Sugárvédelem és jogi szabályozása Fizikus alapképzés Elıadásvázlat

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Sugárvédelem és jogi szabályozása Fizikus alapképzés Elıadásvázlat"

Átírás

1 Sugárvédelem és jogi szabályozása Fizikus alapképzés Elıadásvázlat Fı részek 1. Magfizikai alapok. Dózismennyiségek 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás 4. Sugárzásmérés 5. Természetes és mesterséges radioaktivitás, radioaktív hulladékok 6. Sugárvédelmi tevékenységek Függelék: Kislexikon fontosabb definíciók jegyzéke 1. Magfizikai alapok Radioaktivitás, sugárzások és sugárvédelem - rövid történeti áttekintés : W. K. Röntgen elektroncsı-kísérlet közben felfedezi a késıbb róla elnevezett sugárzást : H. Becquerel: az elsı magfizikai jelenség észlelése uránsóból kilépı radioaktív sugárzás : Marie Curie-Sklodowska, P. Curie: radioaktivitás szó alkalmazása, sugárzásdetektor készítése, rádium és polónium felfedezése : Rutherford: α-sugárzás felfedezése : Rutherford-Bohr-modell az atom leírására: központi mag és körülötte keringı elektronok : Nagy-Britanniában társaság alakul a röntgen- és rádiumsugárzás elleni védelem céljából (BXRPC) : Létrejön az elsı nemzetközi sugárvédelmi szervezet, neve 1950 óta ICRP International Commission on Radiation Protection : J. Chadwick: a neutron felfedezése : F. Joliot-Curie, I. Curie: mesterséges radioaktivitás felfedezése : Szilárd Leó szabadalmaztatja a nukleáris láncreakciót : O. Hahn, F. Strassman: az urán hasadásának felfedezése Az elsı magyar sugárvédelmi szabvány megjelenése E. Fermi vezetésével megindul az elsı kísérleti atomreaktor (Chicago, USA) Az USA hadserege atombombát dob Hiroshimára és Nagasakira Elsı, 5 MW elektromos teljesítményő hálózati atomerımő Obnyinszk, SZU : Nemzetközi Atomenergia Ügynökség (NAÜ IAEA) az ENSZ keretében : Gray és Sievert dózisegységek bevezetése az SI-mértékrendszer részeként összefoglaló sugárvédelmi ajánlások:.icrp #6 (1977) : Three Mile Island - atomerımő-baleset (USA) Az elsı magyar atomtörvény A Paksi Atomerımő elsı blokkjának fizikai indítása Csernobil atomerımő-baleset (SZU) : Újabb összefoglaló sugárvédelmi ajánlások ICRP #60 (1991), ennek továbbfejlesztéseként Nemzetközi Biztonsági Alapszabályzat a NAÜ-tıl (IAEA Safety Series #115 (1996)) 1

2 - 1996: A második magyar atomtörvény : Átfogó miniszteri rendelet a sugárvédelemrıl (Az 1988-as elızı rendelet megújítása) - 007: ICRP #103 újabb összefoglaló sugárvédelmi ajánlások 1.. Az atommag szerkezete Az atommagok hagyományosan nukleonokból (neutron és proton) építhetık fel. Az egyes elemek atomjai a rendszámban (Z), azaz a protonok és a kívülrıl semleges atom atommagja körül meghatározott energiájú pályákon tartózkodó elektronok számában különböznek egymástól. Az egyes elemek izotópjait azonos protonszám mellett különbözı neutronszám jellemzi. A tömegszám (A) a protonszám és a neutronszám összege. A XIX. század végén ismerték fel, hogy egyes tömegszámú atomok instabilisak, és a bennük felhalmozódó többlet energia a mag bomlását eredményezi. Megfigyelték, hogy a több nukleonból felépülı atommagok mindig kissé kisebb tömegőek, mint a nukleonjaik tömegének összege. Ezt a tömeghiányt ( m) a tömeg és energia ekvivalenciájának felismerését (Einstein) követıen egyszerően alkalmazni lehetett az atommag részecskéit összetartó kötési energia (( E) értelmezésére. E = m *c [1] A nukleáris energia dimenziójának az SI rendszerben elfogadott J (joule) helyett a félig természetes mértékegységet, az ev-ot (elektronvolt) használják. A nukleonok között ható erık nem értelmezhetık kizárólag az atomon kívüli makrovilág - ban ismert kölcsönhatásokkal. A legegyszerőbben erıs és gyenge kölcsönhatásra felosztott magerık sajátosságai a makroerıkkel összevetve: - a magerık hatótávolsága a távolság kettınél nagyobb hatványával csökken, tehát hatótávolságuk lényegében az atommagok méretére korlátozott, - a magerık töltésfüggetlenek, - a magerık telíthetıek, azaz két komponens közötti kölcsönhatás nagyságát befolyásolja a többi komponens, egy komponens csak korlátozott számú többi komponenssel tud kölcsönhatást létesíteni. Q *Q 1 F = k * [] r A makroerık fenti általános egyenlete a tömegvonzás, elektromágneses és mágneses vonzás hatását képes leírni. A mezıelmélet szerint a kölcsönhatások nem közvetlenül a két egymásra ható objektum között, hanem egy-egy objektum és a mezı között, annak közvetítésével jönnek létre. A [] egyenlettel leírható makroerık terének mezı-komponense a nyugalmi tömeggel nem rendelkezı, vákuumban fénysebességgel haladó foton. A mezı - fotont virtuális foton -nak nevezik, mert létezése csak a kölcsönhatás létesítésével kapcsolatos. A magerık nem tartoznak ebbe a kategóriába. Különleges természetük egyik E bizonyítéka, hogy az egy nukleonra jutó kötési energia ( ) nem nı lineárisan a nukleonok A számával, mint ahogy a fenti [] összefüggés érvényessége esetén adódna, csak egy adott határig (Z=6, vas, Fe) nı, utána csökken. A magerık különleges természete nem volt

3 megmagyarázható a fotontér-elmélettel, a mezı-elméletet csak jelentıs változtatással lehetett kiterjeszteni a magon belüli térre ben Yukawa a nukleonok között ható erık magyarázatához bevezette az akkor még nem ismert mezı -komponens, a jelentıs nyugalmi tömeggel rendelkezı mezon (π-mezon, pion) fogalmát. Ezzel sikerült értelmezni a magerık fent felsorolt sajátosságait. Míg a virtuális fotonnal értelmezett kölcsönhatásoknál a fotonok nyugalmi tömege zérus és a kölcsönhatások hatótávolsága gyakorlatilag végtelen, addig a magerık körülbelül 1 fm hatótávolságából a közvetítı virtuális π-mezon tömegére a korlátozott hatótávolságnak megfelelıen mintegy 100 MeV ekvivalens energia adódott. 1. ábra Egy nukleonra esı kötési energia a rendszám függvényében A magerık különleges természetének érdekes megnyilvánulása az egy nukleonra esı kötési 4 energia grafikonján látható anomália is: a He -nak ( pozitív töltéssel: α-részecske) extrém nagy kötési energiája van, ennek megfelelıen a legstabilabb nukleoncsoport a proton + neutron. Ennek alapján várható volt, hogy a közel azonos alkotórészekbıl felépülı atomok közül azok lesznek viszonylag stabilisak, amelyekben több α-építıkocka alakítható ki. A nukleonok számának növekedésével a pozitív töltéső, egymáshoz igen közeli protonok (valójában: kvarkok) között Coulomb-taszítás csak egyre több neutron beépülésével kompenzálható. A stabilis atommagokban egyre nı a neutron-proton-arány, és a radioaktív, tehát instabilis atommagokat a stabilitási vonaltól mindkét irányban eltérı nukleonarány jellemzi. 3

4 . ábra Stabilis és instabilis atommagok Izobár magcsoportok energiaviszonyai Az izobár kifejezést az azonos tömegszámú, de eltérı proton- és neutronszámú atommagokra alkalmazzuk. Két alapcsoport lehetséges: a páros és a páratlan tömegszámúaké. Elıbbi esetben egyértelmően megjelölhetı az adott magcsoport legstabilabb, azaz a legnagyobb kötési energiával (tömeghiánnyal) rendelkezı tagja, és a szomszédos tagok között egy-egy nukleon átalakulásával lehetséges bomlási irányok határozhatók meg. Az átalakulás (bomlás) akkor mehet végbe, ha a keletkezı új nuklid kötési energiája nagyobb a kiindulási nuklidénál. Páratlan tömegszám esetén tehát egy görbével jellemezhetı a grafikon, egy tömegszámnál legfeljebb egy stabilis izotóp várható. 4

5 3. ábra Páratlan tömegszámú izobár magcsoport kötési energiája a rendszám függvényében> 5

6 4. ábra Páros tömegszámú izobár magcsoport kötési energiája a rendszám függvényében> Páros tömegszám esetén: két görbével jellemezhetı a kötési energiák grafikonja, különválik a kétszer páros és a kétszer páratlan magok csoportja. Ennek oka az, hogy a kétszer páros magoknál több α-építıkocka alakulhat, mint a kétszer páratlanoknál, ezért azok általában stabilisabbak. Az energiaviszonyok bonyolultabbak, ezért lehetıség van arra, hogy egy tömegszámhoz egynél több stabilis izotóp tartozzék. Magmodellek: - Cseppmodell: az atommagon belül homogén struktúra. - Héjmodell: az atommagon belül a nukleonok az atomi elektronokhoz hasonló rögzített pályákon, különbözı energiaállapotban mozoghatnak. Kitüntetett nukleoncsoport: α- részecskék - Összetett modell mindkét modell igaznak bizonyult elemeit tartalmazza. 6

7 1. 3. Magátalakulások A radioaktivitás instabilis atommagok önmagától való, tehát külsı hatás nélkül bekövetkezı átalakulása. A radioaktivitás definíciója és alapegyenlete: dn = λ * N *dt [3] N = N [4] λt 0 * e dn A = = λn [5] dt A = A [6] λt 0 * e N: bomlásra képes, azonos szerkezető atommagok száma; λ: bomlási állandó idıegységre jutó bomlási valószínőség, A: (radio)aktivitás, t: idı. A felezési idı és a bomlási állandó összefüggése: ln T1 = [7] λ Az aktivitás (bomlás) értelmezése: a gerjesztett állapotban lévı nukleonok (kvarkok) rezgések során adhatnak át egymásnak energiát részecskekibocsátás a magból:, alagúteffektus. A rezgések maximális frekvenciáját a belsı kölcsönhatás típusa határozza meg. Alapidı : az elemi állapotváltozáshoz szükséges minimális idıtartam (pl. erıs kölcsönhatásnál 10 - s körül). A bomlás statisztikusságának magyarázata: minden egyes gerjesztett magban a többitıl függetlenül áll fenn ez a rezgési rendszer, amely véletlenszerően eredményezhet alagúteffektust és ezáltal bomlást. A bomlás valószínősége arányos a rezgések frekvenciájával és a megfigyelés idıtartamával. Levezetések a [3] alapegyenletbıl: integrálás (elbomlott/megmaradt magok száma - [5], [6] egyenlet), egyszeres leányelem aktivitása differenciális és integrális alakban. dn dt = λ * N + λ * N [8] 1 1 A radioaktivitást jellemzı fizikai konstansok: - felezési idı és bomlási állandó, - bomlási mód(ok) lásd késıbb részletesen, - a bomlás során kibocsátott részecske kinetikus energiája E R [kev/részecske], - ezen részecskék kibocsátásának valószínősége a bomlás bekövetkezésekor bomlási valószínőség/gyakoriság f R [részecske/bomlás] Bomlási módok: 7

8 A bomlás lényege, hogy a bomlást szenvedı atommag energiatartalma ( E) csökken, és ez az energia a bomlás által kibocsátott részecskesugárzás energiájává alakulva kijut az atommagból: E = E m + E ) [9] p ( kin A [9] egyenletben p (particle) az 1 bomlás alkalmával kibocsátott elemi részecskék számát (egyben típusát) jelöli, az m index a nyugalmi tömeggel ekvivalens energiára, a kin index a részecske mozgási energiájára utal. 4 + alfa [ He ] diszkrét energiaváltozás, jellemzı az adott radioizotópra, de megoszlik a részecske mozgási energiájára és a visszalökött mag energiájára. Az alfa-bomlás hajtóereje a nukleonok közti erıs kölcsönhatás. + ~ béta 3-féle: n p + β + ν elektron és antineutrínó kibocsátása + + p n + β + ν pozitron és neutrínó kibocsátása, + + n p e + ν elektronbefogás (EC electron capture) neutrínó kibocsátása A béta-bomlás hajtóereje a nukleonok közti gyenge kölcsönhatás. A részecskék mozgási energiájának összege jellemzı a bomlásra, de a neutrínó és antineutrínó gyakorlatilag nem detektálható, így a maradék elektron illetve pozitron energiaeloszlása folytonos, 0 és a bomlásra jellemzı maximum között. Az elektronbefogást azaz egy, általában belsı, szimmetrikus atompályán rezidens elektron elfogyasztását a többi, az elfogyottnál kisebb helyzeti energiájú pályaelektron átrendezıdése és így az adott (a bomlással keletkezett) elemre jellemzı (karakterisztikus) Röntgen-sugárzás kibocsátása kíséri. A pozitronbomlás nettó energiaigényes folyamat, ezért csak akkor megy végbe, ha a mag belsı átrendezıdése fedezi ezt a többletet. A pozitron a normális anyagi környezetben instabil, µs-ms-nagyságrendő idın belül egy elektronnal egyesülve megsemmisülési (annihilációs) fotonsugárzássá alakul. Az annihilációt megelızi a pozitron termalizálódása (a kibocsátás során kapott mozgási energia ütközésekkel való leadása). A megsemmisülés során a két részecske nyugalmi tömege, egymással 180 o -os szögben induló foton mozgási energiájává alakul: e + + e = f, E f = 511 kev [10] Az energia az [1] egyenlettel számítható az elektron nyugalmi tömegébıl. gamma - a nukleonok átrendezıdése nyugalmi tömeggel és töltéssel nem rendelkezı foton kibocsátásával jár. A γ-bomlás hajtóereje nem határozható meg közvetlenül, mint az α- és β-bomlásé, mert ez a bomlási mód csak más magátalakulások maradék, azaz újabb részecske kibocsátásra már nem elegendı többlet-energiájának leadása során következik be, mintegy a mag finomszerkezetének helyreállítása során. A foton energiája diszkrét, szigorúan azonos a megváltozott belsı részecske által betöltött elızı és következı energiaszint különbségével, ezért jellemzı az adott radioizotópra. A mag belsı energiaeloszlásának változása egyes esetekben (fıként kisebb energiaváltozásoknál, Ε γ <-300 kev) nem foton kibocsátásával jár, hanem az energia egy, általában belsı, szimmetrikus 8

9 atompályán rezidens (azaz a magon belül is bizonyos tartózkodási valószínőséggel rendelkezı) elektron mozgási energiájává alakul. Ez a belsı konverzió (internal conversion, IC) E E e E [11] γ,kin + e,köt A [10] egyenlet értelmében a konverziós elektron energiája - az alternatív gammasugárzáshoz hasonlóan szintén diszkrét, csak a gammaenergiánál éppen a kilökött elektron kötési energiájával kisebb. A belsı konverziót az elektronbefogással analóg módon szintén kötelezıen kell, hogy kísérje az atomi elektronpályák átrendezıdése következtében karakterisztikus röntgensugárzás. (Egy nagyobb energiájú pályáról egy kisebbre átlépı elektron energianyeresége, azaz a két pályaenergia különbsége jelenik meg diszkrét energiájú fotonsugárzásként.) Különösen kis rendszámú elemeknél a karakterisztikus röntgensugárzás is képes a belsı konverziót mintegy leképezı energiacserére egy nála kisebb energiájú, tehát külsı pályaelektronnal. A karakterisztikus röntgensugárzás alternatívájaként megjelenı elektronokat Auger-elektronoknak nevezik. hasadás a 90-nél nagyobb rendszámú radioaktív atommagok egy része nem (csak) az elıbb bemutatott háromféle bomlási mód valamelyikével csökkentheti belsı gerjesztett állapotát, hanem két, nagyjából egyforma, közepes mérető atommagra való szétválással (fission) is.a hasadás során zömében radioaktív, nagy neutronfelesleggel rendelkezı, tehát β - -bomlással stabilizálódó nuklidok és hasadásonként -3 szabad neutron keletkezik. A neutronok más nuklidok hasadását indukálhatják: láncreakció. A keletkezett hasadási termékek és azok részecskesugárzása elnyelıdik a hasadóanyagot körülvevı közegben nukleáris energiatermelés alapja. Számítási példa: az emberi szervezetben lévı 40 K-tartalomból származó aktivitás kiszámítása. Adatok: 40 K felezési ideje 1, év, átlagember testtömege 70 kg, átlagos K-tartalom: (esszenciális makroelem, kortól és nemtıl függı koncentráció határok: férfiak 1,7,73 g/kg, nık 1,33,8 g/kg, 10 éves kor körül maximális). Átlag: 0, %, izotóparány a K-on belül 40 0,0118 %. Eredmény: kb. 400 Bq. 19 K (kétszer páratlan tömegszámú nuklid!) bomlási módjai: 89 % β - -bomlás, 11 % EC és γ-sugárzás. 9

10 1. 4. A sugárzások és az anyagi közeg kölcsönhatásai: Általános jellemzık: A közeg kölcsönhatásra képes alkotórészei: elektronok, az atom és az atommag elektromágneses erıtere, atommag. A közeg és a sugárzás közötti kölcsönhatás szerint: - Közvetlenül ionizáló sugárzások: α, β, γ, Röntgen az elektronoknak képesek azok ionizációjához elegendı energiát átadni. - Közvetve ionizáló sugárzás: neutron: atommagokkal való kölcsönhatás során ionizációra képes részecskék jelennek meg. Az elektronokkal való ütközés nem minden esetben vezet azok ionizációjára. A sugárzás által több lépésben átadott energia egy része (általában %-a) nem ionizációt, csak gerjesztést eredményez, azaz összességében a közeg termikus energiáját növeli meg. A gyorsan mozgó szabad töltéshordozók (β - -részecskék vagy ionizált szekunder elektronok) az atomok elektromágneses terében fékezıdve járulékos fotonsugárzást = folytonos röntgensugárzást kelthetnek. A sugárzásnak anyagi közegben megtett rövid (ezért egyenes vonallal közelíthetı) útszakaszán bekövetkezı (ionizációt, gerjesztést vagy szekunder sugárzást kiváltó) kinetikus energiaváltozása a LET: LET = de/dx [1] Lineáris energiaátadási tényezı értéke jelentısen függ a közeg halmazállapotától, a sugárzás típusától és energiájától, ezért nem konstans, de sugárzásfajtánként jellemzıen különbözı. Mivel a sugárzás biológiai veszélyességét a sejt mérettartományában átadott energia határozza meg, a LET jellemzı dimenziója kev/µm α-sugárzás: kölcsönhatási formák: gerjesztés/ionizáció. Fékezıdés során az α + -részecske nagyobbára egyenes úton halad. Az általa eltalált elektronok az adott kötési energiánál lényegesen nagyobb energia-adagot vesznek át a részecskétıl, ezért maguk is ionizáló képességgel rendelkezı, nagy sebességgel haladó részecskék lesznek. Ezek a primer ütközésben szórt elektronok a továbbiakban más elektronoknak adnak át az energiájukból, azokat vagy gerjesztik, vagy ionizálják. A folyamat végeredményeképpen az α + -részecske lelassul, elveszti ionizáló képességét, viszont az ütközések során ionizált elektronok összessége az anyagban szabaddá vált töltést képvisel. Hatótávolság (range) definíciója: átlagos vagy maximális behatolási mélység, értéke függ az energiától és a közeg (elektron)sőrőségétıl. Szabad úthosszak levegıben néhány cm, kondenzált anyagokban kevesebb, mint 100 µm. LET: vízben (élı szervezet anyagában) kev/µm β - és β + -sugárzás: kölcsönhatási formák: - elektronnal ionizáció/gerjesztés; - atomi erıtérrel: fékezési sugárzás (folytonos röntgensugárzás, energiája a közeg rendszámától is függ), Cserenkov-sugárzás: az adott közegben fennálló fénysebességnél nagyobb sebességő elektron emellett látható fényt is kibocsát. 10

11 Primer elektron: a nukleáris sugárzás által elsıként eltalált (ionizált) elektron. A primer részecske által átvett energia a továbbiakban az α-sugárzásnál ismertetett módon alakul át gerjesztett illetve ionizált elektronok halmazává. Hatótávolság: átlagos behatolási mélység. Ez lényegesen rövidebb (kondenzált anyagokban néhány milliméter), mint a β - -részecskék által megtett teljes úthossz, mert az ütközések jelentıs irányváltozással is járnak. LET vízben: 5-10 kev/µm γ- és Röntgen-sugárzás: kölcsönhatási formák: - elektronnal: sokféle szórási modell, legvalószínőbb a Compton- és a fotoeffektus. Elıbbi: rugalmatlan ütközés a foton és a közeg egy elektronja között, a maximális (180 o -os szóráshoz tartozó) átadható energia kisebb, mint a foton teljes energiája, az energiaátadás valószínősége függ a szórás szögétıl, az eredeti energia nagyságától és a rendszámtól. Utóbbi: teljes energia átadása (total absorption), rezonancia-abszorpció egy elektronnal: a foton megszőnik, teljes kinetikus energiáját átveszi a primer elektron. A két kölcsönhatás egymás versenytársa. Bekövetkezésük valószínősége eltérı mértékben függ a sugárzás energiájától és a közeget alkotó atomok rendszámától. A fotoeffektus csak kis energiáknál (<3-400 kev) fordulhat elı. A Compton- illetve fotoeffektus révén szabaddá vált elektronok a továbbiakban a β- sugárzásnál ismertetett módon váltanak ki gerjesztést illetve ionizációt az anyagban. - atomi erıtérrel: párkeltés, ha a foton energiája nagyobb az elektron nyugalmi tömegének kétszeresénél, E f > * 511 kev akkor reális valószínősége van annak, hogy a foton nem abszorpcióval semmisül meg, hanem energiájából egy elektron és egy pozitron keletkezik (lényegében az annihiláció megfordítása), amelyek a maradék (E f -10 kev) energián megosztozva adott kinetikus energiával, egymás pályájával induláskor 180 o -os szöget bezárva távoznak. A pozitron rövid idın belül (azaz valószínőleg ugyanabban az elnyelı közegben) annihilálódik, az elektron ugyanúgy fékezıdik, mint a β - -sugárzás. Összességében tehát a teljes energia átadódik, de az annihilációs fotonok elhagyhatják az adott közeget. - atommaggal: nagyenergiájú (> 4-5 MeV) fotonok abszorpció vagy szórás közben gerjeszthetnek egyes atommagokat: magreakció, radioaktív izotóp keletkezhet a környezeti fotonsugárzás energiáin nem fordul elı. 11

12 4. ábra: Compton-szórás, teljes abszorpció ( fotoeffektus ) és párkeltés valószínősége a fotonenergia függvényében A sugárgyengülés egyszerősített valószínőségi modellje: di = I( x) σ N dx [13] ahol I a párhuzamosnak feltételezett fotonok árama (intenzitása) [foton/s], σ a sugárgyengüléshez vezetı kölcsönhatás valószínősége egy partnerrel, azaz egy elektronnal, N a partnerek száma az anyag egységnyi úthosszában ( vonalmenti részecskesőrőség ) [darab/m], és dx az anyagban megtett út hossza [m]. Ha az anyag homogén, tehát a vonalmenti sőrőség állandó, és a sugárzási energiától függı kölcsönhatási valószínőség is az, akkor az anyag egészére értelmezhetı a lineáris gyengülési együttható, µ [1/m]: µ = σ N [14] µ tehát az egységnyi úthosszon bekövetkezı gyengülés valószínőségeként értelmezhetı. A [13] egyenlet integrálásával kapjuk a párhuzamos homogén energiájú sugárnyaláb homogén közegben történı gyengülési egyenletét: I = I 0 exp( µ x) [15] ahol I 0 a gyengítetlen nyaláb intenzitása, és x a homogén közeg vastagsága. A fentieket az alábbi 5. ábrán is illusztráljuk. 1

13 5. ábra A gamma-sugárgyengülés egyszerő modellje neutronsugárzás: kölcsönhatási formák: - elektronnal nincs közvetlen kölcsönhatás; - abszorpciós magreakció: a neutron elnyelıdik az eltalált atommagban, és egy átmeneti mag-állapoton keresztül új, döntı többségben radioaktív atommagot hoz létre. Az átmeneti mag kialakulását a neutron beépülésével egyidejőleg részecskék (elsısorban γ-foton) kibocsátása kíséri. Ez a kísérı sugárzás csak a magreakció alatt, tehát a neutronbesugárzás fennállásáig tapasztalható, de a létrejött radioaktív mag bomlási sugárzása ezt követıen is fennáll. Az abszorpciós magreakció fıként kis mozgási energiájú (termikus) neutronokkal következhet be, az egyes atomfajták kölcsönhatási valószínőségét abszorpciós hatáskeresztmetszet -nek nevezik. - szórás: a neutron abszorpció, azaz átmeneti mag keletkezése nélkül szóródik az eltalált atommagon. A szórás eredményezhet magátalakulást (spalláció) vagy csak kinetikus energiát juttat az eltalált atomnak. A szóródás folyamata fıként nagy mozgási energiájú neutronokkal valósul meg. A magátalakulás nélküli szórás különösen valószínő a kis rendszámú, a neutronnál nem sokkal nagyobb magokkal, így elsısorban a hidrogénnel és a deutériummal. Ezekben az ütközésekben nem keletkezik radioaktív nuklid, de a mozgási energiát átvett és ezáltal kötésállapotát elhagyó ionizált hidrogénatom (p + ) a továbbiakban nagy energiájú töltött részecskesugárzásként viselkedik, tehát sugárvédelmi szempontból viselkedése az α + - sugárzáséhoz lesz hasonló. A kölcsönhatásokat különösen a külsı sugárterhelés, tehát az emberi szervezeten kívülrıl érkezı, abba behatolni képes sugárzások energiaátadását az abszorpciós együtthatókkal szokás leírni. Az egyes kölcsönhatási formákat külön-külön abszorpciós együttható jellemzi. Ezeket elsısorban a γ-sugárzás elnyelésének leírására alkalmazzák, mivel ez a sugárzásfajta képes általában külsı sugárterhelést okozni. A részecske teljes energiaveszteségére illetve a 13

14 közeg ionizációjának bekövetkezésére az ezekbıl képezett kumulált abszorpciós együttható határozható meg. µ = σ A m * ρa 3 [16] m m σa = Z * σe [17] atom atom N A ρ = mól A [18] 3 VM m mól µ: lineáris abszorpciós együttható (más néven: makroszkópikus abszorpciós hatáskeresztmetszet, az anyag térfogategységére jutó összes, abszorpcióra alkalmas felület). σ e : egy elektronnak az adott típusú és energiájú sugárzás abszorpciójára alkalmas felülete (elektron-hatáskeresztmetszet, az elektron mint objektum felületének és az ütközés bekövetkezése esetén érvényes abszorpciós valószínőségnek a szorzata, [m /elektron]). σ A : atomi hatáskeresztmetszet. Z: rendszám [elektron/atom]. ρ A : atomsőrőség (az anyag térfogategységében lévı atomok száma [darab/m 3 ], N A az Avogadro-szám (az anyag 1 mólnyi mennyiségében lévı atomok száma), V M móltérfogat. A µ értelmezése eltérı annak függvényében, hogy a sugárzás gyengülésének valószínőségét, vagy csak az abszorpció révén a közeg elektronjainak energiafelvételi (ionizációs vagy gerjesztési) valószínőségét kívánjuk kifejezni vele. de µ = dx [19] E inc. A lineáris abszorpciós együttható a LET fogalmából is levezethetı: itt az egységnyi, ütközésbe vitt energiára (E inc, inc.= incident, ütközési) jutó differenciális energiaveszteséget jelenti. Mivel µ a fenti definíciók szerint egységnyi térfogatra vonatkozik, erısen függ az anyagok halmazállapotától, ezért sok esetben célszerőbb a térfogat helyett egységnyi tömegre vonatkoztatni. ρ µ a lineáris abszorpciós együttható és a sőrőség hányadosa, a tömegabszorciós együttható [m /kg]. A fenti abszorpciós összefüggések közvetlen alkalmazhatóságának feltételei: a sugárzási energia és a közeg homogenitása. Az abszorpciós együtthatók valószínőségként való értelmezése révén az együtthatók összegét egymást kölcsönösen kizáró valószínőségek eredıjének tekinthetjük. Összetett anyagoknál µ-et a molekuláris összetétel szerint súlyozva szokás megadni, itt az egyes µ-k a molekulát alkotó atomok összegzett abszorpciós együtthatóit jelentik. Egy adott atomfajtánál is értelmezhetı az eredı valószínőség az egyes 14

15 kölcsönhatásokra vonatkozó µ-k összegeként, mivel az egyes energiaátviteli folyamatok (Compton-szórás, fotoeffektus, párkeltés) egymásnak nem következményei, hanem egymást kizáró versenytársak. µ = µ 1 + µ + µ = µ i [0] Jellemzı értékek: 100 kev foton vízre (testszövet!) µ=17 m -1, ólomra µ=8700 m -1, 1000 kev foton vízre µ=11 m -1, ólomra µ=10 m -1. Gamma-sugárzásra (diszkrét energia, homogén összetétel) a lineáris sugárgyengülési egyenlet: di = µ * I * dx [1] ( * x) I = I0 *exp µ [] I 0 a forrásból az adott objektum felé tartó, egymással párhuzamosan haladó fotonok intenzitása (árama) [darab/s], I az abszorpciót elkerülı, azaz az ütközést követıen eredeti irányát és energiáját változatlanul megtartó gyengítetlen intenzitás. Az intenzitás-csökkenés (di) mértéke egyenesen arányos a beérkezı részecskék számával és a gyengítı közeg vastagságával, valamint az abszorpció valószínőségével, azaz az abszorpciós együtthatóval. A [17] egyenletbıl I = I 0 / helyettesítéssel levezethetı a felezési rétegvastagság, ln() X 1 =.Mivel a sugárzás gyengítetlen hányadának meghatározása szempontjából µ lényegtelen, hogy a primer elektron/foton-kölcsönhatást követıen a primer elektron kinetikus energiája milyen arányban okoz ionizációt a további elektron/elektron-ütközések során, µ ebben az esetben a teljes gyengülésre vonatkozó lineáris abszorpciós együtthatót kell, hogy jelentse. 15

16 . Dózismennyiségek Az anyagban elnyelt ionizáló sugárzási energia fizikai, az élı anyagban, az emberi test szöveteiben emellett kémiai, biokémiai és biológiai hatást fejt ki. A hatás mértékeként a tömegegységben elnyelt és jelentıs részben ionizációra fordított összes sugárzási energiát, a dózist választották..1. Elnyelt dózis D [Gy = J/kg]; dd/dt, Ḋ dózisteljesítmény: rövid idıszakra esı elnyelt (fizikai) dózis. de E J D =, Gray, Gy dm m [3] kg de, illetve E a sugárzás részecskéi által az adott objektumban (annak infinitezimális elemében) leadott és ott összetett energiaátviteli folyamatok eredményeképpen - részben ionizációt eredményezı összes sugárzási energia, amely tetszıleges számú, de egyenként is az adott közeg ionizációs energiáját jelentısen meghaladó mozgási energiával rendelkezı részecskétıl származhat, m a tárgy tömege. Az elnyelı közeg és az elnyelt sugárzás sajátosságainak szétválasztását bemutató egyenlet: dd dt µ = Φ E * [4] ρ A *f R*E R Φ E = [5] 4 * r * π Az elnyelt dózisteljesítmény a sugárzásra jellemzı energiafluxus (energiaáram-sőrőség) és az anyagra jellemzı, de a sugárzás energiájától is függı tömegabszorprciós együttható szorzata. A a forrás aktivitása [Bq], E R a bomlás során kibocsátott részecske kinetikus energiája [kev/részecske], f R ezen részecskék bomlási gyakorisága [részecske/bomlás]. (Lásd az 1.. fejezetet) A [5] egyenlet felírásakor a sugárforrást pontforrásnak tételezzük fel, amely körül az izodózis-tér gömbszimmetrikus. r a mérési pont távolsága a sugárforrástól. Ha az adott radioizotóp többfajta illetve különbözı energiájú sugárzásokat is kibocsát bomlása során, akkor mivel µ/ρ értékei energiafüggıek minden sugárzásra külön kell felírni a [4] egyenletet. Ha a sugárzás és a közeg fenti sajátosságai ismertek, akkor a konstansok és az anyagok minısége illetve a sugárzási energia függvényében változó, de ismert értékő anyagi jellemzık egy közös tényezıbe, a dózistényezıbe (k γ ) vonhatók össze: dd dt A = k γ * [6] r Többkomponenső sugárzás esetén 16

17 k γ = f i i µ *E i * ρ 4 * π i [7] A k γ dózistényezı nem fizikai konstans (tehát a számos helyen olvasható dózisállandó elnevezés hibás), mert adott sugárzó anyaghoz és adott detektorhoz (elnyelı közeghez) tartozik, de ezeket rögzítve értéke már valóban állandó lesz, táblázatokban hozzáférhetı. Bragg-Gray elv: a külsı sugárterhelés dózisának (dózisteljesítményének) pontos mérhetıségét megszabó elvi feltétel. Q E D x ρ x = = [8] D m Φ Φ E µ * µ * ρ m x a dózist elnyelı közeget (testszövet, víz), m a mérıeszköz anyagát jelenti. Ha a detektort ugyanolyan távolságra tesszük a sugárforrástól, mint az x objektumot, a két energiafluxus ugyanaz lesz és így kiesik. A Q mennyiség akkor konstans, ha az x és m közegek összegzett (az összes, ionizációra vezetı kölcsönhatást tartalmazó) tömegabszorpciós együtthatója szigorúan azonos módon változik a sugárzás energiájával. Más szavakkal: a detektorra és a testszövetre vonatkozó abszorpciós együttható, amely a [17] egyenletnek megfelelıen egymással versengı energiaátviteli folyamatok eredıjeként adódik, ugyanolyan menető, egymástól csak egy konstans együtthatóban különbözı függvény szerint változik a sugárzási energia függvényében. Ekkor Q az energiától (pontosabban: az energia eloszlásától) függetlenül konstans, amit gyakran (hibásan) úgy foglalnak össze, hogy az optimális dózismérı energiafüggetlen. A reális dózismérıknél Q értéke a testszövetbe kívülrıl behatolni képes környezeti sugárzások energiatartományában ( kev között) ±0%-on belül állandó... KERMA KERMA = Kinetic Energy Released in Mass Absorption a sugárzás közvetlenül vagy közvetve ionizációhoz vezetı elnyelése során energiát átvett részecskéknek juttatott összes kinetikus energia. Szokásosan felosztják részecske- és sugárzási KERMÁra, elıbbi az anyag elektronjainak átadott energiát, utóbbi az energiaátadás során keletkezı másodlagos fotonsugárzásokat (folytonos és karakterisztikus röntgensugárzások, lásd 1.3. fejezet) foglalja össze. A KERMA elsısorban a dózis mérésével kapcsolatban használatos fogalom, az az elnyelt dózis, amelynek eredményeképpen a detektorban szabad töltéshordozók (válaszjelek) keletkeznek. A detektor szemben az élı szervezettel a válaszjelek keltése szempontjából ideálisan homogénnak tekintendı, tehát a válaszjelek száma/nagysága nem függhet attól, hogy a detektor érzékeny térfogatának melyik pontjáról származnak. A KERMA (a mérhetı dózis) és az elnyelt dózis csak akkor azonos egymással, ha a sugárzás elnyelésének összetett fizikai folyamata során az elnyelı közeg egy, a beesı primer sugárzás irányára merıleges differenciális vastagságú szeletében a primer kölcsönhatás során 17

18 energiát felvett, a szeletet elhagyó részecskék száma és energiája megegyezik a külsı szeletekbıl az adott szeletbe érkezı szekunder részecskék számával és energiájával. Ekkor fennáll a szekunder részecske egyensúly. Ez az állapot a testszövetbe jutó γ-és Röntgenfotonok esetében mintegy 0.07 mm mélységben már létrejön. 6. ábra A D dózisteljesítmény és a K kerma-teljesítmény változása az x rétegvastagság függvényében >.3. Egyenértékdózis [ Sievert,Sv] H = D * w [9] R w R a sugárzás károsító képességére jellemzı relatív szám, a sugárzási tényezı. w R arányos az egyes sugárfajták átlagos LET-értékével. Értéke α-sugárzásra 0, β - -, γ- és Röntgen-sugárzásra 1, neutronsugárzásra a neutronok igen különbözı, erısen neutronenergia-függı kölcsönhatásainak megfelelıen,5 és 0 között változik, maximális értékét a 100 kev és MeV közötti energiájú neutronok esetében veszi fel, mert ezek az emberi testszövetben hidrogénatomokkal való ütközés révén az α-sugárzással közel azonos LET-értékő H + -ionokat keltenek. Az egyenértékdózis antropomorf fogalom: szigorúan csak az emberi testszövetre alkalmazhatók az adott sugárzási tényezık, más élılényekre más értékeket kellene megállapítani. Biológiai hatások: sejtpusztulás (nekrózis) vagy génmutáció. Elıbbit determinisztikus, utóbbi: sztochasztikus károsító hatásnak nevezzük. A determinisztikus hatás kötelezıen 18

19 bekövetkezik, ha a dózis meghaladja a hatásküszöböt, ebben pl. az égéshez hasonlít. A tünetcsoportot sugárbetegségnek is nevezik. Halálos sugárbetegség oka lehet a központi idegrendszert, az emésztırendszert vagy a vérképzı szerveket ért nagy (>3 4 Gy) dózis. Az emberi test mintegy 0 különbözı sejttípusból áll. Minden sejt az emberi szervezet felépítéséhez és mőködéséhez szükséges teljes genetikai információt tartalmazza, ám ennek csak egy részét használja: egy izomsejtben például más gének aktívak, mint egy agysejtben. A sejtek normális körülmények között szabályosan növekednek, majd életük, az interfázis befejezéseként osztódnak (mitózis), s így újabb sejtek születnek, vagy elhalnak (apoptózis). A mutáció eredményeként a sejt (pontosabban: az eukarióta sejtek) eredeti génállománya megváltozik, legtöbbször a DNS-lánc hasadása (törése) történik meg. A mutációk káros hatása nem a mutációt elszenvedett sejt biológiai viselkedésén, hanem a mutáns sejt osztódását (mitózis) követıen létrejövı új sejtek mőködésén tapasztalható. A DNS (dezoxiribonukleinsav) cukor- és foszfátcsoportokból felépülı kettıs spirál, amelyekhez szerves bázisok kapcsolódnak. Egy láncelem neve nukleotid. A láncot a bázisok között hidrogénhidak tartják össze. A DNS-bıl felépülı örökítı elemek a kromoszómák. A DNS nukleotidjai a sejtet felépítı fehérjék összetételét kódolják. A gén a DNS egy fehérjét kódoló, vagy egy sejti tulajdonságot meghatározó darabja. A gének együtt alkotják az egyed genetikai információit tartalmazó genomot. A mutáns ráksejt (tumorsejt) genetikai programja sérült, szaporodási programját a környezı ép sejtek felemésztésével tudja megvalósítani. A hibás DNS-láncot az interfázis során belsı (intracelluláris) enzimes folyamatokban, a repair során a sejt kijavíthatja. A tumorsejt a mitózis révén manifesztálódik. A rosszindulatú (malignus) tumorsejtek az egészséges sejteknél sokkal gyorsabban osztódnak, és olyan új sejteket hoznak létre, melyek a szervezet számára károsak. A mutációt a szervezet kétféleképpen eliminálhatja: a/ a mutációt szenvedett sejt hormonrendszere felismeri és kijavítja a lánctöréseket repair; b/ az osztódással létrejött új, káros (tumor) sejtet a szervezet védekezı (immun) mechanizmusa észleli és eltávolítja. Ha a kijavítás nem sikeres, kifejlıdik a tumor. Ha tá s 1 00% 0% Küs z öb Dóz is 7. ábra A determinisztikus hatást jellemzı dózis/károsodás összefüggés> 19

20 Koc ká z a t m = 5*10 - /S v Dóz is 8. ábra A sztochasztikus hatásnak betudható kockázat/dózis összefüggés A feltételezett egyenes meredeksége: eset/sv. Ennek értelmezése: a természetes eredető sugárterhelésen kívül elıálló többletdózis növeli a daganatos megbetegedés kockázatát, 1 Sv elszenvedése esetén 5 % annak a valószínősége, hogy a személyben rákbetegség fejlıdik ki. Konzervatív becslés: a kockázatot nem szabad alul- csak felülbecsülni..4. Effektív dózis, lekötött dózis, kollektív dózis Az egyes emberi szövetek nem egyformán érzékenyek az ionizáló sugárzás által keltett génmutációk nyomán a rosszindulatú daganatok kialakulására. A gyors életciklusú, relatíve nagy sejtmagot tartalmazó sejtekbıl felépülı szövetek a legérzékenyebbek. A szövetek relatív érzékenysége szerint súlyozni kell a szerveket érı, adott esetben (belsı sugárterhelés, azaz a sugárforrások inkorporációja esetén) különbözı egyenérték-dózisokat, ez az effektív dózis. = H [30] E H Tw T[Sv] T w = T 1 [31] T Jelenleg alkalmazott w T értékek: 0,08: ivarszervek (genetikus károsodás); 0,1: vörös csontvelı, tüdı, gyomor és bélrendszer, emlı; 0,04: hólyag, emlı, máj, nyelıcsı, pajzsmirigy, stb.; 0,01: bır, csontfelszín további maradék összesen 0,1. H E : effektív dózis, w T szöveti súlyozó tényezı. Inkorporáció lehetıségei: lenyelés, belégzés, bırön át való bejutás. H C : lekötött (effektív) dózis: a szervezetben 1 év alatt jellemzıen ki nem ürülı radioaktív szennyezés integrális dózisa gyermekeknél t=70, felnıtteknél t=50 évre: 0

21 H C T dh E = dt [3] dt 0 Az inkorporált sugárzás dózisa közvetlenül nem mérhetı, csak számítható. A belsı sugárterhelés alapegyenlete: H T = * ( S T ) 1 us wr * ER * f R * QR * [33] S R mt 9. ábra: a forrás (S) szövetek és a cél (T) szövet fiktív elhelyezkedése u S : az adott forrás (S) szervben bekövetkezı bomlások száma a radioaktív anyagnak az adott szervben való tartózkodási ideje alatt, Q: abszorpciós (elnyelési) hányad, a sugárforrásból kibocsátott energia hányadrésze jut az S szervbıl a T cél-szövetbe és okoz ott ionizációt (függ a két szerv közötti térszögtıl = bejutási valószínőségtıl és a bejutott sugárzás abszorpciós valószínőségétıl). A többi jelölés azonos a korábbiakkal. H T pontos számításához szükséges az összes érintett szövetre és radioizotópra vonatkozó átviteli függvény ismerete. Ezek a függvények igen változó alakúak, függenek az izotópot hordozó inaktív anyag kémiai természetétıl (pl. vízben oldható vagy oldhatatlan, ionos vagy molekuláris szerkezető stb.), valamint az emberi egyedek biológiai variabilitásától is. DCF = dose conversion factor dóziskonverziós tényezı [Sv/Bq] egységnyi, egyidejőleg (akut módon) inkorporált aktivitás (A in ) adott útvonalon (belégzés vagy lenyelés) és adott kémiai formában történı bevitele által kiváltott egyenérték-dózis (szervekre) és effektív dózis (az egész emberre). Értékei kémiai forma és életkor szerint eltérıek. Az egyes radioizotópok sugárveszélyességének mértékéül szolgál. H A E DCF = [Sv/Bq] [34] in 1

22 Kollektív dózis (C): egy embercsoport tagjainak egy adott sugárforrástól származó effektív (lekötött) dózisának összege emissziós dózisfogalom. = C H C, n [személy Sv] [35] i i i n i az i-edik csoport tagjainak száma, akik az adott sugárforrástól H C,i lekötött dózist kaptak. Számítási példák a külsı- és a belsı sugárterhelés eseteire: - külsı sugárterhelés: [3] egyenlettel, 60 Co 1 TBq-es forrás szerelését hány percig végezhetné valaki 10 cm távolságból ahhoz, hogy dózisa kisebb legyen, mint 1 msv? (k γ =305 [(µsv/h)/(gbq/m )]) - belsı sugárterhelés: [30] egyenlettel, mekkora dózisa lesz 1 év alatt saját magától egy embernek? (K-tartalom 0. %, 40 K-atomhányad %, testsúly 70 kg, 40 K-felezési idı év, gamma-sugárzás elnyelési hányada 37 %, béta- és röntgensugárzás elnyelési hányada 100 %, gamma-energia (elektronbefogás kísérıje) 1461 kev, gamma-gyakoriság 11 %, béta-energia 510 kev, béta-gyakoriság 89 %, röntgen-energia 3 kev)

23 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás Dóziskorlátok értelmezése az általános kockázat alapján, ipari és lakossági szint, összevetés a természetes dózis kockázatával. Nemzetközi sugárvédelmi szervezet: ICRP International Commission on Radiation Protection (198 óta) ajánlásokat készít, melyeket az IAEA International Atomic Energy Agency NAÜ Nemzetközi Atomenergia Ügynökség (ENSz-szerv) továbbít a tagállamoknak. EURATOM: az Európai Unió nukleáris technikai sugárvédelmi szervezete. A sugárvédelem alapvetı célja, hogy senkit se érjen determinisztikus sugárhatás, és a sztochasztikus hatás kockázata elviselhetı legyen. A szabályzás tárgya a többlet -dózis, tehát a természetes sugárterhelés (legalább is annak emberi beavatkozással nem befolyásolható része) nem tárgya a szabályozásnak. A sugárvédelmi szabályzás három hagyományos alapelve (ICRP# óta): - indokoltság = a sugárzás alkalmazásának nagyobb legyen a haszna, mint a kára (kockázata), - optimálás (ALARA as low as reasonably achievable) = az észszerően elérhetı legalacsonyabb sugárzási szint valósuljon meg az egyes alkalmazások során (ez tervezési szint legyen az egyes tevékenységekre), - immissziós (egyedi) korlátozás = a sugárzást elszenvedı egyénekre vonatkoznak a korlátok, bárhol is tartózkodjanak a sugárforrásokhoz képest óta a dóziskorlátok csökkentek (szigorodtak): ICRP#60 (1991), EURATOM 96/9, IBSS IAEA Safety Series 115 (1996). Magyarország: évi CXVI. tv. (II. atomtörvény), 16/000. EüM. r., 15/001. KöM. r. 3/1997. NM. r. Külön szabályozás a normális és a baleseti helyzetekre (utóbbinál: elkerülhetı dózis alapján) Immissziós dóziskorlát DL foglalkozási sugárterhelésre 0 msv/év (pontosabban: 100 msv 5 egymást követı évre), lakosságra 1 msv/év többletdózis a természetes sugárterhelés felett. Korlátozás logikája: immissziós és emissziós korlátok, utóbbiak a sugárzást és/vagy sugárzó anyagokat kibocsátó létesítményekre érvényes korlátok. Mérhetıség: elsısorban az emisszió korlátozásához vonatkoztatási szintekre van szükség. Emisszióra vonatkozó dóziskorlát: DC dózismegszorítás. DL DC [36] s i s: emissziós források (létesítmények) az adott országon belül. Az egyes létesítményekbıl kijutó sugárzás és/vagy kibocsátható aktivitás a létesítményhez elképzelhetıen legközelebbi immisszió helyén sem okozhat a dózismegszorításnál nagyobb effektív dózist a kritikus lakossági csoportnak (azaz a legnagyobb DCF-et mutató korcsoportnak). A DC-k azonban nem összegezhetık, mert ugyanaz a kritikus csoport nem lehet egyidejőleg két létesítmény közvetlen környezetében. Az intézmények kibocsátási pontjaiban (kémények, szennyvízkivezetés stb.) az i-edik radioizotóp tényleges kibocsátása, A em,i a szennyezés 3

24 szétterülése (diszperziója) miatt nagyobb lehet a kibocsátási forrástól adott d távolságra élı kritikus csoportra ható A max,i -nél. DC (A max,i DCF i ) [37] i A em,i = A max,i f -1 (d,...) [38] f -1 (d,...) a távolságtól és sok más paramétertıl (levegıbeli terjedésnél meteorológiai, vízi terjedésnél hidrológiai stb.) is függı terjedési egyenlet inverze, értéke gyakorlatilag minden esetben jelentısen kisebb, mint 1. Az egyes magyarországi létesítmények jellemzı DC emissziós korlátai: Paksi Atomerımő 0.09 msv/év, más, kisebb összes aktivitást tartalmazó létesítmények msv/év, az ÁNTSZ (Állami Népegészségügyi és Tisztiorvosi Hivatal) egyedi engedélyében meghatározva. A foglalkozási sugárterhelésre is értelmezhetı a dózismegszorítás, de ott lényegében azonos az egyes mőveletekre lebontott dóziskorláttal. Mentességi szint: az az aktivitás (MeA) vagy aktivitás-koncentráció (MeAK), ami még a lehetı legnagyobb DCF-fel leírt útvonalon inkorporálva sem okozhat a dózismegszorítás elfogadott minimumánál (10-30 µsv/év) nagyobb belsı sugárterhelést az arra legérzékenyebb személynek sem. Elsıdlegesen radioaktív hulladékokra, tehát a természetben elhelyezett és közvetlenül nem inkorporálható formában lévı anyagokra határozták meg. Az az anyag nem mentes a sugárvédelmi szabályozás hatálya alól, amelyre nézve mindkét alábbi összefüggés teljesül: Ai >1 MeA i AK i >1 MeAK i i i [39 [40] I: radioizotóp, amely kimutatható a kérdéses anyagban. Izotóponként, rendeletben jelentették meg ezen értékeket. Terjedési modellek szerepe: belsı sugárterhelés számításában, emisszió és immisszió összekapcsolásában. Egyéb szabályzások: felületi szennyezettség munkahelyeken, radioaktív hulladékok kategorizálása a [39] [40] egyenletek, a hulladékcsomag hıtermelése ill. külsı dózisteljesítmény alapján. 4

25 4. Sugárzásmérés Célok: Dozimetria vagy nukleáris analízis Dozimetria: utólagos ellenırzés = dózismérés vagy megelızés (tervezés) = dózisteljesítménymérés Követelmények dózismérıkkel szemben: energia- és sugárfajta-függetlenség lásd.1. fejezet. (Analízisnél: az adott sugárzásfajtára minél nagyobb érzékenység, a válaszjelek pontos, reprodukálható energia-szelektivitása egészen más!!!) A dózismérık energiafüggetlensége Bragg-Gray elv [6] egyenlet. Irányfüggetlenség, lineáris jelzés/dózis-függés, sok nagyságrend átfogása, felejtés, szövetekvivalencia vagy arányosság (korlátok, bizonytalanságok, hibák) Eszközök: 1. dózismérık. dózisteljesítménymérık 3. analitikai detektorok Dózismérık: általában utólagos ellenırzı mérésekre alkalmasak. Típusok: Kémiai dózismérık (az elnyelt sugárzási energia kémiai változást okoz) - film badge AgBr bomlása, érzékenyítés, energiafüggés átalakítása elıtét-lapok alkalmazásával. Egyszeri expozíciós lehetıség, a kalibráláshoz egy másik, ugyanolyan sajátosságú filmmel kell feketedés/dózis-arányt megállapítani. Gamma- és neutrondózis mérésére alkalmas, utóbbi esetben a film elıtt Cd-lemez van, ami a neutronokat magreakció során elnyeli, és a magreakciót kísérı prompt gammasugárzás feketíti a filmet. Országos Filmdozimetriai Szolgálat OFSz szintjei: feljegyzési, kivizsgálási, intézkedési. - Fricke-doziméter: Fe(II)-Fe(III) színreakciója, a színesség mértéke arányos a dózissal Elektronikus dózismérık (az elnyelt sugárzási energia szabad töltéshordozókat hoz létre, amelyek révén az addig szigetelı gáztér ideiglenesen vezetı lesz) - elektroszkóp (a kondenzátorra vitt töltést csökkentik a gáztérben a sugárzás által keltett ionpárok), - gázionizációs detektorok (állandó potenciálkülönbség a fegyverzetek között, a sugárzás által keltett impulzusok regisztrálása) Szilárdtestdetektorok (szigetelı ionkristályok a bennük létrejött szabad töltéshordozók nem tudnak helyet változtatni, ezért a sugárzástól átvett energiatöbbletet nem elektromos jelként, hanem a kristályon áthatolni képes sugárzás formájában adják le) a detektálási folyamat két, egymástól idıben elkülönülı részbıl áll, az expozícióból és a kiolvasásból. - RPL (radiophotoluminescence) UV fénnyel kiolvasható, Yokota-üveg - TSEE (thermally stimulated exoelectron emission) (BeO: kis rendszámú ionkristály) - TL (thermal luminescence - termolumineszcencia): Nagyobb rendszámú elemekbıl álló speciális ionkristályoknál fénykibocsátássá konvertálható az elnyelt energia. Jellemzı anyagok: CaF, CaSO 4, Li B 4 O 7, Al O 3, stb. Mőködési mechanizmus: ionkristályban szeparált = vezetési sávvá alakulni nem képes lazítópályák a mérés 5

26 (expozíció) során a sugárzás által gerjesztett elektronok az aktivátor (Dy, Tm, Eu stb. ritka földfémek) betöltetlen elektronpályáiban elektroncsapdába esnek a kiolvasás során a csapdaelektronokat termikus energiával gerjesztik, így alapállapotba jutnak és az energiakülönbségnek megfelelı fotont bocsátanak ki. A jó detektorral szembeni követelmények: Bragg-Gray-feltétel teljesülése, ne legyen elektronvesztés a csapdából (felejtés). Neutronok mérése: aktivációval létrejött belsı radionuklidok által keltett gamma-dózist méri a detektor. konverter anyagok: Cd-film, 6 Li/ 7 Li stb Egyéb dózismérık: aktivációs detektorok neutronokra, biológiai dózismérés (nagyobb dózisok hatására a vérben keletkezı mikronukleuszok számlálása) 4.. Dózisteljesítménymérık elektronikus mőködésőek E D = k * n,i * ei n be v, j [4] m i j n be,i a e energiát leadó belépı részecskék száma, n v a keltett válaszjelek száma optimális mőködés esetén a válaszjelek száma (megjelenésének valószínősége) arányos a válaszjel keltéséhez felhasznált részecske-energiával Gáztöltéső detektorok (ionizációs kamra, proporcionális számláló, GM-csı) A detektor gázterébe jutott ionizáló részecskék hatására szabad töltéshordozók (elektronok és pozitív ionok) keletkeznek, a válaszjeleket a töltésbegyőjtı fegyverzetekre eljutott töltések hozzák létre. - Ionizációs kamra: csak a primer ionizáló részecske által keltett töltések hozzák létre az impulzust - energiaszelektív; - Proporcionális számláló: a válaszimpulzusok nagysága arányos a primer ionizációval - energiaszelektív; - GM-csı: bármilyen primer energiabevitel a gáztér összes molekuláját ionizálja (kisülés) nem enrgiaszelektív Az alfa-, béta- és gammadetektálás közötti hasonlóságok és eltérések (utóbbinál a primer kölcsönhatások a csıfalban mennek végbe, a gáztérbe a csıfalból kilépı primer elektronok jutnak). Töltıgázok. BF 3 -csı: neutrondetektálás a neutronok a bórral ütközve magreakció révén alfarészecskéket váltanak ki Szilárdtestdetektor: félvezetı (Si, Ge, spec. oxidok) mőködés, energiafüggés, mint elébb Analitikai detektorok Gáztöltésőek - eltérések a dózisteljesítmény-mérés és az analízis között: elıbbi esetben a dózisarányosság, utóbbinál a minél nagyobb számlálási hatásfok (a válaszjelek és a bemenı részecskék intenzitásának aránya) az elsıdleges cél. 6

27 4.3.. Félvezetık: ugyanez. HP Ge gammaspektrometriás detektor (az analízis a belsı dózisok számításához szükséges!) PIPS-detektor: alfa-spektrometria. Si(Li), egyéb Si: röntgenmérések Szcintillációs detektorok: mőködés elve, párhuzam a termolumineszcenciával, az eltérések magyarázata. Típusok: NaI(Tl): gamma-spektrometria, antracén, plasztik, foly. szcint.: bétamérések, ZnS(Ag): alfamérés. 6 LiI: neutronmérés Alkalmazások: belsı sugárterhelés in vivo (egésztest, pajzsmirigy), in vitro (mintákból: trícium/vizelet, vér, stb.) Nyomdetektorok (cellulóz): alfasugárzó radioizotópok, elsısorban radon (lásd késıbb) mennyiségét méri a filmdózismérıkhöz hasonlóan: a nagyenergiájú sugárzás láncszakadást okoz a polimerben, a lyukak maratással láthatóvá tehetık, a lyukak száma arányos a detektor környezetében levı levegı alfa-aktivitás-koncentrációjával. 7

28 5. Természetes és mesterséges radioaktivitás, radioaktív hulladékok 5.1. A természetben elıforduló radioaktív nuklidok eredete - megkülönböztetés a természetbe jutott mesterséges elıállítású nuklidoktól a/ kozmogén nuklidok 3 H, 14 C, 7 Be részletes bemutatásával. A kozmikus sugárzás átalakulása a légköri rétegeken való áthaladás során. A három felsorolt nuklid fizikai adatai az izotóptáblázatból, néhány szó a jelentıségükrıl ( 3 H: hidrológiai indikátor, 14 C: kormeghatározás, 7 Be: légköri aktivitás) b/ ısi nuklidok: 40 K, 87 Rb, 38 U-sorozat, 35 U, 3 Th-sorozat részletes bemutatásával. Keletkezés a szoláris folyamatokban és az ısrobbanáskor, fennmaradásuk. ıs-nap-ciklusai: H-He-égés, CNO-ciklus, He-Fe-égés, s (slow) neutronbefogás: 1000 év/elem ugrási idıvel a 83Bi-ig legfeljebb neutron/(m s) fluxusban, r (rapid) neutronbefogás: 10 s/elem ugrási idıvel a 90 Th, 9 U-ig legalább 10 9 neutron/(m s) fluxusban a szupernova-robbanás során. 5.. Fontosabb ısi nuklidok 40 K, 87 Rb: elıfordulásuk a szervezetben. 38 U, 35 U, 3 Th: Bomlási sorok. Nukleáris energiatermelés: láncreakció fissile (hasadóképes) és fertile (hasadóképes magokra bomló) nuklidok. Elıbbiek: 35 U, 39 Pu, 41 Pu. Utóbbiak: 38 U 39 Pu, 3 Th 33 U 5.3. Radon Rn és 0 Rn keletkezése a megfelelı Ra-izotópokból, részletes bomlási ábrával, rajta a bomlási módokkal és a felezési idıvel, egészen a stabil ólom-nuklidokig.. Bekeretezendık a radon-inhaláció szempontjából jelentıs tagok. Részletezni kell az inkorporáció menetét és a radon és a leányelemek szerepe közti különbséget. Miért fontosabb a radon, mint a toron? Bemutató: NRPB-radon-brosúra, rajta a lakossági dózis megoszlási aránya. 6 Ra (T=1600 év) Bomlási mód: α, γ Rn (T=3.8 nap) Bomlási mód: α 18 Po (T=3.05 perc) Bomlási mód: α 14 Pb (T=6.8 perc) Bomlási mód: β -, γ 14 Bi (T=19.9 perc) Bomlási mód: β -, γ 14 Po (T=96 µs) Bomlási mód: α 10 Pb (T= év) Bomlási mód: β -, γ A radon dozimetriai jelentıségének felismerése következtében, a múlt század 80-as éveiben a dózisszámítással közvetlenebbül összekapcsolható mérendı mennyiségeket vezettek be. Ezek közül legfontosabbak a Potenciális Alfa Energia Koncentráció, angol rövidítésébıl PAEC és az erre épülı Egyensúlyi Egyenérték Koncentráció, EEC. 1 MeV PAEC = ( N1 * N * N 3 *7.69)* 3 V m [43] 8

Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó

Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó Sugárvédelem alapjai Nukleáris alapok Papp Ildikó 2 Emlékeztető A sugárzások és az anyagi közeg kölcsönhatása Dózisfogalmak 3 Pici történelem 1896: Henri Becquerel uránsók Azt találta, hogy sugárzás intenzitása

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

Az ionizáló sugárzások előállítása és alkalmazása

Az ionizáló sugárzások előállítása és alkalmazása Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Sugárvédelem és jogi szabályozása Fizikus alapképzés Elıadásvázlat

Sugárvédelem és jogi szabályozása Fizikus alapképzés Elıadásvázlat Sugárvédelem és jogi szabályozása Fizikus alapképzés Elıadásvázlat Fı részek 1. Magfizikai alapok. Dózismennyiségek 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás 4. Sugárzásmérés

Részletesebben

Sugárvédelem kurzus fogorvostanhallgatók számra. Töltött részecskék elnyelődése. Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése

Sugárvédelem kurzus fogorvostanhallgatók számra. Töltött részecskék elnyelődése. Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése Sugárvédelem kurzus fogorvostanhallgatók számra 2. Az ionizáló sugárzás és az anyag kölcsönhatása. Fizikai dózisfogalmak és az ionizáló sugárzás mérése Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

Sugárzások és anyag kölcsönhatása

Sugárzások és anyag kölcsönhatása Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Az ionizáló sugárzások előállítása és alkalmazása

Az ionizáló sugárzások előállítása és alkalmazása Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

Az ionizáló sugárzások el állítása és alkalmazása

Az ionizáló sugárzások el állítása és alkalmazása Az ionizáló sugárzások elállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

Mag- és neutronfizika

Mag- és neutronfizika Mag- és neutronfizika z elıadás célja: : megalapozni az atomenergetikai ismereteket félév során a következı témaköröket ismertetjük: Magfizikai alapfogalmak (atommagok, radioaktivitás) Sugárzás és anyag

Részletesebben

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása A sugárzás és az anyag kölcsönhatása A béta-sugárzás és anyag kölcsönhatása Cserenkov-sugárzás v>c/n, n törésmutató cos c nv Cserenkov-sugárzás Pl. vízre (n=1,337): 0,26 MeV c 8 m / s 2. 2* 10 A sugárzás

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT) Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken

Részletesebben

A sugárvédelem alapjai

A sugárvédelem alapjai A sugárvédelem alapjai 1. Dózisfogalmak 2. Az ionizáló sugárzások egészséget károsító hatásai 3. Sugárvédelmi szabályozás - korlátok 4. A dózismérés sajátosságai 5. Természetes radioaktivitás 6. Radioaktív

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití

Részletesebben

Sugárvédelem. 2. előadás

Sugárvédelem. 2. előadás Sugárvédelem 2. előadás 2 A biológiai hatások osztályozása Szomatikus: egy biológiai egyeden jelentkezik Genetikai: egy populáción jelentkezik VAGY 3 A biológiai hatások osztályozása Direkt hatás a sugárenergia

Részletesebben

FIZIKA. Radioaktív sugárzás

FIZIKA. Radioaktív sugárzás Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos

Részletesebben

Dozimetriai alapfogalmak. Az ionizáló sugárzás mérése

Dozimetriai alapfogalmak. Az ionizáló sugárzás mérése Dozimetriai alapfogalmak. Az ionizáló sugárzás mérése A DÓZISFOGALOM FEJLŐDÉSE A sugárzás mértékét számszerűen jellemző mennyiségek ERYTHEMA DÓZIS: meghatározott sugárminőséggel (180 kv, 1 mm Al szűrés),

Részletesebben

Dozimetria és sugárvédelem

Dozimetria és sugárvédelem PR/B10ZP0318N0019FD003 Dozimetria és sugárvédelem Dr. Zagyvai Péter egyetemi docens Atomenergetikai Tanszék Nukleáris Technikai Intézet Természettudományi Kar Budapesti Műszaki és Gazdaságtudományi Egyetem

Részletesebben

Radioaktivitás biológiai hatása

Radioaktivitás biológiai hatása Radioaktivitás biológiai hatása Dózis definíciók Hatások Biofizika előadások 2013 december Orbán József PTE ÁOK Biofizikai Intézet A radioaktív sugárzás elleni védekezés 3 pontja Minimalizált kitettségi

Részletesebben

Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó

Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó Elméleti bevezetés PANNONPALATINUS regisztrációs code PR/B10PI0221T0010NF101 A radon a 238 U bomlási sorának tagja, a periódusos rendszer

Részletesebben

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes. Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding

Részletesebben

Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD

Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD 2012.10.03 1976 2 1. 3 4 n 1 >n 2 5 6 7 8 9 10 11 12 13 14 2. Az ionizáló sugárzások

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Magsugárzások (α, β, γ) kölcsönhatása atomi rendszerekkel (170-174, 540-545 o.) Direkt és

Részletesebben

Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM

Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM Sugárfizikai alapismeretek. A röntgen sugárzás keletkezése és tulajdonságai. Salik Ádám, sugárvédelmi szakértő salik.adam@osski.hu, 30-349-9300 ORSZÁGOS SUGÁRBIOLÓGIAI

Részletesebben

Sugárvédelem alapjai. Atomenergetikai alapismeretek. Dr. Czifrus Szabolcs BME NTI

Sugárvédelem alapjai. Atomenergetikai alapismeretek. Dr. Czifrus Szabolcs BME NTI Sugárvédelem alapjai Atomenergetikai alapismeretek Dr. Czifrus Szabolcs BME NTI 2 Tartalom Emlékeztető a múlt félévből A sugárzások és az anyagi közeg kölcsönhatása Dózisfogalmak, külső- belső sugárterhelés

Részletesebben

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei Sugárterápia Sugárterápia: ionizáló sugárzások klinikai alkalmazása malignus daganatok eltávolításában. A sugárkezelés során célunk az ionizáló sugárzás terápiás dózisának elérése a kezelt daganatban a

Részletesebben

Az atom felépítése Alapfogalmak

Az atom felépítése Alapfogalmak Anyagszerkezeti vizsgálatok 2017/2018. 1. félév Az atom felépítése Alapfogalmak Csordás Anita E-mail: csordasani@almos.uni-pannon.hu Tel:+36-88/624-924 Pannon Egyetem Radiokémiai és Radioökológiai Intézet

Részletesebben

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések Sugárterápia 40% 35% 30% 25% 20% 15% % 5% 0% 2014/2015. tanév FOK biofizika kollokvium jegyspektruma 5 4,5 4 3,5 3 2,5 2 1,5 1 Konzultáció: minden hétfőn 15 órakor Ionizáló sugárzások elnyelődésének következményei

Részletesebben

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III. Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak

Részletesebben

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás Tartalom bevezetés, alapfogalmak természetes háttérsugárzás mesterséges háttérsugárzás összefoglalás OSJER Bevezetés - a radiokémiai

Részletesebben

FIZIKA. Atommag fizika

FIZIKA. Atommag fizika Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2

Részletesebben

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16. Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2010. február 16. A neutron létének következményei I. 1. Az atommag alkotórészei Z db proton + N db neutron, A=N+Z az atommag tömege

Részletesebben

A sugárzás biológiai hatásai

A sugárzás biológiai hatásai A sugárzás biológiai hatásai Dózisegységek Besugárzó dózis - C/kg Elnyelt dózis - J/kg=gray (Gy) 1 Gy=100 rad Levegőben átlagos ionizációs energiája 53,9*10-19 J. Az elektron töltése 1,6*10-19 C, tehát

Részletesebben

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára EGÉSZTESTSZÁMLÁLÁS Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára Zagyvai Péter - Osváth Szabolcs Bódizs Dénes BME NTI, 2008 1. Bevezetés Az izotópok stabilak vagy radioaktívak

Részletesebben

Radon a környezetünkben. Somlai János Pannon Egyetem Radiokémiai és Radioökológiai Intézet H-8201 Veszprém, Pf. 158.

Radon a környezetünkben. Somlai János Pannon Egyetem Radiokémiai és Radioökológiai Intézet H-8201 Veszprém, Pf. 158. Radon a környezetünkben Somlai János Pannon Egyetem Radiokémiai és Radioökológiai Intézet H-8201 Veszprém, Pf. 158. Természetes eredetőnek, a természetben eredetileg elıforduló formában lévı sugárzástól

Részletesebben

ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN

ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN ALARA-elv A sugárveszélyes munkahelyen foglalkoztatott személyek sugárterhelését az ésszerűen elérhető legalacsonyabb szinten kell tartani a gazdasági

Részletesebben

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe

Részletesebben

A gamma-sugárzás kölcsönhatásai

A gamma-sugárzás kölcsönhatásai Ref. [3] A gamma-sugárzás kölcsönhatásai Az anyaggal való kölcsönhatás kis valószínűségű hatótávolság nagy A sugárzás gyengülését 3 féle kölcsönhatás okozza. fotoeffektus Compton-szórás párkeltés A gamma-fotonok

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

IDTÁLLÓ GONDOLATOK MOTTÓK NAGY TERMÉSZET TUDÓSOK BÖLCS GONDOLATAIBÓL A TUDOMÁNY ÉS A MINDEN NAPI ÉLET VONAKOZÁSÁBAN

IDTÁLLÓ GONDOLATOK MOTTÓK NAGY TERMÉSZET TUDÓSOK BÖLCS GONDOLATAIBÓL A TUDOMÁNY ÉS A MINDEN NAPI ÉLET VONAKOZÁSÁBAN ! " #! " 154 IDTÁLLÓ GONDOLATOK MOTTÓK NAGY TERMÉSZET TUDÓSOK BÖLCS GONDOLATAIBÓL A TUDOMÁNY ÉS A MINDEN NAPI ÉLET VONAKOZÁSÁBAN (Ludwig Boltzman) (James Clerk Maxwell)!" #!!$ %!" % " " ( Bay Zoltán )

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Magsugárzások, Radioaktív izotópok. Az atom alkotórészei. Az atom felépítése. A radioaktivitás : energia kibocsátása

Magsugárzások, Radioaktív izotópok. Az atom alkotórészei. Az atom felépítése. A radioaktivitás : energia kibocsátása Magsugárzások, Radioaktív izotópok radioaktivitás : energia kibocsátása az atommagból részecskék vagy elektromágneses sugárzás formájában z atom felépítése z atom alkotórészei protonok neutronok nukleonok

Részletesebben

Ionizáló sugárzások dozimetriája

Ionizáló sugárzások dozimetriája Ionizáló sugárzások dozimetriája A becsült átlagos évi dózis természetes és mesterséges forrásokból 3.6 msv. környezeti foglalkozási katonai nukleáris ipari orvosi A terhelés megoszlása a források között

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat)

SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) A sugárzások a károsító hatásuk mértékének megítélése szempontjából

Részletesebben

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész MTA Izotópkutató Intézet Gméling Katalin, 2009. november 16. gmeling@iki.kfki.hu Isle of Skye, UK 1 MAGSPEKTROSZKÓPIAI MÓDSZEREK Gerjesztés:

Részletesebben

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június 1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra

Részletesebben

Radioaktivitás és mikrorészecskék felfedezése

Radioaktivitás és mikrorészecskék felfedezése Radioaktivitás és mikrorészecskék felfedezése Mag és részecskefizika 1. előadás 2017. Február 17. A félév tematikája 1. Mikrorészecskék felfedezése 2. Kvark gondolat bevezetése, béta-bomlás, neutrínóhipotézis

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Nukleáris környezetvédelem Környezeti sugárvédelem

Nukleáris környezetvédelem Környezeti sugárvédelem Nukleáris környezetvédelem Környezeti sugárvédelem Előadások: 2018. IX. 3. XII. 3. Félévközi dolgozatok: 2018. X. 15., XII. 3. Laborgyakorlatok: péntekenként, egyéni beosztás szerint, csoportokban vezető:

Részletesebben

A Nukleáris Medicina alapjai

A Nukleáris Medicina alapjai A Nukleáris Medicina alapjai Szegedi Tudományegyetem Nukleáris Medicina Intézet Történet 1. 1896 Henri Becquerel titokzatos sugár (Urán) 1897 Marie and Pierre Curie - radioaktivitás 1901-1914 Rádium terápia

Részletesebben

1. A radioaktív sugárzás hatásai az emberi szervezetre

1. A radioaktív sugárzás hatásai az emberi szervezetre 1. A radioaktív sugárzás hatásai az emberi szervezetre Az ember állandóan ki van téve a különböző természetes, vagy mesterséges eredetű ionizáló sugárzások hatásának. Ez a szervezetet érő sugárterhelés

Részletesebben

RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS

RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS Az atom felépítése RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS elektron proton Varga József Debreceni Egyetem Nukleáris Medicina Intézet atommag Atomi részecskék 2 Atomi részecskék mérete Jelmagyarázat: elektron proton

Részletesebben

61. Lecke Az anyagszerkezet alapjai

61. Lecke Az anyagszerkezet alapjai 61. Lecke Az anyagszerkezet alapjai GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési

Részletesebben

-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio

-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio -A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio (sugároz) - activus (cselekvő) Különféle foszforeszkáló

Részletesebben

RADIOKÉMIA. László Krisztina, F ép. I. lh., I. emelet, 135

RADIOKÉMIA. László Krisztina, F ép. I. lh., I. emelet, 135 RADIOKÉMIA László Krisztina, F ép. I. lh., I. emelet, 135 klaszlo@mail.bme.hu Nagy Lajos György és LK: Radiokémia és izotóptechnika Műegyetemi Kiadó 1997 Antoine Henri Becquerel (1852-1908) Maria Skłodowska-Curie

Részletesebben

GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA. Mérési útmutató. Gyurkócza Csaba

GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA. Mérési útmutató. Gyurkócza Csaba GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba BME NTI 1997 2 Tartalom 1. BEVEZETÉS... 3 2. ELMÉLETI ÖSSZEFOGLALÁS... 3 2.1. Töltéshordozók keletkezése (ionizáció) töltött részecskéknél...

Részletesebben

Sugárvédelem és jogi alapjai

Sugárvédelem és jogi alapjai Sugárvédelem és jogi alapjai Fejezetek: 1. Mag- és sugárfizikai alapok 2. Dózismennyiségek 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás 4. Sugárzásmérés alapjai 5. Természetes

Részletesebben

Nukleáris környezetvédelem Környezeti sugárvédelem

Nukleáris környezetvédelem Környezeti sugárvédelem Nukleáris környezetvédelem Környezeti sugárvédelem 1. Dózisfogalmak 2. Az ionizáló sugárzások egészségkárosító hatásai 3. A dózis meghatározásának mérési és számítási módszerei 4. A sugárvédelmi szabályzás

Részletesebben

A radioaktív bomlás típusai

A radioaktív bomlás típusai A radioaktív bomlás típusai Párhuzamos negatív és pozitív bétabomlás/elektronbefogás 40 19 K kb.89% 0.001%, kb.11% EX 40 40 Ca Ar Felszabaduló energia Ca-40: 1311 kev Ar-40: 1505 kev Felezési idő P-40

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1 I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1) Iondózis/Besugárzási dózis (ro: Doza de ioni): A leveg egy adott V térfogatában létrejött ionok Q össztöltésének és az adott térfogatban található anyag

Részletesebben

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok.

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok. Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok. Dr. Kóbor József,biofizikus, klinikai fizikus, PTE Sugárvédelmi Szolgálat

Részletesebben

1. Az ionizáló sugárzások és az anyag kölcsönhatása

1. Az ionizáló sugárzások és az anyag kölcsönhatása Az ionizáló sugárzások és az anyag kölcsönhatása. A sugárzások érése KAD 2018.03.26 1. Az ionizáló sugárzások és az anyag kölcsönhatása Gondolat, 1976 1 2 levegőben (átlagosan) 1 ionpár keltéséhez 34 ev

Részletesebben

Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós

Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Emlékeztető Radioaktív sugárzások keletkezése, típusai A Z A Z α-bomlás» α-sugárzás A Z 4 X X + 2 X A Z 4 2 X 4

Részletesebben

Sugárvédelem kurzus fogorvostanhallgatók számra. Méretek. Az ionizáló sugárzások fajtái. 1. Atomfizika, Radioaktivitás és Röntgensugázás

Sugárvédelem kurzus fogorvostanhallgatók számra. Méretek. Az ionizáló sugárzások fajtái. 1. Atomfizika, Radioaktivitás és Röntgensugázás Az ionizáló sugárzások fajtái Sugárvédelem kurzus fogorvostanhallgatók számra Magsugárzások Röntgensugárzás 1. Atomfizika, Radioaktivitás és Röntgensugázás Dr. Smeller László Ionizáció: Az atomból vagy

Részletesebben

Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály

Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály Bővített fokozatú sugárvédelmi tanfolyam 2019. március 18-21. Szóbeli és írásbeli vizsga napja: 2019. március 21. Képzési idő:

Részletesebben

Az atommagtól a konnektorig

Az atommagtól a konnektorig Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.

Részletesebben

Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm.

Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens. Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

3. Nukleá ris fizikái álápismeretek

3. Nukleá ris fizikái álápismeretek 3. Nukleá ris fizikái álápismeretek 3.1. A radioaktív bomlás típusai Radioaktív bomlásnak nevezzük az olyan magátalakulásokat, amelyek spontán mennek végbe, és a bomlás során olyan másik atommag is keletkezik,

Részletesebben

Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus

Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus Melyik egyenlet nem hullámot ír le? a) y = A sin 2π(ft x/λ) b) y = A

Részletesebben

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa.

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa. 2016.04.11. Környezetgazdálkodás Dr. Horváth Márk https://nuclearfree.files.wordpress.com/2011/10/radiation-worker_no-background.jpg 1868-ban gépészmérnöki diplomát szerzett. 1901-ben ő lett az első Fizikai

Részletesebben

Neutron- és gamma-dózisteljesítmény mérése az Oktatóreaktor 4. vízszintes csatornájánál

Neutron- és gamma-dózisteljesítmény mérése az Oktatóreaktor 4. vízszintes csatornájánál Neutron- és gamma-dózisteljesítmény mérése az Oktatóreaktor 4. szintes csatornájánál Osváth Szabolcs, BME NI, 2012 Bevezetés Az oktatóreaktor 4. szintes csatornájának körkeresztmetszetű nyílásából közelítőleg

Részletesebben

Röntgensugárzás. Röntgensugárzás

Röntgensugárzás. Röntgensugárzás Röntgensugárzás 2012.11.21. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ

Részletesebben

Maghasadás (fisszió)

Maghasadás (fisszió) http://www.etsy.com Maghasadás (fisszió) 1939. Hahn, Strassmann, Meitner neutronbesugárzásos kísérletei U magon új reakciótípus (maghasadás) Azóta U, Th, Pu (7 izotópja) hasadási sajátságait vizsgálták

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

1. Az ionizáló sugárzások és. az anyag kölcsönhatása. Prefixumok. levegőben (átlagosan) 1 ionpár keltéséhez 34 ev = 5.4 aj energia szükséges

1. Az ionizáló sugárzások és. az anyag kölcsönhatása. Prefixumok. levegőben (átlagosan) 1 ionpár keltéséhez 34 ev = 5.4 aj energia szükséges Az ionizáló sugárzások és az anyag kölcsönhatása. A sugárzások érése KAD 2009.04.06 1. Az ionizáló sugárzások és az anyag kölcsönhatása levegőben (átlagosan) 1 ionpár keltéséhez 34 ev = 5.4 aj energia

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Radioaktív sugárzás elnyelődésének vizsgálata

Radioaktív sugárzás elnyelődésének vizsgálata 11. fejezet Radioaktív sugárzás elnyelődésének vizsgálata Az ólomtorony és a szcintillációs számláló A természetes radioaktív anyagok esetében háromféle sugárzást lehet megkülönböztetni. Erre egyszerű

Részletesebben

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)

Részletesebben

A sugárzások és az anyag fizikai kölcsönhatásai

A sugárzások és az anyag fizikai kölcsönhatásai A sugárzások és az anyag fizikai kölcsönhatásai A kölcsönhatásban résztvevő partner 1. Atommag 2. Az atommag erőtere 3. Elektron (szabad, kötött) 4. Elektromos erőtér 5. Molekulák 6. Makroszkopikus rendszerek

Részletesebben

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23.

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. A neutronok személyi dozimetriája Deme Sándor MTA EK 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. Előzmény, 2011 Jogszabályi háttér A személyi dozimetria jogszabálya (16/2000

Részletesebben

Sugárvédelem alapjai

Sugárvédelem alapjai Sugárvédelem alapjai Atomenergetikai alapismeretek Papp Ildikó 2016.04.05. 2 Tartalom Emlékeztető a múlt félévből A sugárzások és az anyagi közeg kölcsönhatása Dózisfogalmak, külső- belső sugárterhelés

Részletesebben

Radioaktivitás biológiai hatása

Radioaktivitás biológiai hatása Radioaktivitás biológiai hatása Dózis definíciók Hatások PTE ÁOK Biofizikai Intézet, 2012 december Orbán József A radioaktív sugárzás elleni védekezés 3 pontja Minimalizált kitettségi idő Maximalizált

Részletesebben

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám Egy nukleonra jutó kötési energia Atomfizikai összefoglaló: radioaktív bomlás Varga József Debreceni Egyetem OEC Nukleáris Medicina Intézet Kötési energia (MeV) Tömegszám 1. 1. Áttekintés: atomfizika Varga

Részletesebben

LAKOSSÁGI SUGÁRTERHELÉS 2010. október 6 (szerda), 15:40-16:50, Árkövy terem

LAKOSSÁGI SUGÁRTERHELÉS 2010. október 6 (szerda), 15:40-16:50, Árkövy terem SE FOK Sugárvédelem, 2010/2011 LAKOSSÁGI SUGÁRTERHELÉS 2010. október 6 (szerda), 15:40-16:50, Árkövy terem Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat 1 Sugárterhelések osztályozásának szempontjai - Sugárforrás

Részletesebben

Mag- és neutronfizika 9. elıadás

Mag- és neutronfizika 9. elıadás Mag- és neutronfizika 9. elıadás 9. elıadás mlékeztetı: Atommagok kötési energiája (Weizs( Weizsäcker) Z ( Z ) B bv A bf A bc b + b A A P δ A A B ε (egy nukleon átlagos energiája) A A (energia kötési energia)

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

Bevezetés a magfizikába

Bevezetés a magfizikába a magfizikába Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Bevezetés Kötési energia Magmodellek Magpotenciál Bevezetés 2 / 35 Bevezetés Bevezetés Kötési energia Magmodellek Magpotenciál Rutherford

Részletesebben

http://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését

Részletesebben

Sugárvédelem alapjai. Atomenergetikai alapismeretek. Dr. Czifrus Szabolcs BME NTI

Sugárvédelem alapjai. Atomenergetikai alapismeretek. Dr. Czifrus Szabolcs BME NTI Sugárvédelem alapjai Atomenergetikai alapismeretek Dr. Czifrus Szabolcs BME NTI 2 Rövid történeti áttekintés 1895: W. K. Röntgen elektroncső-kísérlet közben felfedezi a később róla elnevezett sugárzást.

Részletesebben