AZ ATOMMAG FIZIKÁJA. Az atommag szerkezete. Tömeghiány, kötési energia Magerők Magmodellek Az atommag stabilitása

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "AZ ATOMMAG FIZIKÁJA. Az atommag szerkezete. Tömeghiány, kötési energia Magerők Magmodellek Az atommag stabilitása"

Átírás

1 AZ ATOMMAG FIZIKÁJA Az atommag szerkezete Az atommag komponensei Tömeghiány, kötési energia Magerők Magmodellek Az atommag stabilitása Radioaktivitás A radioaktív bomlás törvényszerűségei, egysége A radioaktív sugárzások módjai A radioaktív bomlási sorok Az atomenergia hasznosítása

2 Az atommag komponensei Z: rendszám (protonok száma) N: neutronszám A = N+Z: tömegszám A proton tömege 1%-al kisebb mint a neutroné Izotóp atommagok (protonszám) Izobár atommagok (tömegszám) Izotón atommagok (neutronszám) A magerők tulajdonságai Vonzó erők (meghaladja a Coulomb erőket) Töltés-függetlenek Hatótávolságuk kb. egy nukleonnyi

3 Az atommag stabilitása Könnyű magoknál N = Z, majd az N/Z arány növekszik Több páros Z mint páratlan Több páros neutronszám mint páratlan Több páros A mint páratlan Proton szám Neutronszám Stabil izotópok száma Páros Páros 141 Páratlan Páros 45 Páros Páratlan 51 Páratlan Páratlan 5

4 Radioaktivitás Az instabil atommagok radioaktív bomlással alakulnak át stabil atommagokká, miközben más elem keletkezik belőlük (α, β bomlás esetén) N=N 0 e -λt vagy N= N 0 2 -t/t 1/2 (N: radioaktív magok száma adott t időben, N 0 : a magok kezdeti száma, λ: bomlásállandó) Felezési idő: T 1/2 = ln2/λ fizikai bomlás effektív bomlás élő szervezetből történő kiürülés (effektív bomlás): anyagcsere (biológiai bomlás) és (fizikai) bomlás együttes hatására N/N 0 =e -λt vagy N/N 0 = 2 -t/t 1/2 0 0 λ eff = λ f + λ b, 1/T eff = 1/T fiz + 1/T biol

5 Radioaktivitás A radioaktív sugárzások módjai α: (He mag), tömegszámváltozás: -4, rendszámváltozás: -2 vonalas spektrum β: tömegszámváltozás: 0, rendszámváltozás: -1 vagy +1 folytonos spektrum 1. β + (p n, ν) 2 γ foton 2. β - (n p, ν) ) 3. K-befogás (p n, ν, rtg/auger elektron) γ : tömegszámváltozás: 0, rendszámváltozás: 0, γ : tömegszámváltozás: 0, rendszámváltozás: 0, α, β-hoz társulva elektromágneses sugárzás, vonalas spektrum

6 α: (He mag), tömegszámváltozás: -4, rendszámváltozás: -2

7 β: tömegszámváltozás: 0, rendszámváltozás: -1 vagy β + (p n, ν) 2 γ foton 2. β - (n p, ν) 3. K-befogás (p n, ν, rtg/auger elektron)

8 A K befogás kísérő jelenségei

9 Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A sugárzás detektálása.

10 Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum α-sugárzás 2 pozitív töltés α részecske vonalas (He atommag) γ- sugárzás töltés nélküli nagy energiájú vonalas foton β - sugárzás egységnyi negatív nagy energiájú folytonos töltés elektron β + - sugárzás egységnyi pozitív nagy energiájú folytonos töltés pozitron

11 Töltött részecskék és anyag kölcsönhatása: A nagy energiájú töltött részecskék kinetikai energiájuk jelentős részét az elnyelő közeg elektronjaival történő elektrosztatikus kölcsönhatás révén veszítik el. Átadott energia gerjesztés ionizáció Nehéz töltött részecskék (p.l. α részecske, M>>m 0 ): M, +ze, E=1/2 M v 2 v 2 b z M E 2 F b E F=kze 2 r 2 m 0, -e

12 2 z M b E E 2 A kölcsönhatás során átadott energia fordítottan arányos a részecske kinetikai energiájával (E). Nagy E nagy v rövidebb idő a kölcsönhatásra kisebb energia átadás. A részecske töltésének négyzete szerepel az összefüggésben δ sugár / cm Bragg csúcs ion pár becsapódó részecske pályája ionizáció gerjesztés behatolási mélység

13 β sugárzás: nagy kinetikus energiával bíró e, folytonos energia spektrum magyarázat: e és egy másik elemi részecske, µ (anti-neutrino) osztozik a β bomlás során felszabaduló fölös energián E 1 E 2 E = E β +E µ N (E β ) β max E β [kev]

14 A β sugárzás kölcsönhatása az elnyelő közeggel: az α sugárzás elnyeléséhez hasonló alapelvek DE 1, a nagy energiájú elektron a vele megegyező tömegű atomi elektronnal lép kölcsönhatásba a kölcsönhatás nagy mértékű energia vesztéshez és a mozgás irány jelentős változásához vezethet. 2, az atommagok elektromos erőterével a kölcsönhatás nagymértékű lassulást okozhat bremsstrahlung (fékezési rtg. sugárzás) 1, és 2, következménye a β részecskék pályája zegzugos δ sugár I = I 0 e µ x becsapódó részecske pályája ionizáció gerjesztés fékezési rtg. sugárzás

15 A β és α sugárzás ionizáló képességének összehasonlítása 1, azonos kinetikai energiák mellett (1/2mv 2 ) a β részecskék sebessége sokkal nagyobb mint az α részecskéké (8000 m β ~ m α ) 2, az α részecske töltéses a β kétszerese 3, z 2 M E 2 b E 1, 2 és 3 eredményeképp azonos kinetikai energiák mellett a β részecskék áthatoló képessége sokkal nagyobb mint az α részecskéké. (pl. 2 MeV α részecske vízben ~8 µm, ugyanilyen energiájú β részecske vízben 2 cm behatolási mélységgel jellemezhető).

