ξ n L ξ. Hasonló határeloszlás tétel érvényes lokális centrálással. Definiáljuk n N esetén a következő ξ n = ξ n t t 0 sztochasztikus folyamatokat: ξ n t := k nt 11 ξnl m 1 nl.

13 8.7.3 Tétel. Legyen ξ = ξt t 0 egy olyan beli értékű, sztochasztikusan folytonos, független bal növekményű folyamat, mely a 0, B, η P bv R +, hármassal kapcsolatos a gyenge evolúciós egyenlet szerint. Legyen D egy sűrű halmaz R + ben. Ekkor a következő állítások ekvivalensek: i a B n t Bt ha t D, k n t b fy µ nl dy fy ηdy [0, t] ha t D, f C e. ii ξn L ξ. A Tétel szükséges és elégséges feltételt ad független növekményű folyamatok sorozatának konvergenciájára. A Tételben {ξ nl : n, l N 2 } soronként független, azonos eloszlású valószínűségi változók, és a limesz folyamat független, stacionárius növekményű. Végül a Tétel szükséges és elégséges feltételt ad független, stacionárius növekményű folyamatok sorozatának konvergenciájára. Irodalomjegyzék Az értekezés eredményeit a szerző alábbi cikkei tartalamazzák: [1] Pap, Rate of convergence in CLT on stratified groups. J. Multivariate Anal. 38, [2] Pap, A new proof of the central limit theorem on stratified Lie groups. In: Heyer, H. ed. Probability Measures on roups X. Proceedings, Oberwolfach 1990, pp Plenum Press, New York. [3] Pap, Central limit theorems on nilpotent Lie groups. Probab. Math. Stat. 14, [4] Pap, Characterization of aussian semigroups on a Lie group. Publ. Math. 42, [5] Pap, Uniqueness of embedding into a aussian semigroup on a nilpotent Lie group. Arch. Math. 62, [6] Pap, Central limit theorems on some topological groups. A survey. In: New Trends in Probability Theory and Mathematical Statistics II. Proceedings of the Second Ukrainian-Hungarian Conference, Munkachevo, 1992, pp [7] Pap, Central limit theorems on stratified Lie groups. In: VI International Vilnius Conference on Probability Theory and Mathematical Statistics. Proceedings, Vilnius,

14 [8] Pap, Processes with stationary independent increments on nilpotent Lie groups. In: Balakrishnan, A.V. ed. 4th International Conference on Advances in Communication & Control. Proceedings, Rhodes, 1993, pp University of Nevada, Las Vegas. [9] Pap, Edgeworth expansions in nilpotent Lie groups. In: Heyer, H.eds. Probability Theory on Vector Spaces XI. Proceedings, Oberwolfach 1995, pp World Scientific, Singapore, New Jersey, London, Hong Kong. [10] Bentkus, V. and Pap, The accuracy of aussian approximations in nilpotent Lie groups. J. Theor. Probab. 9, [11] Pap, Construction of processes with stationary independent increments on nilpotent Lie groups. Arch. Math. 69, [12] Heyer, H. and Pap, Convergence of noncommutative triangular arrays of probability measures on a Lie group. J. Theor. Probab. 10, [13] Heyer, H. and Pap,. to appear in Convolution hemigroups of bounded variation on a Lie projective group. J. London Math. Soc. [14] Pap, Functional central limit theorems and hemigroups of probability measures on a Lie group. Preprint. A tézisekben még az alábbi munkákra történik hivatkozás: [15] Baldi, P Unicité du plongement d une mesure de probabilité dans un semigroupe de convolution gaussien. Cas non-abélien. Math. Z. 188, [16] Born, E An explicit Lévy Hinčin formula for convolution semigroups on locally compact groups. J. Theor. Probab. 2, [17] Born, E Hemigroups of probability measures on a locally compact group. Math. Ann. 287, [18] Carnal, H Unendlich oft teilbare Wahrscheinlichkeitsverteilungen auf kompakten ruppen. Math. Ann. 153, [19] Crépel, P. and Raugi, A Théorème central limite sur les groupes nilpotents. Ann. Inst. Henri Poincaré, Probab. Stat. 14, [20] Crépel, P. and Roynette, B Une loi du logarithme itéré pour le groupe d Heisenberg. Z. Wahrsch. Verw. ebiete 39, [21] Csiszár, I A note on limiting distributions on topological groups. Publ. Math. Inst. Hung. Acad. Sci. 9,

