Dinamika Boole-ha lo zatokon

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Dinamika Boole-ha lo zatokon"

Átírás

1 Komplex Rendszerek Szim. Mo dsz. Labor Dinamika Boole-ha lo zatokon Nagy Da vid Gergely Fizika MSc. III. beadando Fizikai Inte zet Eo tvo s Lora nd Tudoma nyegyetem Budapest 2013

2 1. Egyszerű Boole-hálózatok A négyféle egydimenziós boole függvények a következők: x x x x x 1 x 0 A lehetséges N,K gráfokat Mathematica segítségével határoztam meg. K=1 miatt egy listával lehet reprezentálni a gráfot, ahol az n-ik elem az n-ik vertex bemenete, pl ha 1 2 és 2 1 akkor graph = [2, 1]. Így az összes lehetséges gráf megkapható ha vesszük az 1, 2,..N-ból előállítható összes N hosszú rendezett párt. tup = Tuples[Range[N], N]; rules = Table[Table[Rule[tup[[i,j]],j],{j,1,N}],// //{i,1,length[tup]}]; graphlist = Graph /@ rules; Ezután kiszűrtem közülük az izomorf gráfokat. DeleteDuplicates[graphlist, IsomorphicGraphQ[#1, #2] &] Így N=3-ra 7, N=4-re pedig 19 gráfot kaptam N=3 K=1 Kauffmann automata 2

3 Mivel már itt is rengeteg féle lehetséges Kauffmann automata van, így eltekintek az összes trajektória-gráf közlésétől. Ehelyett sok véletlen automata közül a szemre nem izomorfak egy jelentős részét mentettem el. 7 gráf 4 3 függvénykiosztás = 448 féle K=1 N=3 hálózat ha nem számoljuk az izomorfakat (különben 1728 lenne). Magasabb K esetén a lehetséges függvénykiosztások száma 2 2KN. A nem izomorf gráfok számára adott N-nél nem sikerült analitikus képletet konstruálnom és irodalomban sem találtam ilyet. A vonzási tartományokat úgy kerestem meg, hogy minden lehetséges kezdeti feltételből indítva a rendszert megnéztem hogy mi a következő lépés. Az automata determinisztikussága miatt ezzel az összes lehetséges trajektóriát megkaptam. Az összes kezdeti feltételt legeneráló Python kód: [[x,y,z] for x in [0,1] for y in [0,1] for z in [0,1]] Néhány az így kapott trajektória gráfok közül az alábbi ábrákon látható. A számozás a következőképpen működik: az első szám hogy hanyadik nem izomorf gráf az auto- 3

4 mat topolo gia ja (0-to l kezdo do indexele ssel), a ma sodik sza m a boole fu ggve nyeket indexeli. Teha t pl a azt a Kauffmann automata t jelo li ahol a vertexek ha romszo g szeru en vannak o sszeko tve e s minden no dus nega lja a bemenete t. Mivel ı gy is rengeteg ke p van, nem illesztettem be mindet, a marade kot minden feladatna l a lenti linken lehet megtala lni a bra e s a bra e s a bra e s

5 1.2. N=4 K=1 Kauffmann automata ábra

6 a bra a bra a bra N=10 K=1 Kauffmann automata Mivel itt kezelhetetlenu l sokfe le topolo gia lehetse ges, ezek ko zu l ve letlenu l va logattam, teha t a sza moza s elso fele a ko vetkezo ke ppen mo dosul: az elso sza m i-ik sza mjegye azt adja meg, hogy melyik no dus az i-ik no dus bemenete. Itt azt lehetett e szrevenni, hogy ve letlenu l bolyongva a lehetse ge Kauffman automata k tere ben, gyakorlatilag mindig igaz hogy a legto bb kezdeti felte tel nem stabil, hanem pa r le pe sen belu l a keve s attraktor egyike be keru l a rendszer. Ilyen eset la thato az ala bbi a bra n. 6

7 8. ábra Előfordul az is, hogy az attraktor nem egy állapot hanem egy határciklus. 7

8 9. ábra Az attraktoroknak időnként diszjunkt vonzási tartományai vannak. 8

9 10. ábra

10 11. ábra N=3 K=2 szinkron és azinkron frissítéssel Itt a szinkron frisítéssel megkaptam a könyv ábráján is szereplő trajektóriákat, ez látható a következő ábrán. 10

11 ábra. N=3 K=2 gráf állapottere Az aszinkron frissítésnél az eddigi módszer nem adja meg az összes lehetséges trajektóriát, mivel ugyanabból az állapotból néha máshová lépünk. Ha minden kezdeti feltételből sokszor futtattam, akkor az alábbi állapotteret kaptam: ábra Könnyen észrevehető hogy ez egy kocka gráfja rekurrens összekötésekkel, ami azt jelenti hogy minden állapotból minden állapotba átmegy néha a rendszer. Kivéve az 100 állapotot, ezt soha nem saját maga követi. Általánosságban feltételezhető, hogy 11