16 A γ sugárzás jellemzői α és β bomlás kísérő jelensége a γ energia jellemző az adott bomlásra (vonalas spektrum) amikor a leánymag a bomlást követően gerjesztett állapotba kerül, akkor a fölös energia γ sugárzás formájában emittálódik. a γ foton emissziója a bomlást követő igen rövid időn belül a γ foton emissziója a bomlást követő igen rövid időn belül megtörténik (10 13 s-on belül, kivéve a metastabil magokat lásd későbbi előadások)

17 A γ sugárzás kölcsönhatása az anyaggal: az energia átadás mechanizmusa a rtg. sugárzás abszorpciójához vezető folyamatokkal egyezik meg: Fotoeffektus Compton effektus Pár képződés A károsítás mechanizmusa:az ionizációk szinte teljes egészéért az elsődleges interakciók során keletkezett nagy energiájú elektronok a felelősek. EMIATT a γ és rtg. sugárzásokat INDIREKTEN IONIZÁLÓ sugárzásoknak hívjuk, töltött részecskéket kell mozgásba hozniuk. Elnyelési törvény: az rtg. elnyeléséhez hasonló: I=I 0 e µx

18 Az γ sugárzás exponenciális gyengülése anyagi rétegen való áthaladás során átmenő intenzitás rétegvastagság I=I µ 0 e µx

19 A fotoeffektus mechanizmusa kötési energia (kev) 66 kev fotoelektron 100 kev foton hf=a+1/2mv 2

20 Compton szórás Vegyérték elektronok Compton el. E = 1/2m e v 2 p = m e v beérkező foton E = hf p = hf/c szórt foton E = hf p = hf /c

21 Párképződés, annihiláció Beérkező foton elektron pozitron hf = m e c 2 = MeV annihilációs sugárzás hf = m e c 2 = MeV

22 Direkten és indirekten ionizáló sugárzások: a károsítás (ionizáció) hasonlítása β sugárzás BŐR A becsapódó részecske pályája ionizáció gerjesztés γ foton E=hf mozgásba hozott elektronok ionizáció gerjesztés

23 A sugárzás detektálása: gáz töltésű detektorok részecske anód + Ion nizációs ára am α GM β Feszültség (V)

24 Szcintillációs detektorok A szcintillátorok olyan anyagok, melyek az ionizáló sugárzással való kölcsönhatást követően UV vagy látható fotonokat bocsátanak ki.

25 1. Az ionizáló sugárzás kölcsönhat a szcintillátorral (talliummal szennyezett NaI kristály). 2. Ennek során elektronok gerjesztett állapotba kerülnek. 3. Az elektronok visszakerülnek az alapállapotba, miközben UV /vagy látható fotont emittálnak. 4. A fotokatódra beeső fotonok elektron emissziót váltanak ki. 5. Az elektronok gyorsuló mozgást végezve becsapódnak az első dinódába. 6. Kb. 5 elektron lép ki minden egyes becsapódó elektron hatására. 7. A folyamat végigfut az egymást követő dinódákon, miközben az elektronok száma megsokszorozódik (teljes erősítés: ). 8. A beeső részecske energiájával arányos áramjelet előerősítő erősíti és alakítja feszültséggé. 9. A diszkriminátor kiválasztja a foton-energiának megfelelő nagyságú elektromos impulzusokat, kizárva az elektronikus zajt.

26 A sugárzás detektálása: szcintillációs detektor kristály becsapódó részecske photon becsapódó részecske fotoelektron fotokatód NaI(Tl) NaI(Tl) hf fotoelektron számláló kimenet vákuum

27 ISMÉTLŐ KÉRDÉSEK I. Milyen az atomok szerkezete (részecskék, számuk, töltésük)? Milyen részecskékből áll az atommag, és milyen ezek egymáshoz viszonyított száma? Milyen erők lépnek fel e részecskék között?

28 ISMÉTLŐ KÉRDÉSEK II. Mi okozza a magok bomlását (radioaktivitását)? Milyen nagyságrendbe esik a radioaktív magok felezési ideje? Mi a fizikai, biológiai és effektív bomlás? Hogyan viszonyul Mi a fizikai, biológiai és effektív bomlás? Hogyan viszonyul egymáshoz ezek sebessége?

29 ISMÉTLŐ KÉRDÉSEK III. Milyen részecske (részecskék) hagyja el a magot? Milyen a részecskék spektruma (vonalas/folytonos)? α-, β-, illetve γ-bomlás során? Milyen e részecskék ionizációs sűrűsége sége anyagon történő áthaladásuk során? Milyen e részecskék anyagon történő áthatoló képessége egymáshoz viszonyítva?

30 ISMÉTLŐ KÉRDÉSEK IV. Milyen detektorokkal detektálhatók a radioaktív sugárzások? Mi ezek működési elve?

31 IZOTÓPOK ÉS ORVOSBIOLÓGIAI FELHASZNÁLÁSUK IZOTÓP: A PERIÓDUSOS RENDSZER AZONOS HELYÉN VAN (izosz, toposz) Jelölés: 14 N; 14 N; 15 N 7 Lehetnek: STABIL RADIOAKTÍV Felhasználási terület: KUTATÁS DIAGNOSZTIKA TERÁPIA

32 RADIOAKTÍV IZOTÓPOK FELHASZNÁLÁSA 1. Érzékeny koncentráció meghatározás radioaktív izotóppal jelölt antitest alkalmazásával 2. Nyomjelzéses módszerek testbe juttatott izotóp eloszlásának vizsgálata minták aktivitásának mérése alapján 3. 2D és 3D képalkotás (γ-kamera, SPECT, PET) képalkotás a testből kilépő γ sugárzás eloszlása alapján 4. Terápia tumorok roncsolása radioaktív sugárzással

33 1. Érzékeny koncentráció meghatározás (RIA) Testnedvekből, sejttenyészetekből kis koncentrációjú anyagok pl. hormonok, gyógyszerek mennyiségi meghatározása Vagy: 2b. Ismert koncentrációjú teszt anyag kalibr. görbe előállításához Direkt mérés 1. Antitest az edény aljára tapasztva Mérés szcintillációs számlálóval 3. Radioaktívan jelzett antitest

34 2. Nyomjelzéses módszerek 1. Ismert aktivitású izotóp bejuttatása a szervezetbe, sejtbe 2. Az izotóp aktivitásának mérése egyes mintákból Élő szervezetben végezhető mérések Alapvető szempont: rövid felezési idő Statikus mérések Teljes test víztérfogat Vérplazma térfogata Kicserélhető Na + ionok Dinamikus mérések Vasfelvétel kinetikája - 59 Fe Kalciumfelvétel kinetikája - 45 Ca VVT élettartam mérés - 59 Fe Pajzsmirigy jódfelvétele I, 123 I + 14 C radiokarbon alapú kormeghatározás 14 C/ 12 C arány állandó, míg anyagcsere folyik, az egyed elpusztulása után a 14 C bomlása miatt csökken

