Az optimális önrész a bonus-malus rendszerben

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Az optimális önrész a bonus-malus rendszerben"

Átírás

1 Az optimális önrész a bonus-malus rendszerben Diplomamunka Írta: Retteghy Orsolya Alkalmazott matematikus szak Témavezet : Arató Miklós, egyetemi docens Valószín ségelméleti és Statisztika Tanszék Eötvös Loránd Tudományegyetem, Természettudományi Kar Eötvös Loránd Tudományegyetem Természettudományi Kar 009

2 Tartalomjegyzék 1. Bevezet 1. Bonus-malus rendszer 3.1. Kármentességi díjengedmény Károkozás miatti pótdíj Új belép k Módszer A bonus-malus kiskapui Stratégia A lejt módszer Lépések A biztosító által kizetett károk számának valószín sége Kizetett károk számának várható értéke Várható kárnagyság Az alapdíj meghatározása Eredmények Az optimális eredmények Exponenciális kárnagyság esetén Az optimális eredmények Pareto kárnagyság esetén Új tényez k Új kárszám eloszlás Az id Összefoglalás 8 II

3 Ábrák jegyzéke 4.1. d1 alatti károk valószín sége és az átlagos kárszám függvénye d alatti károk valószín sége és az átlagos kárszám függvénye d3 alatti károk valószín sége és az átlagos kárszám függvénye d4 alatti károk valószín sége és az átlagos kárszám függvénye Exponenciális és Pareto eloszlás feltételezése melletti összeghatárok A d 1 értékei különböz kárszámok függvényében, Exponenciális és Pareto eloszlás feltételzése mellett III

4 1. fejezet Bevezet Minden autó tulajdonosa találkozott már a kötelez gépjárm -felel sségbiztosítással. A KGFB-t ahogy a nevében is benne van kötelez minden gépkocsi üzembentartójának igénybe venni a törvény szerint. Egy baleset okozása nagyon megviseli az embereket, mégha csak egy kis koccanásról is van szó. De az els nagy megrázkodtatás után, érdemes elgondolkodnunk rajta, hogy mekkora kárt okoztunk. Természetesen kár mértékénél kizárólag vagyoni kárról beszélünk. El fordulhat ugyanis, hogy a kár összege nem haladja meg az éves díjunk felét se. Természetesen a biztosító a kár méretétül függetlenül büntet minket a kiszabott díjpótlékkal. Ebben az esetben felmerül egy olyan lehet ség, hogy mi zessük ki az okozott kárt a biztosító helyett. Cserébe a bíztosító nem terhel ránk magasabb díjat, hanem továbbra is kármentesnek tekint minket. Csakhogy megtörténhet, hogy az év további szakaszában szerencsétlenségünkre újabb kárt okozunk. Ekkor a biztosító mégiscsak sújt minket díjpótlékkal, Ugyan nem akkorával, mintha kárt okoztunk volna, de talán jobban jártunk volna, ha az els kárt mégsem mi zetjük ki. Persze el fordulhat az is, hogy mindkét kárunk olyan csekély, hogy a legjobb ha mindet kizetjük. Másrészt viszont a gyakori károkozók esetében el fordulhat, hogy a következ évben a legalacsonyabb bónusz-osztályban kezdhetjük az évet, ami azt jelenti, hogy magasabb díjat már nem szabhat ki ránk a bíztosító. Ilyenkor nyilvánvalósan, egy 0 Ft érték kárt se érdemes kizetnünk. Ezzel szemben, egy "jó vezet " esetében talán mindegyiket ki kéne zetnünk. Az lenne a cél, hogy megel legezzünk egy olyan stratégiát, amelyel vélhet en a legjobban járunk. Azt szeretnénk kideríteni, hogy egy adott bónusz-osztályba egy adott kárszám után, mekkora az az összeg kár maximuma, amit még nekünk kellene kizetnünk, ahhoz, 1

5 hogy várhatóan a legtöbb pénzt spóroljuk meg hosszútávon. Ehhez rengeteg számolásra lesz majd szükség. Egyrészt meg kell állapítani, hogy milyen valószín ségekkel mozgunk majd ezzel a stratégiával a bonus-malus rendszerben, ami a biztosítási díj meghatározására szolgál. Másrészt meg kell tudnunk jósolni, hogy várhatóan mennyit költünk majd a károk kizetésére. Ehhez szükségünk lesz a kárszám illetve a kárnagyság eloszlására [1]. Ebb l a összetev b l próbáljuk meg kitalálni az optimális stratégiát. Els lépésben megismerkedünk a magyar bonus-malus rendszer szabályaival és lehet ségeivel [1], []. Bemutatjuk a károk száma és a bonus-fokozatok közti kapcsolatot. Azután, felírjuk a stratégiát általánosan, ismeretlen összegekkel. Végül kiszámítva a várható költséget a változók segítségével, megpróbáljuk az optimalizálni [3], hogy végül megkapjuk a kívánt értékeket. Sajnos el fordulhat, hogy a stratégiánk nem válik be, közbe szól a balsors, és minden óvatosságunk ellenére a vártnál több vagy nagyobb balesetet okozunk, amivel tönkretehetjük a szépen felépített pénzmegatakarítási szándékunkat. Mindenkinek kellemes és balesetmentes vezetést kívánok!

6 . fejezet Bonus-malus rendszer Minden magyarországi telephely gépjárm üzemben tartója köteles az e rendeletben és mellékleteiben foglalt feltételek szerinti felel sségbiztosítási szerz dést kötni, és azt folyamatos díjzetéssel hatályban tartani. Gépjárm a Magyar Köztársaság területén kizárólag e feltételek fennállása esetén üzemeltethet.190/004. VI. 8. Korm. rendelet.ÿ 1.bek. Az üzemben tartó jogosult arra, hogy a biztosítónak a teljes kárkizetés összegér l szóló írásbeli értesítését követ hat héten belül a teljes kárösszeget a biztosítónak megzesse, és így a bonus-malus osztályba sorolását ne rontsa.190/004. VI. 8. Korm. rendelet III.szám melléklet 9. Európában általánosan elterjedt, hogy a gépjárm -üzembentartókat un. bonusmalus osztályba kell sorolni.1, és az abban elért fokozatuk alapján kerül sor a biztosítási díj megállapítására. A bonus-malus fokozatba történ besorolást a biztosítók nyilvántartják, így ha valaki másik biztosítót választ, bónusz fokozatát viszi magával az új biztosítóhoz. Magyarországon 008. január 1-t l a meggyelési id szakok a naptári évhez igazodnak. Tehát 009-ben a meggyelési id szak: Továbbiakban a magyar bonus-malus rendszerrel foglalkozunk..1. Kármentességi díjengedmény Ha a gépjárm vel kapcsolatban a meggyelési id szakban kárkizetés nem történt, vagy a károsulttaknak kizetett teljes kártérítési összeget a károkozó gépjárm üzembentartója biztosított az err l szóló értesítést követ hatvan napon belül saját elhatározásából visszazette a biztosító társaságnak, akkor az üzembentartó kármentességi díjengedményre jogosult, amely az jelenti, hogy besorolási fokozata 1 fokozattal javul a meggyelési id szakot követ év január 1-jével. Kivételt képeznek azok, akik már elérték a legmagasabb, a B10-es fokozatot. Ebben az esetben nincs több díjengedmény. 3