15 [22] Csiszár, I On infinite products of random elements and infinite convolutions of probability distributions on locally compact groups. Z. Wahrsch. Verw. ebiete 5, [23] Csiszár, I Some problems concernings measures on topological spaces and convolutions of measures on topological groups. In: Les Probabilités sur les Structures Algébraiques, pp , Paris. [24] Csiszár, I On the weak continuity of convolution in a convolution algebra over an arbitrary topological group. Stud. Sci. Math. Hung. 6, [25] Feinsilver, Ph Processes with independent increments on a Lie group. Trans. Am. Math. Soc. 242, [26] Feinsilver, Ph. and Schott, R Operators, stochastic processes, and Lie groups. In: Heyer, H. ed. Probability Measures on roups IX. Proceedings, Oberwolfach, Lect. Notes Math., vol. 1379, pp Springer, Berlin Heidelberg New York London Paris Tokyo. [27] Feinsilver, Ph. and Schott, R An operator approach to processes on Lie groups. In: Probability Theory on Vector Spaces IV. Proceedings, Łancut, Lect. Notes Math., vol. 1391, pp Springer, Berlin Heidelberg New York Tokyo. [28] nedenko, B.V. and Kolmogorov, A.N Limit distributions for sums of independent random variables. ostekhizdat. English translation Addison Wesley, Cambridge, 1954 [29] ötze, F On Edgeworth expansions in Banach spaces. Ann. Probab. 9, [30] renander, U Probabilities on algebraic structures. Almquist & Wilksells, Stockholm. [31] Hazod, W Stetige Halbgruppen von Wahrscheinlichkeitsmaßen und erzeugende Distributionen. Lect. Notes Math. Vol. 595, Springer, Berlin öttingen Heidelberg New York. [32] Hazod, W Stable and semistable probabilities on groups and on vector spaces. In: Szynal, D., Weron, A. eds. Probability Theory on Vector Spaces III. Proceedings, Lublin Lect. Notes Math., vol. 1080, pp Springer, Berlin Heidelberg New York Tokyo. [33] Hazod, W. and Siebert, E Continuous automorphism groups on a locally compact group contracting modulo a compact subgroup and applications to stable convolution semigroups. Semigroup Forum 33, [34] Herod, J.U. and McKelvey, R.W A Hille Yosida theory for evolutions, Isr. J. Math. 36,

16 [35] Heyer, H Fourier transforms and probabilities on locally compact groups. Jahresber. Dtsch. Math. Ver. 70, [36] Heyer, H L analyse de Fourier non commutative et applications à la théorie des probabilités. Ann. Inst. Henri Poincaré, Sect. B. 4, [37] Heyer, H Dualität lokalkompakter ruppen. Lect. Notes Math. vol. 150, Springer, Berlin Heidelberg New York. [38] Heyer, H Probability Measures on Locally Compact roups. Springer, Berlin Heidelberg New York. [39] Hunt,.A Semi-groups of measures on Lie groups. Trans. Am. Math. Soc. 81, [40] Jacod, J. and Shiryaev, A.N Limit Theorems for Stochastic Processes. Springer, Berlin Heidelberg New York London Paris Tokyo. [41] Major, P. and Shlosman, S.B A local limit theorem for the convolution of probability measures on a compact connected group. Z. Wahrsch. Verw. ebiete 50, [42] Neuenschwander, D Probabilities on the Heisenberg roup. Lect. Notes Math. Vol. 1630, Springer, Berlin Heidelberg. [43] Nobel, S Limit theorems for probability measures on simply connected nilpotent Lie groups, J. Theor. Probab. 4, [44] Prékopa, A., Rényi, A. and Urbanik, K On the limit distribution of sums of independent random variables in commutative compact topological groups. Acta Math. Hung. 7, [45] Raugi, A Théorème de la limite centrale sur les groupes nilpotents. Z. Wahrsch. Verw. ebiete 43, [46] Roynette, B Croissance et mouvements browniens d un groupe de Lie nilpotent et simplement connexe. Z. Wahrsch. Verw. ebiete 32, [47] Ruzsa, I.Z. and Székely,.J Algebraic Probability Theory, Wiley, New York. [48] Scheffler, H.P D Domains of attraction of stable measures on stratified Lie groups, J. Theor. Probab. 7, [49] Siebert, E Wahrscheinlichkeitsmaße auf lokalkompakten maximal fastperiodischen ruppen. Dissertation, Universität Tübingen. [50] Siebert, E Stetige Halbgruppen von Wahrscheinlichkeitsmaßen auf lokalkompakten maximal fastperiodischen ruppen. Z. Wahrsch. Verw. ebiete 25,