35 2. Nyomjelzéses módszerek Sejtek, enzimek működésének vizsgálata 3 H : Timidin beépülés - DNS szintézis mérése 14 C: Enzim aktivitás, anyagcsere folyamatok 24 Na: Sejtek Na + háztartása 32 P: ATP beépülés 35 S: Fehérje nyomjelzés 45 Ca: Sejtek Ca ++ háztartása 86 Rb: Sejtek K + háztartása

36 3. 2D és 3D képalkotás (γ-kamera, SPECT, PET) rövid fizikai felezési idő: hogy az aktivitás lehető legnagyobb része a vizsgálat alatt kerüljön felhasználásra biológiai felezési idő: az anyagcsere határozza meg. Kinetikai mérések esetében hasonló nagyságúnak kell lennie mint a mérés időtartama. γ-kamera, SPECT (részletesebben: egy másik előadáson) γ sugárzó izotóp minél rövidebb felezési idő leggyakoribb: 99m Tc Előállítás: technécium-generátorban β -, 67ó γ, 6 ó 99 Mo 99m Tc 99 Tc

37 3. 2D és 3D képalkotás (γ-kamera, SPECT, PET) Csak γ bomló izotópokat használnak, mert az α és β részecskék nem hagyják el a testet, ha annak belsejében emittálódnak. 99m Tc -hoz kötve mikrokolloid - csontvelő makrokolloid - máj, lép, RES szérumalbumin - perfúzió DMSA (dimerkaptoszukcinát) - vese Foszfát - csont, izület EDTA - agy, vese HIDA - epeút 201 Tl - szívizom 113m In - placenta 133m Xe - tüdő 131 I, 123 I - pajzsmirigy, vese

38 3. 2D és 3D képalkotás (γ-kamera, SPECT, PET) PET (Pozitron emissziós tomográfia; részletesebben: későbbi előadáson) β + sugárzó izotóp szükséges A leggyakoribbak: izotóp jelző molekula vizsgált folyamat jelentősége 11 C aminosav anyagcsere tumor diag. 13 N NH 3 véráramlás szívizomzat 15 O O 2, CO 2 légzés anyagcsere 18 F dezoxiglükóz anyagcsere tumor diag. 18 F F - ion csontanyagcsere betegség, áttét Előállításuk: N vagy O bombázása ciklotronban gyorsított proton vagy deuteron részecskékkel

39 4. Terápia Cél: Daganatok elsődleges vagy kiegészítő kezelése 1. Szupervolt terápia a mélyen elhelyezkedő tumor kezelésére a. Ultrafeszültségű Rtg kezelés b. Kobalt ágyú radioaktív Co bomlásából származó γ-sugárzás alkalmazása 60 Co β m Ni γ (1,17MeV) 60m Ni γ (1,33MeV) 60 Ni 2. Testbe helyezett sugárforrás (β - + γ) Intersticiális (a daganatszövetbe tűzdelve) - 60 Co, 192 Ir Üregi - 60 Co, 192 Ir, 137 Cs, 226 Ra, Kontakt applikátor (szem) Ru Keringésbe juttatott 131 I, 32 P, 198 Au EGYRE RITKÁBBAN!

40 Izotópok alkalmazása az orvostudományban kutatás diagnosztika terápia anyagcsere folyamatok sejtosztódás nyomjelzés térfogatmérés koncentráció mérés biokémiai folyamatok anyagcsere folyamatok tumor diagnosztika izotópeloszlás térkép kétdimenziós térkép háromdimenziós térkép funkcionális vizsgálatok sugárterápia radionuklid terápia gamma kés

41 Klinikai rutinban használt radiofarmakonok Pajzsmirígy rák Csont metastasis Lágy szövet metastasis Szívizom életképesség Szívizom életképesség Placenta Tüdő Vese, pajzsmirigy 131 I Sm or 89 Sr-chloride 32 P-króm-phosphate 99m TcMIBI 201 Tl 113m In 133m Xe 131 I, 123 I 99 Mo β 99m Tc γ 99 Tc T 1/2 =66,7h T 1/2 =6h

42 GAMMA KÉS Speciális sugárterápiás eszköz Egy félgömb felületén kb Co sugárforrást helyeznek el A források sugárnyalábját a gömb középpontjára irányítják A gócot ebben a cemtrumban helyezik el AGYTUMOROK KEZELÉSÉRE ALKALMAS

43

44 A legfontosabb pozitron-sugárzó radionuklidok nuklid T1/2 E alkalmazás kev 11 C 20.4 perc 960 Gyors szintézisben a legtöbb szerves vegyületbe beépíthető. Nincs gyógyszertani különbség a jelzett és a jelzetlen molekula között. Az izotóp effektus elhanyagolható.

45 A legfontosabb pozitron-sugárzó radionuklidok nuklid T1/2 E alkalmazás kev 13 N 10 perc 1190 Gyors szintézis szükséges. N-tartalmú vegyületek esetén a jelzett és jelzetlen vegyület biológiai szempontból azonos. Fő alkalmazása ammónium ionként történik, szívizom perfuzió vizsgálatában.

46 A legfontosabb pozitron-sugárzó radionuklidok nuklid T1/2 E alkalmazás kev 15 O 2.05 perc 1720 Igen gyors szintézis szükséges. Alkalmazás oxigén gázként, vízként, széndioxidként és n- butanolként az agy és a szívizom vérellatásának vizsgálatában.

47 A legfontosabb pozitron-sugárzó radionuklidok nuklid T1/2 E alkalmazás kev 18 F 110 perc 635 A legkisebb pozitron energiájú PET izotóp. Igen szép a képalkotás. A fiziológiai folyamatok kvantitatív értékelését is lehetővé teszi. Sokféle molekulába beépíthető.

48 PET vizsgálatok néhány gyakoribb klinikai alkalmazása Központi idegrendszer Intrakraniális tumorok Epilepszia Stroke A dopaminerg rendszer betegségei Demenciák Skizofrénia Depressziós állapotok Diagnosztika, staging, lokalizáció, terápiakijelölés, utánkövetés Epileptogén zóna lokalizációja Aktív zóna meghatározása Diagnosztika, differenciáldiagnosztika, szövetátültetés eredményének felmérése Differenciáldiagnosztika Differenciáldiagnosztika Differenciáldiagnosztika

49 Izotóp vizsgálatok néhány gyakoribb klinikai alkalmazása Kardiológia Szívizom életképességének meghatározása Terápiás beavatkozás (invaziv-noninvaziv) kijelölése

50 Izotóp vizsgálatok néhány gyakoribb klinikai alkalmazása Onkológia Központi idegrendszeri tumorok Kolorektális tumorok Tüdő tumorok Melltumorok Májtumorok Petefészektumorok Hasnyálmirígy tumorok Limfómák Melanómák Lágyrésztumorok Csonttumorok Diagnosztika, staging, differenciáldiagnosztika, metasztáziskeresés, terápiakijelölés, terápiakövetés, reziduális vagy rezidív tumor kimutatása, Ismeretlen eredetű rejtett tumorok felkeresése egész test PET vizsgálattal

51 GYORSÍTÓK Alkalmazásuk célja: atommagok gyorsítása, ütköztetése, s így magreakciókon keresztül új atommagok létrehozása elektronok gyorsítása nagy energiájú RTG sugárzás előállításához Biológiai alkalmazások: PET-hez β + - bomló izotópok előállítása gyors protonok és deuteronok - ciklotron Ultrafeszültségű Rtg kezelés gyors elektronok - lineáris gyorsító

52 LINEÁRIS GYORSÍTÓK Ionforrás Elektródák ~ Rádiófrekvenciás generátor Proton: MeV (max 1000 MeV) Elektron: 1 MeV felett v ~ c! más technikai megoldást igényel Nagyenergiájú Rtg fotonok kiváltása

53 DE OEC lineáris gyorsító

54 CIKLIKUS GYORSÍTÓK ÁLTALÁNOS MEGFONTOLÁSOK A pályán tartó erő: Lorentz erő B qvb qvb=mv 2 /r; ω=qb/m ω=v/r A szögsebesség (így a keringési idő is) független a részecske sebességétől (a részecske energiájától), ezért B állandó értéken tartása mellett az elektródokra kapcsolt állandó frekvenciájú generátor szolgáltatja a gyorsító feszültséget.

55 Ciklotron A ciklotron protonok és nehéz ionok gyorsítására alkalmas ciklikus gyorsító, melyben a részecskéket az alkalmazott mágneses tér körpályára kényszeríti, és minden keringés során kétszer gyorsulnak, miközben a duánsok közti elektromos téren áthaladnak.

56 A ciklotron működési elve A részecskéket a Lorentz erő tartja körpályán B qvb Pályamenti sebesség T = 2πr/v Az egyenletből l a sebesség a qvb = mv 2 /r v = rqb/m összefüggéssel kiküszöbölhető így mivel ω=2 π T ω = qb/m

57 Mit jelent az izotóp? Milyen felhasználási területei vannak a radioaktív izotópoknak? 1. koncentráció meghatározás 2. nyomjelzéses módszerek 3. képalkotó eljárások 4. daganat terápia Milyen célt szolgálnak a részecske gyorsítók az egészségügyben?

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití

Részletesebben

A ciklotron működési elve. Ciklotron. A ciklotron működési elve

A ciklotron működési elve. Ciklotron. A ciklotron működési elve A ciklotron működési elve A részecskéket a Lorentz erő tartja körpályán B qvb Pályamenti sebesség T = 2πr/v Az egyenletből a sebesség a qvb = mv 2 /r v=rqb/mösszefüggéssel kiküszöbölhető így mivel ω=2

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Magsugárzások (α, β, γ) kölcsönhatása atomi rendszerekkel (170-174, 540-545 o.) Direkt és

Részletesebben

STABIL IZOTÓPOK FELHASZNÁLÁSA

STABIL IZOTÓPOK FELHASZNÁLÁSA AZ IZOTÓPOK KÍSÉRLETES ÉS ORVOSI ALKALMAZÁSAI. RÉSZECSKE GYORSÍTÓK, GAMMA KAMERA IZOTÓP: A PERIÓDUSOS RENDSZER AZONOS HELYÉN VAN (izosz, toposz) Szén izotópok: 6 proton + neutronok 5 neutron 11 C radioaktív

Részletesebben

AZ IZOTÓPOK KÍSÉRLETES ÉS ORVOSI ALKALMAZÁSAI. RÉSZECSKE GYORSÍTÓK, GAMMA KAMERA

AZ IZOTÓPOK KÍSÉRLETES ÉS ORVOSI ALKALMAZÁSAI. RÉSZECSKE GYORSÍTÓK, GAMMA KAMERA AZ IZOTÓPOK KÍSÉRLETES ÉS ORVOSI ALKALMAZÁSAI. RÉSZECSKE GYORSÍTÓK, GAMMA KAMERA Tankönyv fejezetek: Radioaktív izotópok felhasználása II./3.2.4 Ionizáló sugárzások detektálása II./3.2.5 Részecskegyorsítók

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Röntgendiagnosztikai alapok

Röntgendiagnosztikai alapok Röntgendiagnosztikai alapok Dr. Voszka István A röntgensugárzás keltésének alternatív lehetőségei (röntgensugárzás keletkezik nagy sebességű, töltéssel rendelkező részecskék lefékeződésekor) Röntgencső:

Részletesebben

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések Sugárterápia 40% 35% 30% 25% 20% 15% % 5% 0% 2014/2015. tanév FOK biofizika kollokvium jegyspektruma 5 4,5 4 3,5 3 2,5 2 1,5 1 Konzultáció: minden hétfőn 15 órakor Ionizáló sugárzások elnyelődésének következményei

Részletesebben

Gamma-kamera SPECT PET

Gamma-kamera SPECT PET Gamma-kamera SPECT PET 2011.04.17. Gamma sugárzás Elektromágneses sugárzás (f>10 19 Hz, E>~50keV (6.6 10-15 J), λ< 3 10-11 m) gamma-bomlás (atommag alacsonyabb energiájú állapotba történő átmenetét kísérő

Részletesebben

Sugárvédelem kurzus fogorvostanhallgatók számra. Méretek. Az ionizáló sugárzások fajtái. 1. Atomfizika, Radioaktivitás és Röntgensugázás

Sugárvédelem kurzus fogorvostanhallgatók számra. Méretek. Az ionizáló sugárzások fajtái. 1. Atomfizika, Radioaktivitás és Röntgensugázás Az ionizáló sugárzások fajtái Sugárvédelem kurzus fogorvostanhallgatók számra Magsugárzások Röntgensugárzás 1. Atomfizika, Radioaktivitás és Röntgensugázás Dr. Smeller László Ionizáció: Az atomból vagy

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Gamma-kamera SPECT PET

Gamma-kamera SPECT PET Gamma-kamera SPECT PET 2012.04.16. Gamma sugárzás Elektromágneses sugárzás (f>10 19 Hz, E>100keV (1.6*10-14 J), λ

Részletesebben

Radioaktív sugárzás elnyelődésének vizsgálata

Radioaktív sugárzás elnyelődésének vizsgálata 11. fejezet Radioaktív sugárzás elnyelődésének vizsgálata Az ólomtorony és a szcintillációs számláló A természetes radioaktív anyagok esetében háromféle sugárzást lehet megkülönböztetni. Erre egyszerű

Részletesebben

Radioaktív sugárzások az orvosi gyakorlatban. Az ionizáló sugárzások biológiai hatása. A sugárhatás osztályozása. A sugárhatás osztályozása

Radioaktív sugárzások az orvosi gyakorlatban. Az ionizáló sugárzások biológiai hatása. A sugárhatás osztályozása. A sugárhatás osztályozása Radioaktív sugárzások az orvosi gyakorlatban Az ionizáló sugárzások biológiai hatása Dr Smeller László Biofizikai és Sugárbiológiai Intézet A sugárhatás osztályozása A sugárhatás osztályozása A károsodás

Részletesebben

Gamma kamera, SPECT, PET. Készítette: Szatmári Dávid PTE ÁOK, Biofizikai Intézet, március 1.

Gamma kamera, SPECT, PET. Készítette: Szatmári Dávid PTE ÁOK, Biofizikai Intézet, március 1. Gamma kamera, SPECT, PET Készítette: Szatmári Dávid PTE ÁOK, Biofizikai Intézet, 2010. március 1. Izotópok, bomlás, magsugárzások Izotópok: kémiai részecskék, azonos rendszám de eltérő tömegszám pl.: szén

Részletesebben

Izotópos méréstechnika, alkalmazási lehetőségek

Izotópos méréstechnika, alkalmazási lehetőségek Radioizotópok orvosi, gyógyszerészi alkalmazása Izotópos méréstechnika, alkalmazási lehetőségek Dr. Voszka István Az alkalmazás alapja:- A radioaktív izotóp ugyanúgy viselkedik a szervezetben, mint stabil

Részletesebben

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész MTA Izotópkutató Intézet Gméling Katalin, 2009. november 16. gmeling@iki.kfki.hu Isle of Skye, UK 1 MAGSPEKTROSZKÓPIAI MÓDSZEREK Gerjesztés:

Részletesebben

Izotópok. diagnosztikai alkalmazásai. Képalkotó eljárásokkal nyerhető információ. Izotópdiagnosztikai eljárás lépései

Izotópok. diagnosztikai alkalmazásai. Képalkotó eljárásokkal nyerhető információ. Izotópdiagnosztikai eljárás lépései Izotópdiagnosztikai eljárás lépései Izotópok Alkalmas, radioaktív molekulák bejuttatása Az aktivitás eloszlásának, változásának követése diagnosztikai alkalmazásai A fiziológiás v. patológiás folyamatok

Részletesebben

Az izotópdiagnosztika fizikai alapjai

Az izotópdiagnosztika fizikai alapjai Bevezetés Az izotópdiagnosztika fizikai alapjai Az izotóp kiválasztásának szempontjai Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Smeller László Izotópdiagnosztikai vizsgálati technikák Izotóp

Részletesebben

A sugárzások a rajz síkjára merőleges mágneses téren haladnak át γ α

A sugárzások a rajz síkjára merőleges mágneses téren haladnak át γ α Radioaktivitás, α-, β- és γ-bomlás, radioaktív bomlástörvény, bomlási sorok. röntgen sugárzás (fékezési és karakterisztikus), a Moseley-törvény, az uger folyamat Radioaktivitás: 1896 Becquerel uránérc

Részletesebben

Az ionizáló sugárzások előállítása és alkalmazása

Az ionizáló sugárzások előállítása és alkalmazása Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes. Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding

Részletesebben

3. GAMMA-SUGÁRZÁS ENERGIÁJÁNAK MÉRÉSE GAMMA-SPEKTROMETRIAI MÓDSZERREL

3. GAMMA-SUGÁRZÁS ENERGIÁJÁNAK MÉRÉSE GAMMA-SPEKTROMETRIAI MÓDSZERREL 3. GAMMA-SUGÁRZÁS ENERGIÁJÁNAK MÉRÉSE GAMMA-SPEKTROMETRIAI MÓDSZERREL A gamma-sugárzás elektromágneses sugárzás, amely vákuumban fénysebességgel terjed. Anyagba ütközve kölcsönhatásba lép az anyag alkotóelemeivel,

Részletesebben

RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS

RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS Az atom felépítése RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS elektron proton Varga József Debreceni Egyetem Nukleáris Medicina Intézet atommag Atomi részecskék 2 Atomi részecskék mérete Jelmagyarázat: elektron proton

Részletesebben

Radioaktív nyomjelzés analitikai kémiai alkalmazásai

Radioaktív nyomjelzés analitikai kémiai alkalmazásai Radioaktív nyomjelzés analitikai kémiai alkalmazásai Nyomjelzés az élő szervezetben In vitro diagnosztika: a vizsgálandó személy nem érintkezik közvetlenül radioaktív anyaggal, hanem a tőle levett (általában

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

2011.11.07. Biofizika és orvostechnika alapjai

2011.11.07. Biofizika és orvostechnika alapjai Áttekintés Biofizika és orvostechnika alapjai Magátalakulások közben keletkező sugárzással alkotunk képet Képalkotás 3 A szervek működéséről, azaz a funkcióról nyújt információt Nukleáris képalkotás Szerkesztette:

Részletesebben

1. mérési gyakorlat: Radioaktív izotópok sugárzásának vizsgálata

1. mérési gyakorlat: Radioaktív izotópok sugárzásának vizsgálata 1. mérési gyakorlat: Radioaktív izotópok sugárzásának vizsgálata A méréseknél β-szcintillációs detektorokat alkalmazunk. A β-szcintillációs detektorok alapvetően két fő részre oszthatók, a sugárzás hatására

Részletesebben

Bevezetés a magfizikába

Bevezetés a magfizikába a magfizikába Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Bevezetés Kötési energia Magmodellek Magpotenciál Bevezetés 2 / 35 Bevezetés Bevezetés Kötési energia Magmodellek Magpotenciál Rutherford

Részletesebben

1. Az ionizáló sugárzások és. az anyag kölcsönhatása. Prefixumok. levegőben (átlagosan) 1 ionpár keltéséhez 34 ev = 5.4 aj energia szükséges

1. Az ionizáló sugárzások és. az anyag kölcsönhatása. Prefixumok. levegőben (átlagosan) 1 ionpár keltéséhez 34 ev = 5.4 aj energia szükséges Az ionizáló sugárzások és az anyag kölcsönhatása. A sugárzások érése KAD 2009.04.06 1. Az ionizáló sugárzások és az anyag kölcsönhatása levegőben (átlagosan) 1 ionpár keltéséhez 34 ev = 5.4 aj energia

Részletesebben

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám Egy nukleonra jutó kötési energia Atomfizikai összefoglaló: radioaktív bomlás Varga József Debreceni Egyetem OEC Nukleáris Medicina Intézet Kötési energia (MeV) Tömegszám 1. 1. Áttekintés: atomfizika Varga

Részletesebben

RADIOKÉMIA. László Krisztina, F ép. I. lh., I. emelet, 135

RADIOKÉMIA. László Krisztina, F ép. I. lh., I. emelet, 135 RADIOKÉMIA László Krisztina, F ép. I. lh., I. emelet, 135 klaszlo@mail.bme.hu Nagy Lajos György és LK: Radiokémia és izotóptechnika Műegyetemi Kiadó 1997 Antoine Henri Becquerel (1852-1908) Maria Skłodowska-Curie

Részletesebben

Mag- és neutronfizika

Mag- és neutronfizika Mag- és neutronfizika z elıadás célja: : megalapozni az atomenergetikai ismereteket félév során a következı témaköröket ismertetjük: Magfizikai alapfogalmak (atommagok, radioaktivitás) Sugárzás és anyag

Részletesebben

Röntgendiagnosztika és CT

Röntgendiagnosztika és CT Röntgendiagnosztika és CT 2013.04.08. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa.

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa. 2016.04.11. Környezetgazdálkodás Dr. Horváth Márk https://nuclearfree.files.wordpress.com/2011/10/radiation-worker_no-background.jpg 1868-ban gépészmérnöki diplomát szerzett. 1901-ben ő lett az első Fizikai

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalmak. 3. A sugárzás mérése (42-47) Prefixumok

1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalmak. 3. A sugárzás mérése (42-47) Prefixumok 1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalak (35-41) Gondolat, 1976 3. A sugárzás érése (42-47) KAD 2010.09.15 2 levegőben (átlagosan) 1 ionpár keltéséhez 34 ev 5.4

Részletesebben

Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós

Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Emlékeztető Radioaktív sugárzások keletkezése, típusai A Z A Z α-bomlás» α-sugárzás A Z 4 X X + 2 X A Z 4 2 X 4

Részletesebben

Első magreakciók. Targetmag

Első magreakciók. Targetmag Magreakciók 7 N 14 17 8 7 N(, p) 14 O 17 8 O Első magreakciók p Targetmag 30 Al n P 27 13, 15. Megmaradási elvek: 1. a nukleonszám 2. a töltés megmaradását. 3. a spin, 4. a paritás, 5. az impulzus, 6.

Részletesebben

Orvosi biofizika II. Orvosi Biofizika II. Az X-sugár. Röntgen- sugárzás Előállítás, tulajdonságok

Orvosi biofizika II. Orvosi Biofizika II. Az X-sugár. Röntgen- sugárzás Előállítás, tulajdonságok Orvosi biofizika II Orvosi Biofizika II Röntgensugárzás előállítása és tulajdonságai Röntgendiagnosztikai alapok Az elektromosság orvosi alkalmazásai Termodinamika - egyensúly, változás, főtételek Diffúzió,

Részletesebben

Izotópok. diagnosztikai alkalmazásai. Képalkotó eljárásokkal nyerhető információ. Izotópdiagnosztikai eljárás lépései

Izotópok. diagnosztikai alkalmazásai. Képalkotó eljárásokkal nyerhető információ. Izotópdiagnosztikai eljárás lépései Izotópdiagnosztikai eljárás lépései Izotópok Alkalmas, radioaktív molekulák bejuttatása Az aktivitás eloszlásának, változásának követése diagnosztikai alkalmazásai A fiziológiás v. patológiás folyamatok

Részletesebben

A TÖMEGSPEKTROMETRIA ALAPJAI

A TÖMEGSPEKTROMETRIA ALAPJAI A TÖMEGSPEKTROMETRIA ALAPJAI web.inc.bme.hu/csonka/csg/oktat/tomegsp.doc alapján tömeg-töltés arány szerinti szétválasztás a legérzékenyebb módszerek közé tartozik (Nagyon kis anyagmennyiség kimutatására

Részletesebben

Radioaktív nyomjelzés analitikai kémiai alkalmazásai

Radioaktív nyomjelzés analitikai kémiai alkalmazásai Radioaktív nyomjelzés analitikai kémiai alkalmazásai Nyomjelzés az élő szervezetben In vitro diagnosztika: a vizsgálandó személy nem érintkezik közvetlenül radioaktív anyaggal, hanem a tőle levett (általában

Részletesebben

Magsugárzások. Előadásvázlat. Készítette: Dr. Blaskó Katalin

Magsugárzások. Előadásvázlat. Készítette: Dr. Blaskó Katalin Magsugárzások Előadásvázlat. Készítette: Dr. Blaskó Katalin Az Orvosbiologia Mérnökképzés "Radiológiai Technikák" cimű tantárgyának egy részlete. A további részeket : Dr. Makó Ernő (SOTE), Dr. Sükösd Csaba,

Részletesebben

Röntgendiagnosztika és CT

Röntgendiagnosztika és CT Röntgendiagnosztika és CT 2013.04.09. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

ATOMFIZIKA, RADIOAKTIVITÁS

ATOMFIZIKA, RADIOAKTIVITÁS ATOMFIZIKA, RADIOAKTIVITÁS 2013. 11. 08. A biofizika fizikai alapjai Magfizika Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. A magfizika azonban még nem lezárt

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

minipet labor Klinikai PET-CT

minipet labor Klinikai PET-CT minipet labor Klinikai PET-CT Pozitron Emissziós Tomográfia A Pozitron Emissziós Tomográf (PET) orvosi képalkotó eszköz, mely háromdimenziós funkcionális képet ad. Az eljárás lényege, hogy a szervezetbe

Részletesebben

61. Lecke Az anyagszerkezet alapjai

61. Lecke Az anyagszerkezet alapjai 61. Lecke Az anyagszerkezet alapjai GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési

Részletesebben

LABORATÓRIUMI GYAKORLAT. Alfa-, béta-, gamma-sugárzások mérése

LABORATÓRIUMI GYAKORLAT. Alfa-, béta-, gamma-sugárzások mérése LABORATÓRIUMI GYAKORLAT Alfa-, béta-, gamma-sugárzások mérése (Bódizs Dénes BME Nukleáris Technikai Intézet 2006) 1. BEVEZETÉS Környezetünkben számos radioaktív izotóp fordul elő. Ezek egy része természetes,

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Hadronok, atommagok, kvarkok

Hadronok, atommagok, kvarkok Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford

Részletesebben

FIZIKA. Atommag fizika

FIZIKA. Atommag fizika Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2

Részletesebben

FIZIKA. Radioaktív sugárzás

FIZIKA. Radioaktív sugárzás Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

Az atommagtól a konnektorig

Az atommagtól a konnektorig Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti

Részletesebben

(A Scientific American újság 1993. augusztusi számában megjelent cikk alapján)

(A Scientific American újság 1993. augusztusi számában megjelent cikk alapján) Országos Szilárd Leó Fizikaverseny Döntő 2014. I. kategória Minden feladat helyes megoldása 5 pontot ér. A feladatokat tetszőleges sorrendben, feladatonként külön lapon kell megoldani. A megoldáshoz bármilyen

Részletesebben

Mit tanultunk kémiából?2.

Mit tanultunk kémiából?2. Mit tanultunk kémiából?2. Az anyagok rendkívül kicsi kémiai részecskékből épülnek fel. Több milliárd részecske Mól az anyagmennyiség mértékegysége. 1 mol atom= 6. 10 23 db atom 600.000.000.000.000.000.000.000

Részletesebben

Részecske- és magfizikai detektorok. Atommag és részecskefizika 9. előadás 2011. május 3.

Részecske- és magfizikai detektorok. Atommag és részecskefizika 9. előadás 2011. május 3. Részecske- és magfizikai detektorok Atommag és részecskefizika 9. előadás 2011. május 3. Detektorok csoportosítása Tematika Gáztöltésű detektorok, ionizációs kamra, proporcionális kamra, GM-cső működése,

Részletesebben

Mag- és neutronfizika 5. elıadás

Mag- és neutronfizika 5. elıadás Mag- és neutronfizika 5. elıadás 5. elıadás Szcintillációs detektorok (emlékeztetı) Egyes anyagokban fényfelvillanás (szcintilláció) jön létre, ha energiát kapnak becsapódó részecskéktıl. Anyagát tekintve

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

Izotópok és radioaktív sugárzások

Izotópok és radioaktív sugárzások Kémia atomok, molekulák közti kölcsönhatások Izotópok és radioaktív sugárzások Kölcsönhatások szubatomi részecskék között Radioaktív sugárzások biológiai hatásai. A sugárterápia alapelvei, megvalósítása

Részletesebben

Képalkotó diagnosztikai eljárások. Krasznai Zoltán. DEOEC Biofizikai és Sejtbiológiai Intézete

Képalkotó diagnosztikai eljárások. Krasznai Zoltán. DEOEC Biofizikai és Sejtbiológiai Intézete Képalkotó diagnosztikai eljárások Krasznai Zoltán DEOEC Biofizikai és Sejtbiológiai Intézete Komputer tomográfia (CT) Gamma kamera Fotonemissziós komputer tomográfia (SPECT) Pozitron emissziós tomográfia

Részletesebben

A röntgendiagnosztika alapjai

A röntgendiagnosztika alapjai A röngtgendiagnosztika alapja: a sugárzás elnyelődése A röntgendiagnosztika alapjai A foton kölcsönhatásának lehetőségei: Compton-szórás Comptonszórás elnyelődés fotoeffektusban fotoeffektus nincs kölcsönhatás

Részletesebben

rzások a Dr. Fröhlich Georgina ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest

rzások a Dr. Fröhlich Georgina ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest Ionizáló sugárz rzások a gyógy gyításban Dr. Fröhlich Georgina Országos Onkológiai Intézet Sugárterápiás Központ Budapest ELTE TTK, Budapest chopin.web.elte.hu Bevezetés 1. A radioaktivitás alapjai (atomszerkezet,

Részletesebben

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás

Részletesebben

Nagy érzékenységű AMS módszerek hosszú felezési idejű könnyű radioizotópok elemzésében

Nagy érzékenységű AMS módszerek hosszú felezési idejű könnyű radioizotópok elemzésében Nagy érzékenységű AMS módszerek hosszú felezési idejű könnyű radioizotópok elemzésében Molnár M., Rinyu L., Palcsu L., Mogyorósi M., Veres M. MTA ATOMKI - Isotoptech Zrt. Hertelendi Ede Környezetanalitikai

Részletesebben

Kötések kialakítása - oktett elmélet

Kötések kialakítása - oktett elmélet Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések

Részletesebben

Magkémia-Biokémia Orvosi Laboratóriumi és Képalkotó Diagnosztikai Analitikus alapképzés (BSc)

Magkémia-Biokémia Orvosi Laboratóriumi és Képalkotó Diagnosztikai Analitikus alapképzés (BSc) Magkémia-Biokémia Orvosi Laboratóriumi és Képalkotó Diagnosztikai Analitikus alapképzés (BSc) Tantárgyi kommunikációs dosszié (TKD) Miskolci Egyetem Egészségügyi Főiskolai Kar Klinikai Radiológiai Tanszék

Részletesebben

Kémiai alapismeretek 2. hét

Kémiai alapismeretek 2. hét Kémiai alapismeretek 2. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2012. február 14. 1/15 2011/2012 II. félév, Horváth Attila c XIX sz. vége,

Részletesebben

Theory hungarian (Hungary)

Theory hungarian (Hungary) Q3-1 A Nagy Hadronütköztető (10 pont) Mielőtt elkezded a feladat megoldását, olvasd el a külön borítékban lévő általános utasításokat! Ez a feladat a CERN-ben működő részecskegyorsító, a Nagy Hadronütköztető

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by OTKA MB augusztus 16. Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by OTKA MB augusztus 16. Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by OTKA MB08-80137 2010. augusztus 16. Hungarian Teacher Program, CERN 1 Hogyan látunk különböző méreteket? A világban megtalálható tárgyak mérete

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

Bari Ferenc egyetemi tanár

Bari Ferenc egyetemi tanár Biofizika Biológia MSc 2011/2012 őszi szemeszter Radioaktív sugárzások keletkezése és tulajdonságai (bomlási törvény, bomlási módok, sugárzásfajták). Dozimetria (dózisfogalmak, egységek, sugárzásmérők).

Részletesebben

Radioaktív nyomjelzés

Radioaktív nyomjelzés Radioaktív nyomjelzés A radioaktív nyomjelzés alapelve Kémiai indikátorok: ugyanazoknak a követelményeknek kell eleget tenniük, mint az indikátoroknak általában: jelezniük kell valamely elemnek ill. vegyületnek

Részletesebben

Detektorok. Siklér Ferenc MTA KFKI Részecske- és Magfizikai Kutatóintézet Budapest

Detektorok. Siklér Ferenc MTA KFKI Részecske- és Magfizikai Kutatóintézet Budapest Detektorok Siklér Ferenc sikler@rmki.kfki.hu MTA KFKI Részecske- és Magfizikai Kutatóintézet Budapest Hungarian Teachers Programme 2008 Genf, 2008. augusztus 19. Detektorok 1970 16 GeV π nyaláb, folyékony

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

NUKLEÁRIS MEDICINA DEFINÍCIÓ. Szilvási István SE ÁOK Nukleáris Medicina Tanszék és Honvédkórház 2013 RADIOIZOTÓPOK A MEDICINÁBAN HEVESY GYÖRGY

NUKLEÁRIS MEDICINA DEFINÍCIÓ. Szilvási István SE ÁOK Nukleáris Medicina Tanszék és Honvédkórház 2013 RADIOIZOTÓPOK A MEDICINÁBAN HEVESY GYÖRGY DEFINÍCIÓ NUKLEÁRIS MEDICINA Szilvási István SE ÁOK Nukleáris Medicina Tanszék és Honvédkórház 2013 Nyílt radioaktív izotópokkal végzett diagnosztikai terápiás kutató orvosi tevékenység ( Zárt : brachyterápia)

Részletesebben

Neutrinódetektorok és részecske-asztrofizikai alkalmazásaik

Neutrinódetektorok és részecske-asztrofizikai alkalmazásaik Neutrinódetektorok és részecske-asztrofizikai alkalmazásaik ELTE Budapest 2013 december 11 Péter Pósfay 2/31 1. A neutrínó Tartalom 2. A neutrínó detektorok működése Detektálási segítő kölcsönhatások Detektorok-fajtái

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK. Radiopharmaceutica

RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK. Radiopharmaceutica Radioaktív gyógyszerkészítmények Ph.Hg.VIII. Ph.Eur. 8.0. -1 01/2014:0125 RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK Radiopharmaceutica DEFINÍCIÓ Radioaktív gyógyszerkészítménynek vagy radiogyógyszereknek nevezünk

Részletesebben

Pásztázó elektronmikroszkóp. Alapelv. Szinkron pásztázás

Pásztázó elektronmikroszkóp. Alapelv. Szinkron pásztázás Pásztázó elektronmikroszkóp Scanning Electron Microscope (SEM) Rasterelektronenmikroskope (REM) Alapelv Egy elektronágyúval vékony elektronnyalábot állítunk elő. Ezzel pásztázzuk (eltérítő tekercsek segítségével)

Részletesebben

A talliummal szennyezett NaI egykristály, mint gammasugárzás-detektor

A talliummal szennyezett NaI egykristály, mint gammasugárzás-detektor Bevezetés talliummal szennyezett NaI egykristály, mint gammasugárzás-detektor z ember már õsidõk óta ki van téve a radioaktív sugárzásoknak 1 1 ( α, β, γ, n, p, ν, ~,... ). Egy személy évi sugárterhelésének

Részletesebben

A sugárzás biológiai hatásai

A sugárzás biológiai hatásai A sugárzás biológiai hatásai Dózisegységek Besugárzó dózis - C/kg Elnyelt dózis - J/kg=gray (Gy) 1 Gy=100 rad Levegőben átlagos ionizációs energiája 53,9*10-19 J. Az elektron töltése 1,6*10-19 C, tehát

Részletesebben

Kormeghatározás gyorsítóval

Kormeghatározás gyorsítóval Beadás határideje 2012. január 31. A megoldásokat a kémia tanárodnak add oda! 1. ESETTANULMÁNY 9. évfolyam Olvassa el figyelmesen az alábbi szöveget és válaszoljon a kérdésekre! Kormeghatározás gyorsítóval

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid

Részletesebben

SUGÁRZÁS DETEKTÁLÁS - MÉRÉS SUGÁRZÁS DETEKTÁLÁS - MÉRÉS. A sugárzás mérés eszközei Méréstechnikai módszerek, eljárások

SUGÁRZÁS DETEKTÁLÁS - MÉRÉS SUGÁRZÁS DETEKTÁLÁS - MÉRÉS. A sugárzás mérés eszközei Méréstechnikai módszerek, eljárások SUGÁRZÁS DETEKTÁLÁS - MÉRÉS A sugárzás mérés eszközei Méréstechnikai módszerek, eljárások Dr. Kári Béla Semmelweis Egyetem ÁOK Radiológiai és Onkoterápiás Klinka / Nukleáris Medicina Tanszék SUGÁRZÁS DETEKTÁLÁS

Részletesebben

A röntgensugárzás keltése Fékezési vagy folytonos Rtg sugárzás. Röntgensugárzás. A röntgensugárzás elektromágneses sugárzás

A röntgensugárzás keltése Fékezési vagy folytonos Rtg sugárzás. Röntgensugárzás. A röntgensugárzás elektromágneses sugárzás A röntgensugárzás elektromágneses sugárzás Röntgensugárzás ~3 futballpálya ~3 m ~3 cm 400-700 nm ~30 H-atom átmérő Hullámhossz 10-0.01 nm. Frekvencia 30x10 15-30x10 18 Hz. Energia 120 ev - 120 kev. (petaherz

Részletesebben

Radioaktív sugárzások abszorpciója

Radioaktív sugárzások abszorpciója A magkémia alapjai laboratóriumi gyakorlat Radioaktív sugárzások abszorpciója Mérésleírás 1 Bevezetés A gyakorlat során öt különböző sugárforrást egy α bomlót ( 239 Pu) 1, két β sugárzót ( 204 Tl és 90

Részletesebben

Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó

Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó Sugárvédelem alapjai Nukleáris alapok Papp Ildikó 2 Emlékeztető A sugárzások és az anyagi közeg kölcsönhatása Dózisfogalmak 3 Pici történelem 1896: Henri Becquerel uránsók Azt találta, hogy sugárzás intenzitása

Részletesebben