3. rész. Két változó kapcsolatának vizsgálata. Minden összefügg mindennel!? Komputerstatisztika kurzus

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "3. rész. Két változó kapcsolatának vizsgálata. Minden összefügg mindennel!? Komputerstatisztika kurzus"

Átírás

1 Két kapcsolatának vizsgálata Minden összefügg mindennel!? Komputerstatisztika kurzus Barczy Mátyás Informatikai Kar Debreceni Egyetem 1

2 A témái

3 A kapcsolat természete A statisztikai k (adatbázisok attributumainak) korábban megismert egyenkénti jellemzése leíró statisztikákkal és grafikus eszközökkel többnyire csak egy kezdeti lépés. A statisztikai k általában nem függetlenek egymástól, az egyes k értékei befolyásolják más k értékeit. A kapcsolat természete kétféle lehet: determinisztikus (függvényszerű): néhány egyértelműen (függvénnyel megadható módon) meghatározza más (k) értékét(eit), sztochasztikus (véletlenszerű): a fenti meghatározottság csak tendenciaszerű, bizonyos mértékű hiba erejéig érvényes. A kapcsolat irányultsága is kétféle lehet: aszimmetrikus: az egyik hat a másikra, pl. a viszony ok okozati, illetve időben eltérő, szimmetrikus: a k kölcsönösen hatnak egymásra, egyidejűek. 3

4 Példa (Determinisztikus kapcsolat) A hetente és havonta előállított termékek száma. (Az utóbbi az előbbiek összegzésével adódik). A kapcsolat aszimmetrikus abban az értelemben, hogy a havonta előállított termékek számából nem kapható meg a hetente előállított termékek száma, fordítva viszont igen. Az éves és a havi átlaghőmérsékletek. Egy termék vagy szolgáltatás ára és az áfa nagysága (20%-os áfa esetén az árat 0.2 del kell szorozni). A kapcsolat szimmetrikus abban az értelemben, hogy az áfa nagyságának ismeretében a termék ára és a kifizetett áfa kölcsönösen egyértelműen meghatározza egymást. 4

5 Példa (Sztochasztikus kapcsolat) Szemszín és a hajszín mint két diszkrét egyidejű kapcsolata (szimmetrikus kapcsolat). Testsúly és magasság mint két folytonos egyidejű kapcsolata (szimmetrikus kapcsolat). A termés nagysága és a különbőző termelési módok. A gépkocsi sebessége és a fékút hossza (aszimmetrikus kapcsolat). Az idő és a számítástechnikai eszközök fejlettsége (tárolókapacitás, számolási sebesség stb.). 5

6 Két kapcsolatának leírása Ez a lehetséges legegyszerűbb kapcsolat, ennek ellenére már itt is eltérő módszerekkel találkozunk aszerint, hogy milyen kat vizsgálunk, milyen skálán mérjük őket. Jelöljük a két t X szel és Y nal. Ha ok okozati kapcsolat áll fenn, akkor legyen X az ok és Y az okozat. Ekkor X et magyarázó, Y t függő nak nevezzük. A legalapvetőbb osztályozást akkor kapjuk, ha a kat a típusuk alapján, mint diszkrét és folytonos, különböztetjük meg. 6

7 Az alábbi négy esetet vizsgáljuk: Mindkét diszkrét: kontingencia táblák vizsgálata és rang. Mindkét folytonos: és regresszió analízis. X és Y között ok okozati kapcsolat áll fenn, az X ok diszkrét, az Y okozat folytonos: szórásanalízis. X és Y között ok okozati kapcsolat áll fenn, az X ok folytonos, az Y okozat diszkrét: osztályozási. 7

8 elemzése Legyenek az X és Y diszkrét k lehetséges értékei x 1,...,x r és y 1,..., y s. Tekintsünk az (X, Y) párra vonatkozóan egy olyan r s j=1 n ij elemű mintát, ahol n ij azon megfigyelések (rekordok) számát (gyakoriságát) jelöli, amelyeknél X = x i és Y = y j, i = 1,..., r, j = 1,...,s. Az összes elemző módszer ezután az így bevezetett gyakoriságokra épül. Ezek a mintában lévő teljes információt tartalmazzák, használatuk egy nagyon hatékony adattömörítő eszköz. 8

9 Elemzési eszköztár: statisztikai módszer: kontingencia táblák vizsgálata, rangs együttható, grafikus eszközök: haladottabb (osztott, csoportosított, halmozott stb.) fánk diagramok. A legfontosabb kérdés a két függetlensége. Amennyiben ezt elutasítjuk, a függőségük erősségének mérése. 9

10 Kontingencia táblázat A kontingencia (kereszt) táblázat egy kétdimenziós gyakorisági tábla, amellyel két diszkrét együttes gyakoriságait tudjuk megjeleníteni. Y X y1 y 2 y s x 1 n 11 n 12 n 1s n 1+ x 2 n 21 n 22 n 2s n x r n r1 n r2 n rs n r+ n+1 n +2 n +s n ++ A táblázatbeli sor és oszlopösszegek az alábbi módon vannak definiálva: n i+ := s n ij, n +j := j=1 r n ij, n ++ := r j=1 s n ij =: n. 10

11 A megjelenítés hasonló a kétdimenziós diszkrét valószínűségeloszlás megadásához. Ekkor a táblázat valószínűségeket tartalmaz, az utolsó sor és oszlop pedig az ún. marginális (perem) eloszlásokat. A kontingencia tábla celláiban (abszolút) gyakoriságok helyett ábrázolhatunk relatív gyakoriságokat is. A statisztikai szoftverek emellé még számos egyéb lehetőséget is nyújtanak, pl. oszlop vagy sor százalék, várt érték a függetlenség esetén stb. A két függetlenségének vizsgálatát, illetve a függőségük erősségének mérését az alábbi két esetben tárgyaljuk: mindkét (diszkrét) t nominális skálán, illetve mindkét t ordinális skálán mérjük. 11