17 [51] Siebert, E Über die Erzeugung von Faltungshalbgruppen auf beiebigen lokalkompakten ruppen. Math. Z. 131, [52] Siebert, E Einige Bemerkungen zu den auß Verteilungen auf lokalkompakten ruppen. Manuscr. Math. 14, [53] Siebert, E Absolut Stetigkeit und Träger von auß Verteilungen auf lokalkompakten ruppen. Math. Ann. 210, [54] Siebert, E Convergence and convolutions of probability measures on a topological group. Ann. Probab. 4, [55] Siebert, E On the generation of convolution semigroups on arbitrary locally compact groups II. Arch. Math [56] Siebert, E On the Lévy-Chintschin formula on locally compact maximally almost periodic groups. Math. Scand [57] Siebert, E Fourier analysis and limit theorems for convolution semigroups on a locally compact group. Adv. Math. 39, [58] Siebert, E Continuous hemigroups of probability measures on a Lie group. In: Heyer, H. ed. Probability Measures on roups. Proceedings, Oberwolfach Lect. Notes Math. vol. 1080, pp Springer, Berlin Heidelberg New York. [59] Siebert, E Contractive automorphisms on locally compact groups. Math. Z. 191, [60] Stroock, D.W. and Varadhan, S.R.S Limit theorems for random walks on Lie groups. Sankhyā Ser. A 35, [61] Tutubalin, V.N Compositions of measures on the simplest nilpotent group. Theory Probab. Appl. 9, [62] Virtser, A.D Limit theorems for compositions of distribution on certain nilpotent Lie groups. Theory Probab. Appl. 19, [63] Wehn, D Limit distributions on Lie groups. Thesis, Yale. [64] Wehn, D Probabilities on Lie groups. Proc. Natl. Acad. Sci. USA 48,

18 A centrális határeloszlás tétel problémaköre Lie csoportokon Pap yula Doktori értekezés Debrecen 1997

19

20 Tartalomjegyzék 1. Bevezetés 5 2. Jelölések, alapfogalmak Lie csoportok Konvolúciós félcsoportok Nilpotens Lie csoportok Lépcsős Lie csoportok Fourier transzformáció Háromszögrendszerek Kommutatív háromszögrendszerek Konvolúcióhatványok Konvolúciós félcsoportok konvergenciája Lindeberg Feller tétel Lie csoportokon Lindeberg Feller tétel lépcsős Lie csoportokon Konvergencia sebesség Konvergencia sebesség homogén gömbökön Berry Esseen egyenlőtlenség Rövid Edgeworth sorfejtés Teljes Edgeworth sorfejtés Konvolúciós félcsoportok Konvolúciós félcsoportok előállítása Beágyazási probléma

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

AKADÉMIAI LEVELEZŐ TAGSÁGRA TÖRTÉNŐ AJÁNLÁS

AKADÉMIAI LEVELEZŐ TAGSÁGRA TÖRTÉNŐ AJÁNLÁS AKADÉMIAI LEVELEZŐ TAGSÁGRA TÖRTÉNŐ AJÁNLÁS I. ADATLAP Név: CSÁKI ENDRE Születési hely, év, hó, nap: Budapest, 1935 január 7 Tudomány doktora fokozat megszerzésének éve: 1989 Szűkebb szakterülete: valószínűségszámítás

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9.

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis Becslések, határeloszlás tételek Székely Balázs 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis 1 CHT és NSZT 2 Hoeffding-egyenlőtlenség Alkalmazása: Beengedés

Részletesebben

DIPLOMAMUNKA TÉMAVEZETŐ: DR. PAP GYULA MATEMATIKAI ÉS INFORMATIKAI INTÉZET DEBRECENI EGYETEM

DIPLOMAMUNKA TÉMAVEZETŐ: DR. PAP GYULA MATEMATIKAI ÉS INFORMATIKAI INTÉZET DEBRECENI EGYETEM DIPLOMAMUNKA BARCZY MÁTYÁS VALÓSZÍNŰSÉGI MÉRTÉKEK LOKÁLISAN KOMPAKT ABEL-CSOPORTOKON TÉMAVEZETŐ: DR. PAP GYULA MATEMATIKAI ÉS INFORMATIKAI INTÉZET DEBRECENI EGYETEM 2001 1 I. Bevezetés. Diplomamunkám a

Részletesebben

1000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a

1000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a A merész játékok stratégiája A következő problémával foglalkozunk: Tegyük fel, hogy feltétlenül ki kell fizetnünk 000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a még

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Feleségem Hizsnyik Mária, gyermekeim Gyula (1979) és Júlia (1981), unokáim Lola (2007), Kende (2010) és Márkó (2010)

Feleségem Hizsnyik Mária, gyermekeim Gyula (1979) és Júlia (1981), unokáim Lola (2007), Kende (2010) és Márkó (2010) Pap Gyula Születési hely és idő: Debrecen, 1954 Feleségem Hizsnyik Mária, gyermekeim Gyula (1979) és Júlia (1981), unokáim Lola (2007), Kende (2010) és Márkó (2010) TANULMÁNYOK, TUDOMÁNYOS FOKOZATOK Gimnáziumi

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Some questions of probability theory on special topological groups. Outline of Ph.D. Thesis

Some questions of probability theory on special topological groups. Outline of Ph.D. Thesis Some questions of probability theory on special topological groups Outline of Ph.D. Thesis Mátyás Barczy University of Debrecen Faculty of Informatics Debrecen, 2006 1. Introduction In the present thesis

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok.

Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok. Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok. Láttuk, hogy a Wiener-folyamat teljesíti az úgynevezett funkcionális centrális határeloszlástételt. Ez az eredmény durván szólva azt fejezi

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Áttekintés a felhasznált lineáris algebrai ismeretekről.

Áttekintés a felhasznált lineáris algebrai ismeretekről. Kiegészítés az előadássorozathoz. Áttekintés a felhasznált lineáris algebrai ismeretekről. A valószínűségszámítás (és a matematika) bizonyos kérdéseiben fontos szerepet játszik a lineáris algebra néhány

Részletesebben

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek.

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek. A Valószínűségszámítás II. előadássorozat második témája. A CENTRÁLIS HATÁRELOSZLÁSTÉTEL A valószínűségszámítás legfontosabb eredménye a centrális határeloszlástétel. Ez azt mondja ki, hogy független valószínűségi

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

1. Algebrai alapok: Melyek műveletek az alábbiak közül? 1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Barczy Mátyás és Pap Gyula. Sztochasztikus folyamatok. (Gauss-folyamatok, Poisson-folyamat)

Barczy Mátyás és Pap Gyula. Sztochasztikus folyamatok. (Gauss-folyamatok, Poisson-folyamat) Barczy Mátyás és Pap Gyula Sztochasztikus folyamatok Példatár és elméleti kiegészítések I. Rész (Gauss-folyamatok, Poisson-folyamat mobidiák könyvtár Barczy Mátyás és Pap Gyula Sztochasztikus folyamatok

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

n = 1,2,..., a belőlük készített részletösszegek sorozata. Tekintsük az S n A n

n = 1,2,..., a belőlük készített részletösszegek sorozata. Tekintsük az S n A n Határeloszlástételek és korlátlanul osztható eloszlások. I. rész Az alapvető problémák megfogalmazása. A valószínűségszámítás egyik alapvető feladata a következő kérdés vizsgálata: Legyen ξ 1,ξ 2,... független

Részletesebben

Tómács Tibor. Matematikai statisztika

Tómács Tibor. Matematikai statisztika Tómács Tibor Matematikai statisztika Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Matematikai statisztika Eger, 01 Szerző: Dr. Tómács Tibor főiskolai docens Eszterházy Károly

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

Példa a report dokumentumosztály használatára

Példa a report dokumentumosztály használatára Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál

Részletesebben

matematikai statisztika 2006. október 24.

matematikai statisztika 2006. október 24. Valószínűségszámítás és matematikai statisztika 2006. október 24. ii Tartalomjegyzék I. Valószínűségszámítás 1 1. Véletlen jelenségek matematikai modellje 3 1.1. Valószínűségi mező..............................

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

FRAKTÁLGEOMETRIA. Metrikus terek, szeparábilitás, kompaktság. Czirbusz Sándor czirbusz@gmail.com. Komputeralgebra Tanszék ELTE Informatika Kar

FRAKTÁLGEOMETRIA. Metrikus terek, szeparábilitás, kompaktság. Czirbusz Sándor czirbusz@gmail.com. Komputeralgebra Tanszék ELTE Informatika Kar Metrikus terek, szeparábilitás, kompaktság Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010. március 7. Vázlat 1 Szeparábilitás Definíciók A szeparábilitás ekvivalens

Részletesebben

Matematikai analízis 1. Szász Róbert

Matematikai analízis 1. Szász Róbert Matematikai analízis Szász Róbert . fejezet.. Topológikus terek... Értelmezés. Adott egy X halmaz. A d : X X [0, + ) függvényt metrikának nevezzük, ha teljesülnek a következő feltételek:. d(x, y) > 0,

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

A matematikai feladatok és megoldások konvenciói

A matematikai feladatok és megoldások konvenciói A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott

Részletesebben

Házi feladatok megoldása. Nyelvtani transzformációk. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 6. gyakorlat.