7 fokozat díjszorzó M4 M M 1.35 M A0 1 B B 0.9 B B4 0.8 B B6 0.7 B B8 0.6 B B táblázat. Bonus-malus fokozatok.. Károkozás miatti pótdíj Ha a meggyelési id szakban a gépjárm vel bármikor okozott kárral kapcsolatban els kárkizetés történt, a meggyelési id szakot követ naptári évben az üzembentartó az els kárkizetések számától függ en pótdíjat köteles zetni, egy gyelembe vett kár esetén két fokozatot, két gyelembe vett kár esetén négy fokozatot, három gyelembe vett kár esetén hat fokozatot romlik a szerz d bonus-malus besorolása a tárgyévihez képest. Ha a szerz d négy gyelembe vett kárt okozott, akkor az M4-es bonus-malus osztályba kerül..3. Új belép k A bonus-malus rendszer az üzembentartó személyéhez köt dik, és nem a gépjárm hez. Ennek megfelel en a gépjárm eladása, cseréje stb. esetén amelyek a kötelez felel sségbiztosítási szerz dés megsz nését eredményezik, az új üzembentartóra "nem száll át" a korábbi kötelez gépjárm -felel sségbiztosítási szerz dés alapján elért bonus-malus fokozat. Új belép nek min sül az, aki két éven belül nem volt azonos gépjárm kategóriába tartozó kötelez gépjárm -felel sségbiztosítás szerz d je. Új belép esetén a szerz dés 4

8 bonus-malus besorolása csak A0 lehet. Jelöljük Z n -nel egy biztosítás n-edik évi díjfokozatát. Feltesszük, hogy P Zn i Z0, Z1,, Zn 1 P Zn i Zn 1, tehát Zn Markov-lánc. A magyar rendszer esetén bármely i I állapotból bármely j I állapotba pozitív valószín séggel eljuthatunk, és lnko{n : P Zn i Z0 i} 1. Ebben az esetben Z n egy irreducibilis, aperiodikus, véges állapotter Markovlánc. Feltesszük, hogy a kárszám eloszlása λ paraméter Poisson-eloszlás. p i : i darab kár okozásának valószín sége λi i! e λ Az átmenetvalószín ségek mátrixát a.-es táblázatban mutatjuk be. M4 M3 M M1 A0 B1 B B3 B4 B5 B6 B7 B8 B9 B10 M4 1 p 0 p M3 1 p 0 0 p M 1 p p M1 1 p 0 p 1 p p A0 1 p 0 p 1 0 p p B1 1 p 0 p 1 p p 0 p p B 1 p 0 p 1 p 0 p 0 p p B3 1 p 0 p 1 p p 3 p 3 0 p 0 p p B4 1 p 0 p 1 p p 3 0 p 3 0 p 0 p p B5 1 p 0 p 1 p p p 3 0 p 0 p p B6 1 p 0 p 1 p p p 3 0 p 0 p p B7 1 p 0 p 1 p p p 3 0 p 0 p p B8 1 p 0 p 1 p p p 3 0 p 0 p p 0 0 B9 1 p 0 p 1 p p p 3 0 p 0 p p 0 B10 1 p 0 p 1 p p p 3 0 p 0 p 1 0 p 0.. táblázat. Átmenetvalószín ségmátrix 5

9 3. fejezet Módszer 3.1. A bonus-malus kiskapui Mivel a cél az, hogy a költségeket minimálisra csökkentsük, igénybe vehetjük a nem tökéletes rendszer által adta lehet ségeket. Ha málusz osztályba jutnánk, akkor van mód arra, hogy helyette A0 fokozatba kerüljünk. Például: Új belép knek álcázhatjuk magunkat, átíratjuk az autót másra. Ezért a 15 bónusz-málusz fokozat helyett a továbbiakban csak 11-gyel számolunk 3.1. fokozat díjszorzó A0 1 B B 0.9 B B4 0.8 B B6 0.7 B B8 0.6 B B táblázat. Bonus fokozatok 6

10 3.. Stratégia Amint azt a bevezet ben említettük, a célunk az, hogy a költségeket minimalizáljuk. Tegyük fel, hogy egy X nagyságú kárt okozunk. Ha X < b ij akkor kizetjük a kárt, ha nagyobb, akkor a biztosítóra hagyjuk, és vállaljuk a bonus fokozatunk csökkenését. A cél az, hogy meghatározzuk, azokat az összeghatárokat, ami alatt magunkra vállaljuk a károk kizetését. i: aktuális bonus fokozatunk, j: az eddig okozott károk száma az adott biztosítási id szakban. A b ij -ket úgy kellene meghatározni, hogy a kárkizetések és KGFB díjak összege minimális legyen. Új belép ként 11 évre el re tervezünk. A belépésünk éve a 0. év, és további 10 évet vizsgálunk, mert ez alatt az id alatt, minden fokozatot lehet ségünk van megjárni. λ: az átlagos éves kárszám. Ezzel az új módszerrel az átmenetvalószín ségek módosulnak, mert akkor is feljebb lépünk, ha az összes kárt amit okozunk kizetjük. Tehát akkor lesz 0 db kárunk, ha vagy nem okozunk kárt, vagy az összes kár amit okozunk olyan kicsi, hogy érdemes inkább nekünk kizetni. Az összes többi kárszám valószín sége is módosul, mert azoknál is el fordulhatnak olyan károk, amelyeket nem a biztosítóval zettetünk ki. Ha kiszámoljuk ezeknek a valószín ségét, akkor kicserélve a régi értékeket az átmenetvalószín ség mátrixban követni tudjuk bonus fokozatunk változását a 10 év alatt. Az új kárszámeloszlások a továbbiakban a bonus fokozattól is függnek, mivel minden osztályban más-más lehet az optimális összeg ami alatt a kárt kizetjük. Továbbá meg kell határoznunk, hogy várhatóan hány kárt fogunk kizetni bizonyos összeghatárok alatt, mert ezentúl a díjakon kívül ezek is a mi költségeinket terhelik. Ezek az összeghatárok egy bonus osztályon belül is változhatnak, attól függ en, hogy hány kárt okoztunk, amit nem zettünk ki. Végül meg kell határoznunk, hogy az összeghatár alatti károk amit mi térítünk meg, várhatóan mekkorák. Két különböz káreloszlást is összehasonlítunk: Exponenciális és Pareto A lejt módszer A számolások elvégzése után egy 44 ismeretlenb l álló egyenletrendszerhez jutunk, ahol a változók a különböz összeghatárokhoz tartozó valószín ségek. Azaz, azok a d i,j értékek amik megegyeznek a py < d i,j valószín ségekkel, ahol y a kárnagyság 7

11 valószín ségi változója, az i és a j paraméterek pedig azt jelölik, hogy az i-edik bonus fokozatban járunk, j1 db kárszámmal. Ennek a 44 ismeretlenes egyenletrendszernek a kiszámításához egy numerikus eszközhöz fogunk folyamodni, amellyel, reményeink szerint, jól meg tudjuk közelíteni az optimális értékeket [3]. A szakdolgozatnak nem témája a lejt módszer részletes ismertetése, és célravezet ségének bizonyítása, ezért csak nagy vonalakban mutatjuk be, mir l is van tulajdonképpen szó. Adott gx : D R folytonos függvény, ahol D korlátos és zárt halmaz R n -ben. Keresend lokális vagy totális x minimumhely, vagyis olyan x D amelyre teljesül az x valamely környezetében. gx gx Deníció. Egy p 0 vektort a gx függvény lejt jének nevezzünk valamely x helyen, ha megadható olyan δ > 0, hogy minden 0 < h < δ-ra gx hp < gx, vagyis gx lokálisan csökken a p irányában. Tétel. Tegyük fel, hogy gx parciálisan deriválható az x helyen. Ekkor, ha grad gx T p < 0 akkor p lejt x-ben. A minimum keresésére az alábbi iterációt értelmezzük, amely az optimális lejt módszerek általános alakja: adott x 0 D kezd közelítés esetén legyen x m1 : x m α m grad gx m m 0, 1, ahol λ α m -et abból a feltételb l határozzuk meg, hogy gx m1 min λ>0 gx m λ grad gx m Az utóbbi ún. vonalmenti minimum biztosan létezik és gx m1 < gx m m 0, 1, Esetünkben x m a valószín ségek 11 4-es mátrixa. A g függvény pedig a költségünk függvénye lesz. Tehát ezzel az eljárással fogunk közelíteni a függvény minimumához. 8

12 4. fejezet Lépések 4.1. A biztosító által kizetett károk számának valószín sége 0 kár valószín sége. 0 kárunk úgy lehet, hogy egyáltalán nem okoztunk kárt, vagy az összes kár amit okoztunk d i1 alatt volt. Egyel re nem teszünk különbséget az osztályok között: d ij helyett d j -t használunk, ahol j 1 az eddig okozott, biztosító által megtérített károk száma. η: az eredeti kárszám, feltételezésünk szerint Poisson eloszlású valószín ség változó. ξ: az új kárszám valószín ségi változója. pξ 0 pξ 0 η k pη k k0 Ebb l Tehát k0 pη k λk k! eλ pξ 0 η k py < d 1 k pξ 0 k0 py < d 1 k λk k! eλ py < d 1 λ k e py< d 1 λ e 1py< d 1 λ k! e 1py< d 1 λ pξ 0 e 1d 1λ 9

13 Bevezetünk egy új jelölést: d j py < d j 1 kár valószín sége. 1 kárunk úgy lehet, hogy van d 1 feletti kár, utána már csak d alatti károkat okozunk. pξ 1 pξ 1 η k pη k k1 k1 k1 Összegezzük a mértani sort k1 k l1 k l1 d1 d l1 1 1 d 1 d kl λk k! eλ d d 1 d k 1 d 1 d 1 1 d 1 λd 1 k d 1 d k! k1 l1 1 d 1 d k1 λk k! eλ 1 d 1 d k1 λk k! eλ λd k e λ k! k1 Tehát 1 d 1 d 1 d 1 e λd 1 e λ1d 1 1 e λd e λ1d pξ 1 pξ 1 η k pη k k1 1 d 1 d 1 d e λ1d 1 e λ1d kár valószín sége. kárunk úgy lehet, hogy van d 1 feletti kár, utána van d feletti kár, utána már csak d 3 alatti károkat okozunk. k1 k k1 k l1 l1 pξ pξ η k pη k k d l1 1 1 d 1 d l1 1 1 d 1 Összegezzük az utolsó -mát! k ml1 d k ml1 d 3 d m1l 1 d d km 3 λk k! eλ 10 m1l 1 d d kl1 3 λk k! eλ

14 k1 k l1 k1 k l1 d 1 d l1 k1 k l1 d l1 1 1 d 1 d l1 1 d 1 1 d d d 3 Összegezzük a mértani sorokat! k 1 d 1 1 d d d 3 1 d 1 1 d d d 3 Tehát d kl d d d kl 3 λk d d 3 k! eλ 1 1 d 1 dkl d kl 3 d d 3 1 d 1 1 d λ k d d 3 k! eλ d k1 λk k! eλ 1 d λk k! eλ k1 k1 d k1 1 d k1 d 1 d l1 l1 d 1 d 3 1 d 1 1 d d d 3 d dk1 1 d k1 3 d 3 d 1 d 3 d k1 3 λk k! eλ 1 e λd 1 λd 1 e λd 1 d d 1 e λ1d 1 1 e λd λd e λd e λ1d d 1 d 1 e λd 1 λd 1 e λd 1 d3 d 1 e λ1d 1 1 e λd 3 λd 3 e λd 3 e λ1d 3 d 1 d 3 1 d 1 1 d e λ1d1 e λ d d 1 e λ1d e λ d d 3 d 1 d e λ1d 1 e λ d3 d 1 e λ1d 3 e λ d 1 d d 1 1 d e λ1d1 e λ d e λ1d e λ d 1 d 1 d d 3 d 1 d eλ1d 1 e λ d 3 e λ1d 3 e λ d 1 d 1 d d 1 1 d e λ1d1 d e λ1d d 1 d 1 d d 3 d 1 d eλ1d 1 d 3 e λ1d 3 d 1 d 1 d 3 pξ pξ η k pη k k e λ1d 1 1 d 1 1 d d 1 d d 1 d 3 e λ1d e λ1d 3 d d 1 d d 3 d 3 d d 3 d 1 11

15 3 kár valószín sége. 3 kárunk úgy lehet, hogy van d 1 feletti kár, utána van d feletti kár, utána van d 3 feletti kár, utána már csak d 4 alatti károkat okozunk. k d l1 1 1 d 1 k3 l1 pξ 3 k1 ml1 Összegezzük az utolsó -mát! k d l1 1 1 d 1 k3 l1 k k3 l1 Újabb összegzés k3 l1 d l1 1 1d 1 k d l1 1 1d 1 k3 k1 ml1 d k 1 d k d 1 d pξ 3 η k pη k k3 d m1l 1 d k1 ml1 d d 3 d m1l k nm1 1 d dkm 3 d km 4 d 3 d 4 m1l d k1l d k1l 3 d d 3 d d 3 dk 3 d 1 d 3 d 3 d d 3 1 d k d kl1 3 d m1l d4 kl1 d 4 d 3 dk1l d k1l 4 d 4 d d 4 d k 1 d k d 1 d d nm1 3 1 d 3 d kn 4 λk k! eλ 1 d 3 λk k! eλ 1 d 1 d 3 λk d 3 d 4 k! eλ 1 d 1 d 3 λk d 3 d 4 k! eλ d d 4 dk 1 d k 4 d 1 d 4 d 4 d d 4 Ebb l 1 d 1 1 d 1 d 3 d 3 d 4 λk k! eλ 1 e λd 1 λd 1 e λd 1 λd 1 e λd 1 e λ1d 1 d 3 d d 1 d 1 d d d 3 1 eλd λd e λd λd e λd e λ1d d 3 d d 1 d d d 3 1 e λd 1 λd 1 e λd 1 λd 1 e λd 1 e λ1d 1 d 3 d 1 d 1 d 3 d d 3 λd 3 1 eλd 3 λd 3 e λd 3 e λd 3 e λ1d 3 d 1 d 3 d d 3 1 e λd 1 λd 1 e λd 1 λd 1 e λd 1 e λ1d 1 d 4 d d 1 d 1 d d d 4 1 eλd λd e λd λd e λd e λ1d d 4 d d 1 d d d 4 1 e λd 1 λd 1 e λd 1 λd 1 e λd 1 e λ1d 1 d 4 d 1 d 1 d 4 d d 4 1 eλd 4 λd 4 e λd 4 λd4 e λd 4 e λ1d 4 d 1 d 4 d d 4 1

16 1 d 1 1 d 1 d 3 d 3 d 4 1 e λd 1 λd 1 e λd 1 e λ1d 1 d d 3 d 1 d 1 d d d 3 1 e λd λd e λd e λ1d d 3 d 1 e λd 1 λd 1 e λd 1 e λ1d 1 d 3 1 e λd 3 λd d 3 e λd 3 e λ1d 3 1 d 1 d 3 d d 3 1 e λd 1 λd 1 e λd 1 e λ1d 1 d d 4 1 e λd λd d e λd e λ1d d 4 d 1 d 1 d d d 4 1 e λd 1 λd 1 e λd 1 e λ1d 1 d 4 1 e λd 4 λd d 4 e λd 4 e λ1d 4 1 d 1 d 4 d d 4 1 d 1 1 d 1 d 3 d 3 d 4 e λ1d 1 e λ λd 1 e λ d d 3 d 1 e λ1d e λ λd e λ d3 d d 1 d d d 3 e λ1d1 e λ λd 1 e λ d 3 e λ1d3 e λ λd d 3 e λ 1 d 1 d 3 d d 3 e λ1d1 e λ λd 1 e λ d d 4 e λ1d e λ λd d e λ d4 d 1 d 1 d d d 4 e λ1d1 e λ λd 1 e λ d 4 e λ1d4 e λ λd d 4 e λ 1 d 1 d 4 d d 4 1 d 1 1 d 1 d 3 d 3 d 4 Az e λ1d 1 együtthatói összegezve: d d 3 d d 3 d 4 d 1 1 d d 3 d 4 d 1 1 d d 3 d 4 d 1 1 d d 3 d 1 1 d d 3d 4 d 1 d d 3d 4 d 1 d d 3d 4 d d 3 d 3d 4 d 1 1 d d 3d 4 d 1 1 d 3d 4 d 1 1 d d 3 d 1 1 d d 3d 4 d 1 d d 3d 4 d 1 d d 3d 4 d d 4 d d 3 d 4 d 1 1 d d 3 d 4 d 1 1 d d 3d 4 d 1 1 d d 4 d 1 1 d d 3 d 4 d 1 d d 3 d 4 d 1 d d 3d 4 d d 4 d 3 d 4 d 1 1 d d 3 d 4 d 1 1 d 3d 4 d 1 1 d d 4 d 1 1 d d 3 d 4 d 1 d d 3 d 4 d 1 d d 3d 4 d 1 d d 1 d 3 d 1 d 4 d d 3 d d 4 d d 4 d d 3 d 3d 4 d 3 d 4 1 e λ1d 1 d d 3 d d 3 d 4 d d 3 d 3d 4 d d 4 d d 3 d 4 d d 4 d 3 d 4 d 1 d d 1 d 3 d 1 d 4 d d 3 d d 4 d d 4 d d 3 d 3d 4 d 3 d 4 1 e λ1d 1 13

17 A többi tag kiesik Az e λ1d együtthatói összegezve: d 1 d d 1 d 3 d 1 d 4 1 e λ1d 1 d 1d 3 d 1d 1 d 3d 4 d 1 d 3 d 4 d 1 d 1 d 3d 4 d 1 d 3 d 1 d 1 d 3d 4 d 3d 4 d 1 d 3d 4 d 1d 4 d 1d 1 d 3d 4 d 1 d 3 d 4 d 1 d 1 d 3d 4 d 1 d 4 d 1 d 1 d 3d 4 d 3 d 4 d 1 d 3d 4 d 1 d d d 3 d d 4 d 1d 3 d 1d 4 d 1 d 4 d 1 d 3 d 3d 4 d 3 d 4 1 e λ1d d 1d 3 d 1 d 3 d 3d 4 d 1d 4 d 1 d 4 d 3 d 4 d 1 d d d 3 d d 4 d 1d 3 d 1d 4 d 1 d 4 d 1 d 3 d 3d 4 d 3 d 4 1 e λ1d A többi tag kiesik Tehát d d 1 d d 3 d d 4 1 e λ1d pξ 3 pξ 3 η k pη k k3 e λ1d 1 d 1 d d 1 d 3 d 1 d 4 e λ1d d d 1 d d 3 d d 4 1 d 1 1 d 1 d 3 e λ1d 3 d 3 d d 3 d 1 d 3 d 4 e λ1d4 d 4 d d 4 d 3 d 4 d 1 1 d 1 1 d 1 d 3 Legalább 4 kár valószín sége. Legalább 4 kárunk úgy lehet, hogy van d 1 feletti kár, utána van d feletti kár, utána van d 3 feletti kár, és utána van egy d 4 feletti kár, és utána már mindegy milyen károkat okozunk, mert úgyis M4-be kerülünk. A korábbi egyenletek szabályszer ségéb l következtethetünk a következ re: k3 k4 l1 Tehát d l1 1 1d 1 pξ 4 k ml1 pξ 4 η k pη k k4 d m1l 1d k1 nm1 e λ1d 1 d 1 1d 1 d d 1 d 3 d 1 d 4 e λ1d d 1d d 1 d d 3 d d 4 e λ1d 3 d 3 1d 3 d d 3 d 1 d 3 d 4 e λ1d 4 d 4 1d 4 d d 4 d 3 d 4 d 1 d nm1 3 1d 3 k on1 d on1 4 1d 4 λk k! eλ 1 d 1 1 d 1 d 3 1 d 4 1d 1 1d 1d 3 1d 4 1 A biztosító által kizett károk számának valószín ségei könnyen ellen rizhet k, mert az összegük 1. 14

18 Az új átmenetvalószín ségmátrixot bonyolultsága miatt külön-külön mutatjuk be.. q 10,10 e 1d 10,1λ q i,i1 e 1d i,1λ i q i,i 1d 1 d 1 d e λ1d1 e λ1d i e q i,i4 1d i,1 1d i, λ1d i,1 d i,1 d i, d i,1 d i,3 e λ1d i, d i, d i,1 d i, d i,3 e λ1d i,3 d i,3 d i, d i,3 d i,1 i q i,i6 e λ1d i,1 d i,1 d i, d i,1 d i,3 d i,1 d i,4 e λ1d i, d i, d i,1 d i, d i,3 d i, d i,4 e λ1d i,3 d i,3 d i, d i,3 d i,1 d i,3 d i,4 e λ1d i,4 d i,4 d i, d i,4 d i,3 d i,4 d i,1 i q i, j q i,j A többi elem 0. 1 d i,1 1 d i, 1 d i,3 1 d i,1 1 d i, 1 d i,3 Ha a mátrixot n-edik hatványra emeljük, és vesszük az els sorát, akkor megkapjuk, hogy A0-ból indulva n év után az egyes osztályokban milyen valószín séggel fordulhatunk meg. Ezt szorozva a díjszorzók vektorával megkapjuk, hogy várhatóan mennyi díjat fogunk zetni a 10 év alatt. A díjak költségéhez még hozzá kell számolni azokat a károkat, amelyeket ki fogunk zetni. Ehhez szükségünk lesz a várható kárszámra és a várható kárnagyságra. 4.. Kizetett károk számának várható értéke A továbbiakban el sz r meghatározzuk az általunk kizetett károk számának várható értékét. A számolások helyességét szimulációval ellen rizzük, amit mintán futtatunk le.. d 1 alatti károk számának várható értéke. Legyen ψ i a d i alatti károk számának valószín ségi változója. k k1 l1 E d1 d l 1 λk k! eλ pψ 1 l l1 k1 l1 kl A szimulációs ellen rzést a 4.1-es ábrán mutatjuk be. d l 1 λk k! eλ d k1 1 d 1 λk d 1 1 k! eλ d 1 d 1 1 eλ1d 1 d 1 d

19 átlagos kárszám számolt szimuláció ábra. d 1 alatti károk valószín sége és az átlagos kárszám függvénye d alatti károk számának várható értéke. E d pψ l l1 Mértani sor összegzés l1 kl1 l1 kl1 m0 l1 kl1 kl1 d m 1 1 d 1 d l λk k! eλ 1 d kl 1 d l λk k! eλ d kl 1 d l λk k! eλ 16 kl1 d l λk k! eλ

20 átlagos kárszám számolt szimuláció ábra. d alatti károk valószín sége és az átlagos kárszám függvénye Újabb összegzés Ebb l k1 d l λd 1 k k! k l1 k d 1 d e λ1d 1 d 1 d d 1 d e λ d l λk k! eλ d k d 1 d k 1 d dk d λk d 1 d d 1 k! eλ d 1e λ1d d e λ1d 1 eλ1d d d 1 d d 1 e λ1d A szimulációs ellen rzést a 4.-es ábrán mutatjuk be. d 1 d 1 1 d d 1 d 17

21 d 3 alatti károk számának várható értéke. k3 l1 kl kl l1 kl m0 1 d kl1 1 d 1 d 1 d d 1 d d k1 3 d 3 d 3 1 e λ1d 1 k k3 l1 d3 d 1 1 d d 1 d 1 d E d3 pψ 3 l l1 d m1 1 d m1 1 d 1 1 d d l 3 λk d 1 d k! eλ d 1 1 d 1 dkl1 d 1 d 1 d 1 d d 1 d 1 d d d 1 d d l 3 λk d 1 d l λd 1 k k! e λ 1 d 1 d 1 d d3 d l 3 λk k! eλ k! eλ l λd k e λ k! d dk1 3 d 1 d k1 1 d 3 d 3 d 1 1 d 1d d 1 d dk1 3 d d k1 d 3 d 3 d λk k! eλ d k 3 d 3 d k3 3 d 1 d d 1 dk 3 d 1 dk 1 d 3 3 d 1 d d 3 d 1 d 1 d 1 d 1d dk 3 d dk d 3 3 d 1 d d 3 d d d 3 d 3 e λ1d d d 1 1 d 3 d 3 d 3 d 1 d d 3 d 3 d 1 1 d 1 d d 1 d d 3 d 3 d 1 d d 3 e λ1d 1 d 1 d 3 1 d e λ 3 d 1 d d 3 d 1 d 1 d d 3 d d 3 d 3 λk k! eλ e λ 1 d d 1 d 1 d d 3 d 3 d 1 1 d 1 d d 1 d d 3 d 3 d 1 d d 3 d 1 d d 3 d 1 1 d 1 d 3 d 1 d d 3 d λ e λ 1 1 d 1d 1 d d 1 d 1 d d 3 e λ1d d 3 d 3 d 1 d d 1 d 3 d 1 d 1 d d 3 d 1 3 d 1 d d 3 d 3 d 1 d 3 d e λ1d 1 d 1 d 3 e λ1d 1 d 1 d 3 d 1 d d 3 d 1 d 1 d d 3 d 1 d e λ 3 d 3 d 1 d d 1 d 3 1 d 1d d 3 3 d 1 d d 3 d 1 d d 3 d 3 e λ1d d 3 d 3 d d 1 d 3 d 1 d d 1 d d 3 d 1 d d d 3 d d 1 d d 1d 3 d 1 d 3 d 1 d d 3 d 3 d 1 d 3 d e λ1d 1 1 d d 3 e λ1d 1 d 1 d 3 1 d e λ 3 d 1 d d 3 d 1 d 1 d d 3 d d 3 d 1 d 3 3 d 3 d 3 d 1 d d 3 d 1 d 3 d d 1 d d 3 d 1d d 3 d 1 d d 3 d 1 d d 3 d 1 d d 1 d d 3 e λ1d 3 d 3 1d 3 d 3 d 1 d 3 d d 3 e λ1d 1 1 d d 3 e λ1d 1 d 1 d 3 e λ 1 d 3 d d 3 d 1 d d 3 d 1 d 1 d d 3 d d 3 d 3 e λ1d d d 1 1 d 1 d 3 d 1 d 3 d d 3 d 3 e λ1d 1 1 d 3 1 d d 3 d 1 d d 1 d 3 A szimulációs ellen rzést a 4.3-es ábrán mutatjuk be. 18 e λ1d 1 d 1 d 3 d 1 d d d 3

22 átlagos kárszám számolt szimuláció ábra. d 3 alatti károk valószín sége és az átlagos kárszám függvénye d 4 alatti károk számának várható értéke. kl3 l1 kl3 m0 E d4 pψ 4 l l1 d m 1 d 1 d d 1 d 3 d m d d 1 d d 3 d m 3 d 3 d 1 d 3 d l1 kl3 1 d 1 1 d 1 d 3 d l 4 λk k! eλ d 1 dkl 1 1 d 1 d 3 d 1 d d 1 d 3 d dkl 1 d 1 1 d 3 d d 1 d d 3 d 3 dkl 3 1 d 1 1 d d 3 d 1 d 3 d d l 4 λk k! eλ 19

23 k3 k4 l1 1 d 11 d 3 d 1 d d d 3 k4 d l 4 λk k! eλ 1 d 1 d 3 d 1 d d 1 d 3 d4 d l λd k k! d4 d 1 e λ 1 d 11 d d 1 d 3 d d 3 d k 4 d 4 λk d 4 1 k! eλ d 1 1 d 1 d 3 l λd 1 k e λ k! d4 d 3 d 1 d d 1 d 3 dk 4 d 1 d k 1 d 4 d 4 d 1 l λd 3 k e λ k! λk k! eλ d 1 d 11 d 3 dk 4 d d k d 4 λk d 1 d d d 3 d 4 d k! eλ d 3 1 d 11 d dk 4 d 3 d k 3 d 4 λk d 1 d 3 d d 3 d 4 d 3 k! eλ λ d 1 1 d 1 d 3 d d 3 d eλ 1 d 11 d 3 d 1 d 3 d 3 1 d 11 d d 1 d d 1 d d 1 d 3 d d 3 λ eλ λ e λ d 4 1 d 1d 4 d 1 1 d 1 d 3 d d 3 d 4 d 4 d 1 d d 1 d 3 d d 3 d d 4 d 1 d 1 1 d 3 d 1 d 3 d 3 d 4 d 3 1 d 1 1 d d 1 d d 4 d 1 d d 1 d 3 d d 3 e λ d 4 d 4 1 d 4 d 4 d 4d 1 d 1 1 d 1 d 3 d d 3 d 4 d 1 d d 1 d 3 d d 3 d 4 d 4d d 1 d 11 d 3 d 1 d 3 d 4 d 4d 3 d 3 1 d 11 d d 1 d d 4 d 1 d d 1 d 3 d d 3 e λ1d 1 1 d 1 d 3 d 4 d 1 d d 1 d 3 d 1 d 4 eλ1d 1 d 1 1 d 3 d 4 d 1 d d d 3 d d 4 e λ1d 3 1 d 1 1 d d 4 d 1 d 3 d d 3 d 3 d 4 d 4 1 d 4 e λ1d d d d 1 d 3 d 4 d 1 d d 1 d 3 d 1 d 4 d 4 d 3 1 d 11 d 3 d 3 3 d 1 d d d 3 d d 4 d 1 d 11 d 4 d 1 d 3 d d 3 d 3 d 4 d 4 1 d 3 1 d d 1 d 3 d d 3 d d 4 d 3 d 4 d 4 d 1 d d 1 d 3 d 1 d 4 d d 3 d d 4 d 3 d 4 d 4 d 3 1 d 11 d 3 d 1 d 3 d 1 d 4 d 3 d 4 d 1 d d 1 d 3 d 1 d 4 d d 3 d d 4 d 3 d 4 d 4 d d 11 d d 1 d d 1 d 4 d d 4 d 1 d d 1 d 3 d 1 d 4 d d 3 d d 4 d 3 d 4 d 4 e λ1d 4 d 4 1 d 1 1 d 1 d 3 e λ1d 1 1 d 1 d 3 d 4 E d4 1 d 4 d 1 d 4 d d 4 d 3 d 4 d 1 d d 1 d 3 d 1 d 4 e λ1d e λ1d 3 1 d 1 1 d 3 d 4 d 1 d d d 3 d d 4 A szimulációs ellen rzést a 4.4-es ábrán mutatjuk be. 1 d 1 1 d d 4 d 1 d 3 d d 3 d 3 d 4 d 4 1 d 4 0

24 átlagos kárszám számolt szimuláció ábra. d 4 alatti károk valószín sége és az átlagos kárszám függvénye 4.3. Várható kárnagyság Az általunk kizett károk nagyságának várható értékére is szükségünk lesz. A várható kárnagyság meghatározásánál gyelembe kell vennünk, hogy csak egy bizonyos összeg alatt mozoghat. EX X < d i EX EX X < d i P X < d i EX X > d i P X > d i EX X < d i EX EX X > d i P X > d i P X < d i 1

25 Exponenciális káreloszlás. Az örökifjú tulajdonság miatt: EX X > d i 1 µ d i d i P X < d i 1 e µ d i ebb l: d i ln1d i µ EX X < d i Pareto káreloszlás. d i EX β α1 és d i feletti rész valószín sége: 1 µ 1 µ d i 1 d i d i P X < d i 1 P X < x X > d i az új eloszlás α, β d i paraméter Pareto. β 1 µ 1ln1d i µ 1 d i d i β β d i α ebb l: di α β d i α β β d i α β βx d i β 1d i α β és EX X > d i β d i α1 d i βα d i α1 EX X < d i βα β α1 β 1d i α β α1 1 d i d i β 1 α1 1 α1d i α α1 1 d i d i 4.4. Az alapdíj meghatározása A kezdeti díj összegét, azaz az alapdíjat a várható károk összegéb l fogjuk meghatározni. Amikor a biztosító meghatározza a díjakat, valószínüleg nem feltételezi, hogy az átlag ember eéle stratégiákhoz folyamodna, ezért csak az eredeti kárszám, illetve kárnagyság játszik szerepet az összeg meghatározásában. S t még a 15 bonus fokozatú rendszert fogjuk használni a számoláshoz. Tehát abból indulunk ki, hogy az egy f re jutó átlagos díjnak fedeznie kell az egy f re jutó átlagos kár összegét. Az átlagos kárösszeget pedig úgy kapjuk, hogy az átlagos kárszámot szorozzuk az átlagos kárnagysággal. Már csak az hiányzik, hogy megtudjuk, vajon hányszorosa az átlagos díj az alapdíjnak. A stacionárius eloszlás közelíti legjobban, hogy az emberek hány százaléka tartózkodik az egyes osztályokban. A stacionárius eloszlást az átmenetvalószín ség mátrix λ 1 sajátértékéhez tartozó baloldali sajátvektora adja. ππ λi 0 egyenletb l könnyen számolható pl. a MAPLE-lel, ahol Π-vel az átmenetvalószín ség mátrixot, I-vel az egységmátrixot, λ-val az 1 érték sajátértéket, π-vel meg a keresett sajátvektort jelöltük. A kapott vektort skalárisan szorozva a díjszorzók vektorával megkapjuk a kívánt összeget.

26 5. fejezet Eredmények A számoláshoz szükség van bizonyos adatokra. A KSH Központi Statisztikai Hivatal adatai alapján adjuk meg a kezdeti értékeket. Az átlagos kárszám: λ 0, 14. Az átlagos kárnagyság m Ft. Feltételezzük, hogy a biztosító a díj 5%-át egyéb költségekre fordítja, 75%-át meg a károk kizetésére. λ 0, 14-gyel számolva az átlagos díj az alapdíj 54%-a lesz. Ebb l megkapható az alapdíj, ami Ft. Az átmenetvalószín ség mátrix n-edik hatványának els sora adja, hogy az n. évben milyen valószín séggel melyik osztályban leszünk. Ezt a sort skalárisan szorozva a díjszorzók vektorával, és a kapott eredményt az alapdíj összegével, megkapjuk, hogy az n. évben várhatóan mennyi díjat fogunk zetni. Ezt n 1... n-re összeadva kapjuk a 11 év alatt ezetend díj várható értékét. Ehhez jön még a 11 év alatt zetend károk összege. Ha nem használunk semmilyen stratégiát, akkor Ft-ot zethetünk a biztosítónak 11 év alatt. Az Exponenciális káreloszlást feltételez eloszlással, ez az összeg Ft-ra csökkent, Pareto eloszlást feltételezve pedig Ft. Látható, hogy mindkét eloszlásnál a stratégia eredményre vezet. A pareto eloszlásnál az eredményessége nem jelent s. Hosszabb id szak vizsgálatánál esetleg komolyabb összegre is számíthatunk Az optimális eredmények Exponenciális kárnagyság esetén Az Exponenciális eloszlás paraméterét a várható értékb l határozzuk meg. Ex µ 3 µ

27 Az 5.1-es mátrixban a 0-kat önkényesen beírtuk. Hiszen ha a kárszám alapján már úgyis a legkisebb osztályban kerültünk, akkor attól kezdve okozott károkat biztosan nem érdemes kizetnünk. bonus fokozat 1.kár.kár 3.kár 4.kár A B B B B B B B B B B táblázat. Az Exponenciális eloszlás eredményei 5.. Az optimális eredmények Pareto kárnagyság esetén Pareto eloszlásnál meg kell adni a paramétereket. A várható értékb l Ft kapunk összefüggést közöttük. α-t 4-nek választva: Ex β α 1 β Ex α

28 bonus fokozat 1.kár.kár 3.kár 4.kár A B B B B B B B B B B táblázat. A Pareto eloszlás eredményei 5.1. ábra. Exponenciális és Pareto eloszlás feltételezése melletti összeghatárok 5

29 6. fejezet Új tényez k 6.1. Új kárszám eloszlás Tudni szeretnénk, hogy jobb illetve rosszabb vezet k esetében, hogyan változnak az összeghatárok. Tehát az egészet újra számoljuk λ 0, 04, illetve λ 3 0, 54 paraméterekre. A változások leginkább az els kárnál gyelhet k meg. Grakonon mutatjuk be, a különböz paraméter kárszám eloszlások, hogyan változtatják a d 1 értékeit ábra. A d 1 értékei különböz kárszámok függvényében, Exponenciális és Pareto eloszlás feltételzése mellett 6.. Az id Látható, hogy a stratégiánk ugyan eredményre vezet, de ahhoz, hogy jelent sebb összeget takarítsunk meg legalább hosszú évekig kellene vezetnünk. Bevezetünk egy új változót a képletünkbe, amivel nomíthatunk egy kicsit a stratégián. Nem árt gyelembe venni, hogy mennyi id telt el az évb l, amikor a balesetet okozzuk. Az új stratégia, hogy akkor zetjük ki a kárt, ha 1 t λ µ X < b i,j 6

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2) Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

12. előadás - Markov-láncok I.

12. előadás - Markov-láncok I. 12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R

Részletesebben

Kötelező gépjármű-felelősségbiztosítás röviden: KGFB

Kötelező gépjármű-felelősségbiztosítás röviden: KGFB Kötelező gépjármű-felelősségbiztosítás röviden: KGFB Minden magyarországi telephelyű gépjármű üzembentartója köteles biztosítójával a gépjármű üzemeltetése során okozott károk fedezetére felelősségbiztosítási

Részletesebben

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Publication

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

Lagrange-féle multiplikátor módszer és alkalmazása

Lagrange-féle multiplikátor módszer és alkalmazása Eötvös Loránd Tudományegyetem Természettudományi Kar Nemesné Jónás Nikolett Lagrange-féle multiplikátor módszer és alkalmazása Matematika BSc, Matematikai elemz szakirány Témavezet : Szekeres Béla János,

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

Szöveges feladatok a mátrixaritmetika alkalmazására

Szöveges feladatok a mátrixaritmetika alkalmazására Szöveges feladatok a mátrixaritmetika alkalmazására Bevezetés: Tekintsük az alábbi -es mátrixot: A. Szorozzuk meg ezt jobbról egy alkalmas méretű (azaz -es) oszlopvektorral, amely az R tér kanonikus bázisának

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

Bázistranszformáció és alkalmazásai 2.

Bázistranszformáció és alkalmazásai 2. Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja

Részletesebben

Gyakorló feladatok a 2. zh-ra MM hallgatók számára

Gyakorló feladatok a 2. zh-ra MM hallgatók számára Gyakorló feladatok a. zh-ra MM hallgatók számára 1. Egy vállalat termelésének technológiai feltételeit a Q L K függvény írja le. Rövid távon a vállalat 8 egységnyi tőkét használ fel. A tőke ára 000, a

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Bináris keres fák kiegyensúlyozásai. Egyed Boglárka

Bináris keres fák kiegyensúlyozásai. Egyed Boglárka Eötvös Loránd Tudományegyetem Természettudományi Kar Bináris keres fák kiegyensúlyozásai BSc szakdolgozat Egyed Boglárka Matematika BSc, Alkalmazott matematikus szakirány Témavezet : Fekete István, egyetemi

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Kötelező gépjármű-felelősségbiztosítási díjtarifakönyv. Hatályos: 2015. február 1. Nysz.: 17423

Kötelező gépjármű-felelősségbiztosítási díjtarifakönyv. Hatályos: 2015. február 1. Nysz.: 17423 Kötelező gépjármű-felelősségbiztosítási díjtarifakönyv atályos: 2015. február 1. Nysz.: 17423 Tartalomjegyzék enerali iztosító Zrt. 2015. február 1-jétől alkalmazandó kötelező gépjármű-felelősségbiztosítási

Részletesebben

Permutációk véges halmazon (el adásvázlat, február 12.)

Permutációk véges halmazon (el adásvázlat, február 12.) Permutációk véges halmazon el adásvázlat 2008 február 12 Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: ismétlés nélküli variáció leképezés indulási és érkezési halmaz

Részletesebben

Pénzügyi számítások 1. ÁFA. 2015. december 2.

Pénzügyi számítások 1. ÁFA. 2015. december 2. Pénzügyi számítások 2015. december 2. 1. ÁFA Nettó ár= Tiszta ár, adót nem tartalmaz, Bruttó ár=fogyasztói ár=adóval terhelt érték= Nettó ár+ ÁFA A jelenlegi ÁFA a nettó ár 27%-a. Összefüggések: bruttó

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ IDŽ KÖZGAZDASÁGTANA, 1. rész

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ IDŽ KÖZGAZDASÁGTANA, 1. rész MIKROÖKONÓMIA II. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. B AZ IDŽ KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack Hirshleifer, Amihai

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

BONUS-MALUS tájékoztató a kötelező gépjármű-felelősségbiztosításhoz

BONUS-MALUS tájékoztató a kötelező gépjármű-felelősségbiztosításhoz BONUS-MALUS tájékoztató a kötelező gépjármű-felelősségbiztosításhoz Tisztelt Ügyfelünk! A kötelező gépjármű-felelősségbiztosítással és a hozzá kötődő bonus-malus rendszer működésével kapcsolatban az elmúlt

Részletesebben

Opkut deníciók és tételek

Opkut deníciók és tételek Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét

Részletesebben

25 i, = i, z 1. (x y) + 2i xy 6.1

25 i, = i, z 1. (x y) + 2i xy 6.1 6 Komplex számok megoldások Lásd ábra z = + i, z = + i, z = i, z = i z = 7i, z = + 5i, z = 5i, z = i, z 5 = 9, z 6 = 0 Teljes indukcióval 5 Teljes indukcióval 6 Az el z feladatból következik z = z = =

Részletesebben

Függvények határértéke, folytonossága

Függvények határértéke, folytonossága Függvények határértéke, folytonossága 25. február 22.. Alapfeladatok. Feladat: Határozzuk meg az f() = 23 4 5 3 + 9 a végtelenben és a mínusz végtelenben! függvény határértékét Megoldás: Vizsgáljuk el

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Pénzügyi matematika. Vizsgadolgozat I. RÉSZ. 1. Deniálja pontosan, mit értünk amerikai vételi opció alatt!

Pénzügyi matematika. Vizsgadolgozat I. RÉSZ. 1. Deniálja pontosan, mit értünk amerikai vételi opció alatt! NÉV: NEPTUN KÓD: Pénzügyi matematika Vizsgadolgozat I. RÉSZ Az ebben a részben feltett 4 kérdés közül legalább 3-ra kell hibátlan választ adni ahhoz, hogy a vizsga sikeres lehessen. Kett vagy kevesebb

Részletesebben

Biztosítási kárszámok becslése

Biztosítási kárszámok becslése Biztosítási kárszámok becslése Diplomamunka Írta: Martinek László alkalmazott matematikus szak Témavezet : Dr. Arató Miklós, egyetemi docens Valószín ségelméleti és Statisztika Tanszék Eötvös Loránd Tudományegyetem,

Részletesebben

PÁLYÁZATI FELHÍVÁS. I. Pályázat tárgya

PÁLYÁZATI FELHÍVÁS. I. Pályázat tárgya PÁLYÁZATI FELHÍVÁS Budapest Főváros Vagyonkezelő Központ Zártkörűen Működő Részvénytársaság (1013 Budapest, Attila út 13/A., a továbbiakban: BFVK Zrt.) mint ajánlatkérő a Budapest Főváros Önkormányzata

Részletesebben

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Tantárgy neve Alkalmazott matematika II. Tantárgy kódja MT003 Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Számonkérés módja gyakorlati jegy Előfeltétel (tantárgyi kód) MT002 Tantárgyfelelős

Részletesebben

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 ) Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek

Részletesebben

Statisztikai tájékoztató Somogy megye, 2011/1

Statisztikai tájékoztató Somogy megye, 2011/1 Statisztikai tájékoztató Somogy megye, 2011/1 Központi Statisztikai Hivatal 2011. június Tartalom Bevezetés...2 Ipar...2 Építőipar...3 Lakásépítés...3 Idegenforgalom...4 Beruházás...5 Népesség, népmozgalom...6

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Az önkormányzati intézmények részére integrált szélessávú távközlési szolgáltatás biztosítása

Az önkormányzati intézmények részére integrált szélessávú távközlési szolgáltatás biztosítása AJÁNLATTÉTELI DOKUMENTÁCIÓ Az önkormányzati intézmények részére integrált szélessávú távközlési szolgáltatás biztosítása 2010. november 1 TARTALOMJEGYZÉK I. ÚTMUTATÓ AZ AJÁNLATTEVİKNEK 1. A dokumentációban

Részletesebben

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 8. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 8. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész MIKROÖKONÓMIA II. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. B AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack

Részletesebben

1. (1) A bonus-malus rendszer a személygépkocsira, motorkerékpárra, autóbuszra, tehergépkocsira, vontatóra, mezőgazdasági vontatóra terjed ki.

1. (1) A bonus-malus rendszer a személygépkocsira, motorkerékpárra, autóbuszra, tehergépkocsira, vontatóra, mezőgazdasági vontatóra terjed ki. Bonus-malus rendelet 19/2009. (X.9.) PM rendelet a bonus-malus rendszer, az abba való besorolás, illetve a kártörténeti igazolások kiadásának szabályairól A kötelező gépjármű-felelősségbiztosításról szóló

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 4. hét A KERESLETELMÉLET ALKALMAZÁSAI

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 4. hét A KERESLETELMÉLET ALKALMAZÁSAI KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALKALMAZÁSAI Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely 2010. június Vázlat

Részletesebben

Képletek és összefüggések a 4. zárthelyi dolgozatra Solow-modell II., rövid táv

Képletek és összefüggések a 4. zárthelyi dolgozatra Solow-modell II., rövid táv Képletek és összefüggések a 4. zárthelyi dolgozatra Solow-modell II., rövid táv 1. Solow-modell II. 1.1. Munkakiterjeszt tényez munkaer min ségét, képességeit is gyelembe vesszük E - munkakiterjeszt tényez

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével.

E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható folytonos idejű Markovláncok  segítségével. E.4 Markov-láncok Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével. Egy Markov-láncot (MC) meghatároznak az alapját adó sorbanállási hálózat állapotai és az ezek

Részletesebben

Komplex számok algebrai alakja

Komplex számok algebrai alakja Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z

Részletesebben

1. (1) A bonus-malus rendszer a személygépkocsira, motorkerékpárra, autóbuszra, tehergépkocsira, vontatóra, mezõgazdasági vontatóra terjed ki.

1. (1) A bonus-malus rendszer a személygépkocsira, motorkerékpárra, autóbuszra, tehergépkocsira, vontatóra, mezõgazdasági vontatóra terjed ki. A pénzügyminiszter 19/2009. (X. 9.) PM rendelete a bonus-malus rendszer, az abba való besorolás, illetve a kártörténeti igazolások kiadásának szabályairól A kötelezõ gépjármû-felelõsségbiztosításról szóló

Részletesebben

1. A k-szerver probléma

1. A k-szerver probléma 1. A k-szerver probléma Az egyik legismertebb on-line probléma a k-szerver probléma. A probléma általános deníciójának megadásához szükség van a metrikus tér fogalmára. Egy (M, d) párost, ahol M a metrikus

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

4. sz. melléklet. Tisztelt Képviselő-testület! Tisztelt Bizottság!

4. sz. melléklet. Tisztelt Képviselő-testület! Tisztelt Bizottság! 4. sz. melléklet Tisztelt Képviselő-testület! Tisztelt Bizottság! A Képviselő-testület 439/2010. (XII.15) ÖKT sz. határozatának 12) pontja szerint a Képviselő-testület úgy döntött, hogy az önként vállalt

Részletesebben

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc Dr. Kersner Róbert 007 Tartalomjegyzék Előszó ii. Determináns. Mátrixok 6 3. Az inverz mátrix 9 4. Lineáris egyenletrendszerek 5. Lineáris

Részletesebben

Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0, 1, 2,..., N}, {0, 1, 2,... }.

Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0, 1, 2,..., N}, {0, 1, 2,... }. . Markov-láncok. Definíció és alapvető tulajdonságok Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0,,,..., N}, {0,,,... }.. definíció. S értékű valószínűségi

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

Matematikai geodéziai számítások 10.

Matematikai geodéziai számítások 10. Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László

Részletesebben

Komplex számok trigonometrikus alakja

Komplex számok trigonometrikus alakja Komplex számok trigonometrikus alakja 015. február 15. 1. Alapfeladatok 1. Feladat: Határozzuk meg az alábbi algebrai alakban adott komplex számok trigonometrikus alakját! z 1 = 4 + 4i, z = 4 + i, z =

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

AJÁNLATTÉTELI DOKUMENTÁCIÓ. Óbudai Egészség Olimpia Szűrőnapok megszervezése

AJÁNLATTÉTELI DOKUMENTÁCIÓ. Óbudai Egészség Olimpia Szűrőnapok megszervezése AJÁNLATTÉTELI DOKUMENTÁCIÓ Óbudai Egészség Olimpia Szűrőnapok megszervezése TARTALOMJEGYZÉK I. ÚTMUTATÓ AZ AJÁNLATTEVŐKNEK 1. A dokumentációban előforduló kifejezések 2. A közbeszerzési eljárás lebonyolításának

Részletesebben

Villamosmérnök A4 4. gyakorlat (2012. 10. 01.-02.) Várható érték, szórás, módusz

Villamosmérnök A4 4. gyakorlat (2012. 10. 01.-02.) Várható érték, szórás, módusz Villamosmérnök A4 4. gyakorlat (0. 0. 0.-0.) Várható érték, szórás, módusz. A k 0, (k,,, 4) diszkrét eloszlásnak (itt P(X k)) mennyi a (a) várható értéke, (b) módusza, (c) második momentuma, (d) szórása?

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

A megváltozott munkaképességű személyek foglalkoztatási helyzete

A megváltozott munkaképességű személyek foglalkoztatási helyzete VÉDETT SZERVEZETEK ORSZÁGOS SZÖVETSÉGE A megváltozott munkaképességű személyek foglalkoztatási helyzete Felmérés az Országos Foglalkoztatási Közalapítvány támogatásával Készítette: Balogh Zoltán, Dr. Czeglédi

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben

Pályázati Felhívás. Ajánlatkérő: BFVK Zrt. a Fővárosi Önkormányzat megbízásából.

Pályázati Felhívás. Ajánlatkérő: BFVK Zrt. a Fővárosi Önkormányzat megbízásából. Pályázati Felhívás Ajánlatkérő: BFVK Zrt. a Fővárosi Önkormányzat megbízásából. Pályázat célja: Budapest Főváros Önkormányzatával kötött közszolgáltatási szerződés alapján, a 29391 hrsz-ú, VI. ker. Hegedű

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

5/2004. (I. 28.) GKM rendelet. a helyi közutak kezelésének szakmai szabályairól

5/2004. (I. 28.) GKM rendelet. a helyi közutak kezelésének szakmai szabályairól 5/2004. (I. 28.) GKM rendelet a helyi közutak kezelésének szakmai szabályairól A közúti közlekedésr l szóló 1988. évi I. törvény 48. -a (3) bekezdése b) pontjának 4. alpontjában kapott felhatalmazás alapján

Részletesebben

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0 Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon

Részletesebben

Közúti helyzetkép Észak-Magyarországon

Közúti helyzetkép Észak-Magyarországon Közúti helyzetkép Észak-Magyarországon Központi Statisztikai Hivatal 2011. április Tartalom Összefoglaló...2 A közúthálózat útkategóriánkénti összetétele...2 Gépjárműállomány alakulása...4 Közúti közlekedési

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013 Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési

Részletesebben

MIKROÖKONÓMIA II. B. Készítette: K hegyi Gergely. Szakmai felel s: K hegyi Gergely. 2011. február

MIKROÖKONÓMIA II. B. Készítette: K hegyi Gergely. Szakmai felel s: K hegyi Gergely. 2011. február MIKROÖKONÓMIA II. B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés)

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés) Operációkutatás NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

1. Online kiszolgálóelhelyezés

1. Online kiszolgálóelhelyezés 1. Online kiszolgálóelhelyezés A probléma általános deníciójának megadásához szükség van a metrikus tér fogalmára. Egy (M, d) párost, ahol M a metrikus tér pontjait tartalmazza, d pedig az M M halmazon

Részletesebben

Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény

Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény 84-85.) Bock Gyula [2001]: Makroökonómia feladatok. TRI-MESTER, Tatabánya. 38. o. 16-17. (Javasolt változtatások: 16. feladat: I( r) 500

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 2. hét KERESLET, KÍNÁLAT, EGYENSÚLY

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 2. hét KERESLET, KÍNÁLAT, EGYENSÚLY KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. KERESLET, KÍNÁLAT, EGYENSÚLY Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely 2010. június Vázlat 1

Részletesebben

PÁLYÁZATI FELHÍVÁS. I. Pályázat tárgya

PÁLYÁZATI FELHÍVÁS. I. Pályázat tárgya PÁLYÁZATI FELHÍVÁS Budapest Főváros Vagyonkezelő Központ Zártkörűen Működő Részvénytársaság (1013 Budapest, Attila út 13/A., a továbbiakban: BFVK Zrt.) mint ajánlatkérő részéről a Budapest Főváros Önkormányzata

Részletesebben

Koronikáné Pécsinger Judit

Koronikáné Pécsinger Judit Koronikáné Pécsinger Judit AZ ÚTKÖRNYEZET HATÁSTERJEDÉST BEFOLYÁSOLÓ SZEREPE TERMÉSZETI TERÜLETEKEN Doktori (PhD) értekezés Témavezető: Dr. Pájer József egyetemi docens Nyugat-magyarországi Egyetem Kitaibel

Részletesebben

1. Görbe illesztés a legkisebb négyzetek módszerével

1. Görbe illesztés a legkisebb négyzetek módszerével 1 GÖRBE ILLESZTÉS A LEGKISEBB NÉGYZETEK MÓDSZERÉVEL 1. Görbe illesztés a legkisebb négyzetek módszerével Az el z gyakorlaton megismerkedtünk a korrelációs együttható fogalmával és számítási módjával. A

Részletesebben

1. A vállalat. 1.1 Termelés

1. A vállalat. 1.1 Termelés II. RÉSZ 69 1. A vállalat Korábbi fejezetekben már szóba került az, hogy különböző gazdasági szereplők tevékenykednek. Ezek közül az előző részben azt vizsgáltuk meg, hogy egy fogyasztó hogyan hozza meg

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely

Részletesebben

MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek

MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek Révész Sándor reveszsandor.wordpress.com 2011. december 20. Elmélet Termelési függvény Feladatok Parciális termelési függvény Adott a következ

Részletesebben

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket!

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket! 1. Név:......................... Egy szabályos pénzérmét feldobunk, ha az els½o FEJ az i-edik dobásra jön, akkor a játékos nyereménye ( 1) i i forint. Vizsgálja szimulációval a játékot, különböz½o induló

Részletesebben

21/2011. (VI. 10.) NGM rendelet

21/2011. (VI. 10.) NGM rendelet 21/2011. (VI. 10.) NGM rendelet Hatályos: 2014.03.15-21/2011. (VI. 10.) NGM rendelet a bonus-malus rendszer, az abba való besorolás, illetve a kártörténeti igazolások kiadásának szabályairól A kötelező

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ.

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ. Termelői magatartás II. A költségfüggvények: A költségek és a termelés kapcsolatát mutatja, hogyan változnak a költségek a termelés változásával. A termelési függvényből vezethető le, megkülönböztetünk

Részletesebben

Szélsőérték-számítás

Szélsőérték-számítás Szélsőérték-számítás Jelölések A következő jelölések mind az f függvény x szerinti parciális deriváltját jelentik: Ugyanígy az f függvény y szerinti parciális deriváltja: f x = xf = f x f y = yf = f y

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1. Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)

Részletesebben

Numerikus matematika vizsga

Numerikus matematika vizsga 1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos

Részletesebben