A fizika egészségünk szolgálatában

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A fizika egészségünk szolgálatában"

Átírás

1 A fizika egészségünk szolgálatában Tartalom Törté rténeti bevezetı bevezet BME Nukleáris Technikai Intézet Gyorsí Gyorsítós diagnosztika Hagyomá Hagyományos sugá sugárterá rterápia HadronHadron-terá terápia Jövık kép 1 2 A modern fizika és az orvosi fizika kezdete A kezdet 1895 novembere: novembere: Röntgensugá ntgensugárzá rzás Henri Becquerel (1852( ) 1908) 1896: Termé Természetes radioaktivitá dioaktivitás 1898: Rádium Wilhelm Conrad Röntgen Marie Curie dolgozata 1904-ben: 1895 decembere: decembere: az elsı elsı átvilá tvilágítás Mintegy szá száz éve 3 α, β, γ mágneses térben Maria Skł Skłodowska Curie Pierre Curie ( ) ( ) 1906) 1934) 4 1

2 Elsı alkalmazások a rák kezelésében Hatalmas elırelépés... a fiziká fizikában és Orvosi diagnosztiká diagnosztikában Alapelv: Alapelv: A tumor helyi kezelé kezelése Sugá Sugárzá rzásos rákkezelé kkezelésben három alapvetı alapvetı eszkö eszköznek köszö szönhetı nhetıen: en: M. S. Livingston és E. Lawrence a 2525-inches ciklotronnal Részecskegyorsí szecskegyorsítók 1908: az elsı elsı kísérlet bırrá rrák sugá sugárzá rzásos kezelé kezelésére Franciaorszá Franciaországban ( Curiethé Curiethérapie rapie ) 5 Részecskedetektorok Szá Számítógépek Fermi GeigerGeiger-Müller szá számlá mlálója Rómában 1930: a ciklotron létrehozása A LawrenceLawrence-fivérek Felgyorsí Felgyorsított atommag spirá spirális pályá lyája Ernest Lawrence ( ) Modern ciklotron 7 John Lawrence, Ernest fivére, vére, orvos volt Mindketten BerkeleyBerkeleyben dolgoztak Mesterséges izotóp elsı alkalmazása orvosi diagnosztikádiagnosztikában A nukleáris medicina kezdete John Lawrence használt Az H. interdiszcipliná áris interdiszciplin elıször mesterségesen elıelıkörnyezet segí í ti az seg állított radioaktív 32P-t a innová á ció ó t! innov ci leukémia terápiájában (1936) Másolat látható tható a CERN Microcosm kiá kiállí llításán 6 8 2

3 Rádiofrekvenciás lineáris lineáris gyorsító protonok és ionok gyorsítására A neutron felfedezése 1932 Az atomokban elektronok keringenek Lineá Lineáris gyorsí gyorsító (linac) linac) James Chadwick az atommag körül, ( ) 1974) λ= 1.5 m 200 MHz amely protonokból...és neutronokból áll Ernest Rutherford Neutronokkal ma taní tanítvá tványa - Izotó zotópokat állí llítanak elı elı orvosi diagnosztiká diagnosztikára és terá terápiá piára - Gyó Gyógyí gyítanak egyes rákfajtá kfajtákat MeVMeV-es linac a CERN MikrokozmoszMikrokozmoszkiá kiállí llításán Sigurd Varian 1946 Driftcsö Driftcsöves linac A lineáris elektronelektron-gyorsító L. Alvarez A világ mőködı gyorsítói William W. Hansen GYORSÍ GYORSÍTÓTÍPUS Nagyenergiás (E >1GeV) HASZNÁ HASZNÁLATBAN (*) (*) ~120 Szinkrotronsugá Szinkrotronsugárzó rzó >100 Radioizot dioizotó ópok készí szítése orvosi célra Russell Varian 1939: A klisztron feltalá feltalálása > ~1000 Ipari alkalmazású gyorsítók ~1500 Ion implanterek, felületkezelésre szolgálók >7000 ~1m > (*) W. Maciszewski and W. Scharf: Int. J. of Radiation Oncology, elsı elsı elektronelektron-linac 4.5 MeV and 3 GHz ~200 Sugá Sugárterá rterápiá piás gyorsí gyorsító Kutatógyorsítók orvosi kutatásokra TOTAL A kórhá rházak hagyomá hagyományos sugá sugárterá rterápiá piája ma is elektronelektronlinacot haszná használ 10 A fele orvosi alkalmazá alkalmazásokat szolgá szolgál

4 Részecskedetektorok Példa: sokszálas proporcionális számláló. A részecskefizikusok "szeme" Impresszív fejlıdés az utóbbi néhány évtizedben Geiger -Müller számláló ATLAS és CMS! Létfontosságú sok orvosi alkalmazásban 13 Georges Charpak ( ) 2010), CERN-i fizikus 1959 óta, Nobel-díj: : 1992 Elkész szült 1968-ban Elindította a tisztán elektronikus részecske-észleléstst A biológiai kutatások is alkalmazzák Nemsokára helyettesítheti theti a radiobiolr diobiológiát. A megnövekedett adatrögz gzítési sebesség gyorsabb képalkotást (azaz kisebb sugárterhel rterhelést) és gyorsabb diagnosztikát jelent. 14 A diagnosztika lényeges! Computer Tomography (CT) Detektor-sor Orvosdiagnosztikai alkalmazások Röntgen-csı körbe forog Az elektronsőrőség g mérésem Morfológiai (alaktan) informáci ció

5 Mágneses atommagrezonancia (NMR) : 1945: Felix Bloch és Edward Purcell kidolgozza az NMR-t MRI = Magnetic Resonance Imaging 1. Fı mágnes (0.5-1 T) 2. RF adó antenna 3. RF vevı antenna 4. Gradiens tekercsek (nemcsak protonokkal lehet!) Az atommagok két fontos tulajdonsága: 1 Perdület (protonokra h ) 2 Mágneses momentum 1954: Felix Bloch lett a CERN elsı fıigazgatója 17 Mit tud meghatározni rozni? A protonok (víz) sőrősége szövetekben Morfológiai informáci ció 18 Az MRI-szkenner SPECT = Single Photon Emission Computer Tomography Például: koponya rétegfelvételek Mőködése: a testbe gamma-bomló radioaktív izotópot visznek be, bizonyos vegyülethez kötve. ahol a vegyület feldúsul, onnan indulnak ki a gamma-sugarak. A testbıl kijövı gamma-sugarakkal alkotunk képet A radioaktív v izotópot tartalmazó molekulák eloszlásának (sőrőségének) mérése Morfológia és/vagy metabolizmus informáci ció Sztatikus Dinamikus

6 SPECT SPECT = Single Photon Emission Computer Tomography A leggyakrabban használt radioaktív izotóp: a technécium Elıállítása: reaktor lassú neutronjaival 98 Mo + n = 99 Mo + γ 99 Mo (66 h) = 99m Tc (6 h) + e - + ν 0.14 MeV-es gamma A gamma-sugarakkal való képalkotáshoz nincsenek lencsék, ezért speciális kollimá- torokat használnak 21 Emilio Segrè 1937: A technécium elem felfedezése 97 Tc (2.6 My) 1938: A 99m Tc felfedezése E. McMillan-nal nal 22 SPECT scanner A nukleáris orvosi vizsgálatok 85%-a a a reaktorok lassú neutronjaival elıáll llított technéciumot ciumot használja máj tüdı csont Ólom kollimátorok a 0.14 MeV-es gammák terelésére Scanner: A detektorfej forog 0.14 MeV gammák Pozitron-Emissziós Tomográfia (PET) 18 F-al jelzett FDG a leggyakoribb anyag (felezési idı 110 perc) A 18 F eloszlásának mérése m 180- fokban kibocsátott fotonokkal Informáci ció: : metabolizmus Gamma -detektorok (Pl. BGO kristályok lyok) PET-tomogr tomográf PET-kép Protonok ~15 MeV,, ~50 µa Ciklotron

7 H 18 2 O vizet bombázunk protonnal 18 keltésére (p,n) reakció Hogyan mőködik? 18 F Fluoro-Deoxy Deoxy-D-Glucose (FDG) szintézise Metabolizmus-mérés mérés PET-tel Glucose FDG FDG-t a kórhk rházba száll llítják FDG -t t beadják k a betegnek FDG csapdába esik a sejtekben, amelyek metabolizálni lni próbálj lják. A koncentráci ciója a glükóz-metabolizmus sebességével arányos A tumorok glükóz-metabolizmusa igen aktív, forró foltok a PETképeken. 25 A kokainfüggı agya passzívabb 26 Új diagnosztika: : CT/PET morfológia metabolizmus David Townsend CERN: és Ronald Nutt (CTS CTI) Alkalmazás sugárzásos rákkezelésben (sugárterápia)

8 Radioaktív tők bevitel elıtt Módszerek Brachiterápia: : Sugárforrás elhelyezése a testben Radio-immunoterápia immunoterápia: : Az izotópot szelektív vektor hordozza Teleterápia: : Tumor bombázása külsı forrású sugárzással Radioaktivitás a rák kezelésében célzott radio-immunoter immunoterápia α részecskék k Bizmut ból leukémi miára β részecskék k Yttrium bıl gamma Cobalt ból teleterápia glioblastomára (agytumor-fajta) fajta) mély tumorra tő t bevitele 29 Cobalt-60 (~1 MeV-es es gammák) 60 Co elıáll llítása: atomreaktorban lassú neutronokkal 30 Teleterápia röntgensugárral Elektron-linac linac orvosi célra e - + target X Elektron-linac 3 GHz target 6-20 MeV [1000 x Röntgen] Elektron-linac linac kelt röntgenr ntgen-sugárzást 20'000 páciens/ p ciens/év/10 millió lakos

9 Mi van az orvosi besugárzásra használt LINAC belsejében? Computerized Treatment Planning System (TPS) CT scan alapján: tervezik a besugárzandó térfogatot megválasztják a sugárzási teret kiszámítják a célterület és az egészséges szövet dózisát A számolt dózist (cca. 2 Gray) adagban adják A röntgenterápia problémája A röntgenterápia problémája Photons Protons Röntgennyaláb Megoldás: Sok keresztezett nyaláb Intensity Modulation Radiation Therapy (IMRT) Célterület Dózisszint Az ép p sejteket is roncsolja Nem szelektív Az egészs szséges szövetbe vitt dózis d limitál! l! Fıleg a közeli k szervek veszélyben (OAR: Organs At Risk) 9 különbk nbözı fotonnyaláb

10 Intenzitás-modulált sugárterápia (IMRT) Prosztatarák kezelése: szimuláció 3-fields IMRT Prescription Dose OR PTV Konkáv v dózistd zistérfogat is elérhet rhetı Többrétegő kollimátor,, amely mozog besugárzás alatt Idıig igényes (bizonyos esetekben használj lják) k) 37 Sokszeletes kollimátor Prosztatarák k kezelésének elıkész szítése se szimuláci cióval 38 Konformális dóziseloszlás IMRT-vel Lineáris gyorsító + röntgen-ct Daganat: 70 Gy Terjedési régió: 50 Gy Gerincvelı: < 25 Gy

11 A kiber kiber-kés Cyberknife: lineáris gyorsító robotkaron Könnyő 6 MV-os röntgen- linac robotkarra szerelve Kezelés alatti átvilágítással ellenırzik a sérülés helyét és a kezelés folyamatát Pontos célzás Sokmezıs besugárz rzás Több részletben végezhetı Kis térfogatú tumorok kezelésére ( Agy, fej-nyak nyak, tüdı, hátgerinc, lágyék, ágyék) Intra Operative Radiation Therapy (IORT) 2 X ray beams Csinálhatjuk még jobban? 9 X ray beams (IMRT) Elektronbesugárz rzás operáci ció alatt Elektronenergia: : 3 9 MeV Dózisterhelés: : 6 30 Gy/min Besugárz rzási idı (21 Gy): min 43 A részecskefizikuskus kérdése: Van-e jobb módszer a beteg szövet besugárz rzásárara és az egészs szséges kímélésére? Válasz : Igen,, a töltötttt hadronnyaláb! 44 11

12 Fizikai alapkutatás: részecskék azonosítása sa L3 at LEP Vissza a fizikához... Leadott energia: : Bragg-cs csúcs Orvosi alkalmazás rákkezelés hadronokkal Protonok 200 MeV 1 na Szénionok 4800 MeV 0.1 na Hadronnyaláb anyagban lassul A hadronterápia alapelve 27 cm Tumor target Bragg-csúcs csúcs: maximális energiavesztés tumorban Jobb igazítás a tumor alakjához ép szövet kímélése Töltött hadronok jól terelhetık Nehéz ionok biológiai hatása nagyobb Találós s kérd k rdés: miért éppen proton és s szénion? Röntgen- és hadronnyaláb Dóziseloszlás: aktív söpörtetés Röntgen Proton vagy szénion Longitudinális sík patient Transzverz verzális sík fast slow nyaláb horizontal scanning vertical scanning beam tumour volume energy variation Új technika, jórészt a GSI-ben és PSI-ben fejlesztve

13 Protonterápiás állvány Potenciális betegek száma 10 millió lakosra Study by AIRO, 2003 Italian Association for Oncological Radiotharapy 10 M lakosra Röntgenterápia: : 20' beteg/év Protonterápia pia: Röntgenkezeltek 12%-a a = 2400 beteg/év Szénion nion-kezelés radio-rezisztens rezisztens tumorra: Röntgenkezeltek 3%-a a = 600 beteg/év TOTÁL cca beteg/év 50 M lakosra Protonterápia pia: : 4-54 centrum Szénion nion-terápia: : 1 centrum The Loma Linda University Medical Center (USA) Japán: : 4 proton- és 2 szénion-terápiás centrum Az elsı kórházi proton- terápi piás centrum,, ban épült napi ~160 kezelés ~1000 beteg/év WAKASA BAY PROJECT by Wakasa-Bay Energy Research Center Fukui (2002) protons ( 200 MeV) synchrotron (Hitachi) 1 h beam + 1 v beam + 1 gantry HYOGO MED CENTRE Hyogo (2001) protons ( 230 MeV) - He and C ions ( 320 MeV/u) Mitsubishi synchrotron 2 p gantries + 2 fixed p beam + 2 ion rooms carbon TSUKUBA CENTRE Ibaraki (2001) protons ( 270 MeV) synchrotron (Hitachi) 2 gantries 2 beams for research KASHIWA CENTER Chiba (1998) protons ( 235 MeV) cyclotron (IBA SHI) 2 Gantries + 1 hor. beam 51 proton linac 29 m 50 szénionos beteg HEAVY ION MEDICAL ACCELERATOR HIMAC of NIRS (1995) He and C ( 430 MeV/u) 2 synchrotrons 2 h beams + 2 v beams SHIZUOKA FACILITY Shizuoka (2002) Proton synchrotron 2 gantries + 1 h beam 2000 szénionos beteg 52 13

14 ACCEL SC ciklotron PROSCAN (PSI) Villingen (Svájc) Kisérlet OPTIS Protonterápia Krakkóban (Lengyelország) állvány PROTEUS ciklotron 2. állvány SC 250 MeV proton-ciklotron Új protonos állvány 1. állvány 53 Készen van március: Szem-radioterápia protonnyalábbal Közép- Kelet-Európában elsınek Proton energia: 60 MeV Terv 2014 re: Komplex hadron (proton) terápiás központ felépítése (Eu( támogatás) Proton energia: MeV 54 Szénion-terápia Európában PET on-beam 1998: kísérleti projekt (GSI, G. Kraft) 200 beteg kezelése szénionnal Szimuláció PET on-beam 55 A beteggel közölt valódi dózis mérése radioaktív 11 C ion- nyalábbal (PET) Mérés 56 14

15 Heidelbergi Ionnyaláb-terápiai Központ Heidelbergi Egyetem kórh k rházában Ünnep nnepélyes megnyitás: 2009 nov. 2 Hadronterápia gyors neutronokkal Berkeley, 1938 Terv: 1300 páciens p / év Szinkrotron: proton, szén-,, héliumh lium- és s oxigénion 57 Neutron: semleges nincs Bragg-csúcs MeV-es es neutronok ciklotronnal (p + Be reaction) MeV-es es neutronokkal magreakció nagy helyi sugárterhelés Radio-rezisztens tumorokra (nyálmirigy, nyelv, agy) 9 központban [pl. Orleans (F), Fermilab (USA)] 58 Boron Neutron Capture Therapy (BNCT) Nehézs zség: Nehéz z elérni szelektív lokalizáci ciót t a tumorban! G.L. Locher javaslata, 1936-ban (4 évvel a n felfedezése után!) Olyan atommagot vinni a ráksejtbe, amely neutronbefogásra töltött fragmentumokra hasad és így sok lokális energiát szabadít fel. 10 B izotóp a legjobb: Van bıven (természetes B 20%-a) 10 B(n,α) 7 Li + 2,31 MeV energia Fragmentumai gyorsan lefékezıdnek (egy sejten belül) Jól ismert a bór kémiája Konklúzió A részecskefizika hatékony eszközöket kínál a többi tudománynak, az orvostudománynak is. Betegségek vizsgálata, diagnosztikája és gyógyítása. A megfelelı fejlesztéshez fizikusnak és orvosnak együtt kell dolgoznia. A hadronterápia nagyon gyorsan fejlıdik: Protonterápia népszerő és sokan csinálják Szénion-terápia: több helyen elkezdték vagy tervezik Neutronterápia, BNCT: kutatási fázisban A részecske- és gyorsítófizika nemcsak szép, hasznos is

16 Köszönöm a megtisztelı figyelmet! 61 16

Fizika a gyógyítás szolgálatában

Fizika a gyógyítás szolgálatában Fizika a gyógyítás szolgálatában Tartalom Törté rténeti bevezetı bevezet Dr. Sükösd Csaba BME Nukleáris Technikai Intézet Gyorsí Gyorsítós diagnosztika Hagyomá Hagyományos sugá sugárterá rterápia HadronHadron-terá

Részletesebben

Fizika a gyógyítás szolgálatában

Fizika a gyógyítás szolgálatában Fizika a gyógyítás szolgálatában Dr. Sükösd Csaba BME Nukleáris Technika Tanszék Források: Horváth Dezsı 2010-es cerni elıadása Saverio Braccini CERN-elıadásai Fodor János, Major Tibor, Kásler Miklós:

Részletesebben

A részecskefizika orvosi alkalmazásai

A részecskefizika orvosi alkalmazásai A részecskefizika orvosi alkalmazásai Horváth Dezső RMKI és ATOMKI Forrás: Saverio Braccini CERN-előadásai Fodor János, Major Tibor, Kásler Miklós: Korszerű sugárterápia: á teleterápia MOTESZ Magazin,

Részletesebben

A részecskefizika orvosi alkalmazásai

A részecskefizika orvosi alkalmazásai A részecskefizika orvosi alkalmazásai Horváth Dezső RMKI és ATOMKI Forrás: Saverio Braccini CERN-előadásai Fodor János, Major Tibor, Kásler Miklós: Korszerű sugárterápia: teleterápia MOTESZ Magazin, 2007/2

Részletesebben

A CERN és a gyógyítás. Ujvári Balázs Gamma Sugársebészeti Központ Debrecen ( )

A CERN és a gyógyítás. Ujvári Balázs Gamma Sugársebészeti Központ Debrecen ( ) A CERN és a gyógyítás Ujvári Balázs Gamma Sugársebészeti Központ Debrecen (2009-2012) 1 LHC GY OR SÍTÓ CMS,ATLAS WWW,GRID DETEKTT OR SZÁMS Á ÍTÓÓ GÉP S. Van der Meer (1984) gyorsító fejlesztés G. Charpak

Részletesebben

A CERN és a gyógyítás Dr. Sükösd Csaba BME Nukleáris Technikai Intézet

A CERN és a gyógyítás Dr. Sükösd Csaba BME Nukleáris Technikai Intézet A CERN és a gyógyítás Dr. Sükösd Csaba BME Nukleáris Technikai Intézet 1 Tartalom Hogy kerül a csizma az asztalra? Történeti bevezető Orvosi diagnosztika Sugárterápia Hadron-terápia Jövőkép 2 Hogy kerül

Részletesebben

Dr. Fröhlich Georgina

Dr. Fröhlich Georgina Speciális teleterápi piás s technikák Dr. Fröhlich Georgina Országos Onkológiai Intézet Sugárterápiás Központ Budapest Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest Bevezetés Teleterápia: - LinAc/

Részletesebben

Gamma-kamera SPECT PET

Gamma-kamera SPECT PET Gamma-kamera SPECT PET 2012.04.16. Gamma sugárzás Elektromágneses sugárzás (f>10 19 Hz, E>100keV (1.6*10-14 J), λ

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Terápiás ablak. Ionizáló sugárzás. Sugárterápia. Röntgen sugárzás. Radioaktív izotópok

Terápiás ablak. Ionizáló sugárzás. Sugárterápia. Röntgen sugárzás. Radioaktív izotópok Ionizáló sugárzás Sugárterápia Lövey József Országos Onkológiai Intézet SE Radiológiai és Onkoterápiás Klinika Budapest Az elnyelt sugárzás mértékegysége J/kg = Gray 100 % Terápiás ablak T C P N T C P

Részletesebben

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések Sugárterápia 40% 35% 30% 25% 20% 15% % 5% 0% 2014/2015. tanév FOK biofizika kollokvium jegyspektruma 5 4,5 4 3,5 3 2,5 2 1,5 1 Konzultáció: minden hétfőn 15 órakor Ionizáló sugárzások elnyelődésének következményei

Részletesebben

Megmérjük a láthatatlant

Megmérjük a láthatatlant Megmérjük a láthatatlant (részecskefizikai detektorok) Hamar Gergő MTA Wigner FK 1 Tartalom Mik azok a részecskék? mennyi van belőlük? miben különböznek? Részecskegyorsítók, CERN mire jó a gyorsító? hogy

Részletesebben

Gamma-kamera SPECT PET

Gamma-kamera SPECT PET Gamma-kamera SPECT PET 2011.04.17. Gamma sugárzás Elektromágneses sugárzás (f>10 19 Hz, E>~50keV (6.6 10-15 J), λ< 3 10-11 m) gamma-bomlás (atommag alacsonyabb energiájú állapotba történő átmenetét kísérő

Részletesebben

Részecskegyorsítók. Barna Dániel. University of Tokyo Wigner Fizikai Kutatóközpont

Részecskegyorsítók. Barna Dániel. University of Tokyo Wigner Fizikai Kutatóközpont Részecskegyorsítók Barna Dániel University of Tokyo Wigner Fizikai Kutatóközpont Részecskegyorsítók a háztartásban Töltött részecskék manipulálása Miért akarunk nagyenergiás gyorsítókat? A klasszikus nagyenergiás

Részletesebben

FIZIKA. Radioaktív sugárzás

FIZIKA. Radioaktív sugárzás Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos

Részletesebben

A nukleáris fizika története, a nukleáris energetika születése

A nukleáris fizika története, a nukleáris energetika születése Tematika 1. Az atommagfizika elemei 2. A nukleáris fizika története, a nukleáris energetika születése 3. Magsugárzások detektálása és detektorai 4. Az atomreaktor 5. Reaktortípusok a felhasználás módja

Részletesebben

2011.11.07. Biofizika és orvostechnika alapjai

2011.11.07. Biofizika és orvostechnika alapjai Áttekintés Biofizika és orvostechnika alapjai Magátalakulások közben keletkező sugárzással alkotunk képet Képalkotás 3 A szervek működéséről, azaz a funkcióról nyújt információt Nukleáris képalkotás Szerkesztette:

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

A GYULLADÁSOS BÉLBETEGEK EURÓPAI NAPJA 2009. május 23. szombat Petıfi Sándor Mővelıdési Ház (1103 Budapest, Kada u. 38-40.)

A GYULLADÁSOS BÉLBETEGEK EURÓPAI NAPJA 2009. május 23. szombat Petıfi Sándor Mővelıdési Ház (1103 Budapest, Kada u. 38-40.) A GYULLADÁSOS BÉLBETEGEK EURÓPAI NAPJA 2009. május 23. szombat Petıfi Sándor Mővelıdési Ház (1103 Budapest, Kada u. 38-40.) Képalkotó diagnosztika Szerkesztette: Dió Mihály 06 30 2302398 Témák 1. Röntgen

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,

Részletesebben

II./3.4. fejezet: Daganatos betegségek sugárkezelésének alapelvei

II./3.4. fejezet: Daganatos betegségek sugárkezelésének alapelvei II./3.4. fejezet: Daganatos betegségek sugárkezelésének alapelvei Hideghéty Katalin A fejezet célja, hogy a hallgató megismerkedjen a sugárkezelés általános alapelveivel, és rálátást szerezzen a különböző

Részletesebben

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23.

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. A neutronok személyi dozimetriája Deme Sándor MTA EK 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. Előzmény, 2011 Jogszabályi háttér A személyi dozimetria jogszabálya (16/2000

Részletesebben

RÉSZECSKEGYORSÍTÓ CERN. Készítette: Laboda Lilla, Pokorny Orsolya, Vajda Bettina

RÉSZECSKEGYORSÍTÓ CERN. Készítette: Laboda Lilla, Pokorny Orsolya, Vajda Bettina RÉSZECSKEGYORSÍTÓ CERN Készítette: Laboda Lilla, Pokorny Orsolya, Vajda Bettina A RÉSZECSKEGYORSÍTÓ A részecskegyorsítók töltött részecskéket: leptonokat, hadronokat, atommagokat, ionokat és molekulákat

Részletesebben

Röntgendiagnosztikai alapok

Röntgendiagnosztikai alapok Röntgendiagnosztikai alapok Dr. Voszka István A röntgensugárzás keltésének alternatív lehetőségei (röntgensugárzás keletkezik nagy sebességű, töltéssel rendelkező részecskék lefékeződésekor) Röntgencső:

Részletesebben

Részecskegyorsítók a hétköznapokban: ipari alkalmazások kezdőknek és haladóknak. Simonyi 100 nyitóelőadás

Részecskegyorsítók a hétköznapokban: ipari alkalmazások kezdőknek és haladóknak. Simonyi 100 nyitóelőadás Részecskegyorsítók a hétköznapokban: ipari alkalmazások kezdőknek és haladóknak Simonyi 100 nyitóelőadás MTA Wigner FK, BME, ELTE, MTA, NyME, PPKE Téridő: ELTE TTK, 2016. február 4. Előadó: Barnaföldi

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

FIZIKA. Atommag fizika

FIZIKA. Atommag fizika Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2

Részletesebben

Hadronok, atommagok, kvarkok

Hadronok, atommagok, kvarkok Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford

Részletesebben

Izotópos méréstechnika, alkalmazási lehetőségek

Izotópos méréstechnika, alkalmazási lehetőségek Radioizotópok orvosi, gyógyszerészi alkalmazása Izotópos méréstechnika, alkalmazási lehetőségek Dr. Voszka István Az alkalmazás alapja:- A radioaktív izotóp ugyanúgy viselkedik a szervezetben, mint stabil

Részletesebben

Milyen eszközökkel figyelhetők meg a világ legkisebb alkotórészei?

Milyen eszközökkel figyelhetők meg a világ legkisebb alkotórészei? Milyen eszközökkel figyelhetők meg a világ legkisebb alkotórészei? Veres Gábor ELTE Fizikai Intézet Atomfizikai Tanszék e-mail: vg@ludens.elte.hu Az atomoktól a csillagokig előadássorozat nem csak középiskolásoknak

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa.

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa. 2016.04.11. Környezetgazdálkodás Dr. Horváth Márk https://nuclearfree.files.wordpress.com/2011/10/radiation-worker_no-background.jpg 1868-ban gépészmérnöki diplomát szerzett. 1901-ben ő lett az első Fizikai

Részletesebben

Fejezetek a klinikai onkológiából

Fejezetek a klinikai onkológiából Fejezetek a klinikai onkológiából Előadás jegyzet Szegedi Tudományegyetem Általános Orvosi Kar Onkoterápiás Klinika 2012. 1 SUGÁRTERÁPIA Technikai alapok Dr. Szil Elemér Bevezetés A daganatos betegek kezelésére

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Horváth Dezső: Válaszok a kérdésekre CERN, 2008. augusztus 22. 1. fólia p. 1 Bevezetés a részecskefizikába Válaszok a kérdésekre (CERN, 2008. aug. 22.) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske

Részletesebben

NEUROLÓGIAI DIAGNOSZTIKA: PhD Pécsi Tudományegyetem Neurológiai Klinika

NEUROLÓGIAI DIAGNOSZTIKA: PhD Pécsi Tudományegyetem Neurológiai Klinika NEUROLÓGIAI DIAGNOSZTIKA: MÉRFÖLDKÖVEK NAPJAINKIG Dr. Pfund Zoltán, PhD Pécsi Tudományegyetem Neurológiai Klinika NEUROLÓGIAI DIAGNOSZTIKA ALAPELVEI Neurológiai megbetegedésn snél l két k t alapvetı kérdésre

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

MATROSHKA kísérletek a Nemzetközi Űrállomáson. Kató Zoltán, Pálfalvi József

MATROSHKA kísérletek a Nemzetközi Űrállomáson. Kató Zoltán, Pálfalvi József MATROSHKA kísérletek a Nemzetközi Űrállomáson Kató Zoltán, Pálfalvi József Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló 2010 A Matroshka kísérletek: Az Európai Űrügynökség (ESA) dozimetriai programjának

Részletesebben

Az ionizáló sugárzások előállítása és alkalmazása

Az ionizáló sugárzások előállítása és alkalmazása Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

Atommag, atommag átalakulások, radioaktivitás

Atommag, atommag átalakulások, radioaktivitás Atommag, atommag átalakulások, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat.

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat. Néhány szó a neutronról Különböző részecskék, úgymint fotonok, neutronok, elektronok és más, töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival

Részletesebben

Bemutatkozik a CERN Fodor Zoltán

Bemutatkozik a CERN Fodor Zoltán Bemutatkozik a CERN Fodor Zoltán 1 CERN Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium 1954-ben 12 ország alapította, ma 21 tagország (2015: Románia) +Szerbia halad + Ciprus,

Részletesebben

A CERN, az LHC és a vadászat a Higgs bozon után. Genf

A CERN, az LHC és a vadászat a Higgs bozon után. Genf A CERN, az LHC és a vadászat a Higgs bozon után Genf European Organization for Nuclear Research 20 tagállam (Magyarország 1992 óta) CERN küldetése: on ati uc Ed on Alapítva 1954-ben Inn ov ati CERN uniting

Részletesebben

NAGY Elemér Centre de Physique des Particules de Marseille

NAGY Elemér Centre de Physique des Particules de Marseille Korai CERN együtműködéseink a kísérleti részecskefizika terén Az EMC és L3 kísérletek NAGY Elemér Centre de Physique des Particules de Marseille Előzmények A 70-es évektől kezdve a CERN meghatározó szerephez

Részletesebben

Nehézion ütközések az európai Szupergyorsítóban

Nehézion ütközések az európai Szupergyorsítóban Nehézion ütközések az európai Szupergyorsítóban Lévai Péter MTA KFKI RMKI Részecske- és Magfizikai Kutatóintézet Az atomoktól a csillagokig ELTE, 2008. márc. 27. 17.00 Tartalomjegyzék: 1. Mik azok a nehézionok?

Részletesebben

Indul az LHC: a kísérletek

Indul az LHC: a kísérletek Horváth Dezső: Indul az LHC: a kísérletek Debreceni Egyetem, 2008. szept. 10. p. 1 Indul az LHC: a kísérletek Debreceni Egyetem Kísérleti Fizikai Intézete, 2008. szept. 10. Horváth Dezső horvath@rmki.kfki.hu

Részletesebben

Theory hungarian (Hungary)

Theory hungarian (Hungary) Q3-1 A Nagy Hadronütköztető (10 pont) Mielőtt elkezded a feladat megoldását, olvasd el a külön borítékban lévő általános utasításokat! Ez a feladat a CERN-ben működő részecskegyorsító, a Nagy Hadronütköztető

Részletesebben

Képrekonstrukció 2. előadás

Képrekonstrukció 2. előadás Képrekonstrukció 2. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika tanszék Szegedi Tudományegyetem Az atomszerkezet Atommag (nukleusz): {protonok (poz. töltés) és neutronok} = nukleonok Keringő

Részletesebben

Pozitron emittáló izotópok. [18F]FDG előállítása. Általunk használt izotópok. Magreakció: Dual Beam 18F. Felezési idő (min) 109,7

Pozitron emittáló izotópok. [18F]FDG előállítása. Általunk használt izotópok. Magreakció: Dual Beam 18F. Felezési idő (min) 109,7 Pozitron emittáló izotópok [F]FDG előállítása Nuklid Felezési idő (min) 109,7 20,4 10 2,05 F 11C 13 N 15 2 Általunk használt izotópok Izotóp Molekula Mit mutat ki Fontosabb klinikai jelentősége F dezoxiglükóz

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by OTKA MB augusztus 18. Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by OTKA MB augusztus 18. Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by OTKA MB08-80137 2011. augusztus 18. Hungarian Teacher Program, CERN 1 szilárdtest, folyadék molekula A részecskefizika célja EM, gravitáció Elektromágneses

Részletesebben

CERN: a szubatomi részecskék kutatásának európai központja

CERN: a szubatomi részecskék kutatásának európai központja CERN: a szubatomi részecskék kutatásának európai központja 1954-ben alapította 12 ország Ma 20 tagország 2007-ben több mint 9000 felhasználó (9133 user ) ~1 GCHF éves költségvetés (0,85%-a magyar Ft) Az

Részletesebben

Korszerû sugárterápia: teleterápia

Korszerû sugárterápia: teleterápia Korszerû sugárterápia: teleterápia Dr. Fodor János, Dr. Major Tibor, Dr. Kásler Miklós Országos Onkológiai Intézet, Budapest magazin MOTESZ Rövidítések 2D: két dimenzió 3D: három dimenzió 4D: négy dimenzió

Részletesebben

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás Tartalom bevezetés, alapfogalmak természetes háttérsugárzás mesterséges háttérsugárzás összefoglalás OSJER Bevezetés - a radiokémiai

Részletesebben

Gyorsítók a részecskefizikában

Gyorsítók a részecskefizikában Gyorsítók a részecskefizikában Vesztergombi György CERN-HST2006 Genf, 2006, augusztus 20-25. Bevezetés a kísérleti részecskefizikába Ha valaki látott már közelrõl egy modern nagyenergiájú részecskegyorsítót,

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Az ATOMKI ESS programja

Az ATOMKI ESS programja Az ATOMKI ESS programja Fenyvesi András Magyar Tudományos Akadémia Atommagkutató Intézet Ciklotron Osztály Az ATOMKI fıbb céljai Debrecen és az ESS segítése a projekt megvalósításában már a legelsı fázistól

Részletesebben

Országos Onkológiai Intézet, Sugárterápiás Centrum 2. Országos Onkológiai Intézet, Nukleáris Medicina Osztály 4

Országos Onkológiai Intézet, Sugárterápiás Centrum 2. Országos Onkológiai Intézet, Nukleáris Medicina Osztály 4 99m Tc-MDP hatására kialakuló dózistér mérése csontszcintigráfia esetén a beteg közvetlen közelében Király R. 1, Pesznyák Cs. 1,2,Sinkovics I. 3, Kanyár B. 4 1 Országos Onkológiai Intézet, Sugárterápiás

Részletesebben

Bari Ferenc egyetemi tanár

Bari Ferenc egyetemi tanár Biofizika Biológia MSc 2011/2012 őszi szemeszter Radioaktív sugárzások keletkezése és tulajdonságai (bomlási törvény, bomlási módok, sugárzásfajták). Dozimetria (dózisfogalmak, egységek, sugárzásmérők).

Részletesebben

Gyorsítók. Veszprémi Viktor Wigner Fizikai Kutatóközpont OTKA NK augusztus 12. Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor Wigner Fizikai Kutatóközpont OTKA NK augusztus 12. Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor Wigner Fizikai Kutatóközpont OTKA NK81447 2013. augusztus 12. Hungarian Teacher Program, CERN 1 A részecskefizika alapkérdései Hogyan alakult ki a Világegyetem? Miből áll? Mi

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

Orvosi Fizika 2. Az izotópos nyomjelzés alapjai, orvosi alkalmazások szempontjai, sugárzási formák és orvosi alkalmazási területek. Részecskegyorsítók

Orvosi Fizika 2. Az izotópos nyomjelzés alapjai, orvosi alkalmazások szempontjai, sugárzási formák és orvosi alkalmazási területek. Részecskegyorsítók Orvosi Fizika 2. Az izotópos nyomjelzés alapjai, orvosi alkalmazások szempontjai, sugárzási formák és orvosi alkalmazási területek. Részecskegyorsítók Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai

Részletesebben

Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok

Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok MR-ALAPTANFOLYAM 2011 SZEGED Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok Martos János Országos Idegtudományi Intézet Az agy MR vizsgálata A gerinc MR vizsgálata Felix Bloch Edward Mills

Részletesebben

STABIL IZOTÓPOK FELHASZNÁLÁSA

STABIL IZOTÓPOK FELHASZNÁLÁSA AZ IZOTÓPOK KÍSÉRLETES ÉS ORVOSI ALKALMAZÁSAI. RÉSZECSKE GYORSÍTÓK, GAMMA KAMERA IZOTÓP: A PERIÓDUSOS RENDSZER AZONOS HELYÉN VAN (izosz, toposz) Szén izotópok: 6 proton + neutronok 5 neutron 11 C radioaktív

Részletesebben

minipet labor Klinikai PET-CT

minipet labor Klinikai PET-CT minipet labor Klinikai PET-CT Pozitron Emissziós Tomográfia A Pozitron Emissziós Tomográf (PET) orvosi képalkotó eszköz, mely háromdimenziós funkcionális képet ad. Az eljárás lényege, hogy a szervezetbe

Részletesebben

RADIOAKTIVITÁS. Természetes (spontán) radioaktivitásról beszélünk, ha a természetben megtalálható elemek atommagja képes átalakulni.

RADIOAKTIVITÁS. Természetes (spontán) radioaktivitásról beszélünk, ha a természetben megtalálható elemek atommagja képes átalakulni. RADIOAKTIVITÁS Az atommagoknak két csoportja van, a stabil és a radioaktív magok. Ez utóbbiak nagy energiájú sugárzást kibocsátva más atommagokká alakulnak. Ilyen radioaktív elem például a rádium a polónium

Részletesebben

A CERN NA61 kísérlet kisimpulzusú részecskedetektorának építése és fizikai analízise

A CERN NA61 kísérlet kisimpulzusú részecskedetektorának építése és fizikai analízise A CERN NA61 kísérlet kisimpulzusú részecskedetektorának építése és fizikai analízise MSc Diplomamunka Márton Krisztina Fizikus MSc II. ELTE TTK Témavezető: dr. Varga Dezső ELTE TTK Komplex Rendszerek Fizikája

Részletesebben

Radioaktív izotópok a testünkben A prosztata belső sugárkezelése

Radioaktív izotópok a testünkben A prosztata belső sugárkezelése Radioaktív izotópok a testünkben A prosztata belső sugárkezelése A legtöbb embernek a háta is borsódzik, ha arra gondol, hogy sugárzó anyaggal kell kapcsolatba lépnie. Ennél is bizarrabbnak tűnhet, ha

Részletesebben

Minőségbiztosítás a sugárterápiában

Minőségbiztosítás a sugárterápiában Minőségbiztosítás a sugárterápiában Dr. Szabó Imre DEOEC Onkológiai Intézet Sugárterápia Tanszék Irányelvek WHO 1988: Mindazon tevékenység, amely biztosítja a céltérfogatra leadott megfelelő sugárdózist

Részletesebben

Morfológiai képalkotó eljárások CT, MRI, PET

Morfológiai képalkotó eljárások CT, MRI, PET Morfológiai képalkotó eljárások CT, MRI, PET Kupi Tünde 2009. 12. 03. Röntgen 19. sz. vége: Röntgen abszorbciós mechanizmusok: - Fotoelektromos hatás - Compton-szórás - Párkeltés Kép: Röntgenabszorbancia

Részletesebben

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész MTA Izotópkutató Intézet Gméling Katalin, 2009. november 16. gmeling@iki.kfki.hu Isle of Skye, UK 1 MAGSPEKTROSZKÓPIAI MÓDSZEREK Gerjesztés:

Részletesebben

rzások a Dr. Fröhlich Georgina ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest

rzások a Dr. Fröhlich Georgina ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest Ionizáló sugárz rzások a gyógy gyításban Dr. Fröhlich Georgina Országos Onkológiai Intézet Sugárterápiás Központ Budapest ELTE TTK, Budapest chopin.web.elte.hu Bevezetés 1. A radioaktivitás alapjai (atomszerkezet,

Részletesebben

Bemutatkozik a CERN. Fodor Zoltán. 2015.08.14 HTP2015, Fodor Zoltán: Bemutatkozik a CERN

Bemutatkozik a CERN. Fodor Zoltán. 2015.08.14 HTP2015, Fodor Zoltán: Bemutatkozik a CERN Bemutatkozik a CERN Fodor Zoltán 1 CERN Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium 1954-ben 12 ország alapította, ma 21 tagország (2015: Románia) +Szerbia halad + Ciprus,

Részletesebben

Mag- és neutronfizika

Mag- és neutronfizika Mag- és neutronfizika z elıadás célja: : megalapozni az atomenergetikai ismereteket félév során a következı témaköröket ismertetjük: Magfizikai alapfogalmak (atommagok, radioaktivitás) Sugárzás és anyag

Részletesebben

Orvosi tomográkus képalkotás/ct technika alapja

Orvosi tomográkus képalkotás/ct technika alapja Orvosi tomográkus képalkotás/ct technika alapja Kis Sándor Attila DEOEC, Nukléáris Medicina Intézet Outline 1 Bevezetés 2 A planáris transzmissziós leképzési technikák esetén a vizsgált objektumról összegképet

Részletesebben

A kozmikus sugárzás hatásai. Szimler András BME HVT, Őrtechnika Laboratórium V1/105

A kozmikus sugárzás hatásai. Szimler András BME HVT, Őrtechnika Laboratórium V1/105 A kozmikus sugárzás hatásai Szimler András BME HVT, Őrtechnika Laboratórium V1/105 A kozmikus sugárzás Fıbb összetétele Primer sugárzás 90% proton 9% α (He 2+ ) 1% elektron és egyéb ion Szekunder sugárzás

Részletesebben

Orvosi aktivitásmérők kalibrációinak tapasztalatai

Orvosi aktivitásmérők kalibrációinak tapasztalatai Orvosi aktivitásmérők kalibrációinak tapasztalatai Szűcs László 1, Nagyné Szilágyi Zsófia 1, Laczkó Balázs 2 1 Magyar Kereskedelmi Engedélyezési Hivatal 1124 Budapest, Németvölgyi út 37-39. 2 A Magyar

Részletesebben

Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós

Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Emlékeztető Radioaktív sugárzások keletkezése, típusai A Z A Z α-bomlás» α-sugárzás A Z 4 X X + 2 X A Z 4 2 X 4

Részletesebben

Sugárvédelmi feladatok az egészségügybe. Speciális munkakörökben dolgozók munkavégzésre vonatkozó általános és különös szabályok.

Sugárvédelmi feladatok az egészségügybe. Speciális munkakörökben dolgozók munkavégzésre vonatkozó általános és különös szabályok. Sugárvédelmi feladatok az egészségügybe. Speciális munkakörökben dolgozók munkavégzésre vonatkozó általános és különös szabályok. Dr. Csepura György PhD Hajdú-Bihar Megyei Kormányhivatal Népegészségügyi

Részletesebben

Nagy érzékenységű AMS módszerek hosszú felezési idejű könnyű radioizotópok elemzésében

Nagy érzékenységű AMS módszerek hosszú felezési idejű könnyű radioizotópok elemzésében Nagy érzékenységű AMS módszerek hosszú felezési idejű könnyű radioizotópok elemzésében Molnár M., Rinyu L., Palcsu L., Mogyorósi M., Veres M. MTA ATOMKI - Isotoptech Zrt. Hertelendi Ede Környezetanalitikai

Részletesebben

A lézer alapjairól (az iskolában)

A lézer alapjairól (az iskolában) A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o

Részletesebben

Eötvös Loránd Fizikai Társulat Európai Nukleáris Kutatás Szervezete 1. ELŐADÁSOK Horváth Dezső professzor úr Sükösd Csaba professzor úr Mick Storr

Eötvös Loránd Fizikai Társulat Európai Nukleáris Kutatás Szervezete 1. ELŐADÁSOK Horváth Dezső professzor úr Sükösd Csaba professzor úr Mick Storr Nyár elején óriási örömmel értesültünk arról, hogy azon szerencsés fizika tanárok közé tartozunk, akik egyéni pályázatuk eredményeként részt vehetnek ezen a 2013. augusztus 10-18-a között az Eötvös Loránd

Részletesebben

Az atommagtól a konnektorig

Az atommagtól a konnektorig Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.

Részletesebben

Radiológiai technikák

Radiológiai technikák Radiológiai technikák Előadásvázlat, készítette: Dr. Sükösd Csaba (Az Orvosbiologia Mérnökképzés "Radiologiai Technikák" cimű tantárgyának egy részlete. A további részeket :Dr. Blaskó Katalin és Dr. Makó

Részletesebben

24/04/ Röntgenabszorpciós CT

24/04/ Röntgenabszorpciós CT CT ésmri 2012.04.10. Röntgenabszorpciós CT 1 Élettani és Orvostudományi Nobel díj- 1979 Allan M. Cormack, Godfrey N. Hounsfield Godfrey N. Hounsfield Born:28 August 1919, Newark, United Kingdom Died: 12

Részletesebben

(A Scientific American újság 1993. augusztusi számában megjelent cikk alapján)

(A Scientific American újság 1993. augusztusi számában megjelent cikk alapján) Országos Szilárd Leó Fizikaverseny Döntő 2014. I. kategória Minden feladat helyes megoldása 5 pontot ér. A feladatokat tetszőleges sorrendben, feladatonként külön lapon kell megoldani. A megoldáshoz bármilyen

Részletesebben

Egy Nobel díjas család. Radnóti Katalin ELTE TTK Fizikai Intézet

Egy Nobel díjas család. Radnóti Katalin ELTE TTK Fizikai Intézet Egy Nobel díjas család Radnóti Katalin ELTE TTK Fizikai Intézet rad8012@helka.iif.hu http://members.iif.hu/rad8012/ 1 Miről lesz szó? A főszereplők Marie Curie, Pierre Curie Irène Curie, Frederick Joliot

Részletesebben

PET Pozitronemissziós tomográfia

PET Pozitronemissziós tomográfia PET Pozitronemissziós tomográfia Nagy Mária PET 1 Tartalom Bevezetés Miért fontos és hasznos az EP annihiláció? Képalkotás, mint szerkezetvizsgáló módszer A gamma szcintillációs vizsgálatok elve SPECT-módszer

Részletesebben

Az atommag története

Az atommag története Az atommag története Polcz Péter PPKE Információs Technológiai Kar 1083 Budapest, Práter utca 50/a 2010. december 6. Az atommag felfedezése Az első atommag szerkezetének első kutatói, Ernest Rutherford,

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, stb.) Rádióspektroszkópiák

Részletesebben

Tamás Ferenc: Természetes radioaktivitás és hatásai

Tamás Ferenc: Természetes radioaktivitás és hatásai Tamás Ferenc: Természetes radioaktivitás és hatásai A radioaktivitás a nem stabil magú atomok (más néven: radioaktív) természetes úton való elbomlása. Ez a bomlás igen nagy energiájú ionizáló sugárzást

Részletesebben

Teleterápia Dr. Fröhlich Georgina

Teleterápia Dr. Fröhlich Georgina Teleterápia Dr. Fröhlich Georgina Országos Onkológiai Intézet Sugárterápiás Központ Budapest Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest Bevezetés Sugárterápia: - az egyik fő modalitás a daganatok

Részletesebben

Dr. Duffek LászlL. szló. munkahelyeken. rvédelme. 2014.április 16.

Dr. Duffek LászlL. szló. munkahelyeken. rvédelme. 2014.április 16. Dr. Duffek LászlL szló Sugárz rzás s elleni védelem v a nukleáris medicina munkahelyeken. A dolgozók és s a páciensek p sugárv rvédelme 2014.április 16. A dolgozók sugárv rvédelme A nukleáris Medicinai

Részletesebben

Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó

Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó Elméleti bevezetés PANNONPALATINUS regisztrációs code PR/B10PI0221T0010NF101 A radon a 238 U bomlási sorának tagja, a periódusos rendszer

Részletesebben

Újszülöttkori izotópdiagnosztika 2011 SE I. Gyermekklinika Dr. Bártfai Katalin Rövid történeti áttekintés A radioaktivitás felfedezése: Bequerel 1885 Radioaktív anyagok nyomjelzőként való Felhasználása:

Részletesebben

Sugárterápia minőségbiztosításának alapelvei Dr. Szabó Imre (DE OEC Onkológiai Intézet)

Sugárterápia minőségbiztosításának alapelvei Dr. Szabó Imre (DE OEC Onkológiai Intézet) Sugárterápia minőségbiztosításának alapelvei Dr. Szabó Imre (DE OEC Onkológiai Intézet) I. Irányelvek WHO 1988: Mindazon tevékenység, amely biztosítja a céltérfogatra leadott megfelelő sugárdózist az ép

Részletesebben

A FIZIKUS SZEREPE A DAGANATOS BETEGEK GYÓGYÍTÁSÁBAN

A FIZIKUS SZEREPE A DAGANATOS BETEGEK GYÓGYÍTÁSÁBAN A FIZIKUS SZEREPE A DAGANATOS BETEGEK GYÓGYÍTÁSÁBAN Balogh Éva Jósa András Megyei Kórház, Onkoradiológiai Osztály, Nyíregyháza Angeli István Debreceni Egyetem, Kísérleti Fizika Tanszék A civilizációs ártalmaknak,

Részletesebben

A ciklotron működési elve. Ciklotron. A ciklotron működési elve

A ciklotron működési elve. Ciklotron. A ciklotron működési elve A ciklotron működési elve A részecskéket a Lorentz erő tartja körpályán B qvb Pályamenti sebesség T = 2πr/v Az egyenletből a sebesség a qvb = mv 2 /r v=rqb/mösszefüggéssel kiküszöbölhető így mivel ω=2

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by OTKA MB augusztus 16. Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by OTKA MB augusztus 16. Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by OTKA MB08-80137 2010. augusztus 16. Hungarian Teacher Program, CERN 1 Hogyan látunk különböző méreteket? A világban megtalálható tárgyak mérete

Részletesebben

MAGFIZIKA. a 11.B-nek

MAGFIZIKA. a 11.B-nek MAGFIZIKA a 11.B-nek ATOMMAG Pozitív töltésű, rendkívül kicsi ATOMMAG Töltése Z e, ahol Z a rendszám 10 átmérő Tömege az atom 99,9%-a Sűrűsége: 10 rendkívül nagy! PROTON Jelentése: első (ld. prototípus,

Részletesebben

A CERN bemutatása. Horváth Dezső MTA KFKI RMKI és ATOMKI Hungarian Teachers Programme, 2011

A CERN bemutatása. Horváth Dezső MTA KFKI RMKI és ATOMKI Hungarian Teachers Programme, 2011 A CERN bemutatása Horváth Dezső MTA KFKI RMKI és ATOMKI Hungarian Teachers Programme, 2011 CERN: Conseil Européen pour la Recherche Nucléaire Európai Nukleáris Kutatási Tanács Európai Részecskefizikai

Részletesebben