Házi feladatok megoldása. Nyelvtani transzformációk. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 6. gyakorlat. Nyelvtani transzformációk Formális nyelvek, 6. gyakorlat a. S (S) SS ε b. S XS ε és X (S) c. S (SS ) Megoldás: Célja: A nyelvtani transzformációk bemutatása Fogalmak: Megszorított típusok, normálformák,

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

Valószín ségelmélet házi feladatok

Valószín ségelmélet házi feladatok Valószín ségelmélet házi feladatok Minden héten 3-4 házi feladatot adok ki. A megoldásokat a következ órán kell beadni, és kés bb már nem lehet pótolni. Csak az mehet vizsgázni, aki a 13 hét során kiadott

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 9. előadás: Paraméteres iterációk, relaxációs módszerek Lócsi Levente ELTE IK Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

Miskolci Egyetem. Részbenrendezés maximális kompatibilis kiterjesztéseir l ütemezéselméleti vonatkozásokkal. PhD értekezés

Miskolci Egyetem. Részbenrendezés maximális kompatibilis kiterjesztéseir l ütemezéselméleti vonatkozásokkal. PhD értekezés Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Részbenrendezés maximális kompatibilis kiterjesztéseir l ütemezéselméleti vonatkozásokkal PhD értekezés Készítette: Lengyelné Szilágyi Szilvia Hatvany

Részletesebben

Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc

Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc Karátson, János Horváth, Róbert Izsák, Ferenc numerikus módszerei számítógépes írta Karátson, János, Horváth, Róbert, és Izsák, Ferenc Publication date 2013 Szerzői jog 2013 Karátson János, Horváth Róbert,

Részletesebben

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Az osztályozóvizsgák követelményrendszere MATEMATIKA Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom

Részletesebben

oklevél száma: P-1086/2003 (summa cum laude) A disszertáció címe: Integrálegyenletek és integrálegyenl½otlenségek mértékterekben

oklevél száma: P-1086/2003 (summa cum laude) A disszertáció címe: Integrálegyenletek és integrálegyenl½otlenségek mértékterekben Végzettség: 1983 június Okleveles matematikus József Attila Tudományegyetem, Szeged oklevél száma: 60/1983 (kitüntetéses oklevél) 1991 június Egyetemi doktori cím Eötvös Loránd Tudományegyetem, Budapest

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Közönséges differenciálegyenletek megoldása Mapleben

Közönséges differenciálegyenletek megoldása Mapleben Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen

Részletesebben

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2011 Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright Az Olvasó most egy egyetemi jegyzetet tart

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Mesterséges Intelligencia I.

Mesterséges Intelligencia I. Mesterséges Intelligencia I. 10. elıadás (2008. november 10.) Készítette: Romhányi Anita (ROANAAT.SZE) - 1 - Statisztikai tanulás (Megfigyelések alapján történı bizonytalan következetésnek tekintjük a

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Pénzügyi matematika. Medvegyev Péter. 2013. szeptember 8.

Pénzügyi matematika. Medvegyev Péter. 2013. szeptember 8. Pénzügyi matematika Medvegyev Péter 13. szeptember 8. Az alábbi jegyzet a korábbi ötéves gazdaságmatematikai képzés keretében a Corvinus egyetemen tartott matematikai el adásaim kib vített verziója. A

Részletesebben

Véletlen gráfok. Példák: Kávéra vizet öntünk és alul kifolyik a víz: Olaj vagy víz átszívárgása egy kőzetrétegen:

Véletlen gráfok. Példák: Kávéra vizet öntünk és alul kifolyik a víz: Olaj vagy víz átszívárgása egy kőzetrétegen: Virág Bálint Véletlen Gráfok/1 Véletlen gráfok Példák: Kávéra vizet öntünk és alul kifolyik a víz: Olaj vagy víz átszívárgása egy kőzetrétegen: Mind az olaj, mind a víz bekerül egy rendszerbe, mely makroszinten

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (b) Kvantummechanika Utolsó módosítás: 2013. november 9. 1 A legkisebb hatás elve (1) A legkisebb hatás elve (Hamilton-elv): S: a hatás L: Lagrange-függvény 2 A

Részletesebben

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával

Részletesebben

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus

Részletesebben