Antioxidáns és szénhidrát transzport, illetve anyagcsere a növényi mitokondriumban és a mikroszómában. Habilitációs tézisfüzet 2014.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Antioxidáns és szénhidrát transzport, illetve anyagcsere a növényi mitokondriumban és a mikroszómában. Habilitációs tézisfüzet 2014."

Átírás

1 Budapesti Műszaki és Gazdaságtudományi Eegyetem Alkalmazott Biotechnológia és Élelmiszer-tudományi Tanszék Antioxidáns és szénhidrát transzport, illetve anyagcsere a növényi mitokondriumban és a mikroszómában Habilitációs tézisfüzet Szarka András Ph.D.

2 1. Bevezetés A C-vitamint, vagy más néven aszkorbinsavat mellékveséből, narancsból és káposztából elsőként Szent-Györgyi Albert izolálta 1928-ban. A tiszta formájában fehér kristályos anyag több fontos biokémiai reakció résztvevője. Kiemelkedő szereppel bír a sejtek antioxidáns kapacitásának biztosításában, mind a növények, mind az állatok esetében, illetve számos enzim kofaktora. Az ember néhány más emlőssel egyetemben (pl.: tengeri malac, gyümölcsevő denevér) elveszítette az aszkorbinsav bioszintézisének képességét, ezért megszerzésére külsődleges, elsősorban növényi, forrásokra szorulunk. Ezeket a tényeket figyelembe véve különösen érdekes, hogy az aszkorbát szintézisére képes állatokban (pl.: patkány) folyó reakciók mintegy négy évtizede ismeretesek, addig a növényekben folyó aszkorbát bioszintézis útvonala 1998-ig ismeretlen volt. Az útvonalat jellegzetes köztitermékeiről D-Mannóz/L-Galaktóz, vagy felfedezőiről Smirnoff- Wheeler útvonalnak nevezték el (Wheeler 1998). Röviddel a Smirnoff-Wheeler útvonal leírását követően egyértelművé vált, hogy nem ez az egyetlen aszkorbinsav bioszintetikus útvonal, alternatív, kisebb jelentőségű útvonalak is léteznek. Az alternatív útvonalakból származó aszkorbát, azonban nem képes a fő útvonal mutációiból fakadó alacsony aszkorbát szintet kompenzálni (Conklin 1999, Dowdle 2007, Szarka 2013). A Smirnoff-Wheeler útvonal lépései, az utolsó kivételével, a citoszólban játszódnak le. Az utolsó lépést katalizáló enzim, az L- galaktono-γ-lakton dehidrogenáz (GLDH) a mitokondrium belső membránjában található, szoros kapcsolatban a mitokondriális elektrontranszferrel (Bartoli 2000). A megfelelő aszkorbát szint fenntartásában, a bioszintézis mellett, fontos szerepet kap az aszkorbát (oxidált formáiból történő) reciklálása (Szarka 2012). A bioszintetikus útvonal megismerésével nagyjából azonos időben, a glutation (GSH) függő aszkorbát regenerációs útvonal, az aszkorbát-glutation ciklus, mind a négy enzimének (aszkorbát peroxidáz, monodehidroaszkorbát reduktáz, dehidroaszkorbát reduktáz, glutation reduktáz) mitokondriális (és peroxiszómális) jelenléte is leírásra került (Jimenez 1997). Mindezen megfigyelések egyértelműen arra utaltak, hogy a mitokondrium központi szerepet tölt be a növényi aszkorbát anyagcserében. 2. Facilitált glükóz és dehidroaszkorbát transzport a növényi mitokondriumban A GLDH enzim topológiája ismeretlen, amennyiben aktív helye a mitokondriális mátrix felé néz, az egyrészt egy L-galaktono-1,4-lakton, másrészt egy aszkorbát transzporter létezését veti fel a mitokondrium belső membránjában, hiszen az enzim szubsztrátjának a mátrixba kell jutnia, termékének pedig ki kell onnan kerülnie. Specifikus aszkorbát transzporterre akkor is szükség van, ha az aktív hely a két membrán közti tér felé néz, hiszen az aszkorbinsav jelenlétét több más sejtszervecskével egyetemben a mitokondriumban is leírták (Jimenez 1998, Smirnoff 2000). 2

3 A mitokondriális aszkorbát regenerációs gépezet működéséhez is elengedhetetlen egy mitokondriális belső membránban található dehidroaszkorbát (DHA)/aszkorbát transzporter, hiszen az oxidált formának a redukció helyszínére a mitokondriális mátrixba kell jutnia. A fenti háttérismereteket követően kezdtük el a feltételezett mitokondriális aszkorbát/dha transzporter felderítését, karakterizálását. A redukált (aszkorbát) és az oxidált forma (DHA) felvételét összehasonlítva megállapíthattuk, hogy a DHA forma felvétele preferált. Mitokondriális koncentrációja, a felvétel állandósult állapotában, messze meghaladja az extramitokondriális koncentrációt (1 µl/mg fehérje mitokondriális térfogattal számolva (Li 2001)). Ezzel szemben, aszkorbát adagolását követően a mitokondriális koncentráció nem éri el az extramitokondriális szintet (1. ábra). Az aszkorbát felvétel oxidálószerekkel, mint például kálium-ferricianiddal, vagy aszkorbát oxidázzal stimulálható volt. Mind az aszkorbát, mind a DHA felvétel hőmérsékletfüggést mutatott. 1. ábra Aszkorbát ( ), dehidroaszkorbát ( ) és glükóz ( ) felvétel a növényi mitokondriumba A kinetikai paraméterek Lineweaver Burk kalkulációja szerint a DHA felvétel nagyobb affinitású és kapacitású, mint az aszkorbáté (1. táblázat). 1. táblázat A mitokondriális aszkorbát, dehidroaszkorbát glukóz felvétel kinetikai paraméterei Ligand K M (mm) V max (nmol/min/mg protein) Aszkorbát Dehidroaszkorbát Glükóz Számos olyan anyag hatását megvizsgáltuk, amelyekről leírták, hogy növényi, illetve állati sejtben gátolják az aszkorbát és/vagy DHA transzportját. A nem specifikus anion transzport inhibitor DIDS és NEM nem gyakorolt hatást a DHA mitokondriális felvételére. Ugyanakkor a glükóz és a genistein hatásos gátlószernek bizonyult. A genistein az aszkorbát transzport esetében is hatásos gátlószerként viselkedett, azonban a DIDS és a NEM ez esetben sem mutatott gátlást Mitokondriális glükóz transzport A DHA transzportra gyakorolt gátló hatása miatt megvizsgáltuk a glükóz mitokondriális belső membránon keresztüli transzportját. A radioaktívan jelölt glükóz felvétele hozzávetőleg 25 perc 3

4 alatt elérte maximumát (1. ábra). A glükóz felvétel kétirányúnak bizonyult és Michaelis Menten kinetikát mutatott (1. táblázat), továbbá az aszkorbát és DHA transzportfolyamatokhoz hasonlóan a glükóz transzport is hőmérsékletfüggőnek bizonyult. A mitokondriális glükóz transzport esetében a D-mannóz és a 3-O-metil-glükóz gyenge, de statisztikailag szignifikáns gátlást mutatott, míg a többi vizsgált glükóz analóg semmilyen hatást sem gyakorolt. A mitokondriális aszkorbát/dha transzporthoz hasonlóan a genistein a glükóz transzportjára is markáns gátló hatást gyakorolt. A glükóz transzport inhibitor cytochalasin B részleges gátlást okozott. Mind a DHA, mind a glükóz transzportja hőmérséklet és időfüggést mutatott, kinetikai vizsgálatuk során telíthetőnek bizonyult, specifikus gátlószerekkel gátolható. Mindezen megfigyelések egyértelműen arra utalnak, hogy a transzportfolyamatok fehérje mediáltak. A GLUT gátlószer genistein DHA és glükóz transzportra gyakorolt erős gátló hatása, illetve a glükóz, DHA transzport esetében tapasztalt, gátló hatása arra utal, hogy a két molekula ugyanazon transzporter ligandjai lehetnek A mitokondriális légzés hatása a DHA és glükóz transzportra A mitokondriális transzportfolyamatok számos esetben befolyásolhatók a mitokondriális membránpotenciál megváltoztatásával. Ennek vizsgálata érdekében a mitokondriális DHA és glükóz transzportot nyomon követtük légzési szubsztrát (szukcinát), gátlószer (KCN) és szétkapcsolószer (2,4-dinitrofenol) jelenlétében. A KCN és a 2,4-dinitrofenol nem befolyásolta sem a glükóz, sem a DHA mitokondriális felvételét, a szukcinát az alkalmazott koncentrációban mérsékelten gátolta mindkét anyag transzportját. Az eredmények alapján kijelenthető, hogy a vizsgált transzportfolyamatok függetlenek a mitokondriális légzéstől, membránpotenciáltól Az aszkorbát, DHA és glükóz felvétele mitoplasztok esetében A transzportméréseket elvégeztük BY2 dohány mitokondriumokból készült mitoplasztok esetében is. Az így mért transzport aktivitások mind aszkorbát, mind DHA esetében a mitokondriális transzport aktivitásokhoz hasonlóak voltak, míg glükóz esetében enyhe csökkenést tapasztaltunk. A tény, amely szerint a transzportfolyamatok mitoplasztok esetében ugyanúgy fennállnak, mint mitokondriumok esetében, egyértelműen arra utalnak, hogy a transzporter(ek) a mitokondriális belső membránban foglalnak helyet. 3. A mitokondriális elektrontranszferhez kapcsolt DHA redukció növényi sejtekben A DHA transzporter tehát a mitokondriális mátrixba szállíthatja a döntően, az intermembrán térben keletkező DHA-t. Az ezredfordulót követően állati sejtekből származó mitokondriumok esetében felmerült, hogy a mitokondriális elektrontranszfer láncról származó elektronok is részt vehetnek a mitokondriális DHA redukcióban (Li 2001, 2002). 4

5 Kísérleteink elején egyértelmű választ szerettünk volna kapni a kérdésre, hogy hasonló jelenség megfigyelhető-e növényi mitokondriumok esetében is? A BY2 dohánysejt mitokondriumok egyértelműen képesek voltak, DHA adagolását követően, szignifikáns redukált aszkorbát szint fenntartására (2. ábra), amely szukcinát mint légzési szubsztrát jelenlétében drasztikus mértékben fokozódott, az aszkorbát képződés első emelkedő szakasza pedig megnyúlt (2. ábra). 2. ábra DHA adagolás kiváltotta aszkorbát produkció növényi mitokondriumban szukcinát, mint légzési szubsztrát távollétében ( ), illetve jelenlétében ( ) A kísérletek következő fázisában külön-külön határoztuk meg a mátrix és a két membrán közötti tér aszkorbát koncentrációját. A mátrixban mérhető aszkorbát koncentráció elérte a millimolos koncentrációtartományt és hasonló időbeli lefutást mutatott, mint teljes mitokondrium esetén (2. ábra). Az extramitokondriális (IMS) aszkorbát koncentráció ettől jóval alacsonyabbnak bizonyult és 30 perc elteltével folyamatosan csökkent. A komplex I szubsztrát malát, a komplex I inhibitor rotenon, a komplex III inhibitor antimycin A, az alternatív oxidáz inhibitor szalicilhidroxamin (SHAM) sav és a szétkapcsolószer 2,4-dinitrofenol sem gyakorolt hatást a mitokondriális aszkorbát keletkezésre. A szukcinát dehidrogenáz kompetitív gátlószere, a malonát azonban gyakorlatilag teljesen felfüggesztette a szukcinát függő aszkorbinsav keletkezést a mitokondriumban. A komplex IV inhibitor KCN jelentős mértékben fokozta az aszkorbinsav felhalmozódását a mitokondriumban. NADH adagolás segítségével megállapítottuk, hogy sem a komplex I, sem az NDin(NADH), sem az NDex(NADH) nem vesz részt a redukciós folyamatban. A glükóz, a mitokondriális DHA transzport gátlószere mind szukcinát jelenlétében, mind távollétében gátolta a DHA adagolás kiváltotta aszkorbát képződést. ESR méréseink során 1 mm dehidroaszkorbátot tartalmazó mitokondriális szuszpenzióban aszkorbilgyök jelet tudtunk detektálni (3. ábra). 3. ábra Növényi mitokondriumok aszkorbil gyök szintje DHA jelenlétében (A), illetve távollétében (B) A gyökszintet a szukcinát nem befolyásolta, valamint 60 perces inkubációs időn keresztül végig megtartottnak bizonyult. Az aszkorbil gyök teljesen eltűnt KCN hatására. Az aszkorbát oxidációját, mint az aszkorbát koncentráció csökkenését megvizsgálva megállapítottuk, hogy KCN távollétében a mitokondrium rendkívül gyorsan eloxidálta a hozzáadott aszkorbátot, ugyanakkor KCN jelenlétében az aszkorbát szint megtartottnak 5

6 bizonyult. Ezek a megfigyelések arra utalnak, hogy a dehidroaszkorbát hozzáadását követően mérhető aszkorbil gyök szint nem a dehidroaszkorbát redukciója során jön létre, hanem a redukció eredményeképp termelődött aszkorbát mitokondriális oxidációjának következménye. Végezetül az aszkorbát mátrixban, illetve extramitokondriális térben történő megjelenését vizsgáltuk meg a legpotensebb aktivátorok (szukcinát, KCN) jelenlétében. A két anyag eltérő aszkorbát eloszlást eredményezett (4. ábra). Az aszkorbát mátrixban mérhető koncentrációját nem befolyásolta a KCN, azonban 50%-kal megemelte a szukcinát kezelés (4. ábra). 4. ábra Szukcinát és KCN hatása a mitokondriális mátrix (üres terület) és az extramitokondriális tér (sraffozott terület) DHA kiváltotta aszkorbát produkciójára (koncentrációjára)pontosan ellenkező eredményeket kaptunk az extramitokondriális aszkorbát szint esetében. A szukcinát nem befolyásolta, azonban KCN kezelés hatására az aszkorbát szint közel egy nagyságrenddel megemelkedett (4. ábra). Ezek a megfigyelések megerősítették korábbi sejtésünket, hogy míg a szukcinát a (II-es komplex függő) DHA redukciót fokozza addig a KCN az aszkorbát (két membrán közötti térben bekövetkező) oxidációját (fogyását) gátolja. 4. Kvantitatív adatok a glutation és a komplex II függő aszkorbát reciklálásról növényi mitokondriumban Növényi mitokondriumok esetében eddig két DHA redukciós folyamat, az aszkorbát-glutation ciklus, illetve a komplex II-függő folyamat került részletesen jellemzésre (Foyer 1976, Szarka 2007). A két útvonal inhibitorainak alkalmazása révén mennyiségi adatokat kívántunk nyerni ezen két útvonal DHA redukcióhoz történő hozzájárulásáról. Annak érdekében, hogy meghatározzuk a glutation-függő DHA redukció mértékét, BY2 dohány sejteket kezeltünk a gamma-glutamilcisztein szintetáz (GSH bioszintézist) gátló butioninszulfoximinnel (BSO). A kezelés hatására a celluláris glutation szint drámai mértékben lecsökkent (5. ábra). 5. ábra Kontroll és BSO kezelt BY2 sejtek (a) és belőlük származó mitokondriumok (b) glutation (GSH) tartalma 6 A drámai közel 90%-os celluláris glutation szint csökkenéstől jóval mérsékeltebb glutation szint csökkenést tapasztaltunk

7 mitokondriális szinten (5. ábra). Ez a megfigyelés igen jól szabályozott mitokondriális glutation transzport meglétére utal, mivel a glutation bioszintézise a citoszolban és a plasztiszban folyik. A BSO kezelt és a kontroll sejtekből származó mitokondriumok, DHA redukciós kapacitása között, még kisebb különbséget tapasztaltunk, mint glutation szintjük között. Ez a jelenség megerősíti az alternatív, nem glutation-függő DHA redukciós folyamatok meglétét növényi mitokondriumban. A mitokondriális glutation, DHA redukcióhoz való hozzájárulását, a mitokondriális glutation szint DHA hozzáadására kiváltott változásának nyomon követésével határoztuk meg (6. ábra). 6. ábra Mitokondriális GSH (a) és aszkorbát (b) szint DHA adagolás előtt és 20 perc inkubációs időt követően A metabolizmus bármely szubsztrátjának hiányában ilyenkor a tisztán glutation-függő DHA redukcióról kaphatunk képet a növényi mitokondriumban. A mitokondriális glutation tartalom csökkenése hozzávetőlegesen az aszkorbát produkció egyötödét tette ki (6. ábra). A glutation (csökkenés) így durván az aszkorbát produkció 20%-áért lehet felelős. A DHA redukció fennmaradó része nem glutationfüggő módon valósulhat meg. Az elektron transzferlánc szerepe, kiválóan tanulmányozható az inkubációs közeghez adott II-es komplex szubsztrát, szukcinát, illetve II-es komplex inhibitor malonát és TTFA (thenoiltrifluoroaceton) hatása által. Szukcinát hozzáadására az aszkorbát produkció mintegy 90%-kal megemelkedik, amelyet szinte teljes mértékben fel lehet függeszteni TTFA, vagy malonát együttes adagolásával (7. ábra). 7. ábra Mitokondriális II-es komplex szubsztrát (szukcinát) és gátlószerek (TTFA, malonát) hatása a mitokondriális DHA redukcióra. A megfigyelt szukcinát hatására bekövetkező lökésszerű aszkorbát termelődés egyértelműen a megnövekedett elektronátadás eredménye. Elmondhatjuk, hogy a mitokondriális elektrontranszfer lánc szerepét a glutation-függő mitokondriális aszkorbát reciklálásban eleddig méltatlanul alulbecsülték. 7

8 5. Fokozott ROS termelés és aszkorbát fogyasztás a PPR-40 Arabidopsisban A mitokondriális elektrontranszfer láncban létrejövő bármilyen elektronáramlási nehézség, vagy blokk az elektronok torlódását, redukáltabb elektrontranszfer lánc komponenseket és ezáltal fokozott reaktív oxigénvegyület (ROS) képződést idéz elő (Szarka 2012, 2013, 2014). Kimutattuk, hogy az egyetlen jelenleg ismert mitokondriális III-as komplex mutáns ppr-40 Arabidopsisban, a III-as komplexnél bekövetkező elektron áramlási blokk igen jelentős mértékű reaktív oxigénvegyület (elsősorban H 2O 2) szint emelkedéssel és lipidperoxidációval jár együtt. A csökkent mértékű III-as komplexen keresztüli elektronáramlás csökkent mértékű légzést (elektrontranszfert) fokozott IV-es komplex (CCO) és alternatív oxidáz (AOX) aktivitást és fokozott (IV-es komplexen bekövetkező) aszkorbátfogyást eredményez (8. ábra). 8. ábra Komplex III blokk következtében kialakult csökkent légzés, fokozott IVes komplex (CCO), alternatív oxidáz (AOX) aktivitás és fokozott (IV-es komplexen bekövetkező) aszkorbátfogyás ppr-40 Arabidopsis mitokondriumokban Az aszkorbátfogyás sebessége tehát több ok miatt is megnő a mutáns növényekben. Egyrészt a magasabb ROS szint eliminálása, másrészt a megnövekedett IV-es komplex aktivitás fogja az aszkorbát DHA-tá (és MDHA-tá) történő oxidációját fokozni. Ennek megfelelően mind mitokondriális, mind sejtszinten jóval csökken és oxidáltabb lesz a C- vitamin szinteket tudtunk mérni a ppr-40 növények (és sejtek) esetében. Ezen előzmények ismeretében nem volt meglepő, hogy az aszkorbát (DHA-ból történő) regenerációjáért felelős glutation függő folyamat, a aszkorbát-glutation ciklus minden enzimének emelkedet aktivitását tapasztaltuk a mutáns növényekben és az azokból izolált mitokondriumokban a vad típusú növényekhez viszonyítva (9. ábra). A ciklus enzimeinek emelkedett aktivitása együtt járt a redukcióhoz elektronokat szolgáltató (elektrondonor) glutation mitokondriális szintjének emelkedésével a mutáns növényekben. 8

9 9. ábra aszkorbát-glutation ciklus enzimeinek aktivitása vad típusú és ppr-40 mutáns növényekben, sejtekben és mitokondriumokban. A ppr-40 mutáns növényekben a GLDH enzim mrns szintje nem változott, viszont aktivitása 25%-kal megemelkedett (10. ábra). Ez a komplex III hiányos mutánsban magyarázható a citokrom c magasabb oxidáltsági fokával. 10. ábra GLDH expresszió (A) és aktivitás (B) vad típusú és ppr-40 mutáns növényekben 9

10 6. Eltérő mechanizmusú DHA és glükóz transzport Arabidopsis thaliana szuszpenziós sejtkultúrában A mitokondriális rendszerrel kapcsolatban felgyűlt tapasztalatok alapján megkíséreltük a plazmamembránon keresztül zajló C-vitamin és glükóz transzportfolyamatok részletesebb jellemzését. Különböző redox státuszú 14 C jelölt C-vitamint (aszkorbát, DHA keveréket) állítottunk elő redukáló/oxidáló szerek segítségével. Lineáris összefüggést találtunk a külső inkubációs közeg DHA tartalma és a transzportra kerülő radioaktivitás (DHA) között (11. ábra). 11. ábra A külső inkubációs közeg DHA tartalma (redox státusza) és a DHA felvétel kapcsolata Ez egyértelművé teszi a sejtek a C-vitamin oxidált formája, a DHA irányába mutatott preferenciáját. Ezt követően az állati sejtek esetében az aszkorbát felvételt gátló 6-bromo-6- deoxi-aszkorbát (Corpe 2005) hatását vizsgáltuk meg. Méréseink egyértelműn arra utaltak, hogy a növényi sejtek esetében a gátlószer hatástalan. A következőkben kimutattuk, hogy a DHA transzport telítési kinetikát mutat, egyúttal meghatároztuk a transzport kinetikai paramétereit (K m: 42.9 µm, V max: 99.5 µmol/min/mg). A mitokondriális transzporter kinetikai paramétereihez képest a plazmamembrán transzporter jóval nagyobb affinitást és transzport kapacitást mutatott. 100-szoros glükóz és 10-szeres DHA felesleget alkalmazva sem tudtunk kompetíciót kimutatni a két anyag transzportja között. Ezek a megfigyelések eltérő transzportrendszerekre utalnak. A potenciális transzport gátló anyagok közül a phloretin és a cytochalasin B csekély, nem szignifikáns, viszont a genistein koncentrációfüggő módon szignifikáns gátlást mutatott a növényi sejtek glükóz felvétele esetében. A DHA transzport esetében pont ellentétes gátlási profilt figyelhettünk meg, a genistein nem, viszont a cytochalasin B és a phloretin szignifikáns mértékben gátolta a transzportot. Megfigyeléseink igen érdekes eredménnyel zárultak, elsőként írtuk le, hogy a növényi sejtekben két különböző típusú nagy affinitású DHA transzportrendszer létezik: a mitokondriális, amely nagy valószínűség szerint hasonló a glükóz transzporterekhez, illetve a plazmamembránban található, amely egyértelműen különbözik a glükóz transzporterektől. 10

11 7. Hipotetikus modellünk: A mitokondrium, a mitokondriális elektrontranszfer szerepe a C-vitamin szintézisben, regenerációban; az aszkorbát/dha redox páros szerepe a mitokondriális elektrontranszferben Eddig elért eredményeink alapján a következő modell valószínűsíthető: a mitokondriális két membrán közötti térben, az APX aktivitás révén keletkező DHA, egy glükóz transzporter segítségével, jut át a belső membránon. A DHA, ezt követően a mitokondriális mátrixban aszkorbáttá redukálódik az aszkorbát-glutation ciklus, vagy a komplex II-ről származó elektronok révén. Az aszkorbát egy része, jelenleg nem pontosan tisztázott körülmények között elhagyja a mitokondriális mátrixot. A két membrán közötti térbe visszajutott (vagy ott lévő) aszkorbát elektronjait a komplex IV-re juttatva oxidálódik (12. ábra). 12. ábra Az aszkorbát-dha kör hipotetikus összefoglaló modellábrája A hipotetézis legkevésbé tisztázott eleme az aszkorbát mátrixból történő kijutása. A körfolyamat limitáló lépése minden valószínűség szerint pont ez a lépés, mivel a DHA redukció eredményeként keletkező aszkorbát a mátrixhoz képest jelentős késedelemmel jelenik csak meg az extramitokondriális térben (IMS-ben). Az aszkorbát/dha redox páros által képviselt elektron áram, egyféle alternatív elektron áramlási útvonalat jelenthet a komplex II bármilyen sérülése, blokkja esetén, elektronokat véve fel a komplex II-nél (a DHA aszkorbáttá történő reduciójával) és elektronokat adva (ezen a kerülő úton keresztül) a komplex IV-nek (az aszkorbát DHA-tá oxidálásával). Összegezésképp elmondhatjuk, hogy a növényi mitokondriális elektron transzfer lánc nemcsak az aszkorbát bioszintézisben, hanem annak regenerációjában is fontos szerepet játszik. 11

12 8. Mitokondriális invertáz aktivitás és a vele összefüggő cukortranszport folyamatok In silico és genetikai adatok arra utaltak, hogy az invertázok egyik alcsoportja, esetlegesen mitokondriális lokalizációval rendelkezhet (Murayama 2007). Kísérleteink során inveráz aktivitást találtunk frissen izolált csicsóka mitokondrium mátrix alfrakciójában (2. táblázat). 2. táblázat Az invertáz és a mitokondriális markerenzim, fumaráz szubmitokondriális eloszlása csicsóka mitokondriumban Szubmitokondriális frakció Invertáz aktivitás (nmol min -1 mg -1 ) Fumaráz aktivitás (nmol min -1 mg -1 ) Mátrix ± 0.22 (6) 689 ± 21 (6) Belső membrán 0.54 ± 0.10 (6) 22 ± 12 (6) Külső membrán 0.77 ± 0.02 (6) 26 ± 16 (6) Az enzimaktivitás ph optimuma, kinetikai paraméterei, valamint inhibitor profilja (a tipikus alkalikus invertáz inhibitorok gátolták a mitokondriális invertáz aktivitást is) alapján az újonnan leírásra került enzim a neutrális invertázok családjába sorolható (13. ábra) ábra A mitokondriális invertáz aktivitás ph optimuma, kinetikai sajátságai Az enzim topológiája miatt vizsgálatainkat kiterjesztettük szubsztrátjának, valamint termékeinek mitokondriális belső membránon keresztüli transzportjára. Bidirekcionális, telíthető, valamint mitokondriális membránpotenciáltól független szacharóz, glükóz és fruktóz transzportot találtunk a mitokondriális belső membránban. A szacharóz transzportot nem tudtuk befolyásolni az ismert proton-szacharóz transzporter gátlókkal. A különböző kinetikai paraméterek, valamint a kereszt-gátlás hiánya arra utalnak, hogy a transzportfolyamatokat három egymástól független transzporter mediálja (3. táblázat). Bakteriális analóg rendszerek alapján arra a vélekedésre jutottunk, hogy a mitokondriális invertáz rendszer amely a mátrixban található invertáz aktivitásból, valamint a hozzátartozó cukor transzporterekből áll szerepet játszhat ozmoregulációs folyamatokban, valamint az intermedier anyagcserében.

13 3. táblázat A mitokondriális fruktóz, szacharóz és glükóz felvétel kinetikai paraméterei Ligand K m (mm) v max (nmol min -1 mg -1 protein) Fruktóz Szachatóz Glükóz FAD transzport és a FAD szerepe a mikroszómális oxidatív folding elektrontranszfer folyamatában A szekrécióra kerülő fehérjék tekintélyes számú diszulfidkötést tartalmaznak, amelyek szükségesek megfelelő térszerkezetükhöz, stabilitásukhoz és funkcionalitásukhoz. Ezen fehérjék diszulfid kötései az eukarióta sejtek endoplazmás retikulumában (ER) alakulnak ki (Szarka 2011). A cisztein oldalláncok tiol csoportjainak oxidációja folyamatos, a végső elektronakceptor(ok) irányába, folyó elektronáramot kíván meg. Ez az elektronáram egy elektrontranszfer láncon keresztül valósul meg, amely fehérjékből illetve kis mol súlyú komponensekből áll (Szarka 2011, Szarka 2014b). Jól lehet az oxidatív folding gépezet kulcs fehérje komponenseit már azonosították, a kis mol súlyú molekulák, mint lehetséges kofaktorok kémiai természete jelenleg is vita tárgyát képezi. Élesztősejtek esetében felmerül, hogy a FADnak fontos szerepe lehet a folyamatban. Emlős sejtek esetében azonban sem a FAD ER membránon keresztüli transzportját, sem a FAD mikroszómális fehérjékre gyakorolt oxidatív hatását nem vizsgálták még. Ezért célul tűztük ki, hogy ezen folyamatokat patkány mikroszómális vezikulákon megvizsgáljuk. A FAD felvételt a korábbi mitokondriális transzport vizsgálatokhoz hasonlóan végeztük el. A különbség ez esetben az volt, hogy radioaktív jelölés helyett a FAD saját fluoreszcenciáját használtuk fel a molekula detektálására. A kezdeti szakaszt követően a FAD felvétel nagyjából 10 percet követően elérte maximumát (14. ábra). 14. ábra A mikroszómális FAD felvétel időfüggése (A) kontrol ( ) DIDS mentes pufferrel mosva ( ), alameticinnel permeabilizálva ( ) és kiáramlás időfüggése (B) DIDS tartalmú ( ) és DIDS mentes ( ) pufferrel mosva. 13

14 A transzport kétirányúnak bizonyult, az előzetesen FAD-dal feltöltött vezikulák kihígítását követően gyors FAD áramlást tudtunk megfigyelni (14. ábra). A FAD felvételt a DIDS és az atraktilozid szignifikáns mértékben gátolta, míg a NEM és a flufenamát nem mutatott gátló hatást. A FAD adagolás igen kifejezett fehérje tiol oxidációt váltott ki. A FAD felvétel atraktiloziddal történő gátlása megakadályozta a FAD kiváltotta fehérje tiol oxidációt. Így sikerült igazolnunk a FAD felvételt, illetve a FAD szerepét a fehérje tiolok oxidációjában emlős ER vezikulák esetében. 14

15 Irodalomlista Bartoli CG, Pastori GM, and Foyer CH. Ascorbate biosyn-thesis in mitochondria is linked to the electron transport chain between complexes III and IV.Plant Physiol123: , Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, and Last RL. Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci U S A96: , Corpe, C.P., Lee, J.-H., Kwon, O., Eck, P., Narayanan, J., Kirk, K.L. and Levine, M. (2005) 6-Bromo-6-deoxy-L-ascorbic acid an ascorbate analog specific for Na+-dependent vitamin C trans-porter but not glucose transporter pathways. J. Biol. Chem. 280, Dowdle J, Ishikawa T, Gatzek S, Rolinski S, and Smirnoff N. Two genes inarabidopsis thalianaencoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability.plant J52: , Foyer CH and Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta133: 21 25, Jimenez A, Hernandez JA, Del Rio LA, and Sevilla F. Evi-dence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves.plant Physiol 114: , Jimenez A, Hernandez JA, Pastori G, del Rio LA, Sevilla F. Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves Plant Physiol. (1998) 118: Li X, Cobb CE, Hill KE, Burk RF, May JM (2001). Mitochondrial uptake and recycling of ascorbic acid.arch Biochem Biophys 387: Li X, Cobb CE, May JM (2002) Mitochondrial recycling of ascorbic acid from dehydroascorbic acid: dependence on the electron transport chain. Arch Biochem Biophys 403: Murayama S, Handa H (2007) Genes for alkaline/neutral invertase in rice: alkaline/neutral invertases are located in plant mitochondria and also in plastids. Planta 225: Smirnoff N, Wheeler GL. Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol. (2000) 35: Szarka A, Bánhegyi G (2011) Oxidative folding: recent developments BioMol Concepts 2: Szarka A, Banhegyi G, Asard H. (2013) The inter-relationship of ascorbate transport, metabolism and mitochondrial, plastidic respiration. Antioxid Redox Signal, 19(9): Szarka A, Bánhegyi G, Sümegi B. Mitochondria, oxidative stress and aging. Orv Hetil Mar 23;155(12): Szarka A, Lőrincz T (2014b) The role of ascorbate in protein folding. Protoplasma 251(3): Szarka A, Tomasskovics B and Bánhegyi G (2012) The ascorbate-glutathione-α-tocopherol triad in abiotic stress response Int. J. Mol. Sci., 13, IF: Szarka A., Horemans N., Kovács Z., Gróf P., Mayer M., Bánhegyi G. (2007) Dehydroascorbate reduction is coupled to the respiratory electron transfer chain. Physiol. Plant. 129: Wheeler GL, Jones MA, Smirnoff N. The biosynthetic pathway of vitamin C in higher plants. Nature :

16 Tézispontok (új tudományos eredmények) 1. A növényi mitokondrium mind az aszkorbátot, mind a dehidroaszkorbátot felveszi. Az oxidált forma felvétele preferált. A transzport időfüggő, telítési kinetikát mutat és gátolható. Ez alapján kijelenthető, hogy a felvétel, fehérje mediált transzport. 2. A növényi mitokondrium kétirányú, idő és hőmérsékletfüggő, gátolható glükóz transzportot mutat. A GLUT gátlószer genistein DHA és glükóz transzportra gyakorolt erős gátló hatása, illetve a glükóz, DHA transzport esetében tapasztalt, gátló hatása arra utal, hogy a két molekula ugyanazon transzporter ligandjai lehetnek. 3. A mitokondriális DHA és glükóz transzport mitoplasztok esetében is megfigyelhető, tehát a belső membránban lokalizált transzporter mediálja, amely működése a mitokondriális membránpotenciálétól (légzéstől) független. 4. A mitokondriális elektrontranszfer lánc részt vesz a DHA mitokondriális redukciójában. A légzési elektrontranszfer lánc-függő DHA redukció helyszíne a mitokondriális mátrix, elektrondonora a komplex II. 5. DHA redukció során keletkezett aszkorbát kijut a mitokondriumból és az intermembrán térben hozzájárul a komplex IV elektronellátásához. 6. A mitokondriális DHA redukcióhoz a glutation függő folyamatok mintegy 20%-ban járulnak hozzá, míg a komplex II függő redukció ettől lényegesen nagyobb mértékű. 7. A mitokondriális III-as komplex mutáns ppr-40 Arabidopsisban, a III-as komplexnél bekövetkező elektron áramlási blokk igen jelentős mértékű reaktív oxigénvegyület (elsősorban H 2O 2) szint emelkedéssel és lipidperoxidációval jár együtt. 8. A ppr-40 Arabidopsisban tapasztalt csökkent mértékű III-as komplexen keresztüli elektronáramlás, csökkent mértékű légzést (elektrontranszfert) fokozott IV-es komplex (citokróm c oxidáz, CCO) és alternatív oxidáz (AOX) aktivitást és fokozott (IV-es komplexen bekövetkező) aszkorbátfogyást eredményez. 9. A ppr-40 növényeket mind mitokondriális, mind sejtszinten jóval alacsonyabb és oxidáltabb C-vitamin szintek jellemzik. 10. Az aszkorbát (DHA-ból történő) regenerációjáért felelős glutation függő folyamat, a Foyer-Halliwell-Asada ciklus minden enzimének aktivitása megemelkedik a ppr-40 mutáns növényekben és az azokból izolált mitokondriumokban, a vad típusú növényekhez viszonyítva. A ciklus enzimeinek emelkedett aktivitása együtt jár a redukcióhoz elektronokat szolgáltató (elektrondonor) glutation mitokondriális szintjének emelkedésével a mutáns növényekben. 16

17 11. A C-vitamin bioszintézis utolsó lépését katalizáló, mitokondriális L-galaktono-1,4- lakton dehidrogenáz enzim mrns szintje nem változik meg a ppr-40 mutáns növényekben, azonban aktivitása mintegy 25%-kal megemelkedik feltehetően az oxidáltabb citokrom c miatt. 12. Növényi sejtek esetében a plazmamembránon keresztüli C-vitamin transzport lineáris összefüggést mutat a külső inkubációs közeg DHA tartalma és a transzportra kerülő DHA mennyisége között, amely egyértelműen bizonyítja a sejtek, a C- vitamin oxidált formája, a DHA irányába mutatott transzport preferenciáját szoros glükóz és 10-szeres DHA felesleget alkalmazva sem mutatható ki kompetíció a két anyag plazmamembránon keresztüli transzportja között. Ez, valamint az eltérő inhibíciós profil bizonyítja, hogy a növényi sejtekben két különböző típusú nagy affinitású DHA transzportrendszer létezik: a mitokondriális, amely nagy valószínűség szerint hasonló a glükóz transzporterekhez, illetve a plazmamembránban található, amely egyértelműen különbözik a glükóz transzporterektől. 14. A növényi mitokondriumban egy aszkorbát/dha redox párból álló komplex III-at megkerülő elektrontranszfer út létezhet. A kerülőút limitáló lépése nagy valószínűség szerint az aszkorbát mátrixból történő kijutása. Ezt bizonyítja, hogy a DHA redukció eredményeként keletkező aszkorbát a mátrixhoz képest jelentős késedelemmel jelenik csak meg az extramitokondriális térben (IMS-ben). 15. A növényi mitokondriális mátrixban inveráz aktivitás mutatható ki. Az enzimaktivitás ph optimuma, kinetikai paraméterei, valamint inhibitor profilja alapján az újonnan leírásra került enzim a neutrális invertázok családjába sorolható. 16. A mitokondriális invertáz aktivitás kiszolgálására kétirányú, telíthető, valamint mitokondriális membránpotenciáltól független szacharóz, glukóz és fruktóz transzport található a mitokondriális belső membránban. A különböző kinetikai paraméterek, valamint a kereszt-gátlás hiánya arra utalnak, hogy a transzportfolyamatokat három egymástól független transzporter mediálja. 17. Kétirányú FAD transzport létezik az emlős mikroszómális membránon keresztül. A transzport a mitokondriális FAD transzport gátló atraktiloziddal illetve az aniontranszporter gátló 4,4 -Diizotiociano-2,2 -stilbén diszulfonsavval (DIDS-sel) gátolható. 18. A FAD felvétel atraktiloziddal történő gátlása megakadályozza a FAD kiváltotta fehérje tiol oxidációt, amely igazolja a FAD szerepét a fehérje tiolok oxidációjában emlős mikroszómális vezikulák esetében. 17

18 A tézisekhez kapcsolódó publikációk 1. Szarka A (2013) Quantitative data on the contribution of GSH and Complex II dependent ascorbate recycling in plant mitochondria Acta Physiol Plant 35: IF: Szarka A, Banhegyi G, Asard H. (2013) The inter-relationship of ascorbate transport, metabolism and mitochondrial, plastidic respiration. Antioxid Redox Signal, 19(9): IF: 7, Zsigmond L, Tomasskovics B, Deák V, Rigó G, Szabados L, Bánhegyi G, Szarka A (2011) Enhanced activity of galactono-1,4-lactone dehydrogenase and ascorbate glutathione cycle in mitochondria from Complex III deficient Arabidopsis. Plant Physiol Biochem 49: IF: 2, Szarka A, Horemans N, Passarella S, Tarcsay Á, Örsi F, Salgó A, Bánhegyi G. (2008) Demonstration of an intramitochondrial invertase activity and the corresponding sugar transporters of the inner mitochondrial membrane in Jerusalem artichoke (Helianthus tuberosus L.) tubers. Planta 228: IF: 3,06 5. Horemans N, Szarka A, De Bock M, Raeymaekers T, Potters G, Levine M, Banhégyi G, Guisez Y. (2008) Dehydroascorbate and glucose are taken up into Arabidopsis thaliana cell cultures by two distinct mechanisms. FEBS Lett. 582: IF: 3, Zsigmond L, Rigó G, Szarka A, Székely Gy, Ötvös K, Darula Zs, Medzihradszky KF, Koncz Cs, Koncz Zs, Szabados L (2008) The Arabidopsis PPR domain protein PPR40 connects abiotic stress responses to mitochondrial electron transport Plant Physiol. 146: IF: 6,37 7. Szarka A., Horemans N., Kovács Z., Gróf P., Mayer M., Bánhegyi G. (2007) Dehydroascorbate reduction is coupled to the respiratory electron transfer chain. Physiol. Plant. 129: IF: 2, Szarka A., Horemans N., Bánhegyi G., Asard H. (2004) Facilitated glucose and dehydroascorbate transport in plant mitochondria. Arch. Biochem. Biophys. 428: IF: 2, Varsanyi M, Szarka A, Papp E, Makai D, Nardai G, Fulceri R, Csermely P, Mandl J, Benedetti A, Banhegyi G. (2004) FAD transport and FAD-dependent protein thiol oxidation in rat liver microsomes. J Biol Chem. 279: IF: 6,482 18

Az aszkorbinsav koncentráció és redox státusz szabályozása növényi sejtekben bioszintézis és intracelluláris transzport révén

Az aszkorbinsav koncentráció és redox státusz szabályozása növényi sejtekben bioszintézis és intracelluláris transzport révén Az aszkorbinsav koncentráció és redox státusz szabályozása növényi sejtekben bioszintézis és intracelluláris transzport révén Témavezető neve: Szarka András A kutatás időtartama: 4 év Tudományos háttér

Részletesebben

A mitokondriális szénhidrát és aszkorbinsav anyagcsere szerepe az oxidatív és ozmotikus stresszadaptációban

A mitokondriális szénhidrát és aszkorbinsav anyagcsere szerepe az oxidatív és ozmotikus stresszadaptációban BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VEGYÉSZMÉRNÖKI ÉS BIOMÉRNÖKI KAR OLÁH GYÖRGY DOKTORI ISKOLA A mitokondriális szénhidrát és aszkorbinsav anyagcsere szerepe az oxidatív és ozmotikus stresszadaptációban

Részletesebben

A mitokondrium új szerepkörben

A mitokondrium új szerepkörben Magyar Kémiai Folyóirat - Összefoglaló közlemények 131 A mitokondrium új szerepkörben SZARKA András * Budapesti Műszaki és Gazdaságtudományi Egyetem, Alkalmazott Biotechnológia és Élelmiszer-tudományi

Részletesebben

A FAD transzportjának szerepe az oxidatív fehérje foldingban patkány máj mikroszómákban

A FAD transzportjának szerepe az oxidatív fehérje foldingban patkány máj mikroszómákban A FAD transzportjának szerepe az oxidatív fehérje foldingban patkány máj mikroszómákban PhD értekezés tézisek Varsányi Marianne 2005 Témavezető: Dr. Bánhegyi Gábor Semmelweis Egyetem Orvosi Vegytani, Molekuláris

Részletesebben

Antioxidánsok szerepe a fehérje diszulfid kötések kialakulásában SZARKA ANDRÁS

Antioxidánsok szerepe a fehérje diszulfid kötések kialakulásában SZARKA ANDRÁS Semmelweis Egyetem, Molekuláris Orvostudományok Doktori Iskola PATHOBIOKÉMIA DOKTORI PROGRAM Antioxidánsok szerepe a fehérje diszulfid kötések kialakulásában Doktori (Ph.D.) értekezés tézisei SZARKA ANDRÁS

Részletesebben

A mitokondriális szénhidrát és aszkorbinsav transzport és anyagcsere szerepe az ozmotikus és oxidatív stresszadaptációban.

A mitokondriális szénhidrát és aszkorbinsav transzport és anyagcsere szerepe az ozmotikus és oxidatív stresszadaptációban. A mitokondriális szénhidrát és aszkorbinsav transzport és anyagcsere szerepe az ozmotikus és oxidatív stresszadaptációban. Kutatásunk kezdetekor 3 fő célkitűzésünk volt: 1. A mitokondriális szorbitképződés,

Részletesebben

Energiatermelés a sejtekben, katabolizmus. Az energiaközvetítő molekula: ATP

Energiatermelés a sejtekben, katabolizmus. Az energiaközvetítő molekula: ATP Energiatermelés a sejtekben, katabolizmus Az energiaközvetítő molekula: ATP Elektrontranszfer, a fontosabb elektronszállító molekulák NAD: nikotinamid adenin-dinukleotid FAD: flavin adenin-dinukleotid

Részletesebben

A téma címe: Antioxidáns anyagcsere és transzportfolyamatok az endo/szarkoplazmás retikulumban A kutatás időtartama: 4 év

A téma címe: Antioxidáns anyagcsere és transzportfolyamatok az endo/szarkoplazmás retikulumban A kutatás időtartama: 4 év Témavezető neve: Dr. Csala Miklós A téma címe: Antioxidáns anyagcsere és transzportfolyamatok az endo/szarkoplazmás retikulumban A kutatás időtartama: 4 év Háttér A glutation (GSH) és a glutation diszulfid

Részletesebben

Diabéteszes redox változások hatása a stresszfehérjékre

Diabéteszes redox változások hatása a stresszfehérjékre Semmelweis Egyetem Molekuláris Orvostudományok Tudományági Doktori Iskola Pathobiokémia Program Doktori (Ph.D.) értekezés Diabéteszes redox változások hatása a stresszfehérjékre dr. Nardai Gábor Témavezeto:

Részletesebben

Zárójelentés. Gabonafélék stresszadaptációját befolyásoló jelátviteli folyamatok tanulmányozása. (K75584 sz. OTKA pályázat)

Zárójelentés. Gabonafélék stresszadaptációját befolyásoló jelátviteli folyamatok tanulmányozása. (K75584 sz. OTKA pályázat) Zárójelentés Gabonafélék stresszadaptációját befolyásoló jelátviteli folyamatok tanulmányozása (K75584 sz. OTKA pályázat) A tervezett kísérletek célja, hogy jobban megértsük a növények változó környezetre

Részletesebben

Citrátkör, terminális oxidáció, oxidatív foszforiláció

Citrátkör, terminális oxidáció, oxidatív foszforiláció Citrátkör, terminális oxidáció, oxidatív foszforiláció A citrátkör jelentősége tápanyagok oxidációjának közös szakasza anyag- és energiaforgalom központja sejtek anyagcseréjében elosztórendszerként működik:

Részletesebben

Vízoldható antioxidánsok kéz a kézben: C-vitamin és Glutation

Vízoldható antioxidánsok kéz a kézben: C-vitamin és Glutation Vízoldható antioxidánsok kéz a kézben: C-vitamin és Glutation MTA doktori értekezés tézisei Szarka András Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Alkalmazott Biotechnológia

Részletesebben

A légzési lánc és az oxidatív foszforiláció

A légzési lánc és az oxidatív foszforiláció A légzési lánc és az oxidatív foszforiláció Csala Miklós Semmelweis Egyetem Orvosi Vegytani, Molekuláris Biológiai és Patobiokémiai Intézet intermembrán tér Fe-S FMN NADH mátrix I. komplex: NADH-KoQ reduktáz

Részletesebben

Válasz Prof. Dr. Záray Gyula bírálatára

Válasz Prof. Dr. Záray Gyula bírálatára Válasz Prof. Dr. Záray Gyula bírálatára Szeretném megköszönni Záray Gyula professzor úr minden részletre kiterjedő, alapos bírálatát. Professzor úr, a rövidítések és kémiai nevek következetes használatát

Részletesebben

A pályázat keretében a következő kérdéseket kívántuk részleteiben vizsgálni:

A pályázat keretében a következő kérdéseket kívántuk részleteiben vizsgálni: A glikogenolízis és glukoneogenezis utolsó, közös lépését katalizáló glukóz-6-foszfatáz egy enzimrendszer, melyben a katalitikus alegység kevéssé specifikus, különböző foszfátésztereket tud hasítani és

Részletesebben

A bioenergetika a biokémiai folyamatok során lezajló energiaváltozásokkal foglalkozik.

A bioenergetika a biokémiai folyamatok során lezajló energiaváltozásokkal foglalkozik. Modul cím: MEDICINÁLIS ALAPISMERETEK BIOKÉMIA BIOENERGETIKA I. 1. kulcsszó cím: Energia A termodinamika első főtétele kimondja, hogy a különböző energiafajták átalakulhatnak egymásba ez az energia megmaradásának

Részletesebben

Dr. Csala Miklós OTKA NN 75275

Dr. Csala Miklós OTKA NN 75275 Az endoplazmás retikulum piridin-nukleotid rendszerének redox változásai: összefüggés az elhízással, a 2-es típusú diabetes-szel és a metabolikus szindrómával Bevezetés A prohormonnak tekinthető kortizon

Részletesebben

A MITOKONDRIÁLIS ENERGIATERMELŐ FOLYAMATOK VIZSGÁLATA

A MITOKONDRIÁLIS ENERGIATERMELŐ FOLYAMATOK VIZSGÁLATA Biokémiai és Molekuláris Biológiai Intézet Általános Orvostudományi Kar Debreceni Egyetem BIOKÉMIA GYAKORLAT A MITOKONDRIÁLIS ENERGIATERMELŐ FOLYAMATOK VIZSGÁLATA Elméleti háttér Dr. Kádas János 2015 A

Részletesebben

Növényélettani Gyakorlatok A légzés vizsgálata

Növényélettani Gyakorlatok A légzés vizsgálata Növényélettani Gyakorlatok A légzés vizsgálata /Bevezető/ Fotoszintézis Fény-szakasz: O 2, NADPH, ATP Sötétszakasz: Cellulóz keményítő C 5 2 C 3 (-COOH) 2 C 3 (-CHO) CO 2 Nukleotid/nukleinsav anyagcsere

Részletesebben

A fotoszintézis molekuláris biofizikája (Vass Imre, 2000) 39

A fotoszintézis molekuláris biofizikája (Vass Imre, 2000) 39 A fotoszintézis molekuláris biofizikája (Vass Imre, 2000) 39 6. A citokróm b 6 f komplex A két fotokémiai rendszer közötti elektrontranszportot a citokróm b 6 f komplex közvetíti. Funkciója a kétszeresen

Részletesebben

Pro- és antioxidáns hatások szerepe az endoplazmás retikulum eredetű stresszben és apoptózisban

Pro- és antioxidáns hatások szerepe az endoplazmás retikulum eredetű stresszben és apoptózisban Pro- és antioxidáns hatások szerepe az endoplazmás retikulum eredetű stresszben és apoptózisban Az endoplazmás retikulum (ER) számos környezeti és metabolikus hatás szenzora. Mindazon tényezők, melyek

Részletesebben

NÖVÉNYÉLETTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

NÖVÉNYÉLETTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A NÖVÉNYÉLETTAN Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 Auxinok Előadás áttekintése 1. Az auxinok felfedezése: az első növényi hormon 2. Az auxinok kémiai szerkezete és

Részletesebben

09. A citromsav ciklus

09. A citromsav ciklus 09. A citromsav ciklus 1 Alternatív nevek: Citromsav ciklus Citrát kör Trikarbonsav ciklus Szent-Györgyi Albert Krebs ciklus Szent-Györgyi Krebs ciklus Hans Adolf Krebs 2 Áttekintés 1 + 8 lépés 0: piruvát

Részletesebben

T-2 TOXIN ÉS DEOXINIVALENOL EGYÜTTES HATÁSA A LIPIDPEROXIDÁCIÓRA ÉS A GLUTATION-REDOX RENDSZERRE, VALAMINT ANNAK SZABÁLYOZÁSÁRA BROJLERCSIRKÉBEN

T-2 TOXIN ÉS DEOXINIVALENOL EGYÜTTES HATÁSA A LIPIDPEROXIDÁCIÓRA ÉS A GLUTATION-REDOX RENDSZERRE, VALAMINT ANNAK SZABÁLYOZÁSÁRA BROJLERCSIRKÉBEN T-2 TOXIN ÉS DEOXINIVALENOL EGYÜTTES HATÁSA A LIPIDPEROXIDÁCIÓRA ÉS A GLUTATION-REDOX RENDSZERRE, VALAMINT ANNAK SZABÁLYOZÁSÁRA BROJLERCSIRKÉBEN Mézes Miklós a,b, Pelyhe Csilla b, Kövesi Benjámin a, Zándoki

Részletesebben

Vízoldható antioxidánsok kéz a kézben: C-vitamin és Glutation. Szarka András

Vízoldható antioxidánsok kéz a kézben: C-vitamin és Glutation. Szarka András Vízoldható antioxidánsok kéz a kézben: C-vitamin és Glutation MTA doktori értekezés Szarka András Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Alkalmazott Biotechnológia

Részletesebben

Patobiokémia Szarka András, Bánhegyi Gábor

Patobiokémia Szarka András, Bánhegyi Gábor Patobiokémia Szarka András, Bánhegyi Gábor Patobiokémia Szarka András, Bánhegyi Gábor Szerzői jog 2014 Szarka András, Bánhegyi Gábor, Budapesti Műszaki és Gazdaságtudományi Egyetem, Semmelweis Egyetem

Részletesebben

Vízoldaható antioxidánsok döntéshelyzetben

Vízoldaható antioxidánsok döntéshelyzetben 20 Magyar Kémiai Folyóirat Vízoldaható antioxidánsok döntéshelyzetben SZARKA András* DOI: 10.24100/MKF.2018.01.20 Budapesti Mûszaki és Gazdaságtudományi Egyetem, Alkalmazott Biotechnológia és Élelmiszer-tudományi

Részletesebben

[S] v' [I] [1] Kompetitív gátlás

[S] v' [I] [1] Kompetitív gátlás 8. Szeminárium Enzimkinetika II. Jelen szeminárium során az enzimaktivitás szabályozásával foglalkozunk. Mivel a klinikai gyakorlatban használt gyógyszerhatóanyagok jelentős része enzimgátló hatással bír

Részletesebben

Dr. Komáry Zsófia MITOKONDRIUMOK REAKTÍV OXIGÉNSZÁRMAZÉK SZENTÁGOTHAI JÁNOS IDEGTUDOMÁNYI DOKTORI A KÁLCIUM HATÁSA AZ IZOLÁLT SEMMELWEIS EGYETEM

Dr. Komáry Zsófia MITOKONDRIUMOK REAKTÍV OXIGÉNSZÁRMAZÉK SZENTÁGOTHAI JÁNOS IDEGTUDOMÁNYI DOKTORI A KÁLCIUM HATÁSA AZ IZOLÁLT SEMMELWEIS EGYETEM A KÁLCIUM HATÁSA AZ IZOLÁLT MITOKONDRIUMOK REAKTÍV OXIGÉNSZÁRMAZÉK KÉPZÉSÉRE DOKTORI TÉZISEK Dr. Komáry Zsófia SEMMELWEIS EGYETEM SZENTÁGOTHAI JÁNOS IDEGTUDOMÁNYI DOKTORI ISKOLA Dr. Ádám Veronika egyetemi

Részletesebben

A téma címe: Mikroszómális glukóz-6-foszfát szerepe granulocita apoptózisában

A téma címe: Mikroszómális glukóz-6-foszfát szerepe granulocita apoptózisában Témavezető neve: Dr. Kardon Tamás Zoltán A téma címe: Mikroszómális glukóz-6-foszfát szerepe granulocita apoptózisában A kutatás időtartama: 2004-2007 Tudományos háttér A glukóz-6-foszfatáz multienzim-komplex

Részletesebben

A mitokondriális elektrontranszportot befolyásoló Arabidopsis PPR40 fehérje szerpe az abiotikus stresszválaszokban

A mitokondriális elektrontranszportot befolyásoló Arabidopsis PPR40 fehérje szerpe az abiotikus stresszválaszokban Ph.D. disszertáció tézisei A mitokondriális elektrontranszportot befolyásoló Arabidopsis PPR40 fehérje szerpe az abiotikus stresszválaszokban Zsigmond Laura Témavezteı: Dr. Szabados László Arabidopsis

Részletesebben

ZSÍRSAVAK OXIDÁCIÓJA. FRANZ KNOOP német biokémikus írta le először a mechanizmusát. R C ~S KoA. a, R-COOH + ATP + KoA R C ~S KoA + AMP + PP i

ZSÍRSAVAK OXIDÁCIÓJA. FRANZ KNOOP német biokémikus írta le először a mechanizmusát. R C ~S KoA. a, R-COOH + ATP + KoA R C ~S KoA + AMP + PP i máj, vese, szív, vázizom ZSÍRSAVAK XIDÁCIÓJA FRANZ KNP német biokémikus írta le először a mechanizmusát 1 lépés: a zsírsavak aktivációja ( a sejt citoplazmájában, rövid zsírsavak < C12 nem aktiválódnak)

Részletesebben

A citoszolikus NADH mitokondriumba jutása

A citoszolikus NADH mitokondriumba jutása A citoszolikus NADH mitokondriumba jutása Energiaforrásaink Fototróf: fotoszintetizáló élőlények, szerves vegyületeket állítanak elő napenergia segítségével (a fényenergiát kémiai energiává alakítják át)

Részletesebben

Válasz Prof. Dr. Bíró György bírálatára

Válasz Prof. Dr. Bíró György bírálatára Válasz Prof. Dr. Bíró György bírálatára Szeretném megköszönni Bíró György professzor úrnak, hogy elvállalta, igen gyorsan elkészítette dolgozatom bírálatát, kedves szavait, amellyel a dolgozat tartalmát,

Részletesebben

Szénhidrátok monoszacharidok formájában szívódnak fel a vékonybélből.

Szénhidrátok monoszacharidok formájában szívódnak fel a vékonybélből. Vércukorszint szabályozása: Szénhidrátok monoszacharidok formájában szívódnak fel a vékonybélből. Szövetekben monoszacharid átalakítás enzimjei: Szénhidrát anyagcserében máj központi szerepű. Szénhidrát

Részletesebben

A glükóz reszintézise.

A glükóz reszintézise. A glükóz reszintézise. A glükóz reszintézise. A reszintézis nem egyszerű megfordítása a glikolízisnek. A glikolízis 3 irrevezibilis lépése más úton játszódik le. Ennek oka egyrészt energetikai, másrészt

Részletesebben

A piruvát-dehidrogenáz komplex. Csala Miklós

A piruvát-dehidrogenáz komplex. Csala Miklós A piruvát-dehidrogenáz komplex Csala Miklós szénhidrátok fehérjék lipidek glikolízis glukóz aminosavak zsírsavak acil-koa szintetáz e - piruvát acil-koa légz. lánc H + H + H + O 2 ATP szint. piruvát H

Részletesebben

A MITOKONDRIUMOK SZEREPE A SEJT MŰKÖDÉSÉBEN. Somogyi János -- Vér Ágota Első rész

A MITOKONDRIUMOK SZEREPE A SEJT MŰKÖDÉSÉBEN. Somogyi János -- Vér Ágota Első rész A MITOKONDRIUMOK SZEREPE A SEJT MŰKÖDÉSÉBEN Somogyi János -- Vér Ágota Első rész Már több mint 200 éve ismert, hogy szöveteink és sejtjeink zöme oxigént fogyaszt. Hosszú ideig azt hitték azonban, hogy

Részletesebben

A C-vitamin celluláris, intracelluláris transzportja

A C-vitamin celluláris, intracelluláris transzportja ÖSSZEFOGLALÓ KÖZLEMÉNY A C-vitamin celluláris, intracelluláris transzportja Fiziológiai vonatkozások Szarka András dr. 1, 2 Lőrincz Tamás 2 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Orvosi Vegytani

Részletesebben

A FAD transzportjának szerepe. az oxidatív fehérje foldingban. patkány máj mikroszómákban

A FAD transzportjának szerepe. az oxidatív fehérje foldingban. patkány máj mikroszómákban A FAD transzportjának szerepe az oxidatív fehérje foldingban patkány máj mikroszómákban PhD értekezés Varsányi Marianne 2005 Témavezető: Dr. Bánhegyi Gábor Semmelweis Egyetem Orvosi Vegytani, Molekuláris

Részletesebben

Glikolízis. emberi szervezet napi glukózigénye: kb. 160 g

Glikolízis. emberi szervezet napi glukózigénye: kb. 160 g Glikolízis Minden emberi sejt képes glikolízisre. A glukóz a metabolizmus központi tápanyaga, minden sejt képes hasznosítani. glykys = édes, lysis = hasítás emberi szervezet napi glukózigénye: kb. 160

Részletesebben

Mire költi a szervezet energiáját?

Mire költi a szervezet energiáját? Glükóz lebontás Lebontó folyamatok A szénhidrátok és zsírok lebontása során széndioxid és víz keletkezése közben energia keletkezik (a széndioxidot kilélegezzük, a vizet pedig szervezetünkben felhasználjuk).

Részletesebben

Glikolízis. Csala Miklós

Glikolízis. Csala Miklós Glikolízis Csala Miklós Szubsztrát szintű (SZF) és oxidatív foszforiláció (OF) katabolizmus Redukált tápanyag-molekulák Szállító ADP + P i ATP ADP + P i ATP SZF SZF Szállító-H 2 Szállító ATP Szállító-H

Részletesebben

ALLOSZTÉRIKUSAN SZABÁLYOZÓ METABOLITOK HATÁSA A PIRUVÁT-KINÁZ L és M IZOENZIMRE

ALLOSZTÉRIKUSAN SZABÁLYOZÓ METABOLITOK HATÁSA A PIRUVÁT-KINÁZ L és M IZOENZIMRE ALLOSZTÉRIKUSAN SZABÁLYOZÓ METABOLITOK HATÁSA A PIRUVÁT-KINÁZ L és M IZOENZIMRE A glukóz piruváttá (illetve laktáttá) történő átalakulása során (glikolízis), illetve a glukóz reszintézisben (glukoneogenezis)

Részletesebben

Biokémiai és Molekuláris Biológiai Intézet. Mitokondrium. Fésüs László, Sarang Zsolt

Biokémiai és Molekuláris Biológiai Intézet. Mitokondrium. Fésüs László, Sarang Zsolt Biokémiai és Molekuláris Biológiai Intézet Mitokondrium Fésüs László, Sarang Zsolt Energiát (ATP) termelő sejtorganellum. Az ATP termelés oxigén fogyasztással (légzési lánc) és széndioxid termeléssel (molekulák

Részletesebben

NÖVÉNYGENETIKA. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

NÖVÉNYGENETIKA. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A NÖVÉNYGENETIKA Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 A NÖVÉNYEK KÁLIUM TÁPLÁLKOZÁSÁNAK GENETIKAI ALAPJAI előadás áttekintése A kálium szerepe a növényi szervek felépítésében

Részletesebben

Két kevéssé ismert humán ABCG fehérje expressziója és funkcionális vizsgálata: ABCG1 és ABCG4 jellemzése

Két kevéssé ismert humán ABCG fehérje expressziója és funkcionális vizsgálata: ABCG1 és ABCG4 jellemzése Két kevéssé ismert humán ABCG fehérje expressziója és funkcionális vizsgálata: ABCG1 és ABCG4 jellemzése Doktori tézisek Dr. Cserepes Judit Semmelweis Egyetem Molekuláris Orvostudományok Doktori Iskola

Részletesebben

Xenobiotikum transzporterek vizsgálata humán keratinocitákban és bőrben

Xenobiotikum transzporterek vizsgálata humán keratinocitákban és bőrben DOKTORI (PHD) ÉRTEKEZÉS TÉZISEI Xenobiotikum transzporterek vizsgálata humán keratinocitákban és bőrben Bebes Attila Témavezető: Dr. Széll Márta tudományos tanácsadó Szegedi Tudományegyetem Bőrgyógyászati

Részletesebben

A 2-ES TÍPUSÚ CUKORBETEGSÉG ÉS AZ ENDOPLAZMÁS RETIKULUM

A 2-ES TÍPUSÚ CUKORBETEGSÉG ÉS AZ ENDOPLAZMÁS RETIKULUM MTA DOKTORI ÉRTEKEZÉS TÉZISEI A 2-ES TÍPUSÚ CUKORBETEGSÉG ÉS AZ ENDOPLAZMÁS RETIKULUM Dr. Csala Miklós Semmelweis Egyetem Orvosi Vegytani, Molekuláris Biológiai és Patobiokémiai Intézet BUDAPEST 2015 1

Részletesebben

1b. Fehérje transzport

1b. Fehérje transzport 1b. Fehérje transzport Fehérje transzport CITOSZÓL Nem-szekretoros útvonal sejtmag mitokondrium plasztid peroxiszóma endoplazmás retikulum Szekretoros útvonal lizoszóma endoszóma Golgi sejtfelszín szekretoros

Részletesebben

POSZTTRANSZLÁCIÓS MÓDOSÍTÁSOK: GLIKOZILÁLÁSOK

POSZTTRANSZLÁCIÓS MÓDOSÍTÁSOK: GLIKOZILÁLÁSOK POSZTTRANSZLÁCIÓS MÓDOSÍTÁSOK: GLIKOZILÁLÁSOK Dr. Pécs Miklós Budapesti Műszaki és Gazdaságtudományi Egyetem, Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 1 Glikozilálás A rekombináns fehérjék

Részletesebben

Bevezetés a biokémiába fogorvostan hallgatóknak

Bevezetés a biokémiába fogorvostan hallgatóknak Bevezetés a biokémiába fogorvostan hallgatóknak Munkafüzet 14. hét METABOLIZMUS III. LIPIDEK, ZSÍRSAVAK β-oxidációja Szerkesztette: Jakus Péter Név: Csoport: Dátum: Labor dolgozat kérdések 1.) ATP mennyiségének

Részletesebben

MEMBRÁNKONTAKTOR ALKALMAZÁSA AMMÓNIA IPARI SZENNYVÍZBŐL VALÓ KINYERÉSÉRE

MEMBRÁNKONTAKTOR ALKALMAZÁSA AMMÓNIA IPARI SZENNYVÍZBŐL VALÓ KINYERÉSÉRE MEMBRÁNKONTAKTOR ALKALMAZÁSA AMMÓNIA IPARI SZENNYVÍZBŐL VALÓ MASZESZ Ipari Szennyvíztisztítás Szakmai Nap 2017. November 30 Lakner Gábor Okleveles Környezetmérnök Témavezető: Bélafiné Dr. Bakó Katalin

Részletesebben

Az eukarióta sejt energiaátalakító organellumai

Az eukarióta sejt energiaátalakító organellumai A mitokondrium és a kloroplasztisz hasonlósága Az eukarióta sejt energiaátalakító organellumai mitokondrium kloroplasztisz eukarióta sejtek energiaátalakító és konzerváló organellumai Működésükben alapvető

Részletesebben

Az Ames teszt (Salmonella/S9) a nemzetközi hatóságok által a kémiai anyagok minősítéséhez előírt vizsgálat, amellyel az esetleges genotoxikus hatás

Az Ames teszt (Salmonella/S9) a nemzetközi hatóságok által a kémiai anyagok minősítéséhez előírt vizsgálat, amellyel az esetleges genotoxikus hatás Az Ames teszt (Salmonella/S9) a nemzetközi hatóságok által a kémiai anyagok minősítéséhez előírt vizsgálat, amellyel az esetleges genotoxikus hatás kockázatát mérik fel. Annak érdekében, hogy az anyavegyületével

Részletesebben

Növényvédelmi Tudományos Napok 2014

Növényvédelmi Tudományos Napok 2014 Növényvédelmi Tudományos Napok 2014 Budapest 60. NÖVÉNYVÉDELMI TUDOMÁNYOS NAPOK Szerkesztők HORVÁTH JÓZSEF HALTRICH ATTILA MOLNÁR JÁNOS Budapest 2014. február 18-19. ii Szerkesztőbizottság Tóth Miklós

Részletesebben

Zárójelentés. ICP-OES paraméterek

Zárójelentés. ICP-OES paraméterek Zárójelentés Mivel az előző, 9. részfeladat teljesítésekor optimáltuk a mérőrendszer paramétereit, ezért most a korábbi optimált paraméterek mellett, a feladat teljesítéséhez el kellett végezni a módszer

Részletesebben

TRIPSZIN TISZTÍTÁSA AFFINITÁS KROMATOGRÁFIA SEGÍTSÉGÉVEL

TRIPSZIN TISZTÍTÁSA AFFINITÁS KROMATOGRÁFIA SEGÍTSÉGÉVEL TRIPSZIN TISZTÍTÁSA AFFINITÁS KROMATOGRÁFIA SEGÍTSÉGÉVEL Az egyes biomolekulák izolálása kulcsfontosságú a biológiai szerepük tisztázásához. Az affinitás kromatográfia egyszerűsége, reprodukálhatósága

Részletesebben

A mitokondriális DNS és az oxidatív fehérje folding apparátus kapcsolata

A mitokondriális DNS és az oxidatív fehérje folding apparátus kapcsolata BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VEGYÉSZMÉRNÖKI ÉS BIOMÉRNÖKI KAR OLÁH GYÖRGY DOKTORI ISKOLA A mitokondriális DNS és az oxidatív fehérje folding apparátus kapcsolata Tézisfüzet Szerző: Balogh

Részletesebben

MITOCHONDRIUM. Molekuláris sejtbiológia: Dr. habil. Kőhidai László egytemi docens Semmelweis Egyetem, Genetikai, Sejt- és Immunbiológiai Intézet

MITOCHONDRIUM. Molekuláris sejtbiológia: Dr. habil. Kőhidai László egytemi docens Semmelweis Egyetem, Genetikai, Sejt- és Immunbiológiai Intézet Molekuláris sejtbiológia: MITOCHONDRIUM külső membrán belső membrán lemezek / crista matrix Dr. habil. Kőhidai László egytemi docens Semmelweis Egyetem, Genetikai, Sejt- és Immunbiológiai Intézet Tudomány-történet

Részletesebben

VÁLASZ. Dr. Virág László bírálatára

VÁLASZ. Dr. Virág László bírálatára VÁLASZ Dr. Virág László bírálatára Köszönöm, hogy Professzor úr vállalta értekezésem bírálatát. Hálás vagyok az értékelésében foglalt méltató szavakért, és a disszertáció vitára bocsátásának támogatásáért.

Részletesebben

SZENNYVÍZKEZELÉS NAGYHATÉKONYSÁGÚ OXIDÁCIÓS ELJÁRÁSSAL

SZENNYVÍZKEZELÉS NAGYHATÉKONYSÁGÚ OXIDÁCIÓS ELJÁRÁSSAL SZENNYVÍZKEZELÉS NAGYHATÉKONYSÁGÚ OXIDÁCIÓS ELJÁRÁSSAL Kander Dávid Környezettudomány MSc Témavezető: Dr. Barkács Katalin Konzulens: Gombos Erzsébet Tartalom Ferrát tulajdonságainak bemutatása Ferrát optimális

Részletesebben

VEBI BIOMÉRÖKI MŰVELETEK

VEBI BIOMÉRÖKI MŰVELETEK VEB BOMÉRÖK MŰVELETEK Műszaki menedzser BSc hallgatók számára 3 + 1 + 0 óra, részvizsga Előadó: dr. Pécs Miklós egyetemi docens Elérhetőség: F épület, FE lépcsőház földszint 1 (463-) 40-31 pecs@eik.bme.hu

Részletesebben

VEBI BIOMÉRÖKI MŰVELETEK KÖVETELMÉNYEK. Pécs Miklós: Vebi Biomérnöki műveletek. 1. előadás: Bevezetés és enzimkinetika

VEBI BIOMÉRÖKI MŰVELETEK KÖVETELMÉNYEK. Pécs Miklós: Vebi Biomérnöki műveletek. 1. előadás: Bevezetés és enzimkinetika VEB BOMÉRÖK MŰVELETEK Műszaki menedzser BSc hallgatók számára 3 + 1 + 0 óra, részvizsga Előadó: dr. Pécs Miklós egyetemi docens Elérhetőség: F épület, FE lépcsőház földszint 1 (463-) 40-31 pecs@eik.bme.hu

Részletesebben

ció szerepe a pajzsmirigy peroxidáz elleni antitestek szintjében autoimmun pajzsmirigybetegségekben

ció szerepe a pajzsmirigy peroxidáz elleni antitestek szintjében autoimmun pajzsmirigybetegségekben Szója okozta allergiás szenzitizáci ció szerepe a pajzsmirigy peroxidáz elleni antitestek szintjében autoimmun pajzsmirigybetegségekben gekben Dr. Molnár r Ildikó Kenézy Kórház, III.Belgyógy gyászat, Debrecen

Részletesebben

A felvétel és a leadás közötti átalakító folyamatok összességét intermedier - köztes anyagcserének nevezzük.

A felvétel és a leadás közötti átalakító folyamatok összességét intermedier - köztes anyagcserének nevezzük. 1 Az anyagcsere Szerk.: Vizkievicz András Általános bevezető Az élő sejtekben zajló biokémiai folyamatok összességét anyagcserének nevezzük. Az élő sejtek nyílt anyagi rendszerek, azaz környezetükkel állandó

Részletesebben

transzláció DNS RNS Fehérje A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti fehérjék, transzportfehérjék

transzláció DNS RNS Fehérje A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti fehérjék, transzportfehérjék Transzláció A molekuláris biológia centrális dogmája transzkripció transzláció DNS RNS Fehérje replikáció Reverz transzkriptáz A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti

Részletesebben

TRANSZPORTFOLYAMATOK A SEJTEKBEN

TRANSZPORTFOLYAMATOK A SEJTEKBEN 16 A sejtek felépítése és mûködése TRANSZPORTFOLYAMATOK A SEJTEKBEN 1. Sejtmembrán elektronmikroszkópos felvétele mitokondrium (energiatermelõ és lebontó folyamatok) citoplazma (fehérjeszintézis, anyag

Részletesebben

A plazminogén metilglioxál módosítása csökkenti a fibrinolízis hatékonyságát. Léránt István, Kolev Kraszimir, Gombás Judit és Machovich Raymund

A plazminogén metilglioxál módosítása csökkenti a fibrinolízis hatékonyságát. Léránt István, Kolev Kraszimir, Gombás Judit és Machovich Raymund A plazminogén metilglioxál módosítása csökkenti a fibrinolízis hatékonyságát Léránt István, Kolev Kraszimir, Gombás Judit és Machovich Raymund Semmelweis Egyetem Orvosi Biokémia Intézet, Budapest Fehérjék

Részletesebben

Vérszérum anyagcseretermékek jellemzése kezelés alatt lévő tüdőrákos betegekben

Vérszérum anyagcseretermékek jellemzése kezelés alatt lévő tüdőrákos betegekben http://link.springer.com/article/10.1007/s11306-016-0961-5 - Nyitott - Ingyenes Vérszérum anyagcseretermékek jellemzése kezelés alatt lévő tüdőrákos betegekben http://link.springer.com/article/10.1007/s11306-016-0961-5

Részletesebben

A felépítő és lebontó folyamatok. Biológiai alapismeretek

A felépítő és lebontó folyamatok. Biológiai alapismeretek A felépítő és lebontó folyamatok Biológiai alapismeretek Anyagforgalom: Lebontó Felépítő Lebontó folyamatok csoportosítása: Biológiai oxidáció Erjedés Lebontó folyamatok összehasonlítása Szénhidrátok

Részletesebben

Apoptózis. 1. Bevezetés 2. Külső jelút 3. Belső jelút

Apoptózis. 1. Bevezetés 2. Külső jelút 3. Belső jelút Jelutak Apoptózis 1. Bevezetés 2. Külső jelút 3. Belső jelút Apoptózis Sejtmag 1. Kondenzálódó sejtmag apoptózis autofágia nekrózis Lefűződések Összezsugorodás Fragmentálódó sejtmag Apoptotikus test Fagocita

Részletesebben

OTKA ZÁRÓJELENTÉS

OTKA ZÁRÓJELENTÉS NF-κB aktiváció % Annexin pozitív sejtek, 24h kezelés OTKA 613 ZÁRÓJELENTÉS A nitrogén monoxid (NO) egy rövid féléletidejű, számos szabályozó szabályozó funkciót betöltő molekula, immunmoduláns hatása

Részletesebben

Összefoglalók Kémia BSc 2012/2013 I. félév

Összefoglalók Kémia BSc 2012/2013 I. félév Összefoglalók Kémia BSc 2012/2013 I. félév Készült: Eötvös Loránd Tudományegyetem Kémiai Intézet Szerves Kémiai Tanszékén 2012.12.17. Összeállította Szilvágyi Gábor PhD hallgató Tartalomjegyzék Orgován

Részletesebben

A KAR-2, egy antimitotikus ágens egyedi farmakológiájának atomi és molekuláris alapjai

A KAR-2, egy antimitotikus ágens egyedi farmakológiájának atomi és molekuláris alapjai A KAR-2, egy antimitotikus ágens egyedi farmakológiájának atomi és molekuláris alapjai A doktori értekezés tézisei Horváth István Eötvös Loránd Tudományegyetem Biológia Doktori Iskola (A Doktori Iskola

Részletesebben

A zsírszövet mellett az agyvelő lipidekben leggazdagabb szervünk. Pontosabban az agy igen gazdag hosszú szénláncú politelítetlen zsírsavakban

A zsírszövet mellett az agyvelő lipidekben leggazdagabb szervünk. Pontosabban az agy igen gazdag hosszú szénláncú politelítetlen zsírsavakban BEVEZETÉS ÉS A KUTATÁS CÉLJA A zsírszövet mellett az agyvelő lipidekben leggazdagabb szervünk. Pontosabban az agy igen gazdag hosszú szénláncú politelítetlen zsírsavakban (LCPUFA), mint az arachidonsav

Részletesebben

Fentiek alapján a jelen pályázatunk célja a HD kezelt urémiás betegek metilglioxál metabolizmusának vizsgálata volt.

Fentiek alapján a jelen pályázatunk célja a HD kezelt urémiás betegek metilglioxál metabolizmusának vizsgálata volt. A reaktív karbonil vegyületek, mint glioxál, metilglioxál (MG), 3-deoxiglukóz, felhalmozódása urémiás betegekben a karbonil stressz. A karbonil stressz enzim gátlást, fehérje keresztkötések kialakulását

Részletesebben

glutamát felszabadulás gluthation mennyisége

glutamát felszabadulás gluthation mennyisége A kutatómunka lényegében a szerződésben vállaltaknak megfelelő ütemben és eredményességgel folyt, annak ellenére, hogy a résztvevők személye az évek során változott. Kollár Anna a Ph.D tanulmányait feladva

Részletesebben

Magyarkuti András. Nanofizika szeminárium JC Március 29. 1

Magyarkuti András. Nanofizika szeminárium JC Március 29. 1 Magyarkuti András Nanofizika szeminárium - JC 2012. Március 29. Nanofizika szeminárium JC 2012. Március 29. 1 Abstract Az áram jelentős részéhez a grafén csík szélén lokalizált állapotok járulnak hozzá

Részletesebben

Szerkesztette: Vizkievicz András

Szerkesztette: Vizkievicz András A mitokondrium Szerkesztette: Vizkievicz András Eukarióta sejtekben a lebontó folyamatok biológiai oxidáció - nagy része külön sejtszervecskékben, a mitokondriumokban zajlik. A mitokondriumokban folyik

Részletesebben

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53 Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika

Részletesebben

Dr. Csala Miklós. Tudományos Publikációk Jegyzéke

Dr. Csala Miklós. Tudományos Publikációk Jegyzéke Dr. Csala Miklós Tudományos Publikációk Jegyzéke A közlemények száma kategóriánként közlemények egyszerzős első- / utolsószerzős társszerzős összesen könyvfejezet - 3 1 4 tankönyvfejezet, egyetemi jegyzet

Részletesebben

Membrántranszport. Gyógyszerész előadás Dr. Barkó Szilvia

Membrántranszport. Gyógyszerész előadás Dr. Barkó Szilvia Membrántranszport Gyógyszerész előadás 2017.04.10 Dr. Barkó Szilvia Sejt membránok A sejtmembrán funkciói Védelem Kommunikáció Molekulák importja és exportja Sejtmozgás Általános szerkezet Lipid kettősréteg

Részletesebben

Az antioxidánsok és a poli(adp-ribóz) polimeráz szerepe a gabonafélék abiotikus stresszek által indukált öregedésében. Részletes jelentés

Az antioxidánsok és a poli(adp-ribóz) polimeráz szerepe a gabonafélék abiotikus stresszek által indukált öregedésében. Részletes jelentés Az antioxidánsok és a poli(adp-ribóz) polimeráz szerepe a gabonafélék abiotikus stresszek által indukált öregedésében 1. Bevezetés Részletes jelentés A kedvezőtlen környezeti hatások, illetve az általuk

Részletesebben

MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI A SZÉNHIDRÁTOK 1. kulcsszó cím: SZÉNHIDRÁTOK

MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI A SZÉNHIDRÁTOK 1. kulcsszó cím: SZÉNHIDRÁTOK Modul cím: MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI A SZÉNHIDRÁTOK 1. kulcsszó cím: SZÉNHIDRÁTOK A szénhidrátok általános képlete (CH 2 O) n. A szénhidrátokat két nagy csoportra oszthatjuk:

Részletesebben

folsav, (a pteroil-glutaminsav vagy B 10 vitamin) dihidrofolsav tetrahidrofolsav N CH 2 N H H 2 N COOH

folsav, (a pteroil-glutaminsav vagy B 10 vitamin) dihidrofolsav tetrahidrofolsav N CH 2 N H H 2 N COOH folsav, (a pteroil-glutaminsav vagy B 10 vitamin) 2 2 2 2 pirimidin rész pirazin rész aminobenzoesav rész glutaminsav rész pteridin rész dihidrofolsav 2 2 2 2 tetrahidrofolsav 2 2 2 2 A dihidrofolát-reduktáz

Részletesebben

DOKTORI ÉRTEKEZÉS TÉZISEI AZ OPPORTUNISTA HUMÁNPATOGÉN CANDIDA PARAPSILOSIS ÉLESZTŐGOMBA ELLENI TERMÉSZETES ÉS ADAPTÍV IMMUNVÁLASZ VIZSGÁLATA

DOKTORI ÉRTEKEZÉS TÉZISEI AZ OPPORTUNISTA HUMÁNPATOGÉN CANDIDA PARAPSILOSIS ÉLESZTŐGOMBA ELLENI TERMÉSZETES ÉS ADAPTÍV IMMUNVÁLASZ VIZSGÁLATA DOKTORI ÉRTEKEZÉS TÉZISEI AZ OPPORTUNISTA HUMÁNPATOGÉN CANDIDA PARAPSILOSIS ÉLESZTŐGOMBA ELLENI TERMÉSZETES ÉS ADAPTÍV IMMUNVÁLASZ VIZSGÁLATA TÓTH ADÉL TÉMAVEZETŐ: DR. GÁCSER ATTILA TUDOMÁNYOS FŐMUNKATÁRS

Részletesebben

A nitrogén körforgalma. A környezetvédelem alapjai május 3.

A nitrogén körforgalma. A környezetvédelem alapjai május 3. A nitrogén körforgalma A környezetvédelem alapjai 2017. május 3. A biológiai nitrogén körforgalom A nitrogén minden élő szervezet számára nélkülözhetetlen, ún. biogén elem Részt vesz a nukleinsavak, a

Részletesebben

sejt működés jovo.notebook March 13, 2018

sejt működés jovo.notebook March 13, 2018 1 A R É F Z S O I B T S Z E S R V E Z D É S I S E Z I N E T E K M O I B T O V N H C J W W R X S M R F Z Ö R E W T L D L K T E I A D Z W I O S W W E T H Á E J P S E I Z Z T L Y G O A R B Z M L A H E K J

Részletesebben

Zárójelentés. A) A cervix nyújthatóságának (rezisztencia) állatkísérletes meghatározása terhes és nem terhes patkányban.

Zárójelentés. A) A cervix nyújthatóságának (rezisztencia) állatkísérletes meghatározása terhes és nem terhes patkányban. Zárójelentés A kutatás fő célkitűzése a β 2 agonisták és altípus szelektív α 1 antagonisták hatásának vizsgálata a terhesség során a patkány cervix érésére összehasonlítva a corpusra gyakorolt hatásokkal.

Részletesebben

Jelutak. Apoptózis. Apoptózis Bevezetés 2. Külső jelút 3. Belső jelút. apoptózis autofágia nekrózis. Sejtmag. Kondenzálódó sejtmag

Jelutak. Apoptózis. Apoptózis Bevezetés 2. Külső jelút 3. Belső jelút. apoptózis autofágia nekrózis. Sejtmag. Kondenzálódó sejtmag Jelutak Apoptózis 1. Bevezetés 2. Külső jelút 3. Belső jelút Apoptózis Sejtmag Kondenzálódó sejtmag 1. autofágia nekrózis Lefűződések Összezsugorodás Fragmentálódó sejtmag Apoptotikus test Fagocita bekebelezi

Részletesebben

megerősítik azt a hipotézist, miszerint az NPY szerepet játszik az evés, az anyagcsere, és az alvás integrálásában.

megerősítik azt a hipotézist, miszerint az NPY szerepet játszik az evés, az anyagcsere, és az alvás integrálásában. Az első két pont a növekedési hormon (GH)-felszabadító hormon (GHRH)-alvás témában végzett korábbi kutatásaink eredményeit tartalmazza, melyek szervesen kapcsolódnak a jelen pályázathoz, és már ezen pályázat

Részletesebben

BIOKÉMIA. A Magyar Biokémiai Egyesület tájékoztatója Quarterly Bulletin of the Hungarian Biochemical Society

BIOKÉMIA. A Magyar Biokémiai Egyesület tájékoztatója Quarterly Bulletin of the Hungarian Biochemical Society BIKÉMIA A Magyar Biokémiai Egyesület tájékoztatója Quarterly Bulletin of the Hungarian Biochemical Society Szerkesztôbizottság: ALKNYI ISTVÁN, BÁNFALVI GÁSPÁR, FALUS ANDRÁS, FÉSÜS LÁSZLÓ, GERGELY PÁL,

Részletesebben

Módszer az ASEA-ban található reaktív molekulák ellenőrzésére

Módszer az ASEA-ban található reaktív molekulák ellenőrzésére Módszer az ASEA-ban található reaktív molekulák ellenőrzésére Az ASEA-ban található reaktív molekulák egy komplex szabadalmaztatott elektrokémiai folyamat, mely csökkenti és oxidálja az alap sóoldatot,

Részletesebben

Az AT 1A -angiotenzinreceptor G-fehérjétől független jelátvitelének vizsgálata C9 sejtekben. Doktori tézisek. Dr. Szidonya László

Az AT 1A -angiotenzinreceptor G-fehérjétől független jelátvitelének vizsgálata C9 sejtekben. Doktori tézisek. Dr. Szidonya László Az AT 1A -angiotenzinreceptor G-fehérjétől független jelátvitelének vizsgálata C9 sejtekben Doktori tézisek Dr. Szidonya László Semmelweis Egyetem Molekuláris Orvostudományok Doktori Iskola Témavezető:

Részletesebben

A mitokondriumok felépítése

A mitokondriumok felépítése A mitokondrium ok minden eukarióta sejtben megtalálhatók és alapvető funkciójuk a kémiai energia átalakítása illetve termelése. Evolúciós eredetét tekintve prokarióta származású organellum, ami egy aerob

Részletesebben

Az Oxidatív stressz hatása a PIBF receptor alegységek összeszerelődésére.

Az Oxidatív stressz hatása a PIBF receptor alegységek összeszerelődésére. Újabban világossá vált, hogy a Progesterone-induced blocking factor (PIBF) amely a progesteron számos immunológiai hatását közvetíti, nem csupán a lymphocytákban és terhességgel asszociált szövetekben,

Részletesebben

A peroxinitrit és a capsaicin-szenzitív érző idegek szerepe a szívizom stressz adaptációjában

A peroxinitrit és a capsaicin-szenzitív érző idegek szerepe a szívizom stressz adaptációjában A peroxinitrit és a capsaicin-szenzitív érző idegek szerepe a szívizom stressz adaptációjában Dr. Bencsik Péter Ph.D. tézis összefoglaló Kardiovaszkuláris Kutatócsoport Biokémiai Intézet Általános Orvostudományi

Részletesebben

Glukuronidtranszport az endoplazmás retikulumban. Doktori tézisek. Dr. Révész Katalin. Semmelweis Egyetem Molekuláris Orvostudományok Doktori Iskola

Glukuronidtranszport az endoplazmás retikulumban. Doktori tézisek. Dr. Révész Katalin. Semmelweis Egyetem Molekuláris Orvostudományok Doktori Iskola Glukuronidtranszport az endoplazmás retikulumban Doktori tézisek Dr. Révész Katalin Semmelweis Egyetem Molekuláris Orvostudományok Doktori Iskola Témavezető: Dr. Csala Miklós egyetemi docens, Ph.D. Hivatalos

Részletesebben

jobb a sejtszintű acs!!

jobb a sejtszintű acs!! Metabolikus stresszválasz jobb a sejtszintű acs!! dr. Ökrös Ilona B-A-Z Megyei Kórház és Egyetemi Oktató Kórház Miskolc Központi Aneszteziológiai és Intenzív Terápiás Osztály Az alkoholizmus, A fiziológiás

Részletesebben