12 mivel hiperkocka csúcsai azok az állapotok amelyeket N hosszú {1,0}-ból álló vektorban egy elemet megváltoztatva kaphatunk, így tetszőleges N-re az N dimenziós hiperkocka lesz az állapottér. Itt talán értelmes lehet az állapotok felett egy valószínűségeloszlást figyelni, ebben az esetben hosszú idő után a rendszer szinte mindig a 000 vagy 111 állapotban volt, illetve nagoyn ritkán a 011-ben. 2. Ferromágneses Ising modell 2.1. Ising modell mint Kauffmann automata A 20*20 2D rács Ising modell felfogható egy N = 400, K = 5 (a saját állapotát is figyelembe kell vennie) Kauffmann automataként ahol az egymással interaktáló spinek felelnek meg az egymással összekötött vertexeknek. A gráf módosításával egyébként tetszőleges dimenziójú és topológiájú Ising modell szimulálható. A konnektivitás a periodikus határfeltételek miatt következő, az első ábrán a jobb áttekinthetőség miatt csak az egyik irány mentén van érvényesítve a határfeltétel, míg a másodikon a teljes szomszédság látható: 12

13 A vertexekhez a következő boole-függvényt rendeljük a T=0 esetben, mivel ilyenkor csak kisebb energiájú állapotok felé lépünk (a kezdeti állapot hot start esetén persze nem nulla hőmérsékletű): f(v 0, v 1, v 2, v 3, v 4 ) = { 1 E < 0 0 egyébként ami a következőképpen fejezhetünk ki a szomszédos spinek állapotaival f(v 0, v 1, v 2, v 3, v 4 ) = { 1 több mint 2 up szomszéd = 4 n=1 v i > 2 0 egyébként A következő ábrán az látható hogy néhány spin és spinszomszédság állapot (bal oldali oszlop) esetén mik lesznek a következő állapotok (jobb oldali oszlop). 14. ábra. Néhány átmeneti szabály a kauffmann automatában (A nódusokon értelmezett boole-függvény igazságtáblazata kapható meg ezekből). A szabályt egy 20*20-as rácson futtatva a véletlen kezdeti feltételből (bal oldali ábra) viszonylag kevés lépés után a jobb oldali állapotba jutunk, ahonnan nem változik tovább, befagy a rendszer. 13

14 15. ábra. Kezdeti és végső befagyott állapot. A mágnesezettség nem tud eljutni a legalacsonyabb energiájú állapotokba, itt valószínűleg arról van szó hogy egy lokális minimum közelebb van a kezdeti állapothoz mint az abszolút energiaminimum, és mivel az időfejlődés olyan hogy az energiafelületen soha nem lép felfelé a rendszer, ezért be fog ragadni a legközelebbi minimumba bármilyen sekély is legyen az. Ez azt jelenti hogy a T=0-nak megfelelő állapotot gyakorlatilag csak akkor tudjuk megkapni, ha eleve onnan indítjuk a rendszert Ising model 2D rácson Metropolis frissítéssel A magasabb hőmérsékletű állapotok szimulációjához az Ising modell hagyományos (nem Kauffmann-automata) megfogalmazását használtam, bár feltételezem hogy lehet értelmezni a Metropolis algoritmust aszinkron frissítésű Kauffmann automatára és feltehetőleg hasonló eredményeket generálna. Itt a v {0, 1} helyett s { 1, 1} állapotokat használok és a frissítési szabály (ez a Metropolis szabály amiről később még bővebben írok): ahol s i,t+1 (s i,t, s ijobb t, s ibal,t, s ifelett,t, s ialatt,t) = { s i,t e E kt > x Uniform[0, 1] s i,t egyébként E = E proposed E t = 2 J s i,t (s ibal,t + s ijobb t + s ifelett,t + s ialatt,t) mivel s i,proposed = flip(s i,t ) = s i,t. Analitikus eredmények A kritikus hőmérséklet 2d rács Ising modellre 2 2 H.A. Kramers and G.H. Wannier, Phys. Rev. 60, 252 (1941) 14