12 Nominális skálán mért diszkrét k Feltételezzük a továbbiakban, hogy r 2, s 2 és n i+ 1, n +j 1, i = 1,...,s, j = 1,...,r. Cramér mutató: ahol C := χ 2 := az ún. χ 2 statisztika. χ 2 n ++ min{r 1, s 1}, r j=1 ( s n ij n i+n +j n n i+ n +j n Az n i+ n +j /n értékeket (gyakoriságokat) a két függetlenségének feltételezése melletti gyakoriságoknak is szokás nevezni, ugyanis n i+ n +j n = n n i+ n n +j n. ) 2 12

13 Állítás A Cramér mutatóra teljesül, hogy C [0, 1]. Bizonyítás. Először megmutatjuk, hogy r s χ 2 n 2 = n ++ ij 1. n i+ n +j Valóban, ( ) r s n ij n 2 i+n +j n = n i+ n +j j=1 = = r j=1 r s s j=1 j=1 r s j=1 n 2 ij n i+ n +j 2 n ++ n ++ + n 2 ij n i+ n +j 1. ( n 2 ij 2 n ij + n ) i+n +j n i+ n +j n ++ (n ++ ) 2 1 (n ++ ) 2 r s n i+ j=1 n +j 13

14 Így elég azt ellenőriznünk, hogy r s nij 2 min{r, s}. n i+ n +j j=1 Felhasználva, hogy n ij n i+ 1, kapjuk, hogy r s j=1 n 2 ij n i+ n +j = i = 1,...,r, j = 1,...,s, r j=1 s j=1 s n ij n +j = s 1 n +j n +j = s. Hasonlóan belátható, hogy r s nij 2 r. n i+ n +j j=1 1 r n ij n +j j=1 14

15 Megjegyzés. C = 0 akkor és csak akkor, ha n ij = n i+n +j, i = 1,...,r, j = 1,...,s, n azaz, ha a megfigyelt és várt gyakoriságok megegyeznek. C = 0 : függetlenség. Ha s r, úgy C = 1 akkor és csak akkor, ha minden i = 1,...,r esetén n ij {0, n i+ }, j = 1,...,s, azaz minden sorban pontosan egy db n ij C = 1 : függőség. nem nulla. 15

16 Példa arra, hogy C = 0. Tekintsük az alábbi kontingencia táblázatot: Ekkor χ 2 = 0 és C = 0. Y X Példa arra, hogy C = 1. Tekintsük az alábbi kontingencia táblázatot: Y X Ekkor χ 2 = 6 és C =

17 : χ T := 2. n ++ (r 1)(s 1) Nyilván, T C és így T [0, 1]. Értelmezés ugyanaz, mint a Cramér mutatónál. Megjegyzés A későbbiekben elemezni fogjuk, hogy a mutatók (pontosabban a χ 2 statisztika) milyen nagy értékei utalnak függőségre, lásd két teljes eseményrendszer függetlenségének vizsgálatára vonatkozó χ 2 próba. 17

18 Példa A szem és a haj színének a kapcsolatát vizsgáltuk 400 embernél. Eredményül az alábbi kontingencia táblát kaptuk: Hajszín Szemszín barna fekete szőke vörös kék sötét zöld

19 Megoldás. r = 3, s = 4 és a χ 2 statisztika értéke A Cramér mutató értéke: C = 400 min{3 1, 4 1} A értéke: T := 400 (3 1)(4 1) A Cramér, ill. értéke alapján (mivel 0 hoz vannak közelebb, mint 1 hez) gyenge függőségre következtethetünk. Azonban a későbbi vizsgálatok során kiderül majd, hogy a jelen ban a Cramér mutató értéke alapján erős függőségre kell következtetnünk. 19

20 A függőség mértékének a megítélésében a P(χ 2 6 > 84.32) valószínűség nagysága az irányadó, ugyanis belátható, hogy a két függetlensége esetén a χ 2 statisztika aszimptotikusan χ 2 (r 1)(s 1) eloszlású, ahol χ 2 n az n szabadsági fokú χ 2 eloszlást jelöli. Esetünkben (r 1)(s 1) = 6 és P(χ 2 6 > 84.32) 0, így tényleg erős függőségre következtethetünk. Megjegyezzük továbbá, hogy érvényes ugyan a χ 2 n n 2n L N(0, 1) ha n, eloszlásbeli konvergencia, ez azonban elég lassú. 20

21 Gondoljunk ugyanis a Berry Esseen tételre, ahol is a konvergenciasebesség nagysága az abszolút ferdeségtől (harmadik abszolút centrált momentum osztva a szórás köbével) függ, ami χ 2 1 eloszlás esetén relatíve nagy. Mivel a gyakorló okban a χ 2 (r 1)(s 1) határeloszlás szabadsági foka, azaz (r 1)(s 1), általában kicsi, így a határeloszlásnak N((r 1)(s 1), 2(r 1)(s 1)) eloszlással való közelítését nem ajánljuk. A következő lapokon a példabeli kontingencia táblát ábrázoltuk különböző módokon. 21

22 Térbeli oszlopdiagram Előállította a SAS rendszer 22

23 Csoportosított oszlopdiagram Előállította a SAS rendszer 23

24 Halmozott oszlopdiagram Előállította a SAS rendszer 24

25 Csoportosított kördiagram Előállította a SAS rendszer 25

26 Halmozott kördiagram Előállította a SAS rendszer 26

27 Fánkdiagram Előállította a SAS rendszer 27

28 Ordinális skálán mért diszkrét k Legyen a két ordinális skálán mért, diszkrét ra megfigyelt minta a következő: X : x 1, x 2,..., x n Y : y 1, y 2,..., y n. Megjegyezzük, hogy valójában mintapárokat, úm. (x i, y i ), figyelünk meg, amelynek elemei összetartoznak. Rang:= a rendezett mintában hányadik az illető mintaelem. Jelöljük az X, ill. Y szerinti rangokat R X, illetve R Y módon. Ha egy mintaelem többször is előfordul, akkor ezekhez azon rangszámok súlyozatlan számtani átlagát rendeljük rangszámként, melyet akkor kapnánk, ha az adott mintaelemek páronként különbözőek lennének. Ezek az ún. kapcsolt rangok. 28

29 rangs együttható: az R X és R Y rangszámok tapasztalati (lineáris) s együtthatója: ahol S(X, Y) := (R X, R Y ), n (X, Y) := (x i x)(y i y) n (x i x) 2. n (y i y) 2 Azaz n S(X, Y) = (R x i R X )(R yi R Y ) n (R x i R X ) 2, n (R y i R Y ) 2 ahol R X := 1 n n R xi, R Y := 1 n n R yi. Megj.: A tapasztalati (lineáris) s együtthatóval két folytonos kapcsolatának elemzésekor majd részletesen foglalkozunk. 29

30 A rangs együttható tulajdonságai: S(X, Y) 1, Ha S(X, Y) = 1, akkor az R X és R Y rangszámsorozat egybeesik. Ha S(X, Y) = 1, akkor az R X és R Y rangszámsorozat egymás fordítottjai abban az értelemben, hogy R yi = R xi + n+1, i = 1,...,n. Ha S(X, Y) > 0, akkor pozitív irányú függésről beszélünk: az X-re vonatkozó mintában a nagyobb rang együttjár az Y -re vonatkozó mintában a nagyobb ranggal (illetve fordítva is). Ha S(X, Y) < 0, akkor negatív irányú függésről beszélünk: az X-re vonatkozó mintában a nagyobb rang együttjár az Y -re vonatkozó mintában a kisebb ranggal (illetve fordítva is). Ha S(X, Y) = 0, akkor a két rangsor között nincs kapcsolat. 30

31 Megjegyzés Ha nincsenek kapcsolt rangok, akkor S(X, Y) = 1 6 n (R x i R yi ) 2 n(n 2. 1) A gyakorlatban akkor is használatos a fenti formula, ha vannak kapcsolt rangok, de nem sok. 31

32 Az SPSS algoritmusa a rangs együttható számolására ahol S(X, Y) = T X + T Y n (R x i R yi ) 2 2 T X T Y, T X := n3 n ST X 12 ST X := ST Y :=, T Y := n3 n ST Y, 12 {t>1:t db mintaelem egybeesik az x 1,...,x n mintában} {t>1: t db mintaelem egybeesik az y 1,...,y n mintában} (t 3 t), (t 3 t). Ha T X = 0 vagy T Y = 0, akkor S(X, Y) nem kerül kiszámolásra. Valóban ellenőrizhető, hogy a fenti algoritmussal számolt rangs együttható megegyezik az általunk bevezetettel. 32

33 elemzése Legyen a két folytonos ra megfigyelt minta a következő: X : x 1, x 2,..., x n Y : y 1, y 2,..., y n Újra felhívjuk a figyelmet, hogy valójában mintapárokat, úm. (x i, y i ), figyelünk meg, amelynek elemei összetartoznak. Így bármilyen művelet (pl. rendezés) a mintán csak a párokon hajtható végre, ként pedig nem. Statisztikai eszközök: szimmetrikus eset: analízis, ok okozati eset: regresszió analízis. Grafikus eszköz: pontdiagram, melyben a Descartes koordinátarendszerben ábrázoljuk az (X, Y) párra kapott megfigyeléseket mint pontokat. A koordinátatengelyek kijelölése gyakran feltételez ok okozati viszonyt a két között. 33

34 Pearson féle s együttható Két valószínűségi közötti függőséget a kovariancia és s együttható mennyiségekkel mérhetjük. A ξ és η valószínűségi k (elméleti) kovarianciája: Cov(ξ,η) := E(ξ Eξ)(η Eη), és s együtthatója: Corr(ξ,η) := Cov(ξ,η) D 2 ξd 2 ξ. A s együtthatót akkor értelmezzük, ha 0 < D 2 ξ < és 0 < D 2 η <. Ezek tapasztalati megfelelőit vezetjük be az alábbiakban. 34

35 Definíció (Tapasztalati kovariancia és ) Az X és Y közötti tapasztalati kovariancia: c(x, Y) := 1 n n (x i x)(y i y). Pearson-féle tapasztalati (lineáris) s együttható: c(x, Y) n (X, Y) := s(x)s(y) = (x i x)(y i y) n (x i x) 2, n (y i y) 2 feltéve, hogy s(x) 0 és s(y) 0, ahol s(x), illetve s(y) az x 1,...,x n, ill. y 1,..., y n minta korrigálatlan tapasztalati szórását jelöli. Megj.: Korábban az x 1,..., x n minta korrigálatlan tapasztalati szórását s n módon jelöltük. A fentiekben a minta elemszámát nem tüntettük fel a jelölésben, azt viszont igen, hogy melyik mintára vonatkozik. 35

36 Megjegyzés c(x, Y) = 1 n n x i y i x y =: xy x y. X és Y között nem feltétlen van ok okozati kapcsolat. Bevezetve az alábbi jelöléseket: x i := x i x ns(x), ỹ i := y i y ns(y), i = 1,..., n, az X := ( x 1,..., x n ) és Ỹ := (ỹ 1,..., ỹ n ) mintákra teljesül, hogy (X, Y) = n x i ỹ i = X, Ỹ, ahol, az euklideszi belső szorzatot jelöli. (X, Y) 2 : determinációs együttható. 36

37 A s együttható tulajdonságai A tapasztalati kovariancia a két közös skáláján méri a kapcsolat erősségét, a tapasztalati s együttható ezzel szemben már normalizált skálán mér, így összehasonlításra jobban használható. Ha (X, Y) > 0, akkor pozitív irányú függésről beszélünk: az egyik értékének növelése a másik értékének a növekedését eredményezi. Ha (X, Y) < 0, akkor negatív irányú függésről beszélünk: az egyik értékének növelése a másik értékének a csökkenését eredményezi. Ha (X, Y) = 0, akkor korrelálatlanságról beszélünk. (Nem tévesztendő össze a függetlenséggel, ami egy erősebb dolog.) 37

38 Tétel Legyen X = (x 1,..., x n ) és Y = (y 1,..., y n ) olyan, hogy s(x) 0 és s(y) 0. Ekkor (X, Y) 1 és egyenlőség pontosan akkor áll fenn, ha léteznek olyan a, b R valós számok, hogy Y = ax + b, azaz y i = ax i + b minden i = 1,...,n re. Utóbbi esetben lineáris kapcsolatról beszélünk. Továbbá, a > 0, illetve a < 0 aszerint, hogy (X, Y) = 1, illetve (X, Y) = 1. 38

39 Bizonyítás. A Cauchy Schwarz egyenlőtlenség alapján: ( n n ) 1/2 n (x i x)(y i y) (x i x) 2 (y i y) 2, melyből átrendezéssel adódik az állítás. Egyenlőség pontosan akkor teljesül, ha (x 1 x,...,x n x) és (y 1 x,...,y n x) lineárisan függőek. Mivel s(x) 0 és s(y) 0, kapjuk, hogy pontosan akkor teljesül egyenlőség, ha létezik olyan a R, hogy y i y = a(x i x) minden i = 1,...,n esetén. Innen közvetlenül adódik, hogy y i = ax i + b, ahol b := y a x. 39

40 Ha Y = ax + b, ahol a > 0, akkor (X, Y) = c(x, ax + B) a c(x, X) = s(x)s(ax + b) a s(x)s(x) = 1. Ha Y = ax + b, ahol a < 0, akkor (X, Y) = c(x, ax + B) a c(x, X) = s(x)s(ax + b) a s(x)s(x) = 1. Összefoglalva: a s együttható a [ 1, 1] intervallumon (skálán) méri két folytonos kapcsolatának az erősségét. A skála két végpontja esetén a kapcsolat lineáris (Y = ax + b), a 1 végpont esetén a < 0, a +1 végpont esetén pedig a > 0. 40

41 Példa (olyan determinisztikus kapcsolatra, amelynél a k korrelálatlanok) Tekintsük az alábbi mintát: Ekkor x = 0, (x 1, y 1 ) = (1, 1), (x 2, y 2 ) = ( 1, 1), (x 3, y 3 ) = (2, 8), (x 4, y 4 ) = ( 2, 8). y = = 4.5, 4 xy = = 0, 4 így c(x, Y) = 0 és (X, Y) = 0. X és Y között determinisztikus kapcsolat van: y i = x 3 i, i = 1, 2, 3, 4. 41

42 Példa (A tapasztalati s együttható számolása) A minta: X: 1, 2, -1, 2, 1 Y: 2, 4, 0, 8, 1 Mivel x = 1 és y = 3 a centralizált minta: X x: 0, 1, -2, 1, 0 Y y: -1, 1, -3, 5, -2 c(x, Y) = 0 ( 1)+1 1+( 2) ( 3) ( 2) 5 =2.4, s 2 (X) = 1 5 ( ( 2) ) = 1.2, s 2 (Y) = 1 5 (( 1) ( 3) ( 2) 2 ) = 8. Ezért: (X, Y) = 2.4/ =

43 Lineáris regresszió Láttuk, hogy maximális (azaz 1) abszolút értékű s együttható lineáris kapcsolatot jelent a k között. Hogyan lehet ennek a kapcsolatnak az együtthatóit meghatározni a minta alapján? Általánosabban, az Y függő t szeretnénk az X magyarázó lineáris függvényével közelíteni: Y ax + b. Milyen a és b valós együtthatókat válasszunk az (X, Y)-ra vonatkozó n elemű minta ismeretében? Először az elemi hibákat (veszteségeket) definiáljuk az alábbi módon e i := y i (ax i + b), i = 1,..., n. Ezután ezen (elemi) hibákból egy összesített hibát (rizikót) állítunk elő. Végül az így kapott összesített hibát, mint célfüggvényt minimalizáljuk az a és b együtthatók függvényében. Ez egy szélsőértékszámítási (optimalizációs). 43

44 A legkisebb négyzetek módszere Az együtthatók meghatározására használt legelterjedtebb elv a legkisebb négyzetek módszere. Ekkor az összesí tett hiba az elemi hibák négyzeteinek összege: E(a, b) := n ei 2 = Szélsőértékszámítási : n (y i (ax i + b)) 2. min (a,b) R 2 E(a, b). Az E függény előnye, hogy a szélsőértékszámítási megoldásánál támaszkodhatunk a differenciálszámítás eszköztárára, hiszen az E : R 2 R függvény mindkét ja szerint akárhányszor differenciálható. 44

45 Ismert, hogy az E : R 2 R függvénynek (â, b) lokális minimumhelye, ha (i) (â, b) stacionárius pont, azaz az elsőrendű parciális deriváltakból álló ún. gradiens vektorra E a (â, b) = 0, E b (â, b) = 0; (ii) a másodrendű parciális deriváltakból álló ún. Hesse mátrix pozitív definit az (â, b) helyen, azaz ( ) ( 2 E (â, b) 2 E u v a 2 a b (â, b) ) (u ) 2 E a b (â, b) > 0 2 E(â, b) v b 2 minden (u, v) (0, 0) esetén, vagy ekvivalens módon u 2 2 E a 2 (â, b)+2uv 2 E a b (â, b)+v 2 2 E b 2(â, b) > 0 minden u, v R, u 2 + v 2 > 0 esetén. 45

