5. Deriválható függvények A derivált értelmezése A derivált mértani jelentése Műveletek deriválható függvényekkel...

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "5. Deriválható függvények A derivált értelmezése A derivált mértani jelentése Műveletek deriválható függvényekkel..."

Átírás

1

2 Tartalomjegyzék GEOMETRIA 1 Vektorok 1 11 Irányított szakaszok Vektorok 1 1 Műveletek vektorokkal 3 13 Kollineáris vektorok 6 14 Helyzetvektor 8 15 Párhuzamosság, összefutás, kollinearitás Skaláris szorzás 14 Analitikus geometria 18 3 Trigonometria 7 31 A trigonometria elemei 7 3 Trigonometrikus egyenletek Trigonometria síkmértani alkalmazásai 39 MATEMATIKAI ANALÍZIS 1 Valós számok, valós számhalmazok 4 Valós számsorozatok 45 1 Valós sorozatok 45 Műveletek valós sorozatokkal 47 3 Egyenlőtlenségek és határértékek 50 4 Konvergencia, monotonitás, korlátosság 51 5 Részsorozatok 5 6 Néhány fontos határérték 53 7 Határozatlansági esetek feloldása 54 3 Függvényhatárértékek Függvény határértéke 57 3 Határértékekkel végzett műveletek Határértékek tulajdonságai Fontos határértékek 63 4 Folytonos függvények A folytonosság értelmezése 66 4 Műveletek folytonos függvényekkel Folytonosság és Darboux tulajdonság 70

3 5 Deriválható függvények 7 51 A derivált értelmezése 7 5 A derivált mértani jelentése Műveletek deriválható függvényekkel Elemi függvények deriváltjai Összetett függvény deriváltja Magasabb rendű deriváltak A differenciálszámítás középértéktételei Függvény grafikus képe 9 6 A határozatlan integrál Primitív függvény A határozatlan integrál 97 6 Primitiválható függvények A parciális integrálás módszere Első helyettesítési módszer Második helyettesítési módszer Törtfüggvények integrálása A határozott integrál Riemann-integralható függvények Integrálható függvények tulajdonságai A parciális integrálás módszere Első helyettesítési módszer Második helyettesítési módszer Középértéktételek Az integrálszámítás alaptétele A határozott integrál alkalmazásai 13

4 AB AB ha ha 1 Vektorok 11 Irányított szakaszok Vektorok Irányított szakaszok rtelmezés Az (A,B) rendezett pontpárt irányított szakasznak nevezzük és így jelöljük: AB rtelmezés Az AB és CD irányított szakaszokat ekvipolenseknek nevezzük (jelölés: AB CD), ha az [AD] és [BC] szakaszok felezőpontjai egybeesnek Megjegyzés Ha AB CD, akkor az AB szakaszt párhuzamos eltolással a CD szakaszra lehet helyezni Tulajdonság Az irányított szakaszok halmazán az ekvipolencia egy ekvivalencia-reláció, azaz (reflexív), AB CD, akkor CD AB (szimmetrikus), AB CD és CD EF, akkor AB EF (tranzitív) B A A C D AB és CD pontosan akkor ekvipolensek, ha ABDC egy paralelogramma vagy az A,B,C,D pontok kollineárisak és az [AD], [BC] felezőpontja megegyezik C B D 1

5 Vektorok rtelmezés Egy adott irányított szakasszal ekvipolens irányított szakaszok halmazát vektornak nevezzük Jelölés Az AB irányított szakasz által meghatározott vektort AB-vel (vagy egy kisbetűvel) jelöljük: { } AB= CD CD AB Megjegyzés Ha AB CD, akkor AB= CD Az u = AB= CD jelöléssel az AB (vagy a CD) az u egy reprezentánsa rtelmezés Az u hossza (modulusza) az őt reprezentáló irányított szakaszok közös hosszával egyenlő és u -val jelöljük rtelmezés A nulla hosszúságú AA vektort nullvektornak nevezzük rtelmezés Az AB és CD vektorok egyenlőek (jelölés: AB= CD), ha az AB és CD irányított szakaszok ekvipolensek Megjegyzés Két vektor akkor egyenlő, ha irányuk megegyezik (tartóegyeneseik párhuzamosak), hosszuk egyenlő és ugyanaz az irányításuk Tétel (Adott kezdőpontú reprezentáns létezése) Ha adott az u vektor és egy tetszőleges M pont, akkor létezik egyetlen olyan M pont, amelyre u = MM Következmény Az egyértelműség alapján, ha MA= MB, akkor A=B Az irányított szakaszok halmaza u = C D G H A B E v = F A mellékelt ábrán u = AB= CD=, v = EF = GH=, CD az u egy reprezentánsa, EF a v egy reprezentánsa, AB= CD

6 16 Skaláris szorzás Két vektor szöge rtelmezés Legyen u 0 és v 0 két vektor Ha O egy tetszőleges pont a síkban, A és B az OA= u és OB= v egyenlőségek által meghatározott pontok, akkor az ÂOB [0,π] szöget az u és v vektorok szögének nevezzük Jelölés Az u és v szögét így jelöljük: ( u, v) rtelmezés Az u és v vektorok merőlegesek, ham( u, v)= π Két vektor skaláris sorzata rtelmezés Az u és v vektorok skaláris szorzata az u v -vel jelölt valós { szám: u v cos( u v= u, v) ha u 0 és v 0 0 ha u 0 vagy v 0 Tétel Két, a nullvektortól különböző vektor skaláris szorzata akkor és csakis akkor nulla, ha a vektorok merőlegesek egymásra: ha u 0, v 0, akkor u v u v=0 Példa Néhány sajátos eset az alábbi ábrán látható: u u v v v u u, v azonos u, v ellentétes u, v merőlegesek irányúak irányúak α=0, α=π, α= π, u v= u v u v= u v u v=0 14

7 u ( v+ u ( v u v>0 u v=0 u v<0 A skaláris sorzás tulajdonságai Tétel Tetszőleges u, v, w vektorok és α, β valós számok esetéṇ u v= v u; w)= u w+ v w, ( u+ v) w= u w+ v w; (α u) v= u (α v)=α( u v); (α u) (β v)=αβ( u v); w)= u v u w, ( u v) w= u w v w; ( u) v= u ( v)= ( u v) Skaláris szorzat előjele Tulajdonság Az u 0 és v 0 vektorok esetén [ akkor és csakis akkor, ha m( u, v) 0, π ) ; akkor és csakis akkor, ha m( u, v)= π ; ( akkor] és csakis akkor, ha m( u, v) π,π v u v u u v>0 v v u u v<0 u v u v u u v=0 Feladat Legyen M és N az ABCD négyzet [AB] és [BC] oldalának felezőpontja Igazoljuk, hogy AN DM M A kért állítás egyenértékű azzal, hogy DM AN=0 p= DM AN=( DA+ AM) ( AB+ BN)= DA AB+ DA 15

8 BN+ AM AB+ AM BN A D DA AB DA AB=0, AM BN AM BN=0, így M p=0+ DA BN+ AM AB+0= =a a cos180 + a a 0 +0=0, B N C ahol a a négyzet oldalát jelöli 180 DA BN Vektor skaláris négyzete rtelmezés Egy u vektornak önmagával vett skaláris szorzatát a vektor (skaláris) négyzetének nevezzük és így jelöljük: u = u u Tétel Bármely u vektor esetén u u= u, tehát bármely AB vektor esetén AB =AB Feladat Igazoljuk, hogy egy ABCD négyszög pontosan akkor paralelogramma, ha az oldalak négyzetének összege egyenlő a két átló négyzetének az összegével M AB +BC +CD +DA =BD +AC D C AB + BC + CD + DA = BD + AC AB + BC + CD + DA = =( BA+ AD) +( AD+ DC) A AB + BC + CD + DA = BA +BA B AD+ AD + AD +AD DC+ DC BC = BA AD+ AD +AD DC ( BA+ AD+ DC) = BA AD+ AD +AD DC BA + AD + DC +BA AD+AD DC+DC BA= BA AD+ AD +AD DC BA+ DC +BA DC=0 16

9 ( BA+ DC) =0 BA+ DC= 0 BA= CD ABCD paralelogramma Metrikus összefüggések a háromszögben Adott az ABC háromszög és legyen a=bc, b=ac, c= AB Tétel (Koszinusz-tétel) Az ABC háromszögben fennáll az a =b +c bccosâ összefüggés Tétel (Stewart tétele) Ha M (BC), akkor AB MC+AC BM=AM BC+BM MC BC Következmény (Oldalfelező hossza) Az ABC háromszög A csúcsából kiinduló oldalfelezőjének hosszát (m a) az m a = (b +c ) a 4 képlettel számíthatjuk ki Következmény (Szögfelező hossza) Az ABC háromszög A csúcsából kiinduló szögfelezőjének hosszát (l a) az l a = 4bc (b+c) p(p a) képlettel számíthatjuk ki, ahol p= a+b+c Feladat Az ABC háromszögben AB=, AC=3 és BC= Számítsuk ki az AB AC szorzatot! M A koszinusz-tétel alapján BC =AB +AC AB ACcos BAC 4=4+9 3cos BAC cos BAC= 3 4 Tehát AB AC=AB AC cos BAC= = 9 17

10 3 Trigonometria 31 A trigonometria elemei Szög-mértékegységek rtelmezés Egy kör félkerületének és sugarának aránya állandó és π 3,1415-tel egyenlő rtelmezés A kör sugarával megegyező hosszúságú körívhez tartozó középponti szög mértéke 1 radián Megjegyzés Egy szögnek fokban illetve radiánban való mértéke közt fennáll az α = 180 összefüggés, ahol α a x r π szög fokban kifejezett, x r a szög radiánban kifejezett mértéke P II π/ I P π/3 P π/3 P 5π/6 P π/6 A P π O P 0 P 7π/6 P 11π/6 P 4π/3 P 5π/3 III P 3π/ IV A trigonometrikus kör rtelmezés Adott egy xoy derékszögű koordináta-rendszer Az O középpontú, egységsugarú kört, amelyen kijelöltünk egy pozitív körbejárási irányt (az óramutató járásával ellentétes irányt), trigonometrikus körnek nevezzük A trigonometrikus kör - folytatás Jelölés Legyen t R egy szám Ekkor egyetlen olyan P t -vel jelölt pont van a trigonometriai körön, amely m(âop t )=t 7

11 Szinusz és koszinusz Legyen t egy valós szám és P t a hozzátartozó pont a körön rtelmezés A P t pont ordinátáját a t valós szám szinuszának nevezzük és így jelöljük: sint rtelmezés A P t pont abszcisszáját a t valós szám koszinuszának nevezzük és így jelöljük: cost ctgt T sint t O cost P t A P t t O T tgt A Tangens és kotangens rtelmezés Az x=1 egyenletű függőleges egyenest tangens-tengelynek, az y=1 egyenletű vízszintes egyenest pedig kotangens-tengelynek { nevezzük } π rtelmezés Ha t R\ +kπ k Z, P t a t-nek megfelelő pont és T az OP t egyenes és a tangens-tengely met- széspontja, akkor T ordinátáját t tangensének nevezzük és így jelöljük: tgt rtelmezés Ha t R\{kπ k Z}, P t a t-nek megfelelő pont és T az OP t egyenes és a kotangens-tengely metszéspontja, akkor T abszcisszáját t kotangensének nevezzük és így jelöljük: ctgt 8

12 Fontosabb értékek π π π π π 3π 5π x 0 π sinx cosx tgx ctgx Visszavezetés az első negyedbe x C x C 3 sinx=sin(π x) sinx= sin(x π) cosx= cos(π x) cosx= cos(x π) tgx= tg(π x) tgx=tg(x π) ctgx= ctg(π x) ctgx=ctg(x π) x C 4 sinx= sin(π x) cosx=cos(π x) tgx= tg(π x) ctgx= ctg(π x) A trigonometrikus függvények előjele π 3π x 0 N 1 N π N 3 N 4 π sinx cosx tgx ctgx

13 A trigonometrikus függvények π 3π x 0 N 1 N π N 3 N 4 π sinx cosx tgx ctgx Alapösszefüggések sin x+cos x=1 (a trig alapképlete) tgx= sinx cosx = 1 ( ) ctgx π sin x =cosx sin( x)= sinx sin(x+π)=sinx ( ) π cos x =sinx cos( x)=cosx cos(x+π)=cosx ( ) π tg x =ctgx tg( x)= tgx tg(x+π)=tgx ( ) π ctg x =tgx ctg( x)= ctgx ctg(x+π)=ctgx Összeg, különbség szögfüggvényei sin(x+y)=sinx cosy+cosx siny sin(x y)=sinx cosy cosx siny cos(x+y)=cosx cosy sinx siny cos(x y)=cosx cosy+sinx siny tg(x+y)= tgx+tgy 1 tgx tgy ctg(x+y)= ctgx ctgy 1 ctgx+ctgy tg(x y)= tgx tgy 1+tgx tgy ctg(x y)= ctgx ctgy 1 ctgx ctgy 30

14 növekvő, csökkenő, korlátos, periodikus, Valós számsorozatok 1 Valós sorozatok rtelmezés Valós sorozatnak nevezünk egy f:{k,k+1,k+,} R függvényt (k N) A sorozatot így jelöljük: (a n ), ahol a n =f(n) rtelmezés Az (a n ) n k sorozat ha a n+1 a n, n k; ha a n+1 a n, n k; ha m,m R úgy, hogy m a n M, n k; ha t N úgy, hogy a n+t =a n, n k Sorozat határértéke rtelmezés Az (a n ) n k sorozat határértéke az α valós szám, ha az α bármely V környezete esetén a sorozat csak véges számú tagja nem eleme V -nek: (a n) határértéke α V =V (α), n V N úgy, hogy a n V, n n V Jelölés Ha (a n ) határértéke α, ezt így írjuk: lim n=α n Tétel Legyen (a n) n N egy valós elemű számsorozat, α R lim an=α ε>0, n n0 N úgy, hogy a n α <ε, n n 0 lim an= ε>0, n n0 N úgy, hogy a n >ε, n n 0 lim an= ε>0, n n0 N úgy, hogy a n< ε, n n 0 45

15 Sorozat határértéke - folytatás rtelmezés Egy (a n) sorozat konvergens, ha van véges határértéke Ha (a n) nem konvergens, akkor divergens Tétel Ha (a n ) konvergens, akkor határértéke egyértelmű Tétel lim a n=α lim a n = α n n Tétel lim an=0 lim an =0 n n Tétel Ha (a n ) konvergens, akkor (a n ) korlátos n+1 Feladat Igazoljuk, hogy lim n 3n 1 = 3 M Igazolnunk kell, hogy ε>0 esetén létezik olyan n 0 úgy, hogy bármely n n 0 esetén an n+1 3 <ε, ahol an= 3n 1 n+1 3n 1 3 <ε 5 3(3n 1) <ε 5 5 3ε <3n 1 3ε +1 <n, [ ] 3 5+3ε így küszöbszámnak választható az n 0 = érték ([A] az A egész része) n Feladat Igazoljuk, hogy lim n n+1 = M Igazolnunk kell, hogy ε>0 esetén létezik olyan n 0 úgy, hogy bármely n n 0 esetén n n+1 >ε n εn ε>0 ) ( ) n (, ε ε +4ε ε+ ε +4ε, [ ] ε+ ε Az n 0 = +4ε +1 választással a n >ε, n n 0 46

16 (x 3 Függvényhatárértékek 31 Függvény határértéke rtelmezés Azt mondjuk, hogy az f:d R, D R függvény határértéke az x 0 R torlódási pontban l R, ha az l bármely V l környezete esetén létezik az x 0 olyan U x0 környezete, amelyre x U x 0 D esetén f(x) V l Jelölés Ha az f:d R függvény határértéke az x 0 R pontban l R, akkor ezt így jelöljük: lim f(x)=l x x 0 Tétel (A határérték Heine féle értelmezése) Legyen f: D R, x 0 R, l R Egyenértékűek a következő állítások: lim f(x)=l, x x 0 n ) n 1, x n D, x n x 0, lim n x n=x 0 sorozat lim n f(xn)=l Feladat Igazoljuk, hogy az f:r R, f(x)=sin 1 x függvénynek nincs határértéke az x 0=0 pontban! M Tekintsük az (x n ) n 1 és (x n ) n 1 sorozatokat, ahol x n = 1 nπ, x n = (4n+1)π Ekkor lim x n= lim n n x n =0 és lim f(xn)= lim sin 1 = lim n n x sinnπ=0, n n lim n f(x n )= lim sin 1 (4n+1)π = lim sin =1, n x n n így f-nek nincs határértéke 0-ban 57

17 Határérték az x 0 R pontban rtelmezés lim f(x)=l R x x 0 ε>0, δ(ε)>0 úgy, hogy ha x x 0 <δ(ε), x x 0 akkor f(x) l <ε rtelmezés lim f(x)=+ x x 0 ε>0, δ(ε)>0 úgy, hogy ha x x 0 <δ(ε), x x 0 akkor f(x)>ε rtelmezés lim f(x)= x x 0 ε>0, δ(ε)>0 úgy, hogy ha x x 0 <δ(ε), x x 0 akkor f(x)< ε x 1 Feladat Igazoljuk, hogy lim x 0 x =! M Igazoljuk, hogy ε>0 esetén δ>0 úgy, hogy ha x <δ, x 0, akkor f(x)>ε f(x)>ε x 1 x >ε εx x+1<0 ( 1 1 4ε x, 1+ ) 1 4ε ε ε 1 A δ=min{ 1 4ε ε, 1 } 1 4ε választással tehát ε x <δ f(x)<ε Határérték + -ben 58 rtelmezés lim f(x)=l R x ε>0, δ(ε)>0 úgy, hogy ha x>δ(ε) akkor f(x) l <ε rtelmezés lim f(x)=+ x ε>0, δ(ε)>0 úgy, hogy ha x>δ(ε) akkor f(x)>ε rtelmezés lim f(x)= x ε>0, δ(ε)>0 úgy, hogy ha x>δ(ε), akkor f(x)< ε

18 Határérték -ben rtelmezés lim f(x)=l R ε>0, δ(ε)>0 úgy, x hogy ha x< δ(ε) akkor f(x) l <ε rtelmezés lim f(x)=+ ε>0, δ(ε)>0 úgy, x hogy ha x< δ(ε) akkor f(x)>ε rtelmezés lim f(x)= ε>0, δ(ε)>0 úgy, x hogy ha x< δ(ε), akkor f(x)< ε Jobb és bal oldali határérték rtelmezés Azt mondjuk, hogy az f:d R, D R függvény bal oldali határértéke az x 0 R torlódási pontban l R, ha az l bármely V l környezete esetén létezik az x 0 olyan U x0 környezete, amelyre x U x D, x<x 0 0 esetén f(x) V l Jelölés lim f(x) vagy lim f(x) x x 0 x x x<x 0 0 Tétel lim f(x)=l x x 0 x<x 0 (x n) n 1, x n D, x n<x 0, lim xn=x0 sorozat esetén n lim f(x n)=l n Megjegyzés Hasonlóan értelmezhető a jobb oldali határérték is Tétel Az f:d R függvénynek a D halmaz x 0 torlódási pontjában akkor és csakis akkor van határértéke, ha van bal és jobb oldali határértéke és ezek egyenlők 59

19 F F 6 A határozatlan integrál 61 Primitív függvény A határozatlan integrál Függvény primitív függvénye rtelmezés Legyen f:i R, I intervallum Az f függvényt primitiválhatónak nevezzük, ha létezik olyan F :I R függvény, amelyre deriválható I-n és (x)=f(x), x I rtelmezés Az értelmezésben szereplő F függvényt az f egy primitív függvényének nevezzük Függvény határozatlan integrálja rtelmezés Legyen f:i R egy primitiválható függvény Az f összes primitív függvényének halmazát az f határozatlan integráljának nevezzük és f(x)dx-szel jelöljük: f(x)dx={f :I R F az f egy primitív függvénye} Tétel Ha F 1 és F az f:i R két primitív függvénye, akkor létezik c R úgy, hogy F 1 (x) F (x)=c, x I Ez alapján, ha F az f egy primitív függvénye, akkor f(x)dx={f (x)+c C R}=F (x)+c 97

20 f+g α f Műveletek primitiválható függvényekkel Tétel Legyen f,g:i R két, az I intervallumon primitiválható függvény és α R Ekko5 is primitiválható I-n és f(x)+g(x)dx= f(x)dx+ g(x)dx ( összeg integrálja egyenlő az integrálok összegével ); is primitiválható I-n és αf(x)dx= α f(x)dx ( konstans kiemelhető az integráljel elé ); Határozatlan integrálok Az alábbi képletekben I R egy intervallum, f:i R, a>0 A függvény A függvény határozatlan integrálja f(x)=c, c R c dx=cx+c f(x)=x n, n N f(x)=x α, I (0, ), α 1 x n dx= xn+1 n+1 +C x α dx= xα+1 α+1 +C f(x)=x 1 = 1 x, 0 I 1 x dx=ln x +C f(x)=a x, a 1 a x dx= ax lna +C 98

21 Határozatlan integrálok - folytatás Az alábbi képletekben I R egy intervallum, f:i R, a>0 A függvény A függvény határozatlan integrálja f(x)= 1 x a, 1 x a dx= 1 a ln x a x+a +C a,a I f(x)= 1 x +a 1 f(x)= x a I (, a) I (a, ) 1 f(x)= x +a 1 f(x)= a x, 1 x +a dx= 1 a arctg x a +C 1 x a dx=ln x+ x a +C 1 x +a dx=ln x+ x +a +C 1 a x dx=arcsin x a +C I ( a,a) f(x)=sinx f(x)=cosx f(x)= 1 sin x I (kπ,(k+1)π) sinx dx= cosx+c cosx dx=sinx+c 1 sin x dx= ctgx+c 99

GEOMETRIA A trigonometria elemei Trigonometrikus egyenletek Trigonometria síkmértani alkalmazásai. 57

GEOMETRIA A trigonometria elemei Trigonometrikus egyenletek Trigonometria síkmértani alkalmazásai. 57 Tartalomjegyzék GEOMETRIA 1 Vektorok 1 11 Irányított szakaszok Vektorok 1 12 Műveletek vektorokkal 3 13 Kollineáris vektorok 8 14 Helyzetvektor 10 15 Párhuzamosság, összefutás, kollinearitás 12 16 Skaláris

Részletesebben

Tartalomjegyzék GEOMETRIA MATEMATIKAI ANALÍZIS

Tartalomjegyzék GEOMETRIA MATEMATIKAI ANALÍZIS Tartalomjegyzék GEOMETRI 1 Vektorok 1 11 Irányított szakaszok Vektorok 1 1 Műveletek vektorokkal 1 Kollineáris vektorok 5 14 Helyzetvektor 6 15 Párhuzamosság, összefutás, kollinearitás 7 16 Skaláris szorzás

Részletesebben

FELVÉTELI VIZSGA, szeptember 12.

FELVÉTELI VIZSGA, szeptember 12. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1 Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az

Részletesebben

Vektorok és koordinátageometria

Vektorok és koordinátageometria Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk

Részletesebben

Matematika I. NÉV:... FELADATOK:

Matematika I. NÉV:... FELADATOK: 24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

MATEK-INFO UBB verseny április 6.

MATEK-INFO UBB verseny április 6. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATEK-INFO UBB verseny 219. április 6. Írásbeli próba matematikából FONTOS MEGJEGYZÉS: 1) Az A. részben megjelenő feleletválasztós

Részletesebben

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1 Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az

Részletesebben

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.

Részletesebben

Matematika 11. osztály

Matematika 11. osztály ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály II. rész: Trigonometria Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék II. rész: Trigonometria...........................

Részletesebben

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0. Magyar Ifjúság. X. TRIGONOMETRIKUS FÜGGVÉNYEK A trigonometrikus egyenletrendszerek megoldása során kísérletezhetünk új változók bevezetésével, azonosságok alkalmazásával, helyettesítő módszerrel vagy más,

Részletesebben

Tartalomjegyzék. 3. Elsőfokú egyenletek és egyenlőtlenségek... 8 3.1. Elsőfokú egyenletek... 8 3.2. Valós szám abszolút értéke...

Tartalomjegyzék. 3. Elsőfokú egyenletek és egyenlőtlenségek... 8 3.1. Elsőfokú egyenletek... 8 3.2. Valós szám abszolút értéke... Tartalomjegyzék 1. Műveletek valós számokkal... 1 1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 2. Függvények... 5 2.1. A függvény

Részletesebben

konvergensek-e. Amennyiben igen, számítsa ki határértéküket!

konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 1. Határértékek 1. Állapítsa meg az alábbi sorozatokról, hogy van-e határértékük, konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 2 2...2 2 (n db gyökjel), lim a) lim n b) lim n (sin(1)) n,

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon. 215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Részletesebben

Alkalmazott matematika és módszerei I Tantárgy kódja

Alkalmazott matematika és módszerei I Tantárgy kódja Tantárgy neve Alkalmazott matematika és módszerei I Tantárgy kódja MTB1901 Meghirdetés féléve Kreditpont 4 Összóraszám (elm+gyak) + Számonkérés módja G Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Elemi függvények H607, EIC 2019-03-13 Wettl Ferenc

Részletesebben

Analízis házi feladatok

Analízis házi feladatok Analízis házi feladatok Készült a PTE TTK GI szakos hallgatóinak Király Balázs 200-. I. Félév 2 . fejezet Első hét.. Házi Feladatok.. Házi Feladat. Írjuk fel a következő sorozatok 0.,., 2., 5., 0. elemét,

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II. Vektorok II. DEFINÍCIÓ: (Vektorok hajlásszöge) Két vektor hajlásszögének azt a φ (0 φ 180 ) szöget nevezzük, amelyet a vektorok egy közös pontból felmért reprezentánsai által meghatározott félegyenesek

Részletesebben

Vektoralgebra feladatlap 2018 január 20.

Vektoralgebra feladatlap 2018 január 20. 1. Adott az ABCD tetraéder, határozzuk meg: a) AB + BD + DC b) AD + CB + DC c) AB + BC + DA + CD Vektoralgebra feladatlap 018 január 0.. Adott az ABCD tetraéder. Igazoljuk, hogy AD + BC = BD + AC, majd

Részletesebben

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit 1. A térbeli irányított szakaszokat vektoroknak hívjuk. Két vektort egyenlőnek tekintünk, ha párhuzamos eltolással fedésbe hozhatók.

Részletesebben

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11 Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4

Részletesebben

f(x) a (x x 0 )-t használjuk.

f(x) a (x x 0 )-t használjuk. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl

Részletesebben

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének. Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

Kalkulus I. gyakorlat Fizika BSc I/1.

Kalkulus I. gyakorlat Fizika BSc I/1. . Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat

Részletesebben

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25) I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =

Részletesebben

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda Trigonometrikus egyenletek megoldása Azonosságok és 1 mintapélda Frissítve: 01. novermber 19. :07:41 1. Azonosságok 1.1. Azonosság. A sin és cos szögfüggvények derékszög háromszögben vett, majd kiterjesztett

Részletesebben

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?

Részletesebben

Dierenciálhatóság. Wettl Ferenc el adása alapján és

Dierenciálhatóság. Wettl Ferenc el adása alapján és 205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria II. Trigonometria II. A tetszőleges nagyságú szögek szögfüggvényeit koordináta rendszerben egységhosszúságú forgásvektor segítségével definiáljuk. DEFINÍCIÓ: (Vektor irányszöge) Egy vektor irányszögén értjük

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Sorozatok, sorozatok konvergenciája

Sorozatok, sorozatok konvergenciája Sorozatok, sorozatok konvergenciája Elméleti áttekintés Minden konvergens sorozat korlátos Minden monoton és korlátos sorozat konvergens Legyen a n ) n egy sorozat és ϕ : N N egy szigorúan növekvő függvény

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x. Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA

Részletesebben

Többváltozós függvények Feladatok

Többváltozós függvények Feladatok Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

A gyakorlatok anyaga

A gyakorlatok anyaga A 7-11. gyakorlatok anyaga a Matematika A1a-Analízis nevű tárgyhoz B és D kurzusok Számhalmazok jelölésére a következő szimbólumokat használjuk: N := {1,,...}, Z, Q, Q, R. Az intervallumokat pedig így

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

Régebbi Matek B1 és A1 zh-k. deriválás alapjaival kapcsolatos feladatai. n )

Régebbi Matek B1 és A1 zh-k. deriválás alapjaival kapcsolatos feladatai. n ) Régebbi Matek B1 és A1 zh-k Sorozatok és függvények határértékével, folytonossággal és a deriválás alapjaival kapcsolatos feladatai. 1. Számítsuk ki: (a) n ( 2n 1) n+3 1 + arccos( 2n + 1 n ) (b) n ( n

Részletesebben

Függvények határértéke és folytonosság

Függvények határértéke és folytonosság Függvények határértéke és folytonosság ) Bizonyítsa be a határérték definíciója alapján, hogy teljesül! + 5 + = Megoldás Heine definíciója alapján): Igazolandó, hogy a függvény értelmezve van a egy környezetében,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok I. Vektorok I. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított (kezdő és végponttal rendelkező) szakaszoknak a halmazát vektornak nevezzük. Jele: v ; v; AB (ahol A a vektor kezdőpontja,

Részletesebben

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás,

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, 3... Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg az f() = 4 deriváltját az = helyen.pt. Határozzuk meg a következő határértékeket: pt lim n 8n 5

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy

Részletesebben

ANALITIKUS MÉRTAN I. VEKTORALGEBRA. 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AD + BC = BD + AC.

ANALITIKUS MÉRTAN I. VEKTORALGEBRA. 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AD + BC = BD + AC. ANALITIKUS MÉRTAN INFORMATIKA CSOPORT I. VEKTORALGEBRA 1. Feladatlap Műveletek vektorokkal 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AB + BD + DC; b) AD + CB + DC; c) AB + BC

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI NULLADIK MATEMATIKA ZÁRTHELYI 08-09-07 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! A feladatlap kizárólag kék vagy fekete tollal tölthető ki.

Részletesebben

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010. Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre

Részletesebben

A kör. A kör egyenlete

A kör. A kör egyenlete A kör egyenlete A kör A kör egyenlete 8 a) x + y 6 b) x + y c) 6x + 6y d) x + y 9 8 a) x + y 6 + 9 b) x + y c) x + y a + b 8 a) (x - ) + (y - ) 9, rendezve x + y - 8x - y + b) x + y - 6x - 6y + c) x +

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.

Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög. 1 Összeadás: Legyen a (7; 3) és b (- 2; 4), akkor az összegük a + b (7 + (-2); 3 + 4) = (5; 7) Kivonás: Legyen a (7; 3) és b (- 2; 4), akkor a különbségük a b (7 - (-2); 3-4)=(9; - 1) Valós számmal való

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 0-09-09 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! A feladatlap kizárólag kék vagy fekete tollal tölthető ki.

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban! . Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x

Részletesebben

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel; Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;

Részletesebben

Analízis I. beugró vizsgakérdések

Analízis I. beugró vizsgakérdések Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók

Részletesebben

1. Fuggveny ertekek. a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I. x = arcsin(x) ha 1 x 0 x = 1, arctg(x) ha 0 < x < + a) f (x) = 4 x 2 x+log

1. Fuggveny ertekek. a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I. x = arcsin(x) ha 1 x 0 x = 1, arctg(x) ha 0 < x < + a) f (x) = 4 x 2 x+log 1. Fuggveny ertekek 1 Szamtsuk ki az alabbi fuggvenyek erteket a megadott helyeken! a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I b) f (x) = sin x 1 x = π 2, π 4, 3 3 2π, 10π I arcsin(x) ha 1 x 0 1 c) f

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

I. A négyzetgyökvonás

I. A négyzetgyökvonás Definíció: Négyzetgyök a ( a : a a 0 I. A négyzetgyökvonás a ) jelenti azt a nem negatív számot, amelynek a négyzete a. a 0 b : b b R A négyzetgyök-függvény értéke is csak nem negatív lehet. Ha a b-t abszolút

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

2. ELŐADÁS. Transzformációk Egyszerű alakzatok

2. ELŐADÁS. Transzformációk Egyszerű alakzatok 2. ELŐADÁS Transzformációk Egyszerű alakzatok Eltolás A tér bármely P és P pontpárjához pontosan egy olyan eltolás létezik, amely P-t P -be viszi. Bármely eltolás tetszőleges egyenest vele párhuzamos egyenesbe

Részletesebben

Elsőfokú egyenletek...

Elsőfokú egyenletek... 1. Hozza egyszerűbb alakra a következő kifejezést: 1967. N 1. Elsőfokú egyenletek... I. sorozat ( 1 a 1 + 1 ) ( 1 : a+1 a 1 1 ). a+1 2. Oldja meg a következő egyenletet: 1981. G 1. 3x 1 2x 6 + 5 2 = 3x+1

Részletesebben

2014. november Dr. Vincze Szilvia

2014. november Dr. Vincze Szilvia 24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata

Részletesebben

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén

Részletesebben

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész

Részletesebben

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2

Részletesebben

Koordináta-geometria II.

Koordináta-geometria II. Koordináta-geometria II. DEFINÍCIÓ: (Alakzat egyenlete) A síkon adott egy derékszögű koordináta rendszer. A síkban levő alakzat egyenlete olyan f (x, y) = 0 egyenlet, amelyet azoknak és csak azoknak a

Részletesebben

Programtervező informatikus I. évfolyam Analízis 1

Programtervező informatikus I. évfolyam Analízis 1 Programtervező informatikus I. évfolyam Analízis 1 2012-2013. tanév, 2. félév Tételek, definíciók (az alábbi anyag csupán az előadásokon készített jegyzetek mellékletéül szolgál) 1. Mit jelent az asszociativitás

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Koordináta-geometria feladatok (emelt szint)

Koordináta-geometria feladatok (emelt szint) Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik

Részletesebben

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!

Részletesebben

2018/2019. Matematika 10.K

2018/2019. Matematika 10.K Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép, függvénytáblázat 2 órás, 4 jegyet ér 2019. május 27-31. héten Aki hiányzik, a következő héten írja meg, e nélkül

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) (11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)

Részletesebben

Egyváltozós függvények 1.

Egyváltozós függvények 1. Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata

Részletesebben

λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0

λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0 Vektorok a térben Egy (v 1,v 2,v 3 ) valós számokból álló hármast vektornak nevezzünk a térben (R 3 -ban). Használni fogjuk a v = (v 1,v 2,v 3 ) jelölést. A v 1,v 2,v 3 -at a v vektor komponenseinek nevezzük.

Részletesebben

FELVÉTELI VIZSGA, július 21. Írásbeli próba MATEMATIKÁBÓL A. RÉSZ

FELVÉTELI VIZSGA, július 21. Írásbeli próba MATEMATIKÁBÓL A. RÉSZ BABE -BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 9. július. Írásbeli próba MATEMATIKÁBÓL FONTOS MEGJEGYZÉS: ) Az A. részben megjelen feleletválasztós feladatok esetén

Részletesebben