15 kt C J = 2 ln(1 + 2) = Az elméleti mágnesezettségi görbe termodinamikai határesetben a 2d rács Ising modellre { (1 ( M t= (T ) = lim si sinh 2 )) 1/8 N N = T T T C 0 T > T C amit mi egy viszonylag hosszú idő után vett időátlaggal közelítünk. Metropolis algoritmus A Metropolis algoritmus egy Markov chain Monte Carlo módszer. Az MCMC algoritmusok segítségével bonyolult (pl sok dimenziós) valószínűségi eloszlásokból lehet sztochasztikusan mintavételezni illetve integrálokat közelíteni. A módszer lényege, hogy egy olyan Markov láncot konstruálunk, amelynek az egyensúlyi eloszlása a mintavételezni kívánt π(x) sűrűségfüggvény és a lánc sok lépés utáni állapotait tekintjük a mintáknak. 1. Kezdjünk valamilyen x 0 kezdőállapotból 2. Egy tetszőleges eloszlás (proposal distribution) segítségével válasszunk egy javasolt új állapotot. 3. Számítsuk ki az elfogadási arányt (acceptance ratio) a = π(x ) π(x t) (a) Ha a 1 akkor fogadjuk el a javasolt új állapotot, azaz x t+1 = x (b) Ha a < 1 akkor a valószínűséggel fogadjuk el az új állapotot 4. Folytassuk a 2. lépéstől. Az így kapott x t állapotok az eloszlás szerint magas valószínűségű állapotok között bolyonganak, de a 3.a miatt néha alacsonyabb valószínűségű irányokba is lépnek. A 3. pontban szereplő arány azért előnyös, mert emiatt elég egy π(x)-el arányos mennyiséggel számolnunk, mert a konstans szorzó - pl egy nehezen kiszámolható állapotösszeg - kiesik. A programban a Metropolis-Hastings algoritmusnak egy speciális változatát használjuk, a Gibbs mintavételezést, amikor π(x) Boltzmann eloszlás, az új álapotokat pedig úgy választjuk hogy egy véletlenszerűen választott spint megfordítunk. Észrevehetjük hogy 2 J s i,t (s ibal,t+s ijobb t+s ifelett,t+s ialatt,t)-nek csak 5 féle különböző értéke lehetséges, E/2J {4, 2, 0, 2, 4}. Ezért a Boltzmann faktornak is csak 5 lehetséges értéke van, amelyeket ha előre kiszámítunk akkor az exponenciális több százmillió evaluációjtól kíméljhetjük meg magunkat. 15

16 Szimulációs eredmények Mivel az MCMC módszerek hátránya hogy erősen korrelált mintákat generálnak, ezért illik legalább N N (itt 20*20) lépést várni a mintavételezések között hogy átlagosan minden spinnek legyen esélye megfordulni. A lépéseket ezért úgy veszem hogy a metropolis frissítések száma N M frissit = N lépések A szimulációt hot startból a megadott 100k lépésig futtatva és a mágnesezettséget az utolsó 1000 lépésben mérve a mágnesezettség az elméleti görbével együtt: 0.8 M ábra. Látható, hogy a fázisátalakulás közel esik az elméleti értékhez (kb 2.3), bár a pontos helyét nem olyan egyszerű meghatározni. A vártakkal ellentétben a Curie hőmérséklet felett sem 0 a mágnesezettség, de ez szerintem azért lehet, mert nagyon kevés lépés van amit nem dobunk el hanem átlagolunk, és mivel erősen korreláltak a minták ezért nagy a mágnesezettség átlag körüli szórása. Ez az alacsonyabb hőmérséklet melletti értékeknél (a Curie hőm. alatt) kevésbé tud szórni mivel ott közel tartózkodik a függvény a maximumához ami fölé nem tud menni. A másik ok ami miatt pont a kritikus hőmérséklet körül a legrosszabbak az értékek, a kritikus lelassulás jelensége. Ez azt jelenti, hogy a kritikus hőmérséklethez tartva a relaxációs idő a végtelenbe tart, habár itt a rendszer véges mérete miatt a korrelációs hossz legfeljebb L lehet, így a független mintákhoz a mintavételezések között L 4 azaz lépést kéne várni a 400 helyett, illetve legrosszabb esetben ennyi idő után felejti el a rendszer a kezeti feltételt. 16

17 0.5 M ábra. Az átlagolt M(t) T=2.5 mellett. Látható hogy a minták erősen korreláltak. 0.5 M ábra. M(t) T=2.2 mellett. 17

18 M ábra. M(t) T=2.9 mellett. Egyébként jóval kevesebb lépésnél is elég jó egyezést kapunk az elméleti görbével, az ábrán az 5000 és lépésig futtatott átlagolt mágnesezettség (itt az utolsó 80%-ára átlagoltam a lépéseknek és jobbak is lettek a magas hőmérsékletű értékek, ami alátámasztja hogy tényleg ez lehetett az egyik gond az előbbi szimulációnál). 0.8 M ábra. Átlagos mágnesezettség 5000 és lépés mellett, az utolsó 80%-ra átlagolva Ising model más topológiákon A különböző gráf topológiákat kissé különböző frissítési módszerrel volt célszerű vizsgálni, így az utolsó két feladatot összevontam. Az új frissítési módszert a Phase 18

19 Transitions on Fixed Connected Graphs and Random Graphs in the Presence of Noise 3 című cikkre alapoztam, mivel ez könnyen általánosítható bármilyen topológiára. Itt a frissítési szabály a következő: x i (k + 1) = sign[v i (k) + ξ i (k)] ahol ξ i (k) Uniform[ ν, ν], v i (k) pedig a szomszédos spinek átlagos értéke. A ν zajszint a hőmérséklettel analóg mennyiség ebben a rendszerben, a rendparaméternek pedig itt is a mágnesezettséget tekintettem Erdős-Rényi gráfokon A cikk állítás szerint bebizonyítható, hogy Erdős-Rényi topológián ha egy adott ν zajszintet átlépünk, akkor a mágnesezettségnek szakadása lesz, ν c = 1-nél. Ezt az eredményt nekem is sikerült igazolni, attól eltekintve hogy úgy találtam hogy a kritikus zajszint konnektivitásfüggő. Egy másik, analitikus módszereket alkalmazó tanulmányban 4 H N (σ) = K σ iν σ jν ν=1 ahol K P oisson(αn), ahol α a konnektivitás mértéke, K a fokszámot adja meg. Nulla hőmérséklet mellett a konnektivitás függvényében van egy fázisátalakulás, α c = 1/2 alatt a mágnezettsség 0, felette pedig nullától különböző. Az is bebizonyítható hogy a magas-hőmérsékletű limitben a mágnesezettség 0, így α > α c esetén kell hogy legyen fázisátalakulás M(T)-ben. Azt a jelenséget hogy a konnektivitás adott szintje feltétele a fázisátalakulásnak az én szimulációmban is meg lehetett figyelni, viszont a kritikus α c nálam jóval kisebbnek adódott, 0.01 körül 0.5 helyett. 3 Phase Transitions on Fixed Connected Graphs and Random Graphs in the Presence of Noise, Jialing Liu et al, 2008, 4 Mean field dilute ferromagnet I. High temperature and zero temperature behavior, Luca De Sanctis, Francesco Guerra, 2013, 19

20 0.8»<M>» ábra. Fázisátalakulás α = 0.1-nél. 0.8 M ábra. Mágnesezettség görbék. Balról jobbra α értéke 0.001, 0.05, 0.1, 0.2, Skálafüggetlen gráfokon Én itt is az előbbi model keretei közöt vizsgáltam a Barabási-Albert topólógiát, így az irodalmi eredményeket csak kvalitatívan tudtam igazolni, a számértékeket nem. Megfigyelhető volt hogy a konnektivitás függvényében (m:hány élet adunk hozzá a gráfhoz lépésenként) egyértelműen megjelenik a fázisátalakulás, a kritikus zajszint az előbbihez hasonlóan egy körül van. 20

21 0.8 M ábra. Saját eredmények a Jialing et al cikk modellje alapján. A kék, lila, sárga gráfokban m értéke rendre 1,3 és 6. Irodalmi adatok a különböző kitevőjű hatványeloszlású gráf topológiájú Ising modell kritikus hőmérsékleteiről 5 A következő ábra forrása 6. 5 Ising Model on Networks with an Arbitrary Distribution of Connections, Dorogovtsev et al., 2002, 6 Ferromagnetic Phase Transition in Barabási-Albert Networks, Aleksiejuk et al., 2001, 21

22 24. ábra. Mágnesezettség a hőmérséklet függvényében, különböző m-eknél (a BA modell paramétere). Az ábra forrása fent. 22

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte

Részletesebben

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás PI KISZÁMOLÁSI JÁTÉKOK A TENGERPARTON egy kört és köré egy négyzetet rajzolunk véletlenszerűen kavicsokat dobálunk megszámoljuk:

Részletesebben

KÖZELÍTŐ INFERENCIA II.

KÖZELÍTŐ INFERENCIA II. STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.

Részletesebben

Hálózatok fejlődése A hatványtörvény A preferential attachment A uniform attachment Vertex copy. SZTE Informatikai Intézet

Hálózatok fejlődése A hatványtörvény A preferential attachment A uniform attachment Vertex copy. SZTE Informatikai Intézet Hálózattudomány SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Előadó: London András 4. Előadás Hogyan nőnek a hálózatok? Statikus hálózatos modellek: a pontok száma (n) fix, az éleket valamilyen

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben

3. Jelöljük meg a numerikus gyökkereső módszerekre vonatkozó egyedüli helyes kijelentést:

3. Jelöljük meg a numerikus gyökkereső módszerekre vonatkozó egyedüli helyes kijelentést: INFORMATICĂ PENTRU FIZICIENI 1. Egy mechanikai rendszerre vonatkozó Newtoni-mozgástörvényben megjelenő valamely paraméter nem pontos. Milyen típusú hibát eredményez az említett bizonytalanság az egyenlet

Részletesebben

KÖZELÍTŐ INFERENCIA II.

KÖZELÍTŐ INFERENCIA II. STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.

Részletesebben

Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny

Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny Szűk elméleti összefoglaló Valószínűségi változó: egy függvény, ami az eseményteret a valós számok halmazára tudja vetíteni. A val.

Részletesebben

Analı zis elo ada sok

Analı zis elo ada sok Vajda Istva n Neumann Ja nos Informatika Kar O budai Egyetem 1 / 13 Specia lis differencia la si szaba lyok Logaritmikus differencia la s f (x)g (x) g (x) = e ln f (x) = e g (x) ln f (x) = f (x) g (x)

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Összefoglalás és gyakorlás

Összefoglalás és gyakorlás Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28 Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28 Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés)

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Problémamegoldás kereséssel - csak lokális információra alapozva Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Lokálisan

Részletesebben

Kémiai reakciók mechanizmusa számítógépes szimulációval

Kémiai reakciók mechanizmusa számítógépes szimulációval Kémiai reakciók mechanizmusa számítógépes szimulációval Stirling András stirling@chemres.hu Elméleti Kémiai Osztály Budapest Stirling A. (MTA Kémiai Kutatóközpont) Reakciómechanizmus szimulációból 2007.

Részletesebben

Szalai Péter. April 17, Szalai Péter April 17, / 36

Szalai Péter. April 17, Szalai Péter April 17, / 36 Szociális hálók Szalai Péter April 17, 2015 Szalai Péter April 17, 2015 1 / 36 Miről lesz szó? 1 Megfigyelések Kis világ Power-law Klaszterezhetőség 2 Modellek Célok Erdős-Rényi Watts-Strogatz Barabási

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III. Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak

Részletesebben

A Barabási-Albert-féle gráfmodell

A Barabási-Albert-féle gráfmodell A Barabási-Albert-féle gráfmodell és egyéb véletlen gráfok Papp Pál András Gráfok, hálózatok modelljei Rengeteg gráfokkal modellezhető terület: Pl: Internet, kapcsolati hálók, elektromos hálózatok, stb.

Részletesebben

Elemi matematika szakkör

Elemi matematika szakkör Elemi matematika szakkör Kolozsvár, 2015. november 9. 1.1. Feladat. Tekintsünk egy E halmazt és annak minden A részhalmazára az A halmaz f A : E {0, 1} karakterisztikus függvényét, amelyet az { 1, x A

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2) Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses

Részletesebben

Markov-láncok stacionárius eloszlása

Markov-láncok stacionárius eloszlása Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius

Részletesebben

A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában

A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában Horváth Gábor ghorvath@hit.bme.hu (Horváth András, Telek Miklós) - p. 1 Motiváció, problémafelvetés

Részletesebben

Rendezetlenség által dominált szinguláris viselkedés klasszikus- és kvantum rendszerekben

Rendezetlenség által dominált szinguláris viselkedés klasszikus- és kvantum rendszerekben Rendezetlenség által dominált szinguláris viselkedés klasszikus- és kvantum rendszerekben PhD tézisek Juhász Róbert Szegedi Tudományegyetem Elméleti Fizikai Tanszék 2002. Publikációk 1. F. Iglói, R. Juhász,

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

Programoza s I. 10. elo ada s Rendezett to mbo k. Sergya n Szabolcs

Programoza s I. 10. elo ada s Rendezett to mbo k. Sergya n Szabolcs 10. elo ada s Rendezett to mbo k Sergya n Szabolcs sergyan.szabolcs@nik.uni-obuda.hu O budai Egyetem Neumann Ja nos Informatikai Kar Alkalmazott Informatikai Inte zet 1 / 5 Tartalom 1 Kerese sek rendezett

Részletesebben

Számítógépes szimulációk: molekuláris dinamika és Monte Carlo

Számítógépes szimulációk: molekuláris dinamika és Monte Carlo Számítógépes szimulációk: molekuláris dinamika és Monte Carlo Boda Dezső Fizikai Kémiai Tanszék Pannon Egyetem boda@almos.vein.hu 2014. március 21. Boda Dezső (Pannon Egyetem) Habilitációs előadás 2014.

Részletesebben

Készítette: Trosztel Mátyás Konzulens: Hajós Gergely

Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Monte Carlo Markov Chain MCMC során egy megfelelően konstruált Markov-lánc segítségével mintákat generálunk. Ezek eloszlása követi a céleloszlást. A

Részletesebben

Diszkréten mintavételezett függvények

Diszkréten mintavételezett függvények Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott

Részletesebben

Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza

Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza odor@mfa.kfki.hu 1. Bevezetõ, dinamikus skálázás, kritikus exponensek, térelmélet formalizmus, renormalizáció, topológius fázis diagrammok,

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

Véletlen gráfok, hálózatok

Véletlen gráfok, hálózatok Véletlen gráfok, hálózatok Véletlen gráfok, hálózatok Csirik András 2018.04.25 Erdős-Rényi modell Watts-Strogatz modell Barabási-Albert modell Hálózatok a mindennapokban Hálózatok a világ minden területén

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 6. MÉRÉS Fázisátalakulások vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. szeptember 28. Szerda délelőtti csoport 1. A mérés célja A mérés

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Doktori disszertáció. szerkezete

Doktori disszertáció. szerkezete Doktori disszertáció tézisfüzet Komplex hálózatok szerkezete Szabó Gábor Témavezető Dr. Kertész János Elméleti Fizika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2005 Bevezetés A tudományos

Részletesebben

Társadalmi és gazdasági hálózatok modellezése

Társadalmi és gazdasági hálózatok modellezése Társadalmi és gazdasági hálózatok modellezése 6. el adás Hálózatok növekedési modelljei: `uniform és preferential attachment' El adó: London András 2015. október 12. Hogyan n nek a hálózatok? Statikus

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Klasszikus Fizika Laboratórium VI.mérés Fázisátalakulások vizsgálata Mérést végezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.18.. 1. Mérés leírása A mérés során egy adott minta viselkedését vizsgáljuk

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

Közösség detektálás gráfokban

Közösség detektálás gráfokban Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a

Részletesebben

Programoza s I. 11. elo ada s Oszd meg e s uralkodj! elvu algoritmusok. Sergya n Szabolcs

Programoza s I. 11. elo ada s Oszd meg e s uralkodj! elvu algoritmusok. Sergya n Szabolcs 11. elo ada s Oszd meg e s uralkodj! elvu algoritmusok Sergya n Szabolcs sergyan.szabolcs@nik.uni-obuda.hu O budai Egyetem Neumann Ja nos Informatikai Kar Alkalmazott Informatikai Inte zet 1 / 24 Tartalom

Részletesebben

A heterogenitások hatása kritikus agyhálózati modellekben

A heterogenitások hatása kritikus agyhálózati modellekben A heterogenitások hatása kritikus agyhálózati modellekben Ódor Géza MTA-MFA Komplex Rendszerek Michael Gastner Yale-Nus college Singapore Ronald Dickman UFMG Brazil Ódor Gergely MIT, USA 1. Kritikusság

Részletesebben

Neura lis ha lo zatok

Neura lis ha lo zatok Komplex Rendszerek Szim. Mo dsz. Labor Neura lis ha lo zatok Nagy Da vid Gergely Fizika MSc. IV. beadando Fizikai Inte zet Eo tvo s Lora nd Tudoma nyegyetem Budapest 2013 1. Hopfield hálózat A Hopfield-hálózat

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

Függvények ábrázolása

Függvények ábrázolása Függvények ábrázolása Matematikai függvényeket analitikusan nem tudunk a matlabban megadni (tudunk, de ilyet még nem tanulunk). Ahhoz, hogy egy függvényt ábrázoljuk, hasonlóan kell eljárni, mint a házi

Részletesebben

Statisztikai módszerek a skálafüggetlen hálózatok

Statisztikai módszerek a skálafüggetlen hálózatok Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Nagy Péter: Fortuna szekerén...

Nagy Péter: Fortuna szekerén... Nagy Péter: Fortuna szekerén... tudni: az ész rövid, az akarat gyenge, hogy rá vagyok bízva a vak véletlenre. És makacs reménnyel mégis, mégis hinni, hogy amit csinálok, az nem lehet semmi. (Teller Ede)

Részletesebben

Példa sejtautomatákra. Homokdomb modellek.

Példa sejtautomatákra. Homokdomb modellek. Példa sejtautomatákra. Homokdomb modellek. Automaták egyszerű eszközök tulajdonságok: véges számú állapota van átmenet egyik állapotból a másikba érzékeli a környezetet esetleg megváltoztatja a környezetet

Részletesebben

Véletlen gráfok. Backhausz Ágnes Eötvös Loránd Tudományegyetem és MTA Rényi Alfréd Matematikai Kutatóintézet december 2.

Véletlen gráfok. Backhausz Ágnes Eötvös Loránd Tudományegyetem és MTA Rényi Alfréd Matematikai Kutatóintézet december 2. Véletlen gráfok Backhausz Ágnes Eötvös Loránd Tudományegyetem és MTA Rényi Alfréd Matematikai Kutatóintézet agnes@cs.elte.hu 2015. december 2. Nagy hálózatok Példák valós hálózatokra társadalmi hálózatok

Részletesebben

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert

Részletesebben

HÁZI DOLGOZAT. Érmefeldobások eredményei és statisztikája. ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai)

HÁZI DOLGOZAT. Érmefeldobások eredményei és statisztikája. ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai) ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai) HÁZI DOLGOZAT Érmefeldobások eredményei és statisztikája Készítette: Babinszki Bence EHA-kód: BABSAET.ELTE E-mail cím: Törölve A jelentés

Részletesebben

Kovács Adrienn. Markov-lánc Monte Carlo módszerek és alkalmazásai gráfokon

Kovács Adrienn. Markov-lánc Monte Carlo módszerek és alkalmazásai gráfokon Eötvös Loránd Tudományegyetem Természettudományi Kar Kovács Adrienn Markov-lánc Monte Carlo módszerek és alkalmazásai gráfokon Szakdolgozat Alkalmazott matematikus MSc., sztochasztika szakirány Témavezető:

Részletesebben

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Mi a véletlen? Determinisztikus vs. Véletlen esemény? Véletlenszám: számok sorozata, ahol véletlenszerűen követik egymást az elemek Pszeudo-véletlenszám

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Valószínűségi hálók - következtetés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Következtetés

Részletesebben

i p i p 0 p 1 p 2... i p i

i p i p 0 p 1 p 2... i p i . vizsga, 06--9, Feladatok és megoldások. (a) Adja meg az diszkrét eloszlás várható értékének a definícióját! i 0... p i p 0 p p... i p i (b) Tegyük fel, hogy a rigófészkekben található tojások X száma

Részletesebben

Automaták. bemenet: pénz, kiválasztó gombok stb. állapot: standby, pénz van behelyezve stb. kimenet: cola, sprite, visszajáró

Automaták. bemenet: pénz, kiválasztó gombok stb. állapot: standby, pénz van behelyezve stb. kimenet: cola, sprite, visszajáró 12. előadás Automaták egyszerű eszközök tulajdonságok: véges számú állapota van átmenet egyik állapotból a másikba érzékeli a környezetet esetleg megváltoztatja a környezetet új állapotba megy át kóla

Részletesebben

Társadalmi és gazdasági hálózatok modellezése

Társadalmi és gazdasági hálózatok modellezése Társadalmi és gazdasági hálózatok modellezése 2. el adás A hálózatkutatás néhány fontos fogalma El adó: London András 2015. szeptember 15. Átmér l ij a legrövidebb út a hálózatban i és j pont között =

Részletesebben

Véletlen bolyongás. Márkus László március 17. Márkus László Véletlen bolyongás március / 31

Véletlen bolyongás. Márkus László március 17. Márkus László Véletlen bolyongás március / 31 Márkus László Véletlen bolyongás 2015. március 17. 1 / 31 Véletlen bolyongás Márkus László 2015. március 17. Modell Deníció Márkus László Véletlen bolyongás 2015. március 17. 2 / 31 Modell: Egy egyenesen

Részletesebben

Molekuláris dinamika. 10. előadás

Molekuláris dinamika. 10. előadás Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik

Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Az A halmazrendszer σ-algebra az Ω alaphalmazon, ha Ω A; A A A c A; A i A, i N, i N A i A. Az A halmazrendszer

Részletesebben

Megerősítéses tanulás 7. előadás

Megerősítéses tanulás 7. előadás Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Problémamegoldás kereséssel - lokális információval Pataki Béla Bolgár Bence BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Rugó tervezése

Részletesebben

Véges automaták, reguláris nyelvek

Véges automaták, reguláris nyelvek Véges automaták, reguláris nyelvek Kiegészítő anyag az lgoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: lgoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 27. augusztus 3. véges automata

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy

Részletesebben

12. előadás - Markov-láncok I.