46 A regressziós együtthatók meghatározása I. Az E gradiens vektorára kapjuk, hogy E n b (a, b) =2 (y i (ax i + b))( 1) = 0, E n a (a, b) =2 (y i (ax i + b))( x i ) = 0. Ebből átrendezéssel kapjuk az alábbi ún. normál egyenleteket: a n a x 2 i n x i + bn = + b n x i = n y i, n x i y i. 46

47 A regressziós együtthatók meghatározása II. A normálegyenletek az x = 1 n n x i, y = 1 n n y i, x 2 = 1 n n x 2 i, xy = 1 n n x i y i, jelölések bevezetésével az alábbi egyszerűbb alakot öltik: a x + b =y, a x 2 + b x =xy, melyeket írhatunk mátrixos alakban is: ( )( ) 1 x b x x 2 = a ( ) y. xy 47

48 A regressziós együtthatók meghatározása III. Az első egyenletből kapjuk, hogy b = y a x. Ezt a második egyenletbe behelyettesítve adódik a megoldás: â = xy x y x 2 x 2, b = y xy x y x 2 x 2 x, amennyiben x 2 x 2. Ez utóbbi akkor és csak akkor teljesül, ha az X re vett minta nem konstans, ugyanis ( n n ) 2 x 2 = x 2 n xi 2 = x i, illetve a Cauchy Schwarz egyenlőtlenség szerint ( n ) 2 n x i n és egyenlőség akkor és csak akkor áll fenn, ha d R, hogy x i = d, i = 1,...,n. x 2 i 48

49 A regressziós együtthatók meghatározása IV. Mivel a másodrendű parciális deriváltak: 2 E n a 2 (a, b) = 2 xi 2, 2 E n a b (a, b) = 2 x i, 2 E b2(a, b) = 2n, a Hesse mátrix tetszőleges (a, b) R 2 helyen ( 2 n x i 2 2 n x ) i 2 n x i 2n Ez pozitív definit, hiszen u 2 2 n x 2 i + 2uv2 n x i + v 2 2n = 2 n (ux i + v) 2 > 0 ha u, v R, u 2 + v 2 > 0 és az X re vett minta nem konstans. 49

50 A regressziós együtthatók meghatározása V. Egyetlen dolgot kell még ellenőriznünk: az E függvény egyetlen lokális minimumhelye egyben globális minimumhely is. Ehhez elég belátni, hogy az E függvény szigorúan konvex. Ugyanis, ha egy szigorúan konvex függvénynek van lokális minimuma az szükségképpen globális minimum is. Az E szigorú konvexségéhez elég ellenőriznünk, hogy a Hesse-mátrixának sarokfőminorai pozitívak, azaz azt, hogy 2 n n 4 n x i 2 x 2 i > 0 és ( n ) 2 x i = 4n 2 (x 2 (x) 2 ) > 0. Ezek teljesülnek, hiszen az X re vett minta nem konstans. Ezzel beláttuk, hogy a normál egyenletek egyértelmű megoldása valóban globális minimumhelyet határoz meg. 50

51 A Felhasználva, hogy c(x, Y) = xy x y és azt, hogy a Steiner formula alapján s 2 (X) = x 2 x 2, a regressziós együtthatókat a következő alakban is felírhatjuk: â = (X, Y) s(y) s(x), b = y (X, Y) s(y) s(x) x. A át megoldó egyenes egyen letét, az ún. t az alábbi alakokban írhatjuk fel: Y = xy x y x 2 x 2 X + y xy x y x 2 x 2 x, Y = (X, Y) s(y) X + y (X, Y)s(Y) s(x) s(x) x. 51

52 Feltételezve, hogy az Y ra vett minta sem konstans, a másodikat átrendezve kapjuk, hogy Y y s(y) = (X, Y)X x s(x), azaz a két minta standardizálása után egy origón átmenő egyenest kapunk, melynek meredeksége a tapasztalati s együttható. 52

53 Nem Csak azzal a speciális esettel foglalkozunk, amikor az Y függő t szeretnénk az X magyarázó hatvány függvényével közelíteni: Y b a X, ahol feltételezzük, hogy a valódi a és b paraméterek pozitívak. Milyen a és b valós együtthatókat válasszunk az (X, Y)-ra vonatkozó n elemű minta ismeretében? A legkisebb négyzetek elve alapján olyan a és b értékeket választunk, melyekre az alábbi összesített hiba minimális: n (y i ba x i ) 2. Ezen nemlineáris szélsőértékszámítási megoldása helyett azonban sokszor az alábbi lineáris (így egyszerűbb) ot oldjuk meg. 53

54 Az eredeti s ot visszavezetjük egy s megoldására, linearizálunk: ln(y) ln(a)x + ln(b). Az (x i, ln(y i )), i = 1,...,n minta ismeretében az ln(a) és ln(b) paraméterek legkisebb négyzetes becslése teljesíti az alábbi normálegyenletet: ( )( ) ( ) 1 x ln(b) ln(y) =. x x 2 ln(a) x ln(y) 54

55 A korábbiak alapján, ha az X-re vett minta nem konstans, akkor az ln(a) és ln(b) paraméterek legkisebb négyzetes becslése egyértelmű: ln(a) = x ln(y) x ln(y) x 2 x 2, ln(b) x ln(y) x ln(y) = ln(y) x 2 x 2 x. Így az a és b paraméterek becslése: â = e ln(a), b = e ln(b). 55

56 A s és linearizáltjának a kapcsolata Legyenek az (X, Y) párra vonatkozó megfigyeléseink (x i, y i ), i = 1,...,n, ahol y i > 0, i = 1,...,n, és az X-re vett minta nem konstans. Vizsgáljuk meg az alábbi két közötti kapcsolatot. I. Legyen E 1 : R R R, n E 1 (u, v) := (ln(y i ) (ux i + v)) 2, u, v R. Minimalizáljuk E 1 -et és jelölje (û, v) a minimumhelyet. II. Legyen E 2 : (0, ) (0, ) R, n E 2 (a, b) := (y i ba x i ) 2, a, b > 0. Minimalizáljuk E 2 -t és jelölje (â, b) a minimumhelyet, melyről feltételezzük, hogy egyértelmű. Igaz-e, hogy (â, b) = (eû, e v )? 56

57 Az I. megoldása: û = x ln(y) x ln(y) x 2 x 2, v = ln(y) A II. megoldása: a x ln(y) x ln(y) x 2 x 2 x. E 2 a (a, b) = 0, E 2 (a, b) = 0, b egyenletrendszer az alábbi alakot ölti: n (y i ba x i )x i a x i = 0, n (y i ba x i )a x i = 0. Ezt általában nem tudjuk explicit módon megoldani. 57

58 Az (â, b) = (eû, e v ) összefüggés általában nem igaz. Példát adunk arra is, mikor teljesül és arra is, mikor nem. 1. Példa: Legyen n = 3 és (x 1, y 1 ) := (1, 6), (x 2, y 2 ) := (2, 18), (x 2, y 2 ) := (3, 54). Ekkor û , v , â = 3, b = 2, és teljesül az (â, b) = (eû, e v ) összefüggés. Továbbá, E 1 (û, v) 0, E 2 (â, b) = 0. 58

59 2. Példa: Legyen n = 3 és (x 1, y 1 ) := (1, 4), (x 2, y 2 ) := (2, 22), (x 2, y 2 ) := (3, 50). Ekkor û , v , eû , e v , â , b , és nem teljesül az (â, b) = (eû, e v ) összefüggés. Továbbá, E 1 (û, v) , E 2 (â, b) , azaz a s modell illeszkedik jobban. 59

60 Az előző példából legalább két tanulság is leszűrhető: a s nak és linearizáltjának a megoldása nem ekvivalens egymással. alapértelmezés szerint egyik módszer sem tekinthető jobbnak a másiknál, hiszen az egyik esetben egy nemlineáris egyenletrendszert kell megoldanunk, a másik esetben pedig linearizálunk. Azt, hogy melyik módszerrel kapott becslést fogadjuk el további vizsgálatok, szakmai megfontolások dönthetik el. 60

61 Példa: Moore törvény Gordon Moore, az Intel egyik alapítója fogalmazta meg 1975 ben: Az integrált áramkörökben lévő tranzisztorok száma minden 24. hónapban (azaz 2 évente) megduplázódik. Copyright: Intel Corporation. A függőleges tengelyen a tranzisztorok számának logaritmusa van ábrázolva. 61

62 Diszkrét és folytonos kapcsolata a k közötti ok okozati viszony esetén Ha a magyarázó diszkrét, akkor azt faktornak nevezzük. Ha a magyarázó folytonos, akkor a kovariáns elnevezéssel élünk. Statisztikai módszerek: Diszkrét magyarázó és folytonos függő : szórásanalízis. Folytonos magyarázó és diszkrét függő : osztályozási. Grafikus módszerek: Diszkrét magyarázó és folytonos függő : csoportosított hisztogram és doboz ábra. Folytonos magyarázó és diszkrét függő : halmozott hisztogram. 62

63 I. Figyeljük meg az Y folytonos t és az F (diszkrét) faktort (ez a korábban X szel jelölt magyarázó ). A minta: (y 1, f 1 ),(y 2, f 2 ),...,(y n, f n ). Tegyük fel, hogy az F faktor k értéket vehet fel, amelyeket nyilván kódolhatunk az 1, 2,...,k számokkal. Ezeket az értékeket szinteknek nevezzük. 63

64 II. A k szint alapján a mintát az alábbi módon oszthatjuk fel: y 11,y 12,...,y 1n1 y 21,y 22,...,y 2n2. y k1,y k2,...,y knk Az i edik sor előállítása: az (y l, f l ), l = 1,...,n mintaelemek közül megkeressük azokat, melyeknél f l = i, a hozzájuk tartozó y ok alkotják az i edik szinthez tartozó megfigyeléseket: y ij nél az első index a szintet, a második pedig a szinten belüli sorrendet jelöli. Nyilván, k n i = n. Kérdés: van e szerepe a faktornak, mennyire magyarázza a mintaelemeknek a (teljes) mintaátlag körüli szóródását? 64

65 III. Vezessük be az alábbi jelöléseket: y i := 1 n i y := 1 n Q T := Q K := Q B := n i j=1 y ij k n i j=1 y ij az i edik szint átlaga, teljes átlag, k n i (y ij y ) 2 teljes, j=1 k n i (y i y ) 2 külső, j=1 k n i (y ij y i ) 2 belső. j=1 65

66 Megjegyzés Q K = k n i (y i y ) 2. használatosak még az alábbi jelölések is: Q T = SST, Q K = SSK, Q B = SSB, ahol SS=Sum of Squares és T=teljes, K=külső, B=belső. 66

67 Tétel () Q T = Q K + Q B (SST = SSK + SSB). Bizonyítás. Alkalmazzuk a teve szabályt: (y ij y ) 2 = ((y ij y i )+(y i y )) 2 = (y ij y i ) 2 +(y i y ) 2 + 2(y ij y i )(y i y ) Világos, hogy elég belátni k n i (y ij y i )(y i y ) = 0. j=1 Ez következik abból, hogy mivel y i y nem függ j től, ezért a belső szummából kiemelhető és y i definíciója alapján n i n i (y ij y i ) = y ij n i y i = 0. j=1 j=1 67

68 Heurisztika A szórásfelbontásból következtethetünk a két közötti függőség erősségére. Ha a Q K külső relatíve nagy a Q B belső hez képest, akkor ez arra utal, hogy az Y ra vett együttes mintában lévő ingadozás elsősorban a szintek közötti különbségből adódik. Így az F faktor hatással van az Y függő ra. Ha viszont a Q K külső relatíve kicsi a Q B belső hez képest, akkor ez arra utal, hogy az Y ra vett együttes mintában lévő inga dozást elsősorban a szinteken belüli ingadozások magyarázzák. Így az F faktor nincs hatással az Y függő ra. 68

69 H 2 mutató H 2 := Q K Q T [0, 1]. Értelmezés: H 2 az Y tapasztalati ének az F faktor által megmagyarázott hányada. A H 2 = Q K /Q T tört számlálójában a Q K külső annak felel meg, hogy minden egyes szint esetén a szint összes mintaelemét a szint átlagával helyettesítjük és, ha ez a kicsi a teljes hez képest, akkor az F faktor csak kicsit magyarázza az Y mintaelemek szóródását. A heurisztika pontosítására a későbbiekben kerül sor. Nyilván, H 2 = Q K Q T = 1 Q B Q T. 69

70 Megjegyzés H 2 = 0 Q K = 0 y 1 = = y k = y, azaz minden szint átlaga megegyezik a teljes mintaátlaggal. A szintek között átlag szempontjából nincs különbség, a faktornak nincs szerepe. H 2 = 1 Q B = 0 y ij = y i, i = 1,...,k, j = 1,...,n i. Ez abban az értelemben függvényszerű kapcsolat, hogy ha megmondjuk, hogy melyik szintről van szó és, hogy mennyi az adott szint átlaga, akkor ezzel az adott szinthez tartozó összes mintaelemet is megmondtuk. 70

71 Teljes, külső és belső Teljes (tapasztalati) : s 2 T := Q T n Külső (tapasztalati) : s 2 K := Q K n Belső (tapasztalati) : s 2 B := Q B n Az i edik szinten belüli (tapasztalati) rész : ni si 2 j=1 := (y ij y i ) 2, i = 1,...,k. n i 71

72 Megjegyzés s 2 T = s2 K + s2 B, k ni sb 2 = j=1 (y ij y i ) 2 n = k n is 2 i n azaz a rész eknek az egyes szintekhez tartozó mintaelemek számával súlyozott számtani közepe a belső, és nem a teljes. H 2 = s2 K s 2 T = 1 s2 B st 2., 72

73 Ha az Y függő diszkrét, akkor osztályozási ról beszélünk. Ekkor ugyanis Y értékei egy egy csoportot jelölnek ki, és az X folytonos (valós értékű) magyarázó (kovariáns) segítségével akarjuk azt eldönteni, hogy a megfigyelés (rekord) melyik csoportba tartozik. Bináris osztályozási : Y értékei 0 vagy 1. Ekkor a mintát két csoportba, egy 0 ás és egy 1 es csoportba oszthatjuk. Az alábbiakban csak ezzel foglalkozunk. Példa Tranzakciók vizsgálata (csalás legális). Ügyfélszegmentáció (jó rossz ügyfél). Betegség felismerés (igen nem). Döntésfüggvény: egy d : R {0, 1} függvény, amellyel a számegyenest két részre bontjuk. A két részhalmaznak feleltetjük meg ezután a két csoportot. 73

74 A leírása: minden mintaelemet a 0 ás vagy 1 es csoportba szeretnénk besorolni. Már rendelkezésre áll egy 0 ás minta, illetve egy 1 es minta (azaz vannak mintaelemeink, melyeket a 0 ás, illetve az 1 es csoportba már besoroltunk). Vezesük be az alábbi jelöléseket: x 0 : a 0 ás minta mintaátlaga, s0 2: a 0 ás minta korrigálatlan emipirikus e, x 1 : az 1 es minta mintaátlaga, s 2 1 : az 1 es minta korrigálatlan emipirikus e. 74

75 Lineáris döntésfüggvény Tegyük fel, hogy s 2 0 = s2 1. Az x mintaelemet akkor soroljuk a 0 ás csoportba, ha x (½{x 0 >x 1 } ½{x 0 x 1 }) (½{x 0 >x 1 } ½{x 0 x 1 } )x 0 + x 1. 2 (1) Azaz x 0 > x 1 esetén az x mintaelemet akkor soroljuk a 0 ás csoportba, ha míg x 0 x 1 x x 0 + x 1, 2 esetén akkor, ha x x 0 + x 1. 2 Ekkor d : R {0, 1}, d(x) := 0, ha x R olyan, hogy (1) teljesül, egyébként pedig d(x) := 1. 75

76 Kvadratikus döntésfüggvény Az x mintaelemet akkor soroljuk a 0 ás csoportba, ha ( x x0 s 0 ) 2 ( ) x 2 ln s0 2 x1 ln s1 2 s. (2) 1 Ekkor d : R {0, 1}, d(x) := 0, ha x R olyan, hogy (2) teljesül, egyébként pedig d(x) := 1. Megj. Ellenőrizhető, hogy x 0 x 1 és s0 2 = s2 1 esetén a kvadratikus döntésfüggvénnyel is ugyanazt a döntést hozzuk meg, mint a lineáris döntésfüggvénnyel. Ha x 0 = x 1 és s0 2 = s2 1, akkor a kvadratikus döntésfüggvénnyel mindig a 0 ás csoportba soroljuk x et, a lineáris döntésfüggvénnyel nem mindig. A kérdéskörrel általánosabban foglalkozik a diszkriminancia analízis és a logisztikus regresszió. 76

77 Több kapcsolata Ilyen kapcsolatok vizsgálatára a statisztika egy rendkívül szerteágazó eszköztárat hozott létre (többs statisztikai módszerek). Valójában ezek a módszerek képezik a statisztikai szoftverek gerincét. Ezek közül egy hatékony leíró, vizualizációs eszköz az ún. többdimenziós (MDS: multidimensional scaling). A módszer során a megfigyeléseinket (az adatbázis rekordjait) ábrázoljuk egy alacsony (2 vagy 3) dimenziós térben. Legyenek a vizsgált statisztikai k X 1, X 2,..., X p, melyeket egy vektorba írunk: X := (X 1, X 2,..., X p ). Az X re vonatkozó megfigyelések, melyek szintén vektorok (az adatbázis rekordjai vagy sorai), pedig legyenek: x 1, x 2,...,x n. Ez egy ún. többdimenziós minta. 77

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

Matematikai statisztikai elemzések 5.

Matematikai statisztikai elemzések 5. Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések. MSTE modul Kapcsolatvizsgálat: asszociáció vegyes kapcsolat korrelációszámítás. Varianciaanalízis

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában 9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában Bevezet : A témakörben els - és másodfokú egyenl tlenségek megoldásának

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Statisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Elméleti összefoglalók dr. Kovács Péter

Elméleti összefoglalók dr. Kovács Péter Elméleti összefoglalók dr. Kovács Péter 1. Adatállományok létrehozása, kezelése... 2 2. Leíró statisztikai eljárások... 3 3. Várható értékek (átlagok) vizsgálatára irányuló próbák... 5 4. Eloszlások vizsgálata...

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:

Részletesebben

Irracionális egyenletek, egyenlôtlenségek

Irracionális egyenletek, egyenlôtlenségek 9 Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek /I a) Az egyenlet bal oldala a nemnegatív számok halmazán, a jobb oldal minden valós szám esetén

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia

Részletesebben

Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc

Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc Karátson, János Horváth, Róbert Izsák, Ferenc numerikus módszerei számítógépes írta Karátson, János, Horváth, Róbert, és Izsák, Ferenc Publication date 2013 Szerzői jog 2013 Karátson János, Horváth Róbert,

Részletesebben

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra

Részletesebben

Matematikai statisztikai elemzések 6.

Matematikai statisztikai elemzések 6. Matematikai statisztikai elemzések 6. Regressziószámítás: kétváltozós lineáris és nemlineáris regresszió, többváltozós regresszió Prof. Dr. Závoti, József Matematikai statisztikai elemzések 6.: Regressziószámítás:

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Számítógépes geometria (mester kurzus)

Számítógépes geometria (mester kurzus) 2010 sz, Debreceni Egyetem Csuklós szerkezetek animációja (Kép 1985-b l: Tony de Peltrie) Csontváz-modellek Csuklós szerkezet (robotkar) A robotkar részei: csuklók (joints) rotációs prizmatikus (transzlációs)

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI 19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI Ebben a fejezetben aszimptotikus (nagyságrendi) alsó korlátot adunk az összehasonlításokat használó rendező eljárások lépésszámára. Pontosabban,

Részletesebben

Érettségi feladatok: Függvények 1/9

Érettségi feladatok: Függvények 1/9 Érettségi feladatok: Függvények 1/9 2003. Próba 1. Állapítsa meg a valós számok halmazán értelmezett x x 2-2x - 8 függvény zérushelyeit! 2004. Próba 3. Határozza meg a valós számok halmazán értelmezett

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

Hozzárendelések. A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük.

Hozzárendelések. A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük. Hozzárendelések A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük. A B Egyértelmű a hozzárendelés, ha az A halmaz mindegyik

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

Matematikai statisztikai elemzések 5.

Matematikai statisztikai elemzések 5. Matematikai statisztikai elemzések 5. Kapcsolatvizsgálat: asszociáció, vegyes kapcsolat, korrelációszámítás. Varianciaanalízis Prof. Dr. Závoti, József Matematikai statisztikai elemzések 5.: Kapcsolatvizsgálat:

Részletesebben

1. (Sugár Szarvas fgy., 186. o. S13. feladat) Egy antikvárium könyvaukcióján árverésre került. = x = 6, y = 12. s y y = 1.8s x.

1. (Sugár Szarvas fgy., 186. o. S13. feladat) Egy antikvárium könyvaukcióján árverésre került. = x = 6, y = 12. s y y = 1.8s x. . Sugár Szarvas fgy., 86. o. S3. feladat Egy antikvárium könyvaukcióján árverésre került 9 könyv licitálási adatai alapján vizsgáljuk a könyvek kikiáltási és ún. leütési ára ezerft közötti sztochasztikus

Részletesebben

statisztikai menürendszere Dr. Vargha András 2007

statisztikai menürendszere Dr. Vargha András 2007 A statisztikai menürendszere Dr. Vargha András 2007 2 tartalomjegyzék 1. Alapok (egymintás elemzések Alapstatisztikák Részletesebb statisztikák számítása Gyakorisági eloszlás, hisztogram készítése Középértékekre

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 ) Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden

Részletesebben

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra) MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák)

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák) Feladatok megoldásokkal az ötödik gyakorlathoz Taylor polinom, szöveges szélsőérték problémák) 1. Feladat. Írjuk fel az fx) = e x függvény a = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével

Részletesebben

Támogatás / Excel / Excel 2010 súgó és útmutató / Diagramok / Diagramok formázása Hibasáv felvétele, módosítása és eltávolítása diagramban

Támogatás / Excel / Excel 2010 súgó és útmutató / Diagramok / Diagramok formázása Hibasáv felvétele, módosítása és eltávolítása diagramban Page 1 of 6 Támogatás / Excel / Excel 2010 súgó és útmutató / Diagramok / Diagramok formázása Hibasáv felvétele, módosítása és eltávolítása diagramban Hatókör: Microsoft Excel 2010, Outlook 2010, PowerPoint

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben