Egyesíthető prioritási sor

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Egyesíthető prioritási sor"

Átírás

1 Egyesíthető prioritási sor Értékhalmaz: EPriSor = S E, E-n értelmezett a lineáris rendezési reláció. Műveletek: S,S 1,S 2 : EPriSor, x : E {Igaz} Letesit(S, ) {S = /0} {S = S} Megszuntet(S) {} {S = S} Uresit(S) {S = /0} {S = S} SorBa(S,x) {S = Pre(S) {x}} {S /0} SorBol(S,x) {x = min(pre(s)) Pre(S) = S {x}} {S = {a 1,...,a n }} Elemszam(S) {Elemszam = n} {S /0} Elso(S,x) {x = min(pre(s)) Pre(S) = S} {S /0} Torol(S) {S = Pre(S) \ {min(pre(s))}} {S 1 = S 1,S 2 = S 2 } Egyesit(S 1,S 2,S) {S = Pre(S 1 ) Pre(S 2 ) S 1 = /0 S 2 = /0}} Módosítható EPriSort vizsgálunk, amelyben használjuk a KulcsotCsokkent(S,x,k) műveletet, ami x kulcsát a k értékre csökkenti, ha k < kulcs(x), és az műveletet, amely az x elemet törli az egyesíthető prioritási sorból. Mindkét műveletnél feltesszük, hogy x-et egy rá mutató pointer adja meg. Binomiális fák A binomiális fákat a következő rekurzív definícióval adhatjuk meg. A B 0 fa egyetlen pontot tartalmaz. A B k fa (k 1) pedig két összekapcsolt B k 1 fából áll, az egyik fa gyökércsúcsa a másik fa gyökércsúcsának a legbaloldalibb gyereke lesz. Lemma B i -re a következő állítások teljesülnek i 1 esetén: 1. 2 i pontja van 2. magassága i 3. az j-edik szinten ( i j) pontja van 4. jobbról-balra a gyökér j-edik fia B j 1, j = 1,...,i Bizonyítás. Teljes indukcióval. Az indukciós lépés a 3. tulajdonság esetén a binomiális együtthatók ismert ( ) ( ) ( ) i 1 i 1 i + = j j 1 j összefüggése alapján adódik, a többi tulajdonság esetén nyilvánvaló. Binomiális kupac Definíció: Egy fát kupacnak nevezünk, ha minden pontra igaz, hogy a kulcsa nem nagyobb a fiai kulcsainak a minimumánál. Definíció: Egy S binomiális kupac binomiális fák olyan {B 1,...,B k } sorozata, amelyre teljesül: 1. Minden B i binomiális fa. 1

2 2. Minden B i fa kupac. 3. Nincs két azonos fokszámú fa a sorozatban. 4. A fák fokszám szerint növekvőek a sorozatban. A binomiális fák pontszámára vonatkozó lemma alapján: Következmény: Minden n pontú {F 1,...,F k } binomiális kupac esetén k log 2 n. Az egyes binomiális fákat elsőfiú testvér ábrázolással tároljuk. A binomiális fák gyökérelemeit egy láncban tároljuk, amelynek kezdőpontját Fej(S) adja meg, a láncban a rákövetkező elemre a testver mutató mutat. Elso(S,x) A gyökérlista elemein kell végigmenni és kiválasztani a minimálisat. Elso(S,x) x:=nil y:=fej(s) min:=inf while(y!=nil) if kulcs(y)<min then min:=kulcs(y) x:=y y:=testver(y) return x A futási idő a gyökérlista hosszával arányos, így legrosszabb esetben O(logn). Egyesit(S,Q,R) Az egyesítés során többször használjuk két B k 1 fa összekapcsolását, az alábbi eljárás az y gyökércsúcsú fát rakja a z gyökércsúcsú fa alá. BinKapcsol(y,z) apa(y):=z testver(y):=efiu(z) Efiu(z):=y fokszam(z):=fokszam(z)+1 Szintén használjuk a BinKupFesul(S,Q) eljárást, amely S-nek és Q-nak a gyökérlistáját fésüli össze, a fokszám szerint. Az Egyesit algoritmus elsőként összefésüli a két gyökérlistát, majd végigmegy a közös listán, és a BinKapcsol eljárás segítségével gondoskodik róla, hogy ne legyen olyan fokszám, amely fokszámhoz két binomiális fa is tartozik. Az alapgondolat az, hogy ha az adott fokszámmal kettő fa van, akkor összekapcsolja őket egy nagyobb fokszámúvá, ha pedig három van (ilyen eset két fa összekapcsolása után jöhet létre), akkor a másodikat és harmadikat kapcsolja össze. Az algoritmus futási ideje O(log(n), mivel az összefésülésnél csak egyszer kell végigmenni a két listán, majd az Egyesit eljárásban egyszer az összefésült listán. 2

3 Egyesit(S,P,Q) Letesit(Q: EPriSor(BinKupac)) fej(q):=binkupfesul(s,p) If fej(q):=nil then Return Q megeloz(x):=nil x:=fej(q) kovet(x):=testver(x) while(kovet(x)!=nil) if (fokszam(x)!=fokszam(kovet(x))or (tesver(kovet(x)!=nil) and fokszam(testver(kovet(x)))=fokszam(x)) then megeloz(x):=x x:=kovet(x) else if kulcs(x)<kulcs(kovet(x)) then testver(x):=testver(kovet(x)) BinKapcsol(kovet(x),x) else if megeloz(x)=nil then fej(q):=kovet(x) else testver(megeloz(x)):=kovet(x) BinKapcsol(x,kovet(x)) x:=kovet(x) kovet(x):=testver(x) Return(Q) Sorba(S,x) A binomiális kupacba úgy szúrunk be elemet, hogy létrehozunk egy az elemből álló kupacot majd egyesítjük a binomiális kupaccal. Letesit(S : EPriSor(BinKupac)) apa(x):=nil Efiu(x):=Nil Testver(x):=Nil fokszam(x):=0 Fej(S ):=x Egyesit(S,S,S) Return(S) Mivel a végrehajtás során az Egyesit művelet adja meg az időigényt, ezért az O(logn). SorBol(S,x) 1. S gyökérlistájában a minimális elemet megkeressük (mint az Elso(S,x) műveletben), elmentjük az x változóban és töröljük a gyökérlistából. 2. S fiainak a láncában az elemek sorrendjét fordítsuk meg, az így kapott binomiális kupac legyen S. 3. Hajtsuk végre az Egyesit(S,S,S) eljárást. Az algoritmus futási ideje O(log(n), mivel az 1. lépés konstans idejű, a 2.-ben egy O(log(n)) méretű listát fordítunk meg, a 3 lépésben két legfeljebb log 2 (n) méretű binomiális kupacot egyesítünk. A Torol(S) eljárás pontosan így működik, csak nem menti el a minimális elemet az x változóban. Kulcsot csökkent 3

4 Az algoritmus a kupac MaxKupacol eljárásához hasonló ötlet alapján cserékkel felfele mozgatja az elemet addig, amíg a kupac tulajdonság helyre nem áll. KulcsotCsokkent(S,x,k) if k>kulcs(x) Then write "hibas adat" return kulcs(x):=k y:=x z:=apa(x) while(z!=nil and kulcs(y)<kulcs(z)) Csere(kulcs(y),kulcs(z)) ha van további adat azt is cseréljük y:=z z:=apa(y) Mivel minden fa mélysége O(log(n)), ezért az eljárás futási ideje is O(log(n)). Az algoritmus átállítja a törlendő elem kulcsát -re majd a minimális elemet (amely az átállítást követően a törlendő elem kivágja). KulcsotCsokkent(S,x,-Inf) Torol(S) Az algoritmus futási ideje O(logn), mivel a felhasznált eljárásoké annyi. Fibonacci kupac Definíció: A Fibonacci-kupac fák egy olyan S = {F 1,...,F k,} sorozata, ahol minden F i fa kupac. A fák gyökérelemeit egy kétirányú körláncban tároljuk, a Fibonacci kupacot egy a minimális elemére mutató min(s) mutatóval adjuk meg. Az egyes fákat egy olyan adatszerkezetben tároljuk, ahol egy pont fiai kétirányú körláncban vannak eltárolva. Tehát egy fapont a Fibonacci kupacban a következő mutatókkal rendelkezik: apa, Efiu, bal, jobb. Továbbá hozzárendelünk a pontokhoz két további értéket fokszam(x) x fiainak számát adja meg, megjelol(x) egy boolean érték, ami akkor igaz, ha x már vesztette el fiát azóta, hogy a jelenlegi apja fia lett. Futási idők elemzése A Fibonacci kupac esetén jobb korlátokat kapunk az egyes műveletek futási idejére, de ezek az átlagolt, amortizált költségekre vonatkoznak. Az egyes műveletek amortizált költségelemzését a következő potenciálfüggvény segítségével hajtjuk végre Φ(S) = t(s) + 2m(S), ahol t(s) az S gyökérlistájában levő fák számát, m(s) pedig a megjelölt pontok számát jelöli. Továbbá n(s) adja meg a Fibonacci kupacban levő elemek számát. 4

5 Az amortizált elemzés során feltételezzük, hogy adott egy D(n) felső korlát az n pontot tartalmazó Fibonacci kupacban szereplő csúcsok maximális fokszámára. Igazolni fogjuk, hogy D(n) = O(log(n)). Egyesít(S,Q,R) Az Egyesít művelet során a gyökérlistákat tartalmazó két körláncot kell egyesíteni, majd a min(s) és min(q) pontok közül a kisebb kulcsot tartalmazó pontot választjuk az egyesített gyökérlista kijelölt minimum pontjának. A művelet költsége. A potenciál változása: Φ(R) (Φ(S) + Φ(Q)) = (t(r) + 2m(R)) ((t(s) + 2m(S)) + (t(r) + 2m(R))) = 0, hiszen t(r) = t(s) +t(q) és m(r) = m(s) + m(q). Ezért az amortizált költség a tényleges költséggel egyenlő, azaz O(1). SORBA(S,x) Képezzünk a beszúrandó x elemből egy egypontú fát, majd az ebből a fából álló Fibonacci kupacot egyesítsük S-el. A művelet költsége. A potenciál változása: ((t(s)+1)+2m(s)) (t(s)+2m(s)) = 1. A tényleges költség O(1), így az amortizált költség O(1) + 1 = O(1). Sorbol(S,x) Az algoritmus a minimum elem fiait átrakja a gyökérlistába, majd végrehajtja a KIEGYENLIT eljárást. Sorbol(S,x) z:=min(s) if z=nil then return z for z minden x fiára x-et tegyük S gyökérlistájába apa(x):=nil vegyük ki z-t S gyökérlistájából if z=jobb(z) /egy pont volt a fában then min(s):=nil else min(s):=jobb(z) Kiegyenlit(S) n(s):=n(s)-1; A Kiegyenlit használja a FibKupSzerk(S,y,x) eljárást, ami az y gyökerű fát berakja az x gyökerű fa alá. Továbbá felhasznál egy A tömböt, amelynek a mérete D(n) és amelyre A[i] az i fokszámú fát fogja tartalmazni. KIEGYENLIT(S) for i:=1 to D(n) A[i]:=Nil for S minden w fájára x:=w; d:=x.fokszam; while (A[d]!=Nil) y:=a[d] /x-el egyező fokszámú csúcs if x.kulcs > y.kulcs then Csere(x,y) KupacotSzerkeszt(H,y,x); A[d]:=Nil; d:=d+1; 5

6 A[d]:=x; min(s):=nil for i:=1 to D(n) if A[i]!=Nil then tegyük A[i]-t S gyökérlistájába if (min(s)=nil) or (kulcs(a[i])< kulcs(min(s))) then min(s):=a[i] KupacotSzerkeszt(S,y,x) vegyük ki y-t S-ből tegyük y-t x egy fiává és növeljük x fokszámát megjelol(x):=hamis; Művelet költsége: A SorBol művelet amortizált költsége O(D(n)). Az egyesített gyökérlista mérete legfeljebb D(n) + t(s) 1, így a tényleges költség O(D(n) + t(s)). A potenciál a minimális pont kivágása előtt t(s) + 2m(S), a KIEGYENLIT végrehajtása után D(n) m(S). Tehát az amortizált költség O(D(n) +t(s)) + ((D(n) + 1) + 2m(S)) (t(s) + 2m(S)) = O(D(n)) + O(t(S)) t(s). Amely költség O(D(n)) nagyságrendű, ha a potenciálfüggvényt konstanszorosára növeljük úgy, hogy dominálja az O(t(S))-ben szereplő konstanst. Kulcsot csökkent Az algoritmus kivágja az adott elemet, ha sérül a kupactulajdonság, továbbá a KASZKÁD-VÁGÁS algoritmus segítségével gondoskodik arról, hogy ne legyen olyan pont, ami több fiát is elveszti. KulcsotCsokkent(S,x,k) if k>kulcs(x) Then write "hibas adat" return kulcs(x):=k y:=apa(x) if y!=nil and kulcs(x)<kulcs(y) Then KIVÁG(S,x,y) KASZKÁD-VÁGÁS(S,y) if kulcs(x)<kulcs(min(s)) Then min(s):=x KIVÁG(S,x,y) vegyük ki x-et y fiainak listájából tegyük bele x-et S gyökérlistájába apa(x):=nil megjelol(x):=hamis KASZKÁD-VÁGÁS(S,y) z:=apa(y) If z!=nil then if megjelol(y)=hamis then megjelol(y):=igaz else KIVÁG(S,y,z) KASZKÁD-VÁGÁS(S,z) 6

7 Amortizált költség: Legyen c azon csúcsok száma, amelyeket felhelyezünk a gyökérlistába. A KulcsotCsokkent eljárás tényleges költsége O(c). Vizsgáljuk a potenciál változását. Az új Fibonacci kupac gyökérlistájában c új csúcs szerepel, így a potenciálfüggvény első része c-vel nő, másrészt a KASZKÁD-VÁGÁSOK során c-1 megjelölt csúcs jelöletlenné válik, és egy jelöletlen jelölté, így a második rész 2(c 2)-vel csökken. Következésképpen a potenciál értéke c-4-el csökken. Így az amortizált költség konstans lesz, ha a potenciálfüggvényt konstansszorosára növeljük úgy, hogy dominálja az O(c) valós költségben szereplő konstanst. Az algoritmus átállítja a törlendő elem kulcsát -re majd a minimális elemet (amely az átállítást követően a törlendő elem kivágja). KulcsotCsokkent(S,x,-Inf) Torol(S) Az algoritmus futási ideje O(logn), mivel a felhasznált eljárásoké annyi. 7

Módosítható Prioritási sor Binomiális kupaccal. Wednesday, March 21, 12

Módosítható Prioritási sor Binomiális kupaccal. Wednesday, March 21, 12 Módosítható Prioritási sor Binomiális kupaccal modosit(x,k) {! if (k>x.kulcs) {!! x.kulcs=k ;!! y=x!! z=x.apa ;!! while(z!=nil and y.kulcs

Részletesebben

Adatszerkezet - műveletek

Adatszerkezet - műveletek Adatszerkezet - műveletek adatszerkezet létrehozása adat felvétele adat keresése adat módosítása adat törlése elemszám visszaadása minden adat törlése (üresít) adatszerkezet felszámolása (megszüntet) +

Részletesebben

Egyesíthető prioritási sor

Egyesíthető prioritási sor Egyesíthető prioritási sor Értékhalmaz: EPriSor = S E, E-n értelmezett a lineáris rendezési reláció. Műveletek: S,S 1,S 2 : EPriSor, x : E {Igaz} Letesit(S, ) {S = /0} {S = S} Megszuntet(S) {} {S = S}

Részletesebben

ÖNSZERVEZŐ BINÁRIS KERESŐFÁK HATÉKONYSÁGA

ÖNSZERVEZŐ BINÁRIS KERESŐFÁK HATÉKONYSÁGA ÖNSZERVEZŐ BINÁRIS KERESŐFÁK HATÉKONYSÁGA Tétel: Ha a halmazok ábrázolására önszervező bináris keresőfát használunk, akkor minden α 1,...,α m műveletsor, ahol i {1..m}: α i {keres;bovit;torol;vag;egyesit}

Részletesebben

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1] Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.

Részletesebben

Számláló rendezés. Példa

Számláló rendezés. Példa Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással való összehasonlítása alapján működik leírja egy bináris döntési fa. Az algoritmus által a

Részletesebben

Algoritmusok és adatszerkezetek gyakorlat 07

Algoritmusok és adatszerkezetek gyakorlat 07 Algoritmusok és adatszerkezetek gyakorlat 0 Keresőfák Fák Fa: összefüggő, körmentes gráf, melyre igaz, hogy: - (Általában) egy gyökér csúcsa van, melynek 0 vagy több részfája van - Pontosan egy út vezet

Részletesebben

1. ábra. Egy rekurzív preorder bejárás. Egy másik rekurzív preorder bejárás

1. ábra. Egy rekurzív preorder bejárás. Egy másik rekurzív preorder bejárás Preorder ejárás Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban lévő adatokra.

Részletesebben

Az absztrakt adattípus egy (E,M) párral adható meg, ahol E az értékhalmaz, M a műveletek halmaza. Fő tulajdonságok. Verem

Az absztrakt adattípus egy (E,M) párral adható meg, ahol E az értékhalmaz, M a műveletek halmaza. Fő tulajdonságok. Verem Előadás részvétel igazolása Az előadáson való részvételt az előadáson kapott kódnak az alábbi oldalra való feltöltésével lehet igazolni. http://www.inf.u-szeged.hu/~tnemeth/alg1ics/ Az adatkezelés szintjei

Részletesebben

Megoldás meghatározása Ez a szakasz kitölti a c és S táblázatokat, a kiíratás S alapján egy rekurzív algoritmussal megtehető.

Megoldás meghatározása Ez a szakasz kitölti a c és S táblázatokat, a kiíratás S alapján egy rekurzív algoritmussal megtehető. Leghosszabb közös részsorozat Egy sorozat, akkor részsorozata egy másiknak, ha abból elemeinek elhagyásával megkapható. A feladat két sorozat X = (x 1,...,x m ) és Y = (y 1,...,y n ) leghosszabb közös

Részletesebben

Kupac adatszerkezet. 1. ábra.

Kupac adatszerkezet. 1. ábra. Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.

Részletesebben

Hátizsák feladat. Példa: A tárgyak (súly, fontosság) párokban (4,6) (3,5) (2,3) (2,3) a hátizsák kapacitása 8.

Hátizsák feladat. Példa: A tárgyak (súly, fontosság) párokban (4,6) (3,5) (2,3) (2,3) a hátizsák kapacitása 8. Hátizsák feladat Egy adott hátizsákba tárgyakat akarunk pakolni. Adott n tárgy minden tárgynak van egy fontossági értéke ( f [i]), és egy súlya (s[i]), a hátizsákba maximum összesen S súlyt pakolhatunk.

Részletesebben

Hátizsák feladat. Példa: A tárgyak (súly, fontosság) párokban (4,6) (3,5) (2,3) (2,3) a hátizsák kapacitása 8.

Hátizsák feladat. Példa: A tárgyak (súly, fontosság) párokban (4,6) (3,5) (2,3) (2,3) a hátizsák kapacitása 8. Hátizsák feladat Egy adott hátizsákba tárgyakat akarunk pakolni. Adott n tárgy minden tárgynak van egy fontossági értéke ( f [i]), és egy súlya (s[i]), a hátizsákba maximum összesen S súlyt pakolhatunk.

Részletesebben

Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar

Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar Algoritmizálás Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 0.1. Az algoritmikus tudás szintjei Ismeri (a megoldó algoritmust) Érti Le tudja pontosan

Részletesebben

B-fa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor.

B-fa. Felépítés, alapvető műveletek. Programozás II. előadás.  Szénási Sándor. B-fa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar B-fa Felépítése Beszúrás művelete Törlés

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

A MAXIMUM-KUPACOL eljárás helyreállítja az A[i] elemre a kupactulajdonságot. Az elemet süllyeszti cserékkel mindaddig, amíg a tulajdonság sérül.

A MAXIMUM-KUPACOL eljárás helyreállítja az A[i] elemre a kupactulajdonságot. Az elemet süllyeszti cserékkel mindaddig, amíg a tulajdonság sérül. Kiválasztás kupaccal A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.

Részletesebben

10. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28.

10. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28. 10. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28. 2-3 fák Hatékony keresőfa-konstrukció. Ez is fa, de a binárisnál annyival bonyolultabb hogy egy nem-levél csúcsnak 2 vagy 3 fia

Részletesebben

Bináris keresőfák. Adat : M Elemtip és Elemtip-on értelmezett egy lineáris rendezési reláció,

Bináris keresőfák. Adat : M Elemtip és Elemtip-on értelmezett egy lineáris rendezési reláció, Bináris keresőfák Az F = (M,R,Adat) absztrakt adatszerkezetet bináris keresőfának nevezzük, ha F bináris fa, R = {bal, jobb, apa}, bal, jobb, apa : M M, Adat : M Elemtip és Elemtip-on értelmezett egy lineáris

Részletesebben

Online migrációs ütemezési modellek

Online migrációs ütemezési modellek Online migrációs ütemezési modellek Az online migrációs modellekben a régebben ütemezett munkák is átütemezhetőek valamilyen korlátozott mértékben az új munka ütemezése mellett. Ez csökkentheti a versenyképességi

Részletesebben

... fi. ... fk. 6. Fabejáró algoritmusok Rekurzív preorder bejárás (elsőfiú-testvér ábrázolásra)

... fi. ... fk. 6. Fabejáró algoritmusok Rekurzív preorder bejárás (elsőfiú-testvér ábrázolásra) 6. Fabejáró algoritmusok Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban

Részletesebben

7 7, ,22 13,22 13, ,28

7 7, ,22 13,22 13, ,28 Általános keresőfák 7 7,13 13 13 7 20 7 20,22 13,22 13,22 7 20 25 7 20 25,28 Általános keresőfa Az általános keresőfa olyan absztrakt adatszerkezet, amely fa és minden cellájában nem csak egy (adat), hanem

Részletesebben

Edényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n).

Edényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n). Edényrendezés Tegyük fel, hogy a rendezendő H = {a 1,...,a n } halmaz elemei a [0,1) intervallumba eső valós számok. Vegyünk m db vödröt, V [0],...,V [m 1] és osszuk szét a rendezendő halmaz elemeit a

Részletesebben

Ugrólisták. RSL Insert Example. insert(22) with 3 flips. Runtime?

Ugrólisták. RSL Insert Example. insert(22) with 3 flips. Runtime? Ugrólisták Ugrólisták Ugrólisták Ugrólisták RSL Insert Example insert(22) with 3 flips 13 8 29 20 10 23 19 11 2 13 22 8 29 20 10 23 19 11 2 Runtime? Ugrólisták Empirical analysis http://www.inf.u-szeged.hu/~tnemeth/alga2/eloadasok/skiplists.pdf

Részletesebben

Algoritmuselmélet 2. előadás

Algoritmuselmélet 2. előadás Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés

Részletesebben

A Verem absztrakt adattípus

A Verem absztrakt adattípus A Verem absztrakt adattípus Értékhalmaz: E Verem = [a 1,...,a n : a i E,i = 1,...,n,] Műveletek: V : Verem, x : E {Igaz} Letesit(V) {V = []} {V = V } Megszuntet(V) {Igaz} {V = V } Uresit(V) {V = []} {V

Részletesebben

Önszervező bináris keresőfák

Önszervező bináris keresőfák Önszervező bináris keresőfák Vágható-egyesíthető halmaz adattípus H={2,5,7,11,23,45,75} Vag(H,23) Egyesit(H1,H2) H1= {2,5,7,11} H2= {23,45,75} Vágás A keresési útvonal mentén feldaraboljuk a fát, majd

Részletesebben

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Bináris keresőfa, kupac Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Példa 30 14, 22 55,

Példa 30 14, 22 55, Piros-Fekete fák 0 Példa 14, 22 55, 77 0 14 55 22 77 Piros-Fekete fák A piros-fekete fa olyan bináris keresőfa, amelynek minden pontja egy extra bit információt tartalmaz, ez a pont színe, amelynek értékei:

Részletesebben

Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek

Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Tömb Ugyanolyan típusú elemeket tárol A mérete előre definiált kell legyen és nem lehet megváltoztatni futás során Legyen n a tömb mérete. Ekkor:

Részletesebben

Hierarchikus adatszerkezetek

Hierarchikus adatszerkezetek 5. előadás Hierarchikus adatszerkezetek A hierarchikus adatszerkezet olyan < A, R > rendezett pár, amelynél van egy kitüntetett r A gyökérelem úgy, hogy: 1. r nem lehet végpont, azaz a A esetén R(a,r)

Részletesebben

Adatszerkezetek 7a. Dr. IványiPéter

Adatszerkezetek 7a. Dr. IványiPéter Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a

Részletesebben

Algoritmusok és adatszerkezetek II.

Algoritmusok és adatszerkezetek II. Algoritmusok és adatszerkezetek II. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 3. Kiegyensúlyozott keresőfák A T tulajdonság magasság-egyensúlyozó

Részletesebben

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él. Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb

Részletesebben

1. ábra. Számláló rendezés

1. ábra. Számláló rendezés 1:2 2:3 1:3 1,2,3 1:3 1,3,2 3,1,2 2,1,3 2:3 2,3,1 3,2,1 1. ábra. Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással

Részletesebben

Számjegyes vagy radix rendezés

Számjegyes vagy radix rendezés Számláló rendezés Amennyiben a rendezendő elemek által felvehető értékek halmazának számossága kicsi, akkor megadható lineáris időigényű algoritmus. A bemenet a rendezendő elemek egy n méretű A tömbben

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

10. előadás Speciális többágú fák

10. előadás Speciális többágú fák 10. előadás Adatszerkezetek és algoritmusok előadás 2018. április 17., és Debreceni Egyetem Informatikai Kar 10.1 A többágú fák kezelésére nincsenek általános elvek, implementációjuk elsősorban alkalmazásfüggő.

Részletesebben

Algoritmusok és adatszerkezetek II.

Algoritmusok és adatszerkezetek II. Algoritmusok és adatszerkezetek II. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 5. Vágható-egyesíthető Halmaz adattípus megvalósítása önszervező

Részletesebben

file:///d:/okt/ad/jegyzet/ad1/b+fa.html

file:///d:/okt/ad/jegyzet/ad1/b+fa.html 1 / 5 2016. 11. 30. 12:58 B+ fák CSci 340: Database & Web systems Home Syllabus Readings Assignments Tests Links Computer Science Hendrix College Az alábbiakban Dr. Carl Burch B+-trees című Internetes

Részletesebben

Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik.

Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt kimeneti adatot

Részletesebben

Adatszerkezetek és algoritmusok

Adatszerkezetek és algoritmusok 2010. január 8. Bevezet El z órák anyagainak áttekintése Ismétlés Adatszerkezetek osztályozása Sor, Verem, Lengyelforma Statikus, tömbös reprezentáció Dinamikus, láncolt reprezentáció Láncolt lista Lassú

Részletesebben

A félév során előkerülő témakörök

A félév során előkerülő témakörök A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok

Részletesebben

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él. Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb

Részletesebben

Rendezettminta-fa [2] [2]

Rendezettminta-fa [2] [2] Rendezettminta-fa Minden p ponthoz tároljuk a p gyökerű fa belső pontjainak számát (méretét) Adott elem rangja: az elem sorszáma (sorrendben hányadik az adatszekezetben) Adott rangú elem keresése - T[r]

Részletesebben

Elmaradó óra. Az F = (V,T) gráf minimális feszitőfája G-nek, ha. F feszitőfája G-nek, és. C(T) minimális

Elmaradó óra. Az F = (V,T) gráf minimális feszitőfája G-nek, ha. F feszitőfája G-nek, és. C(T) minimális Elmaradó óra A jövő heti, november 0-dikei óra elmarad. Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v)

Részletesebben

file:///d:/apa/okt/ad/jegyzet/ad1/b+fa.html

file:///d:/apa/okt/ad/jegyzet/ad1/b+fa.html 1 / 6 2018.01.20. 23:23 B+ fák CSci 340: Database & Web systems Home Syllabus Readings Assignments Tests Links Computer Science Hendrix College Az alábbiakban Dr. Carl Burch B+-trees című Internetes tananyagának

Részletesebben

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával) Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris

Részletesebben

5. A gráf, mint adatstruktúra Gráfelméleti bevezető

5. A gráf, mint adatstruktúra Gráfelméleti bevezető 5. A gráf, mint adatstruktúra 5.1. Gráfelméleti bevezető Az irányított gráf (digráf) A G = ( V, E) rendezett párt irányított gráfnak (digráfnak) nevezzük. A rendezett pár elemeire tett kikötések: V véges

Részletesebben

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat 9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:

Részletesebben

17. A 2-3 fák és B-fák. 2-3 fák

17. A 2-3 fák és B-fák. 2-3 fák 17. A 2-3 fák és B-fák 2-3 fák Fontos jelentősége, hogy belőlük fejlődtek ki a B-fák. Def.: Minden belső csúcsnak 2 vagy 3 gyermeke van. A levelek egy szinten helyezkednek el. Az adatrekordok/kulcsok csak

Részletesebben

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8. Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás

Részletesebben

Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik.

Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt kimeneti adatot

Részletesebben

Tuesday, March 6, 12. Hasító táblázatok

Tuesday, March 6, 12. Hasító táblázatok Hasító táblázatok Halmaz adattípus U (kulcsuniverzum) K (aktuális kulcsok) Függvény adattípus U (univerzum) ÉT (értelmezési tartomány) ÉK (érték készlet) Milyen az univerzum? Közvetlen címzésű táblázatok

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Fák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa

Fák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Fák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Témakörök 2 Fa (Tree): csomópontok

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

Algoritmusok és adatszerkezetek gyakorlat 09 Rendezések

Algoritmusok és adatszerkezetek gyakorlat 09 Rendezések Algortmusok és adatszerkezetek gyakorlat 09 Rendezések Néhány órával ezelőtt megsmerkedtünk már a Merge Sort rendező algortmussal. A Merge Sort-ról tuduk, hogy a legrosszabb eset dőgénye O(n log n). Tetszőleges

Részletesebben

Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa:

Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa: Gráfok, definíciók Irányítatlan gráf: G = (V,E), ahol E rendezetlen (a,b),a,b V párok halmaza. Irányított gráf: G = (V,E) E rendezett (a,b) párok halmaza; E V V. Címkézett (súlyozott) gráf: G = (V,E,C)

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

1. A k-szerver probléma

1. A k-szerver probléma 1. A k-szerver probléma Az egyik legismertebb on-line probléma a k-szerver probléma. A probléma általános deníciójának megadásához szükség van a metrikus tér fogalmára. Egy (M, d) párost, ahol M a metrikus

Részletesebben

KUPAC TĺPUSÚ ADATSZERKEZETEK

KUPAC TĺPUSÚ ADATSZERKEZETEK XI. Erdélyi Tudományos Diákköri Konferencia Kolozsvár, 08. május 23 24. KUPAC TĺPUSÚ ADATSZERKEZETEK Témavezető Dr. Ionescu Klára, adjunktus Babeş-Bolyai Tudományegyetem Matematika-Informatika Kar Programozási

Részletesebben

Fa (Tree): csomópontok (nodes) halmaza, amelyeket élek (edges) kötnek össze, és teljesülnek az alábbi feltételek:

Fa (Tree): csomópontok (nodes) halmaza, amelyeket élek (edges) kötnek össze, és teljesülnek az alábbi feltételek: Fák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás Piros-fekete fa B-fa 2 Fa

Részletesebben

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések) Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),

Részletesebben

Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y.

Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y. Algoritmuselmélet Gráfok megadása, szélességi bejárás, összefüggőség, párosítás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2. előadás

Részletesebben

Fibonacci számok. Dinamikus programozással

Fibonacci számok. Dinamikus programozással Fibonacci számok Fibonacci 1202-ben vetette fel a kérdést: hány nyúlpár születik n év múlva, ha feltételezzük, hogy az első hónapban csak egyetlen újszülött nyúl-pár van; minden nyúlpár, amikor szaporodik

Részletesebben

INFORMATIKA javítókulcs 2016

INFORMATIKA javítókulcs 2016 INFORMATIKA javítókulcs 2016 ELMÉLETI TÉTEL: Járd körbe a tömb fogalmát (Pascal vagy C/C++): definíció, egy-, két-, több-dimenziós tömbök, kezdőértékadás definíciókor, tömb típusú paraméterek átadása alprogramoknak.

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a tömb általánosításaként

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

Algoritmusok vektorokkal keresések 1

Algoritmusok vektorokkal keresések 1 Algoritmusok vektorokkal keresések 1 function TELJES_KERES1(A, érték) - - teljes keresés while ciklussal 1. i 1 2. while i méret(a) és A[i] érték do 3. i i + 1 4. end while 5. if i > méret(a) then 6. KIVÉTEL

Részletesebben

Buborékrendezés: Hanoi Tornyai: Asszimptótikus fv.ek: Láncolt ábrázolás: For ciklussal:

Buborékrendezés: Hanoi Tornyai: Asszimptótikus fv.ek: Láncolt ábrázolás: For ciklussal: Buborékrendezés: For ciklussal: Hanoi Tornyai: Asszimptótikus fv.ek: Láncolt ábr.: ha p egy mutató típusú változó akkor p^ az általa mutatott adatelem, p^.adat;p^.mut. A semmibe mutató ponter a NIL.Szabad

Részletesebben

Sali Attila Budapest Műszaki és Gazdaságtudományi Egyetem. I. B. 137/b március 16.

Sali Attila Budapest Műszaki és Gazdaságtudományi Egyetem. I. B. 137/b március 16. Bevezetés a Számításelméletbe II. 6. előadás Sali Attila Budapest Műszaki és Gazdaságtudományi Egyetem Számítástudományi és Információelméleti Tsz. I. B. 7/b sali@cs.bme.hu 004 március 6. A kritikus út

Részletesebben

end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..

end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t.. A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6

Részletesebben

A programozás alapjai előadás. [<struktúra változó azonosítók>] ; Dinamikus adatszerkezetek:

A programozás alapjai előadás. [<struktúra változó azonosítók>] ; Dinamikus adatszerkezetek: A programozás alapjai 1 Dinamikus adatszerkezetek:. előadás Híradástechnikai Tanszék Dinamikus adatszerkezetek: Adott építőelemekből, adott szabályok szerint felépített, de nem rögzített méretű adatszerkezetek.

Részletesebben

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)} Mélységi keresés Ez az algoritmus a gráf pontjait járja be, eredményképpen egy mélységi feszítőerdőt ad vissza az Apa függvény által. A pontok bejártságát színekkel kezeljük, fehér= érintetlen, szürke=meg-

Részletesebben

Rendezések. Összehasonlító rendezések

Rendezések. Összehasonlító rendezések Rendezések Összehasonlító rendezések Remdezés - Alapfeladat: Egy A nevű N elemű sorozat elemeinek nagyság szerinti sorrendbe rendezése - Feltételezzük: o A sorozat elemei olyanok, amelyekre a >, relációk

Részletesebben

Programozási módszertan. Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer

Programozási módszertan. Függvények rekurzív megadása Oszd meg és uralkodj elv, helyettesítő módszer, rekurziós fa módszer, mester módszer PM-03 p. 1/13 Programozási módszertan Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer Werner Ágnes Villamosmérnöki és Információs Rendszerek

Részletesebben

Geometriai algoritmusok

Geometriai algoritmusok Geometriai algoritmusok Alapfogalmak Pont: (x,y) R R Szakasz: Legyen A,B két pont. Az A és B pontok által meghatározott szakasz: AB = {p = (x,y) : x = aa.x + (1 a)b.x,y = aa.y + (1 a)b.y),a R,0 a 1. Ha

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

22. GRÁFOK ÁBRÁZOLÁSA

22. GRÁFOK ÁBRÁZOLÁSA 22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is

Részletesebben

14. Mediánok és rendezett minták

14. Mediánok és rendezett minták 14. Mediánok és rendezett minták Kiválasztási probléma Bemenet: Azonos típusú (különböző) elemek H = {a 1,...,a n } halmaza, amelyeken értelmezett egy lineáris rendezési reláció és egy i (1 i n) index.

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje

1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje 1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt

Részletesebben

III. Gráfok. 1. Irányítatlan gráfok:

III. Gráfok. 1. Irányítatlan gráfok: III. Gráfok 1. Irányítatlan gráfok: Jelölés: G=(X,U), X a csomópontok halmaza, U az élek halmaza X={1,2,3,4,5,6}, U={[1,2], [1,4], [1,6], [2,3], [2,5], [3,4], [3,5], [4,5],[5,6]} Értelmezések: 1. Fokszám:

Részletesebben

Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10.

Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10. Összetett programozási tételek Sorozathoz sorozatot relő feladatokkal foglalkozunk. A bemenő sorozatot le kell másolni, s közben az elemekre vonatkozó átalakításokat lehet végezni rajta: Input : n N 0,

Részletesebben

Más szavakkal formálisan:, ahol olyan egész szám, hogy. Más szavakkal formálisan:, ahol olyan egész szám, hogy.

Más szavakkal formálisan:, ahol olyan egész szám, hogy. Más szavakkal formálisan:, ahol olyan egész szám, hogy. Bevezetés 1. Definíció. Az alsó egészrész függvény minden valós számhoz egy egész számot rendel hozzá, éppen azt, amely a tőle nem nagyobb egészek közül a legnagyobb. Az alsó egészrész függvény jele:,

Részletesebben

Adatbázis rendszerek Gy: Algoritmusok C-ben

Adatbázis rendszerek Gy: Algoritmusok C-ben Adatbázis rendszerek 1. 1. Gy: Algoritmusok C-ben 53/1 B ITv: MAN 2015.09.08 Alapalgoritmusok Összegzés Megszámlálás Kiválasztás Kiválasztásos rendezés Összefésülés Szétválogatás Gyorsrendezés 53/2 Összegzés

Részletesebben

Neumann János Tehetséggondozó Program Gráfalgoritmusok II.

Neumann János Tehetséggondozó Program Gráfalgoritmusok II. Neumann János Tehetséggondozó Program Gráfalgoritmusok II. Horváth Gyula horvath@inf.elte.hu 1. A szélességi bejárás alkalmazásai. Nyilvánvaló, hogy S(0) = {r}. Jelölés: D(p) = δ(r, p) Nyilvánvaló, hogy

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

Adatszerkezetek I. 8. előadás. (Horváth Gyula anyagai felhasználásával)

Adatszerkezetek I. 8. előadás. (Horváth Gyula anyagai felhasználásával) Adatszerkezetek I. 8. előadás (Horváth Gyula anyagai felhasználásával) Kereső- és rendezőfák Közös tulajdonságok: A gyökérelem (vagy kulcsértéke) nagyobb vagy egyenlő minden tőle balra levő elemnél. A

Részletesebben

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I.

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I. Keresés Rendezés Feladat Keresés Rendezés Feladat Tartalom Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.

Részletesebben

3. Absztrakt adattípusok

3. Absztrakt adattípusok 3. Absztrakt adattípusok Az adatkezelés szintjei: 1. Probléma szintje. 2. Modell szintje. 3. Absztrakt adattípus szintje. 4. Absztrakt adatszerkezet szintje. 5. Adatszerkezet szintje. 6. Gépi szint. Absztrakt

Részletesebben

Rekurzív algoritmusok

Rekurzív algoritmusok Rekurzív algoritmusok 11. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. november 14. Sergyán (OE NIK) AAO 11 2011. november 14. 1 / 32 Rekurzív

Részletesebben

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit

Részletesebben

1. Online kiszolgálóelhelyezés

1. Online kiszolgálóelhelyezés 1. Online kiszolgálóelhelyezés A probléma általános deníciójának megadásához szükség van a metrikus tér fogalmára. Egy (M, d) párost, ahol M a metrikus tér pontjait tartalmazza, d pedig az M M halmazon

Részletesebben

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán Keresés Rendezés Feladat Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán 2016. november 7. Farkas B., Fiala

Részletesebben

2. Milyen értéket határoz meg az alábbi algoritmus, ha A egy vektor?. (2 pont)

2. Milyen értéket határoz meg az alábbi algoritmus, ha A egy vektor?. (2 pont) A Név: l 2017.04.06 Neptun kód: Gyakorlat vezet : HG BP l 1. Az A vektor tartalmát az alábbi KUPACOL eljárással rendezzük át maximum kupaccá. A={28, 87, 96, 65, 55, 32, 51, 69} Mi lesz az értéke az A vektor

Részletesebben

Analízis I. Vizsgatételsor

Analízis I. Vizsgatételsor Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben