RÁDIÓLOKÁCIÓ ALAPJAI

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "RÁDIÓLOKÁCIÓ ALAPJAI"

Átírás

1 BOLYAI JÁNOS KATONAI MŰSZAKI FŐISKOLA Ferenczy Gábor - Szűcs Péter - Balog Károly RÁDIÓLOKÁCIÓ ALAPJAI - Budapest,

2 BOLYAI JÁNOS KATONAI MŰSZAKI FŐISKOLA Nyt. szám: RÁDIÓLOKÁCIÓ ALAPJAI Főiskolai jegyzet Készítette: Ferenczy Gábor okl. mk. őrnagy, főiskolai docens Szűcs Péter okl. mk. őrnagy, főiskolai tanársegéd Balogh Károly okl. mk. százados, főiskolai tanársegéd Lektorálta: Dr. Som Ferenc okl. mk. őrnagy, főiskolai docens - Budapest,

3 Tartalomjegyzék TARTALOMJEGYZÉK BEVEZETÉS.5 1 A RÁDIÓLOKÁCIÓ A RÁDIÓLOKÁCIÓ FIZIKAI ALAPJAI A RÁDIÓLOKÁCIÓ FOLYAMATA LOKÁTOROK OSZTÁLYOZÁSA A lokátorok rendeltetés szerinti felosztása A lokátor állomások felosztása az elrendezés módja szerint A rádiólokáció módszere szerint felosztás Adatszolgáltatás szerinti felosztás: Hullámtartomány szerinti felosztás: Rádiólokációban használatos frekvenciatartományok Hullámterjedési sajátosságok, zajok, zavarok A LOKÁTOROK ALKALMAZÁSI TERÜLETEI A lokátor alkalmazása azonosításra A lokátor repülésbiztonsági alkalmazása A lokátor navigációs alkalmazása A lokátor meteorológiai alkalmazása A lokátor alkalmazása a fegyverirányításban A lokátorok alkalmazásának egyéb területei RÁDIÓLOKÁCIÓS CÉLTÁRGYAK MÉRÉSÉNEK ALAPJAI TÁVOLSÁGMÉRÉS SZÖGMÉRÉS SEBESSÉGMÉRÉS MÉRÉSI MÓDSZEREK A távolságmérés módszerei A szögmérés módszerei A RÁDIÓLOKÁTOROK HARCÁSZAT-TECHNIKAI JELLEMZŐI RÁDIÓLOKÁTOROK HARCÁSZATI JELLEMZŐI Maximális hatótávolság (R max ) Szabadtéri hatótávolság A rádiólokátor hatótávolságát csökkentő tényezők Rádiólokátorok gyakorlati hatótávolsága Minimális hatótávolság Távolság szerinti felbontóképesség (ΔR ) és mérési pontosság Rádiólokátorok szög szerinti felbontóképessége (Δβ,Δϑ) és mérési pontossága A légtér letapogatási sebessége Rádiólokátorok zavarvédettsége RÁDIÓLOKÁTOROK TECHNIKAI JELLEMZŐI Az adó teljesítménye (P a ) Az adó frekvenciája (f a ) Az antenna sugárzási karakterisztikája (G,β,ϑ) (teljesítmény-irányjelleggörbe) A rádiólokátor vevő érzékenysége és sávszélessége A RÁDIÓLOKÁCIÓS CÉLTÁRGYAK HATÁSOS KERESZTMETSZETE KÜLÖNBÖZŐ TÍPUSÚ LOKÁTOROK LOKÁTOROKBAN ALKALMAZOTT MODULÁCIÓS MÓDOK

4 Tartalomjegyzék 4.2 FOLYTONOS HULLÁMÚ LOKÁTOROK Modulálatlan (CW) folytonos hullámú lokátor Lineáris frekvenciamodulált (FM) lokátorok Zajmodulált folytonos hullámú lokátor IMPULZUSÜZEMŰ LOKÁTOROK Modulálatlan, impulzusüzemű amplitúdó-demodulációs lokátor Modulálatlan, impulzusüzemű fázisdemodulációs (MTI) lokátor A lineáris frekvenciamodulált impulzusüzemű lokátor Fáziskód-modulált lokátor A KERESŐ (FELDERÍTŐ) LOKÁTOR A kereső lokátor feladata Az ideális kereső lokátor A valóságos kereső lokátor A kereső lokátor általános felépítése A KÖVETŐ (MÉRŐ) LOKÁTOR Szögkövetés Távolságkövetés Sebességkövetés Sebességkövetés impulzusüzemű lokátor esetén RÁDIÓLOKÁTOR ÁLLOMÁSOK FELÉPÍTÉSE, FŐBB RÉSZEI ANTENNA-TÁPVONALRENDSZER ADÓBERENDEZÉS Impulzusmodulált adók főbb részei VEVŐBERENDEZÉS Rádiólokátor vevők rendeltetése Rádiólokátor vevők legfontosabb paraméterei Rádiólokátor vevők általános felépítése Rádiólokátor vevők nagyfrekvenciás erősítő fokozatai Rádiólokátor vevők nagyfrekvenciás keverő fokozatai Rádiólokátor vevők helyi oszcillátorai Rádiólokátor vevők középfrekvenciás erősítő fokozatai Amplitúdó-detektorok (videó-detektorok) Videó-frekvenciás erősítők Rádiólokátor vevők szabályozókörei INDIKÁTOR ANTENNAMOZGATÓ RENDSZER ZAVARVÉDŐ RENDSZER Rádiólokációs zavarok A zavarvédelem általános módszere Frekvenciaszelektivitás A passzív zavarok kiszűrésének módszerei Aktív zavarok szűrése A RÁDIÓTECHNIKAI FELDERÍTŐ ADATSZERZÉS TECHNIKAI ALAPJAI RÁDIÓLOKÁTOR KISUGÁRZÁSOK JELLEMZŐI Impulzusjellegű rezgések Nem modulált impulzus-sorozat Modulált impulzus-sorozat Nem modulált csoport (széria) impulzusok Modulált csoport impulzusok VIVŐFREKVENCIA MEGHATÁROZÁSÁNAK MÓDSZEREI A keresés nélküli módszer A kereséses módszer IMPULZUSSZÉLESSÉG (IDŐTARTAM) MEGHATÁROZÁSÁNAK MÓDSZEREI Időmódszer Kalibrált indított kitérítés Kondenzátor töltésének módszere Automatikus módszer Spektrummódszer

5 Tartalomjegyzék 6.4 IMPULZUSISMÉTLŐDÉSI FREKVENCIA (IDŐTARTAM) MEGHATÁROZÁSÁNAK MÓDSZEREI Összehasonlító módszer: A kalibrált indított kitérítési módszer Időjelek módszere Automatikus módszer Spektrummódszer IMPULZUSSZÉRIA HOSSZÚSÁG MEGHATÁROZÁSÁNAK MÓDSZEREI Kalibrált frekvenciával Hallás után Kalibrált indított kitérítés módszere ANTENNA FORGÁSI SEBESSÉG MEGHATÁROZÁSÁNAK MÓDSZEREI Időmódszerrel Kalibrált indított kitérítés A MODULÁLT IMPULZUSJELEK FORMÁJÁNAK ÉS JELLEMZŐINEK MEGHATÁROZÁSA Oszcilloszkópos megfigyelés Indított kalibrált kitérítés A FOLYAMATOS JELLEGŰ REZGÉSEK JELEI MEGHATÁROZÁSÁNAK MÓDSZEREI Nem modulált folyamatos jelek A modulált folyamatos jelek RÁDIÓLOKÁTOROK OLDALSZÖGÉNEK MÉRÉSI MÓDSZEREI Maximum mérési módszer Minimum mérési módszer Összehasonlító módszer Fázis összehasonlító módszer

6

7 BEVEZETÉS A jegyzet elkészítésével az volt célunk, hogy ismertessük a rádiólokációval kapcsolatos alapfogalmakat és alapismereteket. Nem törekedtünk a rádiólokáció, illetve a lokátorok és azok működésének teljes és kimerítő ismertetésére, mert a jegyzet első sorban a rádióelektronikai felderítő szakos hallgatók részére készült. A rádióelektronikai, vagy pontosabban a rádiótechnikai felderítéshez nincs szükség arra, hogy teljes mélységben ismerjük a lokátorok működését. A lokátorok felderítéséhez az a fontos, hogy tudjuk, milyen frekvencián, milyen modulációs móddal és milyen egyéb jellemzőkkel sugározzák ki a jeleket. A rádiótechnikai felderítés ezeknek a jeleknek a detektálására és jellemzőinek a mérésére irányul. A rádiólokáció alapjait - a rádióelektronikai felderítő szakos hallgatók - a Rádiólokáció alapjai, vagy az új tanterv szerint a Rádiólokáció, tantárgy keretében tanulják. A tantárgy alapismereteket nyújt a "Rádióelektronikai felderítő eszközök rendszertechnikája" tantárgy rádiótechnikai felderítő eszközök című tárgykörében tanult berendezések rendszertechnikai felépítésének és működésének megértéséhez. A jegyzet felépítése a következő: Az első fejezetben a rádiólokáció fizikai alapjairól, folyamatáról, valamint a lokátorok osztályozásáról és alkalmazásuknak területeiről kap ismereteket az olvasó. Ismertetjük azokat a hullámterjedési és egyéb fizikai törvényszerűségeket, amelyek meghatározzák azt, hogy milyen antennájú, felépítésű és rendeltetésű lokátort lehet alkalmazni egy bizonyos frekvenciatartományban. A második fejezetben bemutatjuk a rádiólokációs céltárgyak mérésének alapjait, vagyis azt, hogy egy lokátor hogyan képes a céltárgyak egyes paramétereit mérni. Megismerheti az olvasó azokat a fizikai alapokat, elveket, amelyek alapján képesek vagyunk valamilyen céltárgy észlelésére egy adott térrészben, illetve paramétereinek folyamatos mérésére. A harmadik fejezetben a lokátorok harcászat-technikai jellemzőit ismertetjük. Részletesen bemutatjuk, hogy hogyan lehet meghatározni a lokátorok hatótávolságait, különböző esetekben és különböző céltárgyak esetén, illetve még egyéb fontos mérési és technikai jellemzőjét a lokátoroknak. A negyedik fejezetben bemutatjuk a lokátorok különböző típusait. Továbbá megismerheti az olvasó a folytonos hullámú és az impulzusüzemű lokátorok rendszertechnikai felépítését és az alkalmazott modulációs módokat, a különböző felbontóképesség növelő eljárásokat

8 Tartalomjegyzék Az ötödik fejezetben bemutatjuk a lokátor állomások felépítését, főbb részeit. Ismertetjük a lokátorok antenna-tápvonal rendszerének, adó- és vevőberendezésének, indikátorának és egyéb rendszereinek a rendeltetését, felépítését, főbb paramétereit. A hetedik fejezetben megismerheti az olvasó a rádiótechnikai felderítés technikai alapjait. Ebben a fejezetben bemutatjuk a lokátorok mint céltárgyak mérésének alapvető módszereit

9 A rádiólokáció 1 A RÁDIÓLOKÁCIÓ A rádiólokáció a tárgyak felderítésére, helyzetadatainak, illetve jellemzőik meghatározására használatos eljárás. Maga a szó rádiólokáció szó a latin radio és a locus szóból tevődik össze, ami sugárzást és helyet jelent. A szakirodalomban még használják RADAR elnevezést is, ez az angol Radio Detection And Ranging szavakból képzet mozaikszó, ami rádióhullámokkal való felderítést és mérést jelent. A lokátor a tárgyak térbeli helyzetének meghatározására alkalmas berendezés, aminek a működése a rádióhullámok terjedési sajátosságain alapul. A rádióhullámok ugyanolyan jellegű hullámok, mint a fényhullámok, így terjedési sebességük is ugyanakkora. A rádióhullámok elektromágneses hullámok, amelyek a tér egy-egy pontjában az elektromos és mágneses terek átalakulásából keletkeznek. Az a távolság, amit az elektromágnese hullám egy rezgés ideje alatt megtesz, a rádióhullám hullámhossza. Jele: λ. Matematikailag: c λ = (1.1.) f ahol λ - a hullámhossz [m], c - a fény terjedési sebessége: 2, m s m s, f - a hullám frekvenciája [Hz]. A mágneses és elektromos tér síkjai egymásra merőlegesek, és az 1.1. ábra szerinti alakzatban, mint elektromágneses hullám terjednek. E Terjedési irány H 1.1. ábra Az elektromágneses hullám terjedése - 9 -

10 A rádiólokáció fizikai alapjai 1.1 A RÁDIÓLOKÁCIÓ FIZIKAI ALAPJAI A rádiólokáció fizikai alapját az képezi, hogy az ezen eszközök működése során kisugárzott elektromágneses energia: - állandó sebességű, - egyenes vonalban és a nagykörök mentén terjed, - irányítható, - a céltárgyakról képes visszaverődni. A kisugárzott elektromágneses energia állandó terjedési sebessége a légtérben gyakorlatilag megegyezik a fény terjedési sebességével ( m s ). Ez képezi a távolság meghatározás alapját. A rádiólokáció céljaira felhasznált frekvenciasávokban az elektromágneses energia egyenes vonalban terjed. A jelenleg ismert, működőképes, illetve a közel jövőben rendszeresítésre tervezett lokátor állomások főleg a 30 MHz-300 GHz frekvenciatartományokban üzemelnek. A jelenlegi lokátorok alapvetően a 400 MHz - 20 GHz közötti frekvenciasávban dolgoznak, rendeltetésüknek megfelelően. A kisugárzott energia irányíthatósága abból következik, hogy a rádiólokáció céljaira olyan antennákat alkalmaznak, amelyek a nagyfrekvenciás energiát egy fő irányba sugározzák. A sugárzás irányítása céljából a lokátorok antennarendszerében a hullámhosszúságra méretezett sugárzót és a hullámhossz többszörösének megfelelő méretű reflektor-tükröt használnak. Például a 3 GHz-es frekvenciatartományban igen gyakran alkalmazott forgás paraboloid szelet antennatükör 7-10 m-es vízszintes mérete szorosa a kisugárzott elektromágneses energia hullámhosszúságának. Így a kialakuló sugárnyaláb vízszintes szelete (sugárkarakterisztika szélessége) nem haladja meg az l -ot. Minél magasabb frekvencián, azaz minél kisebb hullámhosszon üzemel egy lokátor állomás, annál kisebb méretű antenna kell hasonló szélességű sugárnyaláb kialakításához, és fordítva az alacsony - méteres - frekvenciasávban üzemelő eszközök esetén már több kilométeres antennák kellenének ezen érték eléréséhez. Az utóbbi időben egyre több olyan lokátor van, amely nem a hagyományos értelemben vett és közismert (parabola, forgás paraboloid, Cassegrain, Yagi) antennákat használ. Ilyenek az úgynevezett fázisvezérelt rácsantennák, amelyek viszonylag kis méret mellett igen jó hatásfokú és rugalmasan változtatható irányító hatással rendelkeznek

11 A rádiólokáció 1.2 A RÁDIÓLOKÁCIÓ FOLYAMATA Az adóberendezés által előállított nagyfrekvenciás (modulált, vagy modulálatlan), nagyteljesítményű jelek tápvonal-rendszeren keresztül az (adó) antennára jutnak, mely irányított elektromágneses hullámok formájában sugározza ki azokat. Ha a kisugárzott elektromágneses hullámok terjedésük során valamilyen céltárgyba ütköznek, visszaverődnek annak felületéről (1.2. ábra). A célról visszaverődő - igen kis térerősségű elektromágneses hullámok a vevőantennán és a tápvonal rendszeren keresztül a vevőbe jutnak. A vevő berendezés feladata a jelek erősítése és az adó modulációjának megfelelő demoduláció után az indikátorokon való megjelenítésre alkalmas elektromos jelekké való átalakítsa. Az indikátor a vevőről érkező céljeleket összehasonlítja az adó referens jelével, valamint észlelhető, látható formába alakítja át (1.2. ábra) Adó Indikátor Vevő 1.2. ábra A rádiólokáció folyamata 1.3 LOKÁTOROK OSZTÁLYOZÁSA Ez ideig igen sokfajta lokátort fejlesztettek ki, melyek formára, rendeltetésre, és a szolgáltatott információk jellegére nézve sok eltérést mutatnak. A lokátor állomások különféle kritériumok és kategóriák szerint osztályozhatók. Természetesen minden osztályozás önkényes, és nehéz egyértelmű kategóriákat felállítani, melyekbe minden eszköz egyértelmű helyet kap. Ez elsősorban az eszközök sokrétűségéből és bonyolultságából fakad. Külön kell foglalkozni azokkal az igen korszerű többfeladatú eszközökkel, melyek több kategóriába is beleférnek. A lokátorok osztályozása: - rendeltetés szerint, - rádiólokáció módszere szerint, - telepítés módja szerint, - adatszolgáltatás szerint, - hullámtartomány szerint

12 Lokátorok osztályozása A lokátorok rendeltetés szerinti felosztása Rendeltetés szerint a lokátor állomások a következő csoportokra oszthatók: - kereső, (felderítő vagy detektáló), - követő (mérő) A keresőlokátor A keresőlokátor alapfeladata a kijelölt térrész megbízható figyelése. A keresőlokátorokkal szemben elsődleges követelmény a gyors és megbízható adatszolgáltatás az ellenség objektumairól. Céljuk az azonnali ellentevékenységhez szükséges adatok szolgáltatása. Megkülönböztetünk: a) légicél felderítő, b) tüzérségi felderítő, c) horizonton túli felderítő (Over The Horizon: OTH), d) űrobjektum felderítő, e) földi (vízfelszíni) mozgócél felderítő lokátor állomásokat. a) A légicél-felderítő lokátor állomások feladata a légtérben lévő repülőobjektumok felderítése. A légicél-felderítő lokátorok hatótávolsága széles határok között változik a felderítési feladatnak megfelelően. Az igen nagy hatótávolságúak általában kevés és kis pontosságú adatot szolgáltatnak, míg a közepes- és kis hatótávolságúak gyorsan, nagy mennyiségű, nagy pontosságú adatot szolgáltatnak. b) A tüzérségi felderítő lokátorok feladata a tüzelő állások, egyes lövegek, rakétakilövők helyének felderítése, bemérése. Ezt a feladatot többnyire a röppályán lévő lövedék, rakéta felderítésével pályaadatainak mérésével és követésével hajtják végre. Ezek alapján - hátrametszéssel - meghatározható a röppálya kezdő pontja, azaz a kilövő-, vagy indítóállás. Ezek az eszközök igen nagy pontossággal, megbízhatóan és nagyon gyorsan dolgoznak. (P1. a Tacfire rendszer, az AN/TPQ-36, -37 lokátorok). c) A horizonton túli (OTH) felderítő lokátor állomások feladata, hogy a rádióhorizonton (egyenes láthatóság határán) túl biztosítsák az információszerzést, például kontinensek között. Ezek az eszközök alkalmasak a tömeges rakétacsapások észlelésére, a légierő nagyméretű mozgásainak felderítésére. Az ilyen eszközök a méteres hullámtartományban üzemelnek, ahol a jelek képesek az ionoszféráról, majd a föld felszínéről visszaverődni, így nagy távolságokra tudnak eljutni. d) Az űrobjektum felderítő lokátor állomások feladata az interkontinentális ballisztikus rakéták, kozmikus eszközök (különböző rendeltetésű és pályaadatú műholdak) felderítése, koordinátáinak meghatározása, mozgási pá

13 A rádiólokáció lyájuk követése. Erre a célra igen nagyteljesítményű, általában stabil telepítésű, nagy hatótávolságú eszközöket használnak. Elhelyezésük a fő rakétacsapások irányában történik, illetve úgy, hogy egy adott idő alatt biztosítsa az összes - nem szinkronpályán keringő - űrobjektum felderítését. e) A földi (vízfelszíni) mozgócél-felderítő lokátor állomások feladata adatokat szolgáltatni a harcmező helyzetéről és az abban bekövetkezett változásokról. Ezek az eszközök általában kis-hatótávolságúak, néhány száz métertől néhány tíz kilométerig észlelik a harcmezőn mozgó tárgyakat (a kúszó embertől a harckocsiig, sőt egyes esetekben a kis-, vagy alacsony magasságon repülő eszközöket is). Ezek a lokátorok általában könnyű, hordozható, folyamatos sugárzású eszközök Követőlokátor A követő (mérő) lokátorok alapfeladata nem egy térrész figyelése, hanem csak adott céltárgy vagy céltárgyak helyzetadatainak mérése. Attól függően, hogy milyen helyzetadatot vagy adatokat mérünk. Megkülönböztetünk szögkövetést, távolságkövetést, sebességkövetést és magasságmérést. A szög-, távolság- és sebességkövetést általában egy lokátorral egyszerre meg lehet valósítani, de a magasságmérésre többnyire külön magasságmérő lokátort alkalmaznak. A magasságmérő lokátorok feladata, hogy a két koordinátát meghatározó (R és β) eszközöket kiegészítse a harmadik koordináta (emelkedési szög vagy magasság) adatokkal. Ezek a lokátorok az antenna függőleges lengetésével ( bólogatásával ), az iránykarakterisztikát úgy változtatják, hogy meghatározható a céltárgy magassága. A magasságmérő lokátorokat önállóan általában nem alkalmazzák, csak egy másik eszköz kiegészítéseként, például a felderítő lokátorokkal együtt. Ezek a lokátorok speciális antenna karakterisztikájuk - vízszintesen elnyúlt alakú- következtében igen jó hatásfokkal alkalmazhatók a kismagasságú, illetve a földközelben tevékenykedő légi célok felderítésére A lokátor állomások felosztása az elrendezés módja szerint Telepítési módjuk szerint a lokátor állomások a következő csoportokra oszthatók: - monosztatikus, - bisztatikus, - multisztatikus. A monosztatikus elrendezés estén az adó és a vevő antenna ugyan az, de monosztatikus elrendezésnek hívjuk azt is, amikor ugyanazon a helyen egy lokátor állomás külön adó és külön vevőrendszerrel rendelkezik, - ez általá

14 Lokátorok osztályozása ban a folyamatos sugárzású CW és FM lokátorokra jellemző - és az eszközök egymástól való távolsága nem mérhető össze a céltárgy távolságával. A bisztatikus elrendezés esetén az adó- és vevőberendezések különböző helyeken helyezkednek el, egymástól való távolságuk általában összemérhető a céltárgy távolságával. A multisztatikus elrendezés esetében kettőnél több települési helyen találhatók a berendezések. A multisztatikus elv elképzelhető több bisztatikus, vagy több monosztatikus lokátor együttes, egy rendszerben történő alkalmazása esetében. A multisztatikus elv alapján kialakított rendszer képessége nagyobb, mint az egyes lokátorok külön-külön. A leginkább elterjedt multisztatikus elven működő rendszerben (lokátor állomás) egy adóberendezés és tőle a céltárgy távolságával összemérhető távolságon lévő több vevőberendezés található. Bisztatikus és monosztatikus elv alkalmazására például az OTH lokátorok esetében kerül sor, vagy azon amerikai elgondolás részeként, mely szerint az ellenséges légvédelmi eszközök hatótávolságán kívül, nagy magasságban tevékenykedő repülőgép (űreszköz) fedélzetén lévő adóberendezés besugározza az ellenség területén lévő céltárgyakat és a frontvonalhoz közel elhelyezett, igen pontos és érzékeny vevőberendezések pedig részletes felderítési adatokkal szolgálnak a szemben álló félről A rádiólokáció módszere szerint felosztás A rádiólokáció módszere szerint a lokátor állomások a következő csoportokra oszthatók: - aktív, - félaktív, - aktív válaszú, - passzív, Az aktív rádiólokáció Az aktív rádiólokáció alatt a hagyományos felépítésű lokátor állomásokat kell érteni. Az aktív rádiólokáció a cél rádióhullámokkal történő besugárzásával és a célról visszavert energia vételével valósul meg. A lokátor az adóból, a vevőből és az indikátorból áll, mint az a 1.3. ábrán látható. Az adó nagyfrekvenciás elektromágneses energiát állít elő, amit az antenna irányítva (keskeny sugárkarakterisztikával) kisugároz a térbe. Az elektromágneses hullám útjába eső céltárgyról az energia egy része visszaverődik a lokátor vevőantennájába, és abban feszültséget gerjeszt, amit a vevő értékelhető jellé alakít át

15 A rádiólokáció f a Adó céltárgy f v Vevő Indikátor 1.3. ábra Az aktív rádiólokáció A visszavert energia sűrűsége függ a célra jutó energia sűrűségétől, a cél elektromos tulajdonságaitól és alakjától, valamint a hullámhosszhoz viszonyított a nagyságától. A rádióhullámok visszaverődési tényezője (Γ) fém felületek esetén gyakorlatilag egynek vehető, dielektromos felületeknél pedig (Γ<1) és értéke a dielektromos állandótól (ε) függ, ε és Γ egyenes arányban áll egymással A félaktív rádiólokáció A félaktív rádiólokáció a különböző objektumok egy meghatározott helyről történő besugárzásán és a visszavert jelek más helyeken, más típusú rendszeren történő vételén (vagy észlelésén) alapuló eljárás. Ezt alkalmazzák a különböző rakéták rávezető rendszereiben. A légicélt (repülő eszközt) a föld felszínén elhelyezkedő lokátor állomás sugározza be ( megvilágítja ) és a felületéről visszaverődött jeleket a rakéta (földön, vagy már röppályán lévő) fejében lévő vevőberendezés veszi. Adó f a Vevő f v céltárgy 1.4. ábra A félaktív rádiólokáció Az aktív válaszú rádiólokáció Az aktív válaszú rádiólokáció célja a lokátorok hatótávolságának növelése. A kisugárzás helyén nem a visszavert jeleket kell venni, hanem annál sokkal erősebbet, amelyet az adott céltárgy sugároz a fedélzetén lévő válaszadó berendezéssel. A lokátor sugárnyalábjának hatására a fedélzeti eszköz automatikusan működésbe helyezi adóberendezését és (általában kódolt) válaszjelet (jeleket) sugároz vissza, amelyek vétele a lokátorral történik

16 Lokátorok osztályozása Az aktív válaszú rádiólokációt két fő területen alkalmazzák: - lokátorok hatótávolságának fokozására (ez csak saját, speciális eszközzel felszerelt eszközökre vonatkozhat), - az azonosító (Identification Friend or Foe : IFF) és másodlagos (Secondary Surveillance Radar : SSR) lokátorok esetén. Vevő Adó lokátor Adó céltárgy Vevő 1.5. ábra Az aktív-válaszos rádiólokáció Indikátor A passzív rádiólokáció A passzív rádiólokáció a különböző objektumok (céltárgyak) által kisugárzott elektromágneses energia (rádióhullámok) vételén alapul. Általában a sugárzó objektumok helyének meghatározására szolgál. A kisugárzott jelek vétele biztosítja az adott aktív eszköz felderítését és megfelelő módszer alkalmazásával helyének behatárolását. Ezt alkalmazza az amerikai gyártmányú NATO rádiólokációs felderítő repülőgép az AWACS, mely külön passzív üzemmóddal rendelkezik a zavaró eszközök felderítésére és behatárolására. Indikátor Vevő 1.6. ábra A passzív rádiólokáció Adatszolgáltatás szerinti felosztás: Az adatszolgáltatás jellege szerint a lokátorok a következők szerint osztályozhatók: - jelző, - kétdimenziós (2D), - háromdimenziós (3D),

17 A rádiólokáció A jelző lokátorok A jelző lokátorok, csak korlátozott feladatokat képesek ellátni, csak észlelik a felderítési szektorukban lévő céltárgyat. Ezen eszközök arra szolgálnak, hogy nagy területen folytassanak felderítést és riasszák a pontosabb, de kisebb területet ellenőrző két- és többdimenziós lokátorokat A két- és háromdimenziós lokátor Azokat a lokátorok, amelyek a különböző céltárgyak ferde távolságát (R) és északhoz viszonyított oldalszögét (β), illetve emelkedési szögét (ϑ) képesek, különböző pontossággal és gyakorisággal meghatározni, kétdimenziós lokátornak, amelyek mindezek mellett még a céltárgy magasságát is (H) megadják, azokat háromdimenziós lokátoroknak nevezzük Hullámtartomány szerinti felosztás: Lényegében nincs alapvető korlátozás a lokátor-frekvenciákra nézve, mert bármely berendezést, ami a céltárgyakat elektromágneses hullámokkal sugározza be, és a visszavert jelek értékelésével ismeri fel azokat, valamint ennek alapján határozza meg helyzetüket lokátornak nevezzük, függetlenül attól, milyen frekvencián működik. Működnek lokátorok a 100 méteres hullámhossztól egészen a 10-7 méteres (ultraibolya) tartományig. Az alapelvek minden frekvenciára ugyanazok, de a technikai kivitelezés lényegesen eltérő lehet. Gyakorlatban a legtöbb lokátor a mikrohullámú tartományban működik, de jelentős kivételek is vannak. Hullámtartomány szerint a lokátorok: - méteres hullámtartományú, - deciméteres hullámtartományú, - centiméteres hullámtartományú és - milliméteres hullámtartományú eszközökre oszthatók. Az elektromágneses hullámok nemzetközi felosztásnak megfelelő osztályozása szerint: Megnevezés Hullámhossz Frekvencia méteres (VHF) sáv 1-10 m MHz deciméteres (UHF), sáv 0,1 1 m MHz, centiméteres (SHF), sáv 1-10 cm, 3-30 GHz, milliméteres (EHF), sáv 10-1 mm GHz 1.1. táblázat Elektromágneses hullámok nemzetközi felosztása Az január 1-jén életbe léptetett jelölés szerint a frekvenciasávok a következők:

18 Lokátorok osztályozása Jelölés Frekvenciasáv A sáv MHz B sáv MHz C sáv MHz D sáv 1-2 GHz E sáv 2-3 GHz F sáv 3-4 GHz G sáv 4-6 GHz I sáv 6-8 GHz J sáv 8-10 GHz K sáv GHz L sáv GHz M sáv GHz N sáv GHz O sáv GHz 1.2. táblázat Nemzetközi frekvenciasávok A Nemzetközi Távközlési Unió (ITU) ajánlásának és előírásának ellenére még igen gyakran használják a korábbi frekvenciasáv jelöléseket. Főleg az amerikai lokátorok esetében. A korábbi amerikai szabványoknak megfelelő frekvencia felosztás: Jelölés Frekvenciasáv Rádiólokáció frekvenciasávja P sáv MHz MHz MHz L sáv 1-2 GHz MHz S sáv 2-4 GHz MHz MHz C sáv 4-8 GHz MHz X sáv 8-12,5 GHz 8,5-10,7 GHz K u sáv 12,5-18 GHz 13,4-14,4 GHz 15,7-17,7 GHz K sáv 18-26,5 GHz 23-24,25 GHz K a sáv 26,5-40 GHz 33,4-36 GHz 1.3. táblázat Korábbi frekvenciasávok A felderítő lokátorok általában az ultrarövid hullámtartományban üzemelnek. Ez a tartomány azért a legalkalmasabb erre a célra, mert az ultrarövid hullámok kis veszteséggel verődnek vissza a viszonylag kisméretű céltárgyakról. Ebben a tartományban viszonylag kisebb méretű antennákat lehet alkalmazni, ami lehetővé teszi a méretek csökkentését, ezzel pedig a lokátor manőverezési lehetőségei is megnőnek. A különböző hatótávolságú ballisztikus rakétarendszerek megjelenése szükségessé tette a horizonton túli (OTH) lokátorok kifejlesztését. Ezek az állomások a 2-60 MHz tartományban működnek, mert ezek a frekvenciák visszaverődnek az ionoszféráról, ami nagy hatótávolság elérését teszi lehető

19 A rádiólokáció vé. Egyszeri visszaverődéssel maximum 4800 km, kétszeres visszaverődéssel maximum 7400 km távolságra lehet felderítést folytatni. Többszöri visszaverődés alkalmazása esetén a veszteségek annyira megnövekednek, hogy ilyenkor hatalmas adóteljesítményeket kell alkalmazni. Az, hogy egy lokátor milyen frekvenciát használ nagyban befolyásolja azt, hogy milyenek lesznek a technikai jellemzői. Ezért vizsgáljuk meg, hogy a rádiólokációban használatos frekvenciatartományoknak mik a jellemzőik, és ott milyen típusú lokátort alkalmaznak Rádiólokációban használatos frekvenciatartományok A 3 MHz alatti sáv A hosszú- és középhullámok felületi hullámmal képesek terjedni, ami azt jelenti, hogy az elektromágneses hullám követi a föld görbületét, így horizonton túli felderítésre nyílik lehetőség. Ezeken a hullámhosszokon jól irányított antennát csak igen nagy méretben tudunk elkészíteni, emellett ebben a sávban jelentősek a különböző forrásból származó környezeti zajok is (1.7. ábra), ezért rádiólokációs célra csak nagyon ritkán használják fel A 3-30 MHz-es (HF) sáv Az első működő lokátor rendszer ebben a sávban a MHz között üzemeltek, közvetlenül a II. világháború előtt Angliában. Ebben a sávban is képesek még a hullámok a felületi hullámokkal való terjedésre, jellemzően a sáv alján. A hatótávolság néhány száz km-t is elérhet. A felületi hullámok mellett az ionoszféráról visszaverődő térhullámok is képződnek, amivel a hatótávolság jelentősen megnövelhető, így lehetőség nyílik a horizonton túl felderítésre. Erre a sávra is igaz, hogy viszonylag nagyméretű antennákat kell alkalmazni, a külső zajok is igen jelentősek (1.7. ábra), valamint jelentős a telítettsége, azaz sok egyéb elektromágneses kisugárzó eszköz (pl. rádió műsorszoró) működik ebben a sávban A MHz-es (VHF) sáv A II. világháborúban és közvetlenül utána ebben a sávban működtek a lokátorok, de napjainkra ez a sáv annyira telített lett, hogy a korszerű lokátorok már nem ezeken a frekvenciákon üzemelnek. Ugyanakkor ebben a frekvenciasávban működnek a nagy kisugárzási teljesítményű, nagy antenna méretű és nagy hatótávolságú felderítő lokátorrendszerek. Ilyen lokátorokkal végzik a mesterséges égitestek követését és mérését

20 Lokátorok osztályozása Ebben a sávban a külső zajok már lényegesen kisebbek, az itt működő lokátorokat nem zavarják az atmoszférikus zavarok (felhőkről, csapadékról visszavert jelek), illetve nem szenvednek lényeges csillapítást az atmoszférában A MHz-es (UHF) sáv Ebben a sávban a külső zaj gyengébb, mint a VHF sávban. A frekvencia növekedésével az antenna méretei csökkennek, így könnyebb jobban irányított antennákat készíteni. Ebben a sávban működnek a nagytávolságú, nagy megbízhatóságú, az időjárási viszonyoktól nem függő felderítő lokátorok. Itt alkalmazhatóak a mozgó cél kiválasztó (MTI) rendszerek. A sáv felhasználhatóságát az korlátozza, hogy itt üzemelnek a televízióadók Az 1-2 GHz -es (D) sáv Széles körben felhasználásra került a felderítő lokátorokban. A lokátorokat a szög szerinti jó felbontóképesség és az alacsony külső zajszint jellemzi A 2-4 GHz-es (E,F) sáv Az ettől a frekvencia tartománytól alacsonyabb frekvenciákon működő lokátorok felderítő, az ennél magasabb frekvenciákon működők követő lokátorok. Ebben a frekvenciasávban a reális méretű antennák már jó szög szerinti felbontó képességet biztosítanak, ugyanakkor a külső zaj szintje igen alacsony. Itt üzemelnek a közepes hatótávolságú repülőgép felderítő és követő lokátorok (ugyanazt a lokátort alkalmazzák mind a két feladatra) A 4-8 GHz-es (G,H) sáv Ezeken a frekvenciákon működnek a pontos információt nyújtó, közepes hatótávolságú felderítő lokátorok (pl. hajó navigációs lokátorok), valamint a nagy hatótávolságú és nagy koordinátamérési pontosságú lokátorok (pl. rakéta rávezető lokátorok) A 8 10 GHz-es (I) sáv Ebben a sávban nagy számban működnek a kis- és közepes hatótávolságú rávezető és tűzvezető, valamint a polgári lokátorok. Ezeken a frekvenciákon a lokátorok méretei akár annyira is lecsökkenthetők, hogy azok kézben

21 A rádiólokáció tarthatóak legyenek, illetve könnyen előállítható olyan geometriai méretű antenna, aminek a sugárnyalábja csak 1, 2 m-es antennaátmérő mellett A GHz-es (J) sáv A II. világháborúban készítettek először a sávban működő lokátort, ennek a frekvenciája 24 GHz volt. Ez a frekvencia nagyon közel van a víz rezonancia frekvenciájához (22,2 GHz), amin igen nagy a csillapítás. Ebben a frekvenciatartományban működnek a gyakorlatban széles körben használt legmagasabb frekvenciájú lokátorok. A sávban működő lokátorok között a kölcsönös zavaró hatás kicsi, de a szög- és a távolság szerinti felbontóképesség nagy. Kis méretű lokátorokat tudunk készíteni, de az atmoszféra nagy csillapítása miatt csak kisebb hatótávolságot tudunk velük elérni. Ezeken a frekvenciákon az esőnek már komoly csillapító hatása van A 20 GHz feletti sávok Ezeken a frekvenciákon lehetőség van széles spektrumú jelek előállítására, valamint kis antenna méretek mellett keskeny sugárnyaláb kialakítására. A probléma az, hogy elfogadható teljesítményszint előállítása nagyon nehéz. A vevő zaja igen magas, a külső zajszint, a rádióhullámok csillapítása az atmoszférában annál erősebb, minél magasabb a használt frekvencia. Mindezek miatt ezekkel a lokátorokkal csak kis hatótávolságot lehet elérni. A keskeny sugárnyaláb és a széles sávú jel alkalmazása akkor lehet előnyös, ha a cél típusát akarjuk megállapítani Optikai sáv Az optikai sávban lézerek segítségével lehet elfogadható teljesítményű koherens sugárzást megfelelő hatásfokkal és keskeny sugárnyalábbal előállítani. A lézerek az infravöröstől az ultraibolya tartományig működnek. A lézerek által kisugárzott keskeny nyalábbal már a céltárgy geometriai méreteit és az alakját is meghatározhatjuk. Hátrányok, hogy az ilyen keskeny nyalábbal letapogatni nem lehet a légteret, valamint az eső, a felhők és a köd nagyon csillapíthatják, ezzel rontva a működés hatékonyságát Hullámterjedési sajátosságok, zajok, zavarok Légköri csillapítás. A lokátorokhoz használandó frekvenciasávokat úgy választották ki, hogy egyrészt a légkör hatása lehetőleg minimális legyen, másrészt megvalósítható legyen a megfelelő sávszélesség, antennanyereség és szögfelbontó képesség. A csillapítás fő forrásai: levegő és vízpára, eső és hó, felhő és köd, továbbá (néhány frekvencián) az ionoszféra elektronjai

22 Lokátorok osztályozása Zajok A lokátor rendszerekben a zajokat az alapzajok (a moduláló jeltől független zajok) és az interferencia zajok képezik. A moduláló jeltől független zajokat két csoportba oszthatjuk: - rádiócsatornán belüli forrásokból származó alapzajok, - külső alapzajok (háttér-zaj). A belső alapzajok összetevői a rádió berendezésekben keletkező termikus és kvantumzajok. A főbb rendszerparaméterek értékeit - a hullámterjedést befolyásoló tényezőkön kívül - alapvetően a vevőberendezés kimenetén megvalósítható vivő-zaj viszony határozza meg. A vevő zajtényezőjét meghatározó összetevők: - antennazaj, - az előfokozatok zaja, - keverőfokozat zaja (keverési veszteség, helyi oszcillátor zaja), - a KF fokozatok zaja. A vevőantenna és a vevő keverőfokozatára kerülő zaj szintjét befolyásoló paraméterek megválasztása nagyon lényeges. Ezért nagy irányhatású (nagy nyereségű) és kis zajú antennával, valamint kis zajtényezőjű, szélessávú előerősítőkkel a zajszint lecsökkenthető. T A [ K] Maximum Minimum Napi maximum Napi minimum 0,1 0, [MHz] 1.7. ábra Antenna-zajhőmérséklete (T A ) a frekvencia függvényében A 1.7. ábrán látható külső alapzajokat a galaktikus zaj, a kozmikus zaj, a napzaj, az égboltzaj, a földzaj és az ember által keltett mesterséges zajok okozzák. A galaktikus zaj, a rádiócsillagoknak nevezett diszkrét zajforrásoktól származik. Ez a zajösszetevő 1 GHz felett gyakorlatilag elhanyagolható. A kozmikus zaj frekvenciasávja MHz. Intenzitása a galaktikus központ irányában maximális, a galaktikus pólusok felé csökken. A napzaj frekvenciasávja MHz. Intenzitása a naptevékenységgel változik. A napzaj szintje az antenna főnyaláb szélességének függvénye, de függ a melléknyaláb-csillapítás értékétől is

23 A rádiólokáció Az égboltzaj frekvenciasávja MHz, s az atmoszférikus csillapítást okozó jelenségekből, valamint az atmoszféra és más külső zajforrások kölcsönhatásából származik. Az atmoszférikus zaj frekvenciasávja MHz, de intenzitása ennél magasabb frekvenciatartományokban is jelentős lehet. A légköri csillapítás, tiszta légkör esetén, általában nem okoz problémát 16 GHz alatt Szintje az atmoszféra páratartalmával erősen változik. Előidézője a mikrohullámú energia oxigén (közel 60 GHz) és vízgőz (22 GHz) által való elnyelése és újra kisugárzása (1.8. ábra). A földzaj frekvenciasávja MHz. A különböző intenzitású mesterséges zajok hatását az állomás helyének jó kiválasztásával lehet csökkenteni. T A [K ] Maximum 100 kozmikus zaj ϑ= Minimum ϑ=emelkedési szög 1 0,1 0, [GHz] 1.8. ábra Mikrohullámú antenna-zajhőmérséklete (T A ) a frekvencia függvényében A légkör csillapító hatása A 1.8. ábrán látható, hogy az 1 GHz alatti frekvenciákig a légkör - kivéve az ionoszférát - teljesen átlátszónak tekinthető. 1 GHz feletti frekvenciák esetén azonban a légkör nem mindig átlátszó. Emiatt egyrészt elnyelés útján (gázok és gőzök abszorpciója), másrészt a vízcseppek elnyelő és szétszóró hatása útján okoz veszteségeket. Az energia mindkét esetben a távolsággal exponenciálisan csökken. (Meg kell azonban jegyeznünk, hogy bármilyen élesen irányítjuk is a hullámokat, energiájuk csökkenése - a távolsággal arányosan - e két hatás nélkül is bekövetkezik). A levegő 78,1 térfogatszázalék nitrogénből, 20,9 % oxigénből, 1 % egyéb gázokból áll, és a földrajzi helytől függően, maximum 4 % vízgőzt tartalmaz. A közvetlen elnyelést a vízmolekulák elektromos dipólus nyomatékának hatása okozza. A nitrogénmolekulák - minthogy nincs jelentősebb elektromos és mágneses nyomatékuk, nem befolyásolják a hullámok terjedését, és nem okoznak csillapítást

24 Lokátorok osztályozása A vízgőzmolekulák elektromos dipólusokat alkotnak, melyekben az elektromágneses hullámok rezgéseket gerjesztenek. A rezgések amplitúdója a frekvenciától függ, és a f = 22 GHz körüli frekvencián rezonancia következik be. A rezonancián különösen intenzív elektromos rezgések keletkeznek, ezért az elektromágneses hullámok energiájának elnyelése (abszorpciója) ugrásszerűen megnő. Az elnyelt energia nagysága arányos a levegő vízgőztartalmával. csillapítás [db] 100 H 2 O abszorpciós 50 rezonancia 30 22,2 GHz ϑ= ϑ=1 ϑ=2 ϑ= ϑ= ϑ= ,5 0,3 0,2 0,1 O 2 rezonanciák ϑ=90 60 GHz f [GHz] 0, ábra A légkör csillapítása a frekvencia függvényében oda-vissza út esetén Még nagyobb csillapítást okoz a levegő oxigénjének rezonanciája. Ez a rezonancia a f = 75 GHz, f = 120 GHz és f = 176 GHz frekvenciákon következik be. Ezeken a frekvenciákon az abszorpciót az idézi elő, hogy az oxigénmolekulák mágneses dipólusként viselkednek, és kölcsönhatásba kerülnek a hullámok mágneses terével. A magasság növekedésével csökken a gázok sűrűsége, és ezzel az abszorpció is. Az oxigén és a vízgőz abszorbeáló hatását különböző frekvenciákra, db-ben a 1.9. ábra mutatja. Az ábrán látható rezonanciahelyekhez tartozó hullámhosszat rádiólokációs célokra - a nagy veszteség miatt - nem célszerű alkalmazni. Gyakorlatban a 10 GHz feletti frekvenciatartományoknak csak olyan sávjait használjuk fel, melyekben minimális a csillapítás. Ebből a szempontból elsősorban a GHz-es, másodsorban a GHz-es hullámok jöhetnek számításba. A vízcseppek kétféle módon csillapítják a hullámokat, elnyeléssel és szórással. Az elnyelés oka, hogy a víznek, mint nem ideális dielektrikumnak, nagy a vezetőképessége. Az elektromágneses hullámok vezetési vonalakat

25 A rádiólokáció hoznak létre a vízben, és ezáltal elvesztik energiájuk egy részét. A veszteség nagysága együtt nő a frekvenciával. Igen kis méretű cseppek esetén, mint felhőben és ködben, egyedül ez a hatás érvényesül, és adott hullámhossz mellett egyenesen arányos a légkörben lévő folyékony víztartalommal (g/m 3 ). A nagyobb cseppek hatása bonyolultabb. A csillapítás nemcsak a m 3 - enkénti vízmennyiségtől függ, hanem a vízcseppek átmérőjétől is. Nagyobb cseppek esetén az energia szétszóródása is bekövetkezik, ami a hullámhossz és az átmérő viszonyától függ. A szóródás jelensége olyan formában csökkenti a hullám energiáját, hogy a céltárgy felé irányított sugárnyaláb energiájának egy részét útjából eltéríti, azt a tér minden irányába szétszórja, és ezzel a sugárnyaláb összenergiáját csökkenti, tehát veszteségnek számítható c csillapítás [db/km] 1 b 0,5 a g 0,1 0,05 e d f 0,01 hullámhossz 0, λ [cm] ábra Az eső csillapítása a hullámhossz függvényében A ábrán látható karakterisztika görbékhez tartozó eső típusok: a) permetező eső (1 mm/h), b) kis eső (4 mm/h), c) eső (15 mm/h), d) nagy eső (100 mm/h) szaggatott vonalak a köd és a felhő által okozott csillapítás, e) láthatóság 600 m-ig (0,032 g/m 3 ), f) láthatóság 120 m-ig (0,32 g/m 3 ), g) láthatóság 30 m-ig (2,3 g/m 3 ). A meteorológiai adatokból vett óránkénti csapadék mennyiségét, cseppméretet és méreteloszlást figyelembe vevő számításokat végeztek a kmenkénti csillapítás megállapítására. A ábra a számított és mért csillapítási eredményeket mutatja 1 km távolságra, különböző körülmények között. Az eső 2 GHz felett jelentős csillapítást okoz. Nagyon kicsi vízcseppeknél, melyek felhőben vagy ködben lebegnek, szintén jelentős csillapítás jöhet létre, mivel az áthaladási útvonal felhőkben megtett szakasza több tíz

26 A lokátorok alkalmazási területei vagy száz kilométert is kitehet. Az átvitelt 2 GHz alatt a sűrű felhők és a köd jobban zavarja, mint a felhőszakadás. Az antennaelemeken és a burkolaton képződő vízfilmek szintén komoly csillapítást okozhatnak. Az ilyen felületeket azonban olyan speciális kezeléssel lehet ellátni, amely megakadályozza az összefüggő filmréteg kialakulását. 1.4 A LOKÁTOROK ALKALMAZÁSI TERÜLETEI A lokátorokat számos területen alkalmazzák különböző feladatok megoldására. Az összes alkalmazási területet ezért nincs szándékunkban felsorolni, csak néhány fontosabbat említünk meg a következőkben. A lokátorok alkalmazási területei: - azonosítás, - repülésbiztonság, - navigáció, - meteorológia, - fegyverirányítás, - egyéb A lokátor alkalmazása azonosításra Az azonosító (barát-ellenség felismerő) lokátorok azon rádiótechnikai eszközök, melyek biztosítják a repülőgépek és hajók hovatartozásának megállapítását. Az azonosító (identifikáló) lokátorok a kétoldalú (aktív válaszú) rádiólokációt alkalmazzák, vagyis a lokátor kérdező impulzust, impulzussorozatot (szériát) sugároz az ismeretlen rádiólokációs objektum irányába. A felfedett objektum veszi ezt a jelet, feldolgozza és megfelelő rendszer szerint saját válasz-jeladójával azonosító választ sugároz. A kérdező jelre kapott válasz alapján megállapítja, hogy az objektum barát (ha tud válaszolni a kérdező impulzusra), vagy ellenség (ha nem válaszol.). Így azonosítja, hogy melyik katonai szövetséghez tartozik. Az azonosító lokátorok üzemi frekvenciája, sugárzási módjai, válaszjeladójuk jele a legszigorúbb államtitkot képezik, így biztosítva van a saját objektumaink védelme és az ellenséges objektumok felderítése. Az azonosító lokátorok, mindig valamilyen más lokátorral együtt üzemelnek

27 A rádiólokáció A lokátor repülésbiztonsági alkalmazása A repülésbiztonsági lokátorok feladata a repülőgépek és más repülőobjektumok közlekedésének biztosítása a repülőtereken és a repülőterek közvetlen közelében. Fajtái: a repülőtéri fel- és leszállást biztosító lokátorok és a bevezető (irányadó) lokátorok A lokátor navigációs alkalmazása Navigációs lokátorok alatt azon lokátorokat értjük, amelyek biztosítják a különböző járművek (légi, földi, vízfelszíni, víz alatti) pillanatnyi helyzetének meghatározását és rendeltetésszerű útvonalának betartását. A navigációs lokátor az adott légijármű fedélzetén helyezkedik el, adóberendezése impulzusokat bocsát ki, melyek visszaverődnek terep- vagy egyéb tárgyakról, a fedélzeten lévő vevőberendezés és segédberendezései segítségével meghatározza a jármű térbeli koordinátáit. A terep feltérképezésével meghatározzák a már megtett utat, a szükséges helyesbítéseket és a követendő útvonalat A lokátor meteorológiai alkalmazása A meteorológiai lokátorok biztosítják az adott tér meteorológiai felmérését és meteorológiai előrejelzést, a légi járatok viharkerülését, illetve elvégzik a felhőviszonyok felderítését A lokátor alkalmazása a fegyverirányításban A lokátorok egyik legnépesebb csoportja - a felderítő eszközök mellett - a fegyverirányító lokátorok. Erre a célra általában egy, vagy egy rendszeren belül több lokátort alkalmaznak, az általuk kiszolgált fegyverrendszer leghatékonyabb alkalmazása érdekében. Két csoportra oszthatók: - célkövető és - tűzvezető lokátorok A célkövető lokátor A célkövető lokátorok olyan speciálisan kiképzett eszközök, melyek a felderítő lokátorok által elsődlegesen meghatározott paraméterek alapján átveszik a célokat, és folyamatosan követik mozgását. Ilyen célkövető lokátorokat találunk az interkontinentális rakéták elhárító rendszereiben, a repülő

28 A lokátorok alkalmazási területei gép fedélzeti és tűzvezető rendszerekben, stb. Jellemzőjük a nagy információ pontosság, a viszonylag magas információ átbocsátóképesség és a megbízhatóság. Általában más lokátorokkal együttesen alkalmazzák (főleg felderítő és tűzvezető lokátorokkal) A tűzvezető lokátor A tűzvezető lokátorok főbb csoportjai a következők: - rakéta (rávezető), - repülőgép (irányító, rávezető), - bombavető, - tüzérségi tűzvezető lokátorok. Tűzvezető (bombavető), rávezető (irányító) lokátorok biztosítják az általuk kiszolgált fegyverfajta irányzását és/vagy röppályán történő irányítását. A rávezető (irányító) lokátorok feladata egy adott komplexum vagy fegyverrendszer helyzetbe hozása, például a védővadász repülőgép célra irányítása. Így az elfogó vadász olyan helyzetbe kerül, hogy végre tudja hajtani tűzfeladatát A lokátorok alkalmazásának egyéb területei - a földfelszín mint céltárgy felderítése, - távmérés (távolság-meghatározás), - rakéta robbantó, rádiólokációs távrobbantó, - csillagászati és geodéziai, - stb

29 Rádiólokációs céltárgyak mérésének alapjai 2 RÁDIÓLOKÁCIÓS CÉLTÁRGYAK MÉRÉSÉNEK ALAPJAI A rádiólokációnak a visszavert elektromos energia alapján biztosítania kell a különböző céltárgyak/objektumok észlelését, sík- vagy térbeli helyének és mozgásának meghatározását. Ezek az adatok röviden a célkoordináták. A célkoordináták lehetnek hely- és mozgáskoordináták. A célkoordináták a sík- vagy térbeli helyzetét, a mozgáskoordináták a haladási irányát és sebességét adják meg a céltárgynak. A célkoordináták meghatározásánál a feladat kettős. Az első feladat végrehajtását biztosítja a céltárgyról visszaverődő elektromágneses energia vétele és a vétel tényének kijelzése. A második feladat végrehajtása már bonyolultabb, mivel meg kell határozni a céltárgy távolságát az adott lokátortól, és mérni kell az északi irányhoz viszonyított oldalszögét, a légtérben lévő objektumok esetén a magasságát is. A feladat jobb megértése érdekében vizsgáljuk meg a 2.1. ábrán a mérendő adatokat. v v r ϑ H É β 2.1. ábra Mérendő adatok A mérendő adatok a 2.1. jelölése szerint: R - a céltárgy ferde távolsága D - a céltárgy földfelszíni (valós) távolsága β - a céltárgy oldalszöge az É-hoz viszonyítva ϑ - a céltárgy emelkedési szöge, vagy célhelyszöge a vízszinteshez viszonyítva, H - a céltárgy földhöz viszonyított magassága

30 Távolságmérés A továbbiakban vizsgáljuk meg célkoordináták mérésének elveit és módszereit. 2.1 TÁVOLSÁGMÉRÉS A távolság mérésnél azt használjuk fel, hogy az elektromágneses hullám terjedési sebessége állandó a levegőben. Ha a terjedési közeg homogén, lineáris és izotróp, akkor az elektromágneses hullám terjedési sebessége: 1 v = (2.1) εμ ahol ε - a közeg permittivitása (dielektromos állandója), μ - a közeg permeabilitása. Mint tudjuk: ε = ε r ε 0, μ = μ r μ 0 (2.2) 1 9 F 7 H ahol ε 0 = π 10 a vákuum permittivitása, μ 0= 4π 10 a vákuum 36 m m permeabilitása. A 2.2 összefüggést 2.1-be behelyettesítve a sebesség: v= = = c (2.3) μ μ ε ε μ ε μ ε μ ε 0 r 0 r 0 0 A szabad térre jellemző, hogy ε r 1 és μ r, így az elektromágneses hullám sebessége jó közelítéssel a fénysebességgel egyenlő (v c). A rádióhullám terjedési ideje és terjedési távolsága egyenes arányban áll, azaz a lokátor és a cél közötti távolságot a R = c t k szorzat adja meg. Mivel az elektromágneses hullám a célról visszaverődik és így jut el a vevőbe, a cél és a lokátor közötti távolságot kétszer kell bejárnia a jelnek. A céltárgy ferde távolsága ebből: c t R= k (2.4) 2 ahol: R - a céltárgy ferde távolsága [m], c - a fény terjedési sebessége 8 m 3 10, s t k - a kisugárzás és a vétel között eltelt idő [s]. A visszavert jel késleltetése: r r r r 2R t k = (2.5) c

31 Rádiólokációs céltárgyak mérésének alapjai 2R 2R R t k ( μ s) = = = (2.6) A 2.6 összefüggés szerint, ha R = 150 m távolságról visszaverődött rádióhullám késleltetési ideje 1 μs, azaz a céltárgy távolság minden kilométere 1000/150 6,7 μs késleltetési időnek felel meg. 2.2 SZÖGMÉRÉS A szögmérés azon a fizikai jelenségen alapszik, hogy minden antenna érzékeny arra, hogy milyen irányból érkezik rá az elektromágneses hullám. Feltételezzük azt, hogy az antenna n darab egymástól s távolságra lévő, lineárisan elhelyezett elemi sugárzóból áll. Ha a céltárgy nagy távolságban van az antennához képest, azaz R>>s, akkor az elemi sugárzókba a céltárgyról a jel párhuzamosan érkezik. 0 1 s ϑ ΔR 1 ϑ R 2 n-1 n 2.2. ábra A szögmérés elve A különböző elemi sugárzókig az elektromágneses hullámok különböző nagyságú utat tesznek meg. Mivel az egyes elemi sugárzók között a távolság kicsi, ezért a beeső hullámok amplitúdóját egyenlő nagyságúnak tekinthetjük, de a jelek fázisairól ezt már nem mondhatjuk el. Az út különbséggel arányosan az egyes elemi sugárzókhoz eltérő fázisban érnek a hullámok. A 0 és 1 elemek közötti útkülönbség a 2.2. ábra alapján: ΔR 1= s sinϑ (2.7)

CÉLKOORDINÁTOROK alkalmazástechnikája CÉLKOORDINÁTOROK FELÉPÍTÉSI ELVE

CÉLKOORDINÁTOROK alkalmazástechnikája CÉLKOORDINÁTOROK FELÉPÍTÉSI ELVE Géczi József Dr. Szabó László CÉLKOORDINÁTOROK alkalmazástechnikája A rádiótechnikai célkoordinátorok (RCK) feladata azon szögkoordináták mérése, amelyek a távolságvektor koordinátor hossztengelyéhez viszonyított

Részletesebben

A REPÜLÉSBEN ALKALMAZOTT RADARRENDSZEREK

A REPÜLÉSBEN ALKALMAZOTT RADARRENDSZEREK Géczi József Dr. Békési László A REPÜLÉSBEN ALKALMAZOTT RADARRENDSZEREK A radarberendezéseket a légi közlekedésben működési elvük, adásmódjuk és elhelyezésük szerint osztályozzuk. Működésük szerint elsődleges

Részletesebben

Időjárási radarok és produktumaik

Időjárási radarok és produktumaik ORSZÁGOS METEOROLÓGIAI SZOLGÁLAT Időjárási radarok és produktumaik Hadvári Marianna Országos Meteorológiai Szolgálat Távérzékelési Osztály 2018. október 6. Alapítva: 1870 Radio Detection And Ranging 1935

Részletesebben

A NEM-IONIZÁLÓ SUGÁRZÁSOK. Elektromágneses sugárzások és jellemzőik

A NEM-IONIZÁLÓ SUGÁRZÁSOK. Elektromágneses sugárzások és jellemzőik A NEM-IONIZÁLÓ SUGÁRZÁSOK Fóti Zoltán 1 E tanulmány célja az iparban egyre szélesebb körben alkalmazott és mind többször hallott, sokak számára zavaros nem-ionizáló sugárzás fogalmának ismertetése, felosztása,

Részletesebben

A RÁDIÓLOKÁCIÓ ALAPJAI A RÁDIÓLOKÁCIÓ FOGALMA

A RÁDIÓLOKÁCIÓ ALAPJAI A RÁDIÓLOKÁCIÓ FOGALMA Paulik Lotti A RÁDIÓLOKÁCIÓ ALAPJAI A RÁDIÓLOKÁCIÓ FOGALMA Az emberi érzékelés véges. Az ember, hogy véges érzékleteit kibővítse, nagyon sok mindent szolgálatába állított és állít napjainkban is. Az ember

Részletesebben

közelnavigációs és a leszállító rádiólokációs rendszerek.

közelnavigációs és a leszállító rádiólokációs rendszerek. Közelnavigációs és leszállító rádiónavigációs rendszerek Dr. Seres György mérnök alezredes, a hadtudomány (haditechnika) kandidátusa 1. ábra; Repülőtér körzeti diszpécser rádiólokátor-állomás 1 - körfelderítő

Részletesebben

Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.

Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki. Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben

Részletesebben

RFID rendszer felépítése

RFID rendszer felépítése RFID és RTLS RFID rendszer felépítése 1. Tag-ek (transzponder) 2. Olvasók (interrogátor) 3. Számítógépes infrastruktúra 4. Szoftverek Tárgyak, élőlények, helyszínek azonosítása, követése és menedzsmentje

Részletesebben

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin

Részletesebben

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája

Részletesebben

A légköri sugárzás. Sugárzási törvények, légköri veszteségek, energiaháztartás

A légköri sugárzás. Sugárzási törvények, légköri veszteségek, energiaháztartás A légköri sugárzás Sugárzási törvények, légköri veszteségek, energiaháztartás Sugárzási törvények I. 0. Minden T>0 K hőmérsékletű test sugároz 1. Planck törvény: minden testre megadható egy hőmérséklettől

Részletesebben

Automatikus Fedélzeti Irányító Rendszerek. Navigációs rendszerek a pilóta szemszögéből Tóth Gábor

Automatikus Fedélzeti Irányító Rendszerek. Navigációs rendszerek a pilóta szemszögéből Tóth Gábor Automatikus Fedélzeti Irányító Rendszerek Navigációs rendszerek a pilóta szemszögéből Tóth Gábor VFR Visual Flight Rules A navigáció folyamatos földlátást igényel Minimálisan 5 km látástávolság szükséges

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

A rádiócsatorna 1. Mozgó rádióösszeköttetés térerőssége Az E V térerősséget ábrázoljuk a d szakasztávolság függvényében.

A rádiócsatorna 1. Mozgó rádióösszeköttetés térerőssége Az E V térerősséget ábrázoljuk a d szakasztávolság függvényében. A rádiócsatorna. Mozgó rádióösszeköttetés térerőssége Az E V térerősséget ábrázoljuk a d szakasztávolság függvényében..5. ábra Kétutas rádióösszeköttetés térerôssége A rádiósszakasznak az állandóhelyû

Részletesebben

Piri Dávid. Mérőállomás célkövető üzemmódjának pontossági vizsgálata

Piri Dávid. Mérőállomás célkövető üzemmódjának pontossági vizsgálata Piri Dávid Mérőállomás célkövető üzemmódjának pontossági vizsgálata Feladat ismertetése Mozgásvizsgálat robot mérőállomásokkal Automatikus irányzás Célkövetés Pozíció folyamatos rögzítése Célkövető üzemmód

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK Földtudomány BSc Mészáros Róbert Eötvös Loránd Tudományegyetem Meteorológiai Tanszék MIÉRT MÉRÜNK? A meteorológiai mérések célja: 1. A légkör pillanatnyi állapotának

Részletesebben

Intelligens Közlekedési Rendszerek 2

Intelligens Közlekedési Rendszerek 2 Intelligens Közlekedési Rendszerek 2 Máté Miklós 2016 Október 11 1 / 14 Szenzor (érzékelő): mérés, detektálás Mérés elmélet emlékeztető Jó mérőműszer tulajdonságai Érzékeny a mérendő tulajdonságra Érzéketlen

Részletesebben

ÁLATALÁNOS METEOROLÓGIA 2. 01: METEOROLÓGIAI MÉRÉSEK ÉS MEGFIGYELÉSEK

ÁLATALÁNOS METEOROLÓGIA 2. 01: METEOROLÓGIAI MÉRÉSEK ÉS MEGFIGYELÉSEK ÁLATALÁNOS METEOROLÓGIA 2. 01: METEOROLÓGIAI MÉRÉSEK ÉS MEGFIGYELÉSEK Célok, módszerek, követelmények CÉLOK, MÓDSZEREK Meteorológiai megfigyelések (Miért?) A meteorológiai mérések célja: Minőségi, szabvány

Részletesebben

Optika fejezet felosztása

Optika fejezet felosztása Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:

Részletesebben

A feladatsor első részében található 1-20-ig számozott vizsgakérdéseket ki kell nyomtatni, majd pontosan kettévágni. Ezek lesznek a húzótételek.

A feladatsor első részében található 1-20-ig számozott vizsgakérdéseket ki kell nyomtatni, majd pontosan kettévágni. Ezek lesznek a húzótételek. A vizsgafeladat ismertetése: Rádióvétel-technikai ismeretek gyakorlatban előforduló összefüggéseinek értelmezése és alkalmazása; Elektronikai hadviselés alapfogalmai; Elektronikai hadviselés helye, szerepe

Részletesebben

A feladatsor első részében található 1-20-ig számozott vizsgakérdéseket ki kell nyomtatni, majd pontosan kettévágni. Ezek lesznek a húzótételek.

A feladatsor első részében található 1-20-ig számozott vizsgakérdéseket ki kell nyomtatni, majd pontosan kettévágni. Ezek lesznek a húzótételek. A vizsgafeladat ismertetése: Rádióvétel-technikai ismeretek gyakorlatban előforduló összefüggéseinek értelmezése és alkalmazása; Rádióelektronikai felderítő szaktechnikai eszközök felépítésének, rendeltetésének,

Részletesebben

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya

Részletesebben

π π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ]

π π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ] Pulzus Amplitúdó Moduláció (PAM) A Pulzus Amplitúdó Modulációról abban az esetben beszélünk, amikor egy impulzus sorozatot használunk vivőhullámnak és ezen a vivőhullámon valósítjuk meg az amplitúdómodulációt

Részletesebben

Optoelektronikai Kommunikáció. Az elektromágneses spektrum

Optoelektronikai Kommunikáció. Az elektromágneses spektrum Optoelektronikai Kommunikáció (OK-2) Budapesti Mûszaki Fõiskola Kandó Kálmán Villamosmérnöki Fõiskolai Kar Számítógéptechnikai Intézete Székesfehérvár 2002. 1 Budapesti Mûszaki Fõiskola Kandó Kálmán Villamosmérnöki

Részletesebben

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html

Részletesebben

Hullámok, hanghullámok

Hullámok, hanghullámok Hullámok, hanghullámok Hullámokra jellemző mennyiségek: Amplitúdó: a legnagyobb, maximális kitérés nagysága jele: A, mértékegysége: m (egyéb mértékegységek: dm, cm, mm, ) Hullámhossz: két azonos rezgési

Részletesebben

Audiofrekvenciás jel továbbítása optikai úton

Audiofrekvenciás jel továbbítása optikai úton Audiofrekvenciás jel továbbítása optikai úton Mechanikai rezgések. Hanghullámok. Elektromágneses rezgések. Rezgésnek nevezünk minden olyan állapotváltozást, amely időben valamilyen ismétlődést mutat. A

Részletesebben

BME Mobil Innovációs Központ

BME Mobil Innovációs Központ rádiós lefedettség elméleti jellemzői és gyakorlati megvalósulása, elméleti alapok rofesszionális Mobiltávközlési Nap 010 Dr. ap László egyetemi tanár, az MT rendes tagja BME Mobil 010.04.15. 1 rádiókommunikáció

Részletesebben

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ) Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok

Részletesebben

Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán

Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Célja: Várható elmozdulások előrejelzése (erőhatások alatt, Siógemenci árvízkapu) Már bekövetkezett mozgások okainak vizsgálata (Pl. kulcsi löszpart) Laboratóriumi

Részletesebben

1.1 Emisszió, reflexió, transzmisszió

1.1 Emisszió, reflexió, transzmisszió 1.1 Emisszió, reflexió, transzmisszió A hőkamera által észlelt hosszú hullámú sugárzás - amit a hőkamera a látómezejében érzékel - a felület emissziójának, reflexiójának és transzmissziójának függvénye.

Részletesebben

Sugárzásos hőtranszport

Sugárzásos hőtranszport Sugárzásos hőtranszport Minden test bocsát ki sugárzást. Ennek hullámhossz szerinti megoszlása a felület hőmérsékletétől függ (spektrum, spektrális eloszlás). Jelen esetben kérdés a Nap és a földi felszínek

Részletesebben

Járműipari környezetérzékelés

Járműipari környezetérzékelés Járműipari környezetérzékelés 1. előadás Dr. Aradi Szilárd Radar történet Radio Detection and Ranging Rádiólokátor Christian Hülsmeyer 1904-ben alkotta meg a telemobiloszkópot 1 m hullámhossz Parabolaantenna

Részletesebben

IGÉNYLŐ ÁLTAL VÉGEZHETŐ TERVKÉSZÍTÉS KÖVETELMÉNYEI

IGÉNYLŐ ÁLTAL VÉGEZHETŐ TERVKÉSZÍTÉS KÖVETELMÉNYEI FREKVENCIAGAZDÁLKODÁSI IGAZGATÓSÁG IGÉNYLŐ ÁLTAL VÉGEZHETŐ TERVKÉSZÍTÉS KÖVETELMÉNYEI URH FM RÁDIÓADÓ Budapest 2008 március I. A frekvenciaterv követelményei és kötelező tartalma 1. Tervezési feladat A

Részletesebben

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

HÍRADÁSTECHNIKA I. Dr.Varga Péter János HÍRADÁSTECHNIKA I. 3. Dr.Varga Péter János 2 Modulációk 3 4 A jelátvitel fizikai közegei 5 A jelátvitel fizikai közegei 6 Réz alapú kábelek 7 Üvegszál alapú kábelek Üvegszál alapú kábelek előnyei 8 Magas

Részletesebben

A fény mint elektromágneses hullám és mint fényrészecske

A fény mint elektromágneses hullám és mint fényrészecske A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Csillagászati eszközök. Űrkutatás

Csillagászati eszközök. Űrkutatás Csillagászati eszközök Űrkutatás Űrkutatás eszközei, módszerei Optikai eszközök Űrszondák, űrtávcsövek Ember a világűrben Műholdak Lencsés távcsövek Első távcső: Galilei (1609) Sok optikai hibája van.

Részletesebben

RFID-val támogatott eszközleltár

RFID-val támogatott eszközleltár 1. A rendszer célja RFID-val támogatott eszközleltár A rendszer célja, hogy a Felhasználó tárgyi eszköz, kiemelten infokommunikációs eszköz, leltározási folyamatát támogassa, azt gyorsan, könnyen és hibamentesen

Részletesebben

A felhasználói szegmens GPS technikák 4. A felhasználói szegmens mindenki, aki hely, sebesség és időadatokat akar meghatározni mindenki, aki a légkörön átmenő elektromágneses hullámokat akar vizsgálni

Részletesebben

Számítógépes programokkal a fenti mérőszámok alapján meghatározhatók adott frekvenciákon az összeköttetések lehetőségei.

Számítógépes programokkal a fenti mérőszámok alapján meghatározhatók adott frekvenciákon az összeköttetések lehetőségei. 3.15. Hullámterjedés 3.15.1. A Föld légköre és rétegei Az elektromágneses hullámok terjedésében nagy szerepet játszik a Föld légköre. A légkör alsó, kb. 11 km. magasságig terjedő szakasza a troposzféra.

Részletesebben

Adatátviteli rendszerek Vezetékes kommunikációs interfészek. Dr. habil Wührl Tibor Óbudai Egyetem, KVK Híradástechnika Intézet

Adatátviteli rendszerek Vezetékes kommunikációs interfészek. Dr. habil Wührl Tibor Óbudai Egyetem, KVK Híradástechnika Intézet datátviteli rendszerek Vezetékes kommunikációs interfészek Dr. habil Wührl Tibor Óbudai Egyetem, KVK Híradástechnika Intézet Konzol portok URT alapú USB Konzol portok Konzol port Konzol port Primer PCM

Részletesebben

A teljes elektromágneses spektrum

A teljes elektromágneses spektrum A teljes elektromágneses spektrum Fizika 11. Rezgések és hullámok 2019. március 9. Fizika 11. (Rezgések és hullámok) A teljes elektromágneses spektrum 2019. március 9. 1 / 18 Tartalomjegyzék 1 A Maxwell-egyenletek

Részletesebben

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 INFORMATIKA ÁGAZATI ALKALMAZÁSAI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 10. GPS, GPRS (mobilkommunikációs) ismeretek Helymeghatározás GPS rendszer alapelve GNSS rendszerek

Részletesebben

Modern Fizika Labor. 17. Folyadékkristályok

Modern Fizika Labor. 17. Folyadékkristályok Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 11. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2011. okt. 23. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal

Részletesebben

Zaj- és rezgés. Törvényszerűségek

Zaj- és rezgés. Törvényszerűségek Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,

Részletesebben

A KATONAI LÉGIJÁRMŰ RENDSZERMODELLJE A KATONAI LÉGIJÁRMŰ

A KATONAI LÉGIJÁRMŰ RENDSZERMODELLJE A KATONAI LÉGIJÁRMŰ Seres György A KATONAI LÉGIJÁRMŰ RENDSZERMODELLJE A rendszerelmélet, mint új tudományos vizsgálati módszer, Angliában keletkezett, a második világháború idején, amikor a német légierő, a Luftwaffe támadásai

Részletesebben

A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ. Pohár rezonanciája

A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ. Pohár rezonanciája Oktatási Hivatal A 017/018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ Pohár rezonanciája A mérőberendezés leírása: A mérőberendezés egy változtatható

Részletesebben

Híradástechnika I. 4.ea

Híradástechnika I. 4.ea } Híradástechnika I. 4.ea Dr.Varga Péter János A jelátvitel fizikai közegei 2 A jelátvitel fizikai közegei 3 Vezeték nélküli átvitel 4 Vezeték nélküli adatátvitel IEEE 802.11 5 WLAN frekvenciasávok Rendszerint

Részletesebben

A lézer alapjairól (az iskolában)

A lézer alapjairól (az iskolában) A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o

Részletesebben

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében? Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merıleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Talián Csaba Gábor Biofizikai Intézet 2012. április 17.

Talián Csaba Gábor Biofizikai Intézet 2012. április 17. SUGÁRZÁSOK. ELEKTROMÁGNESES HULLÁMOK. Talián Csaba Gábor Biofizikai Intézet 2012. április 17. MI A SUGÁRZÁS? ENERGIA TERJEDÉSE A TÉRBEN RÉSZECSKÉK VAGY HULLÁMOK HALADÓ MOZGÁSA RÉVÉN Részecske: α-, β-sugárzás

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti

Részletesebben

Völgyesi L.: Tengerrengések és a geodézia Rédey szeminárium MFTTT Geodéziai Szakosztály, március 4. (BME, Kmf.16.

Völgyesi L.: Tengerrengések és a geodézia Rédey szeminárium MFTTT Geodéziai Szakosztály, március 4. (BME, Kmf.16. Völgyesi L.: Tengerrengések és a geodézia Rédey szeminárium MFTTT Geodéziai Szakosztály, 2010. március 4. (BME, Kmf.16. Oltay terem) A korábban meghirdetett előadásnak a 2010. február 27.-én Chile partjainál

Részletesebben

Interferencia jelenségek a BME permanens állomásán

Interferencia jelenségek a BME permanens állomásán Interferencia jelenségek a BME permanens állomásán Takács Bence, egyetemi docens takacs.bence@epito.bme.hu Rédey szeminárium 2017. március 3. Nagy teljesítményű blokkolók hatótávolság : 200 km adó teljesítmény

Részletesebben

Elektromágneses hullámok, a fény

Elektromágneses hullámok, a fény Elektromágneses hullámok, a fény Az elektromos töltéssel rendelkező testeknek a töltésük miatt fellépő kölcsönhatását az elektromos és mágneses tér segítségével írhatjuk le. A kölcsönhatás úgy működik,

Részletesebben

DOKTORI (PhD) ÉRTEKEZÉS SZERZŐI ISMERTETŐJE

DOKTORI (PhD) ÉRTEKEZÉS SZERZŐI ISMERTETŐJE DOKTORI (PhD) ÉRTEKEZÉS SZERZŐI ISMERTETŐJE ZRÍNYI MIKLÓS NEMZETVÉDELMI EGYETEM Doktori Tanács Lamper László nyá.mk.örgy MISTRAL 2 légvédelmi rakéta stabilitásának és irányíthatóságának szabályozástechnikai

Részletesebben

Benapozásvédelmi eszközök komplex jellemzése

Benapozásvédelmi eszközök komplex jellemzése Budapesti Műszaki és Gazdaságtudományi Egyetem, Építészmérnöki Kar, Épületenergetikai és Épületgépészeti Tanszék, 1111 Budapest, Műegyetem rkp. 3. K.II.31. Benapozásvédelmi eszközök komplex jellemzése

Részletesebben

Elektronika 2. TFBE1302

Elektronika 2. TFBE1302 Elektronika 2. TFBE1302 Mérőműszerek Analóg elektronika Feszültség és áram mérése Feszültségmérő: V U R 1 I 1 igen nagy belső ellenállású mérőműszer párhuzamosan kapcsolandó a mérendő alkatrésszel R 3

Részletesebben

TestLine - nummulites_gnss Minta feladatsor

TestLine - nummulites_gnss Minta feladatsor 1.* Egy műholdas helymeghatározás lehet egyszerre abszolút és kinematikus. 2.* műholdak pillanatnyi helyzetéből és a megmért távolságokból számítható a vevő pozíciója. 3.* 0:55 Nehéz kinai BEIDOU, az amerikai

Részletesebben

ANTENNA NYERESÉG ÉS IRÁNYKARAKTERISZTIKA

ANTENNA NYERESÉG ÉS IRÁNYKARAKTERISZTIKA ZÉCHENYI ITVÁN EGYETEM GÉÉZMÉRNÖKI, INFORMAKIAI É VILLAMOMÉRNÖKI KAR TÁVKÖZLÉI TANZÉK Elméleti összefoglaló Labor gyakorlat (NGB_TA9_) 6. laboratóriumi gyakorlathoz ANTENNA NYEREÉG É IRÁNYKARAKTERIZTIKA

Részletesebben

Adatátviteli eszközök

Adatátviteli eszközök Adatátviteli eszközök Az adatátvitel közegei 1) Vezetékes adatátviteli közegek Csavart érpár Koaxiális kábelek Üvegszálas kábelek 2) Vezeték nélküli adatátviteli közegek Infravörös, lézer átvitel Rádióhullám

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

Nemzeti frekvenciafelosztás és frekvenciafelhasználási szabályok

Nemzeti frekvenciafelosztás és frekvenciafelhasználási szabályok 2. melléklet a 7/205. (XI. 3.) NMHH rendelethez Nemzeti frekvenciafelosztás és frekvenciafelhasználási szabályok. Általános leírás.. A melléklet alkalmazásában:... alkalmazás: az értelmező rendelkezésekben

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

Pótlap nem használható!

Pótlap nem használható! 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3

Részletesebben

Távérzékelés, a jöv ígéretes eszköze

Távérzékelés, a jöv ígéretes eszköze Távérzékelés, a jöv ígéretes eszköze Ritvayné Szomolányi Mária Frombach Gabriella VITUKI CONSULT Zrt. A távérzékelés segítségével: különböz6 magasságból, tetsz6leges id6ben és a kívánt hullámhossz tartományokban

Részletesebben

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt

Részletesebben

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK Földtudomány BSc Mészáros Róbert Eötvös Loránd Tudományegyetem Meteorológiai Tanszék MIÉRT MÉRÜNK? A meteorológiai mérések célja: 1. A légkör pillanatnyi állapotának

Részletesebben

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező

Részletesebben

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. A sugárzáson alapuló hőmérsékletmérés (termográfia),azt a fizikai jelenséget használja fel, hogy az abszolút nulla K hőmérséklet (273,16

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

Alapok GPS előzmnyei Navstar How the GPS locate the position Tények Q/A GPS. Varsányi Péter

Alapok GPS előzmnyei Navstar How the GPS locate the position Tények Q/A GPS. Varsányi Péter Alapok előzmnyei Navstar How the locate the position Tények Q/A Óbudai Egyetem Alba Regia Egyetemi Központ (AREK) Székesfehérvár 2011. december 8. Alapok előzmnyei Navstar How the locate the position Tények

Részletesebben

Híradástechnika I. 3.ea

Híradástechnika I. 3.ea } Híradástechnika I. 3.ea Dr.Varga Péter János A jelátvitel fizikai közegei 2 A jelátvitel fizikai közegei Híradástechnika Intézet 3 Réz alapú kábelek Híradástechnika Intézet 4 Csavart érpáras átviteli

Részletesebben

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása

Részletesebben

Gyakorlat anyag. Veszely. February 13, Figure 1: Koaxiális kábel

Gyakorlat anyag. Veszely. February 13, Figure 1: Koaxiális kábel Gyakorlat anyag Veszely February 13, 2012 1 Koaxiális kábel d b a Figure 1: Koaxiális kábel A 1 ábrán látható koaxiális kábel adatai: a = 7,2 mm, b = 4a = 8,28 mm, d = 0,6 mm, ε r = 3,5; 10 4 tanδ = 80,

Részletesebben

Hegyi Ádám István ELTE, április 25.

Hegyi Ádám István ELTE, április 25. Hegyi Ádám István ELTE, 2012. április 25. GPS = Global Positioning System Department of Defense = Amerikai Egyesült Államok Védelmi Minisztériuma 1973 DNSS = Defense Navigation Satellite System vagy Navstar-GPS

Részletesebben

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek ELEKTROMÁGNESES REZGÉSEK a 11. B-nek Elektromos Kondenzátor: töltés tárolására szolgáló eszköz (szó szerint összesűrít) Kapacitás (C): hány töltés fér el rajta 1 V-on A homogén elektromos mező energiát

Részletesebben

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK Földtudomány BSc Mészáros Róbert Eötvös Loránd Tudományegyetem Meteorológiai Tanszék MIÉRT MÉRÜNK? A meteorológiai mérések célja: 1. A légkör pillanatnyi állapotának

Részletesebben

Az úszás biomechanikája

Az úszás biomechanikája Az úszás biomechanikája Alapvető összetevők Izomerő Kondíció állóképesség Mozgáskoordináció kivitelezés + Nem levegő, mint közeg + Izmok nem gravitációval szembeni mozgása + Levegővétel Az úszóra ható

Részletesebben

Néhány gondolat a rádiólokációs rendszertechnikáról

Néhány gondolat a rádiólokációs rendszertechnikáról DR. SERES GYÖRGY mérnök alezredes a hadtudományok kandidátusa Néhány gondolat a rádiólokációs rendszertechnikáról A légvédelmi, valamint a katonai és a polgári repülésirányító rendszerek egyre fokozódó

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

DRÓNOK HASZNÁLATA A MEZŐGAZDASÁGBAN

DRÓNOK HASZNÁLATA A MEZŐGAZDASÁGBAN DRÓNOK HASZNÁLATA A MEZŐGAZDASÁGBAN KÖRÖSPARTI JÁNOS NAIK Öntözési és Vízgazdálkodási Önálló Kutatási Osztály (ÖVKI) Szaktanári továbbképzés Szarvas, 2017. december 7. A drónok használata egyre elterjedtebb

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Honvéd altiszt Repülésbiztosító ágazat

Honvéd altiszt Repülésbiztosító ágazat Honvéd altiszt Repülésbiztosító ágazat Az ágazatra felvételt nyert hallgatók a képzés folyamán megszerzik azokat a szakismereteket, melyek a légijárművek (repülőgépek, helikopterek) biztonságos le-, és

Részletesebben

Hang terjedési sebességének meghatározása állóhullámok vizsgálata Kundt csőben

Hang terjedési sebességének meghatározása állóhullámok vizsgálata Kundt csőben Hang terjedési sebességének meghatározása állóhullámok vizsgálata Kundt csőben Akusztikai állóhullámok levegőben vagy egyéb gázban történő vizsgálatához és azok hullámhosszának meghatározására alkalmas

Részletesebben

KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET:

KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÉRFOGATÁT TÉRFOGATÁRAM MÉRÉS q v = dv dt ( m 3 / s) AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÖMEGÉT

Részletesebben

Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12

Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12 Gravitációs hullámok Dr. Berta Miklós Széchenyi István Egyetem Fizika és Kémia Tanszék Dr. Berta Miklós: Gravitációs hullámok 2016. 4. 16 1 / 12 Mik is azok a gravitációs hullámok? Dr. Berta Miklós: Gravitációs

Részletesebben

Tájékoztató. Értékelés Összesen: 60 pont

Tájékoztató. Értékelés Összesen: 60 pont A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

INFRA HŐMÉRŐ (PIROMÉTER) AX-6520. Használati útmutató

INFRA HŐMÉRŐ (PIROMÉTER) AX-6520. Használati útmutató INFRA HŐMÉRŐ (PIROMÉTER) AX-6520 Használati útmutató TARTALOMJEGYZÉK 1. Biztonsági szabályok... 3 2. Megjegyzések... 3 3. A mérőműszer leírása... 3 4. LCD kijelző leírása... 4 5. Mérési mód...4 6. A pirométer

Részletesebben

Frekvenciagazdálkodás és ami mögötte van

Frekvenciagazdálkodás és ami mögötte van DigitMicro 1 Frekvenciagazdálkodás és ami mögötte van Szabályozás és alkalmazási lehetőségek minimum 2011.május 7. Széles István Távközlési Tanácsadó DigitMicro 2 Tartalom 1. Rövid tájékoztató a frekvenciagazdálkodás

Részletesebben

MŰSORSZÓRÓ SZOLGÁLAT MŰSZAKI IRÁNYELVEI

MŰSORSZÓRÓ SZOLGÁLAT MŰSZAKI IRÁNYELVEI MŰSORSZÓRÓ SZOLGÁLAT MŰSZAKI IRÁNYELVEI ANALÓG TELEVÍZIÓ 2008. február BEVEZETÉS...3 I. ANALÓG TELEVÍZIÓ (TV) ADÓHÁLÓZATOK, ADÓÁLLOMÁSOK VÁLTOZATAI...3 II. III. IV. I.1. ORSZÁGOS TV ADÓHÁLÓZAT...3 I.2.

Részletesebben

A katonai légijármű rendszermodellje A katonai légijármű lehet: A katonai légijármű bemenetei: a környezetből A katonai légijármű kimenetei:

A katonai légijármű rendszermodellje A katonai légijármű lehet: A katonai légijármű bemenetei: a környezetből A katonai légijármű kimenetei: Seres György: A KATONAI LÉGIJÁRMŰ, MINT RENDSZER 2003-ban, a ROBOTHADVISELÉS 3 konferencián bemutattam a katonai rendszerek egy általános modelljét 1. Csak emlékeztetőül mutatom be az akkori előadás néhány

Részletesebben