12. előadás - Markov-láncok I. 12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R

Részletesebben

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Numerikus integrálás

Numerikus integrálás Közelítő és szimbolikus számítások 11. gyakorlat Numerikus integrálás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Határozatlan integrál

Részletesebben

Demográfiai modellek (folytatás)

Demográfiai modellek (folytatás) Demográfiai modellek (folytatás) 4. A teljesebb anyag 4.1. A megoldás egy változata Alábbiakban az előző gyakorlaton szereplő keretprogramból kapható egy lehetséges megoldást részletezzük. (Ha már a sajátja

Részletesebben

IBNR számítási módszerek áttekintése

IBNR számítási módszerek áttekintése 1/13 IBNR számítási módszerek áttekintése Prokaj Vilmos email: Prokaj.Vilmos@pszaf.hu 1. Kifutási háromszög Év 1 2 3 4 5 2/13 1 X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 2 X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 3 X 3,1 X 3,2

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

Befordulás sarkon bútorral

Befordulás sarkon bútorral Befordulás sarkon bútorral Bizonyára volt már olyan élményed, hogy bútort kellett cipelned, és nem voltál biztos benne, hogy be tudjátok - e vinni a szobába. Erről jutott eszembe az alábbi feladat. Adott

Részletesebben

II. orsza gos magyar matematikaolimpia XXIX. EMMV Szatma rne meti, februa r 28. ma rcius 3. VIII. oszta ly

II. orsza gos magyar matematikaolimpia XXIX. EMMV Szatma rne meti, februa r 28. ma rcius 3. VIII. oszta ly VIII. oszta ly 1. feladat. Az n N terme szetes sza mot szerencse snek nevezzu k, ha n2 felı rhato n darab egyma suta ni terme szetes sza m o sszegeke nt. Bizonyı tsd be, hogy: 1) a 1 szerencse s sza m;

Részletesebben

AliROOT szimulációk GPU alapokon

AliROOT szimulációk GPU alapokon AliROOT szimulációk GPU alapokon Nagy Máté Ferenc & Barnaföldi Gergely Gábor Wigner FK ALICE Bp csoport OTKA: PD73596 és NK77816 TARTALOM 1. Az ALICE csoport és a GRID hálózat 2. Szimulációk és az AliROOT

Részletesebben

Normális eloszlás tesztje

Normális eloszlás tesztje Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra

Részletesebben

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O 1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Loss Distribution Approach

Loss Distribution Approach Modeling operational risk using the Loss Distribution Approach Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 2 Szabályozói

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

Gazdasági matematika II. vizsgadolgozat megoldása A csoport Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége

Részletesebben

Termelés- és szolgáltatásmenedzsment

Termelés- és szolgáltatásmenedzsment Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Előrejelzési módszerek 14. Az előrejelzési modellek felépítése

Részletesebben

Fluktuáló terű transzverz Ising-lánc dinamikája

Fluktuáló terű transzverz Ising-lánc dinamikája 2016. szeptember 8. Phys. Rev. B 93, 134305 Modell H(t) = 1 2 L 1 σi x σi+1 x h(t) 2 i=1 h(t)-fluktuáló mágneses tér. Hogyan terjednek jelek a zajos rendszerben? L σi z, i=1 Zajok típusai 1 fehér zaj 2

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár. Hegyi Géza. Filozofia és Történelem Kar, Kolozsvár. M.A. Santos, R. Coelho és J.J.

Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár. Hegyi Géza. Filozofia és Történelem Kar, Kolozsvár. M.A. Santos, R. Coelho és J.J. Vagyoneloszlás a társadalmakban - egy fizikus megközelítése Néda Zoltán Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár Hegyi Géza Babeş-Bolyai Tudományegyetem Filozofia és Történelem Kar, Kolozsvár

Részletesebben

( Monte-Carlo-módszer)

( Monte-Carlo-módszer) A munkára fogott véletlen ( Monte-Carlo-módszer) Cserti József Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék, H-1117 Budapest, Pázmány Péter sétány 1/A. (23. szeptember 7.) A pécsi

Részletesebben

Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0, 1, 2,..., N}, {0, 1, 2,... }.

Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0, 1, 2,..., N}, {0, 1, 2,... }. . Markov-láncok. Definíció és alapvető tulajdonságok Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0,,,..., N}, {0,,,... }.. definíció. S értékű valószínűségi

Részletesebben

Mi az adat? Az adat elemi ismeret. Az adatokból információkat

Mi az adat? Az adat elemi ismeret. Az adatokból információkat Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

A MATEMATIKA NÉHÁNY KIHÍVÁSA

A MATEMATIKA NÉHÁNY KIHÍVÁSA A MATEMATIKA NÉHÁNY KIHÍVÁSA NAPJAINKBAN Simon L. Péter ELTE, Matematikai Intézet Alkalmazott Analízis és Számításmatematikai Tsz. 1 / 20 MATEMATIKA AZ ÉLET KÜLÖNBÖZŐ TERÜLETEIN Kaotikus sorozatok és differenciálegyenletek,

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben