ANALITIKAI KÉMIA I. gyakorlat

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "ANALITIKAI KÉMIA I. gyakorlat"

Átírás

1 ANALITIKAI KÉMIA I. gyakorlat ktatási segédanyag Titrimetriás és gravimetriás feladatokon alapuló kvantitatív analitikai laboratóriumi gyakorlatokhoz Szerkesztő: Farkas Etelka egyetemi tanár Szervetlen és Analitikai Kémiai Tanszék 2007

2

3 Tartalomjegyzék Tartalomjegyzék Bevezetés...1 TITRIMETRIÁS FELADATKRÓL ÁLTALÁBAN...1 AZ EREDMÉNYES TITRIMETRIÁS MEGHATÁRZÁSKHZ SZÜKSÉGES ALAPISMERETEK SAV-BÁZIS MÉRÉSEK (Acidimetria és alkalimetria) Mérések vizes oldatban Mérőoldatok készítése és koncentrációmeghatározásuk ,1 mol/dm 3 HCl mérőoldat készítése és pontos koncentrációjának meghatározása...7 0,1 mol/dm 3 NaH mérőoldat készítése és pontos koncentrációjának meghatározása Erős és gyenge savak/bázisok, savelegyek/báziselegyek mérése... 8 Ecetsav meghatározása...8 Szilárd minta bóraxtartalmának meghatározása acidi-alkalimetriás titrálással...8 xálsav meghatározása...9 NaH és Na 2 C 3 meghatározása egymás mellett (Warder szerint)...9 H 3 P és KH 2 P meghatározása egymás mellett...10 Kénsav és bórsav egymás melletti meghatározása Meghatározások előkészítő kémiai reakciók (redoxireakció, komplexképződés) során felszabaduló hidrogén-, illetve hidroxidionok mérése alapján Hg meghatározása...11 Na 2 S 2 3 meghatározása brómos oxidáció során képződő savmennyiség mérése alapján...11 Nikkel(II)ionok meghatározása acidi-alkalimetriásan kationcserélő gyanta segítségével Mérések nemvizes közegben Jégecetes mérőoldat készítése és koncentrációjának meghatározása...12 Alkaloidok (papaverin) meghatározása nemvizes közegben XIDÁCIÓS ÉS REDUKCIÓS MÉRÉSEK Permanganometria ,02 mol/dm 3 KMn mérőoldat készítése és koncentrációjának meghatározása...1 Fe(II)-Fe(III) meghatározása permanganometriásan...1 Fe(III) meghatározása permanganometriásan...15 Mn(II) meghatározása Volhard-Wolf szerint...16

4 Tartalomjegyzék 2.2. Bromatometria ,02 mol/dm 3 KBr 3 mérőoldat készítése...16 C-vitamin hatóanyagtartalmának meghatározása Jodometria ,003 mol/dm 3 koncentrációjú KI 3 mérőoldat készítése ,02 mol/dm3 Na 2 S 2 3 mérőoldat készítése és koncentrációjának meghatározása...17 Cu(II) meghatározása jodometriásan...18 I -ionok meghatározása Winkler-féle jódsokszorozó eljárással...18 Neomagnol aktív klórtartalmának meghatározása...19 Vizek oxigéntartalmának meghatározása...20 Alkoholos jód-oldat jód- és jodidion-tartalmának meghatározása CSAPADÉKS TITRÁLÁSK ,05 mol/dm 3 AgN 3 mérőoldat készítése...22 KCl-KBr porkeverék összetételének meghatározása Mohr szerint, indirekt módszerrel KMPLEXMETRIÁS GYAKRLATK ,01 mol/dm 3 Na 2 EDTA mérőoldat készítése...23 Ca(II)- és Mg(II)ionok meghatározása egymás mellett komplexometriásan...2 Bi(III)ion meghatározása egymás mellett komplexometriásan...2 Cu(II)- és Zn(II)ionok meghatározása egymás mellett komplexometriásan...25 Al(III)ion meghatározása egymás mellett komplexometriásan...26 Alumínium-acetát-tartarát-oldat alumínium-tartalmának meghatározása GRAVIMETRIÁS FELADATK...28 Co(II) meghatározása gravimetriás módszerrel 8-hidroxi-kinolinnal (oxin) Berg szerint..28 Kálcium meghatározása CaC 2 H 2 alakjában...29 Nikkel(II)ionok meghatározása dimetil-glioximmal...29 Kis mennyiségű vas(iii) elválasztása króm(iii)-tól extrakcióval. A króm(iii)-tartalom meghatározása gravimetriás módszerrel króm(iii)-oxid alakjában...30 MINTAFELADATK A KLASSZIKUS ANALITIKAI GYAKRLATKHZ KAPCSLÓDÓAN...32 I. Sav-bázis titrálások II. Komplexometriás titrálások III. ldékonyság, oldhatósági szorzat, csapadékos titrálások, tömeg szerinti analízis... 0 IV. Redoxi titrálások... 3

5 Bevezetés TITRIMETRIÁS FELADATKRÓL ÁLTALÁBAN A térfogatos analízis, titrálás, során addig adagolunk ismert koncentrációjú un. mérőoldatot a meghatározandó komponens(eke)t tartalmazó minta oldatához, míg annak hatóanyagtartalma a lejátszatott reakcióban éppen elfogy. Az elemzés eredményes végrehajtásának nélkülözhetetlen feltételei: (i) A mérőoldat hatóanyaga és a meghatározandó komponens között lejátszódó reakció sztöchiometriája ismert legyen, és a reakció mellékreakciók nélkül, gyakorlatilag teljes mértékben lejátszódjon. (ii) A reakció lehetőleg gyors legyen. (iii) A reakció végpontja egyértelműen jelezhető legyen. (iv) A mérőoldat pontosan ismert koncentrációjú legyen. A MÉRŐLDATK KNCENTRÁCIÓjának kifejezésére korábban általánosan használt egység volt a normalitás (mértékegysége = N). 1 normál az az oldat, melynek 1 dm 3 -ében 1 grammegyenérték-tömegnyi anyag van feloldva. (Savaknál a disszociábilis protonok száma a meghatározó, ezért egy 0,1 M koncentrációjú sósav-oldat egyidejűleg 0,1 N is, de egy 0,1 M kénsav-oldat 0,2 N.) Kétségtelen előnyt jelent a titrálás végeredményének számolásánál, hogy azonos normalitású oldatok egyenlő térfogatai egymással mindig ekvivalens mennyiségű hatóanyagot tartalmaznak (v 1 N 1 = v 2 N 2 ). Ugyanakkor egy adott anyag grammegyenértéktömege reakciófüggő, reakciótípusonként változhat. Redoxireakciókban például a leadott/felvett elektronok száma a meghatározó, tehát ha pl. a Mn savas közegben Mn 2+ -vé redukálódik, akkor a grammegyenérték-tömeg a képlet-tömeg 1/5-e, de ha semleges közegben végrehajtott titrálás során Mn(H) 2 képződik belőle, akkor a képlet-tömeg 1/3-a. A lejátszatott reakciótól független, így minden körülmények között egyértelmű viszont az anyagmennyiség-koncentráció (molaritás, jele = c, mértékegysége = mol/dm 3, mol/l, M), mely az oldat 1 dm 3 -ében lévő anyag kémiai anyagmennyiségét (n) jelenti. A Nemzetközi Mértékegységrendszer (SI) szerint csak az utóbbi egység használata a megengedett. Tudnunk kell azonban, hogy az analitikai laboratóriumok mai gyakorlatában a titrimetriás mérőoldatok koncentrációjának megadására még sokszor használatos koncentrációegység a normalitás. Pontosan ismert koncentrációjú mérőoldatokat csak kellően nagy tisztaságú, pontosan ismert összetételű, levegőn stabilis alapanyag számított mennyiségének analitikai pontossággal történő bemérésével nyerhetünk (ezen feltételeknek megfelel pl. a csapadékos titrálások mérőoldatának alapanyaga, az ezüst-nitrát; vagy az oxidimetria egyik mérőoldatának alapanyaga, a kálium-, vagy nátrium-bromát). Amennyiben az előzőleg ismertetett feltételek maradéktalanul nem teljesülnek (pl. sósav, nátrium-hidroxid, nátrium-tioszulfát mérőoldatoknál), akkor közelítő pontosságú beméréssel készítünk mérőoldatot, majd annak pontos koncentrációját utólag állapítjuk meg. A pontos koncentráció utólagos meghatározásához használatos standard anyaggal szemben fenálló követelmények a következőek: A meghatározandó mérőoldattal egyértelmű, gyors reakcióba lépjen. Könnyen tisztítható, ismert és időben állandó összetételű, nem higroszkópos, a levegő oxigénje által nem oxidálódó, szén-dioxidra sem érzékeny, a tömegmérés hibáját csökkentendő lehetőleg minél nagyobb egyenérték-tömegű és az alkalmazott oldószerben jól oldódó legyen. 1

6 Bevezetés A standardból akár egyedi beméréssel készülnek a minták, akár törzsoldat részleteit titráljuk olyan mennyiséget kell bemérnünk, mely biztosítja, hogy a meghatározandó mérőoldatból optimális térfogat fogyjon. A titrálás végeredményének számolása révén jutunk a mérőoldat pontos koncentrációjához. A fent részletezett eljárás megelőzőekben használatos megnevezése: faktorozás. A faktorozás terminológiája szerint a közelítő pontosságú beméréssel készített mérőoldat koncentrációja a névleges koncentráció, a meghatározott pontos érték a tényleges koncentráció. A tényleges koncentráció/névleges koncentráció hányados értéke az un. faktor (jele = f), mely egy 1-hez általában közeli szám. Tekintve, hogy a tényleges koncentráció önmagában egyértelműen megadja a mérőoldat hatóanyagtartalmát, ugyanezen értéket egy szorzattal (faktor névleges koncentráció) kifejezni fölösleges, és hibaforrást is jelent. Használatával kapcsolatosan viszont ugyanaz a helyzet, mint a normalitással. AZ EREDMÉNYES TITRIMETRIÁS MEGHATÁRZÁSKHZ SZÜKSÉGES ALAPISMERETEK 1. Az eljárás során általánosan alkalmazott térfogatmérő eszközök (különféle pitetták, mérőlombikok, büretták) alkalmazásának, tisztításának, kalibrálásának ismerete. 2. A tömegmérés (analitikai-, táramérleg) alkalmazásának, a különféle mérési technikáknak (pl. közvetlen bemérés, visszaméréses technika) ismerete. 3. Egy titrálandó mintához szükséges anyagmennyiség kiszámítása: e kérdés kapcsán fontos szempont, hogy a titrálás végpontjáig szükséges mérőoldat térfogata ne legyen sem túl kevés (pl. 1-2 cm 3 ), sem szükségtelenül (anyagpazarlóan, és főleg a büretta egy mérés során történő újratöltését igénylően) sok. Az általános laboratóriumi gyakorlatban ideálisnak tartott a 8-12 cm 3 -nyi mérőoldat fogyás. 2

7 Bevezetés Példák a titráláshoz szükséges anyagmennyiség számolására: 1. példa: Kb. 0,1 M sósav mérőoldat koncentrációját akarjuk meghatározni KHC 3 primer standardot használva ( M KHC 3 = 100,12 g/mol), a 7. oldalon található leírás szerint. Amennyiben egyedi titrálandó minták készülnek (a.), és azt szeretnénk, hogy egy-egy mintára a mérőoldat fogyása a 8-12 cm 3 (azaz kémiai anyagmennyiségben számolva 0,8-1,2 mmol) tartományba essen, akkor ehhez (mivel a reakcióegyenlet szerint a KHC 3 és a HCl 1:1 arányban reagálnak egymással) mg (0,8 100,12-1,2 100,12) tartományba eső, pontosan ismert mennyiségeket kell analitikai mérlegen, az un. visszaméréses technikával bemérni KHC 3 -ból. Minden mérés eredményét külön számolva, a jónak elfogadott eredményeket (melyekből legalább három legyen) átlagolva adjuk meg a végeredményt. A meghatározáshoz készülhet törzsoldat is (b.). Amennyiben 100,00 cm 3 törzsoldatot készítünk, és ebből egy-egy mintához (melyekben a hatóanyagtartalom ugyancsak 0,8-1,2 mmol tartományba kell, hogy essen) 10,00-10,00 cm 3 -t mérünk ki, akkor a törzsoldathoz mg tartományba eső mennyiségű KHC 3 mérendő be. Az értékelés során ez esetben közvetlenül a mérőoldat-fogyások átlagolandók. 2. példa: Egy minta fenol (M fenol = 9,13 g/mol) tartalmát akarjuk meghatározni bromatometriás módszerrel, 0,01 M KBr 3 mérőoldatot használva. A lejátszódó reakciók egyenletei: H Br Br + H + = 3 Br H 2 H Br Br +3 Br H Br - Br Mivel 1 mol bromát termeli azt a három mol brómot, mellyel 1 mol fenol reagál, így a bromát/fenol arány = 1:1. Ezt figyelembe véve ahhoz, hogy a mérőoldat-fogyás a 8-12 cm 3 tartományba essen, egy-egy titrálandó minta fenoltartalmának 0,08-0,12 mmol, azaz 7,5-11,5 mg tartományon belül kell lennie. Amennyiben törzsoldat készül, akkor a törzsoldat/{egy mintához kivett térfogatok} aránya szerint többszöröződik a szükséges anyagmennyiség (a.). A fenol meghatározását ugyanakkor mivel a reakció lassú rendszerint nem közvetlen titrálásban, hanem a visszaméréses technikával (b.) végzik az alábbiak szerint: Ismert, fölös mennyiségű kálium-bromát mérőoldatot pipettázunk a titrálandó mintához, sósavval savanyítjuk, majd percre a lombikot lezárjuk, mely idő alatt a reakció lejátszódik. Az edény kinyitása után kálium-jodidot adva a mintához, az reagál az el nem reagált brómmal, majd a kivált jódot nátrium-tioszulfáttal mérjük. Br I = I Br I S 2 3 = S I 3

8 Bevezetés. A titrálás végeredményének számítása (a fenti két példán szemléltetve): 1. példa: a.) A sósav koncentráció-meghatározása egyedi titrálandó minták alapján: 1. titrálás: 0,0925 g (azaz 92,5/100,12 = 0,92 mmol) KHC 3, melyre a mérőoldatfogyás 9,3 cm 3, így a számolt koncentráció = 0,92/9,3 = 0,0989 M 2. titrálás: 0,0998 g (azaz 99,8/100,12 = 0,997 mmol KHC 3, melyre a mérőoldatfogyás 10,25 cm 3, így a számolt koncentráció = 0.997/10.25 = M 3. titrálás: 0,1025 g (azaz 102,5/100,12 = 1,0238 mmol KHC 3, melyre a mérőoldatfogyás 10,35 cm 3, így a számolt koncentráció = 1,0238/10,35 = 0,0989 M Tekintve, hogy a második érték az egymással jól egyező első és harmadiktól kb. 1,7 %-kal eltér, ezért újabb mérés javasolt. Ezt mindaddig célszerű folytatni, míg legalább három olyan eredményt kapunk, melyek egymással 0,5 %-on belül megegyezőek.. titrálás: 0,1006 g (azaz 100,6/100,12 = 1,008 mmol KHC 3, melyre a mérőoldatfogyás 10,13 cm 3, így a számolt koncentráció = 1,008/10,3= 0,0992 M. A sósav mérőoldat koncentrációja: (0, , ,0992)/3 = 0,0990 M 1. példa: b.) A sósav koncentráció-meghatározása KHC 3 törzsoldat részleteit titrálva: 100,00 cm 3 törzsoldatra bemérve: 1,0053 g (azaz 10,01 mmol) KHC 3. A törzsoldat 10,00-10,00 cm 3 -es részleteit (melyek egyenként 1,001 mmol-nyi anyagot tartalmaztak) titrálva a fogyások rendre: 10,16, 10,11, 10,26 és 10,13 cm 3. (Tekintettel a harmadik érték kiugró voltára, negyedik mérés is készült.) A négy mérésből három eredménye egymással elfogadható hibahatáron belül megegyezik, így ezek átlaga adja az un. átlagfogyást, ami (10, , ,13)/3= 10,13 cm 3. Ez alapján a mérőoldat koncentrációja: 1,001/10,13 = 0,0991 M. 2. példa: b.) A fentiek szerinti visszaméréses technika szerint dolgozva, egy jódszámlombikba bemért fenol-tartalmú minta vizes oldatához 10,00 cm 3 0,01 M kálium-bromát mérőoldatot pipettázunk, savanyítás után az edényt lezárjuk, majd kb. 0,2 g-nyi kálium-jodidot a mintához adva és a kivált jódot 0, M nátrium-tioszulfáttal visszamérve, az álagfogyás 10,25 cm 3 -nek adódott. Hány mg fenolt tartalmazott a minta? A mintához hozzáadott összes bromát 10 0,01 = 0,10 mmol, melyből 0,30 mmol bróm képződött. Ebből nem reagált el, így a jodiddal reagálva, a tioszulfát által visszamérésre került (a reakcióegyenletekben látható mólarányokat figyelembe véve) 0, ,25 / 2 = 0,0312 mmol, azaz a fenollal elreagált 0,30 0,0312 = 0,26885 mmol bróm. Ez a brómmennyiség a reakcióegyenlet szerint harmadennyi fenollal reagál, tehát annak mintabeli mennisége 0,08962 mmol volt. A moláris tömeget figyelembe véve, 0, ,13 = 8,356 mg fenolt tartalmazott a minta.

9 Bevezetés 5. Reakciók végpontjának jelzése, az indikátorok működésének elve, az indikátor-választás szabályai, indikátorhiba: A kémiai végpontjelzés történhet (i) olyan festékmolekulákkal, melyek vagy a titrálandó komponenssel (pl. a komplexometriában a meghatározandó fémionnal), vagy a mérőoldattal (pl. a sav-bázis indikátorok a ph-tól függően a mérőoldat savval, vagy bázissal) eltérő színű terméket, esetleg csapadékot szolgáltatnak; (ii) külön indikátor nélkül, ha pl. a mérőoldat kis fölöslege jelzi a reakció végét (pl. permanganometriás titrálásoknál a nyomnyi mennyiségben fölöslegbe került permanganát intenzív ibolya színnel jelez); (iii) irreverzibilis indikálás révén, amikor egy színes festékmolekula elroncsolása történik, ha a mérőoldat hatóanyaga nyomnyi mennyiségben fölöslegbe kerül (pl. a bromatometriában metilnarancs elroncsoltatása). Az indikátor kiválasztásánál alapvető szempont, hogy a vele bekövetkező/megfigyelhető változás az ekvivalenciapont környezetében, azt minél jobban megközelítve következzen be. Az ekvivalenciapont és az indikátor jelzésekor megállapított végpont alapján számolt végeredmény egymással néhány tized százalékon belül meg kell hogy egyezzen (hiba < 0,5%). Sav-bázis reakciókon alapuló titrálásoknál ismerni kell az ekvivalenciapont várható ph-ját, amit egyeztetni kell az indikátor átcsapási ph-tartományával (pk ind ± 1): erős sav - erős bázis reakciónál ph = 7, gyenge savat erős bázissal titrálva ph > 7, gyenge bázist erős savval titrálva ph < 7, többértékű savak/bázisok meghatározásánál ha az egyes lépcsők elválóak a köztes protonáltságú forma (amfolit) gyakorlatilag 100%-ban létezik az ekvivalenciapontban, és ez határozza meg a ph-t). Redoxi reakcióknál, ha redoxi indikátort alkalmazunk, akkor az ekvivalenciaponti redoxipotenciált kell az indikátor átcsapási tartományának magában foglalni (E ± 0,059/z, ahol E = az indikátor redoxi félreakciójára vonatkozó formálpotenciál, z = elektronszámváltozás). Komplexometriánál, ahol általában fémion(oka)t határozunk meg EDTA-val való titrálással, a titrálások végpontjának jelzésére leggyakrabban színes komplexeket adó fémindikátorok használatosak. A végpontjelzés azon alapul, hogy az indikátornak a meghatározandó fémionnal képzett komplexe más színű, mint az indikátor saját színe az adott reakciókörülmények között. Az indikátor a meghatározandó fémionnal kialakított komplexben van (M-Ind.) mindaddig, amíg az EDTA ki nem szorítja. Így a titrálás elején az indikátor fémkomplexének (M-Ind.) a színét látjuk, a végpontban pedig a szabad indikátor (I) színét. Az ekvivalenciapontig a teljes kiszorítás akkor történik meg, ha az M-Ind. komplex stabilitási állandója (K M-Ind. ) kb. nagyságrenddel kisebb, mint a K M-EDTA. Csapadékos titrálásnál, ha az eredetitől eltérő színű csapadék megjelenítésével jeleztetjük a 2 végpontot, akkor úgy kell a csapadékképző indikátor-ion (argentometriánál ez pl. a Cr ) koncentrációját a mintában megválasztani, hogy a vele csapadékot képező ion (Ag + ) ekvivalenciapontbeli koncentrációjánál legyen az oldat éppen telített a kölcsönhatásukban képződő anyagra (Ag 2 Cr ) nézve. 5

10 Bevezetés Két példa annak illusztrálására, hogy mekkora hibát véthetünk a nem megfelelő indikátor, vagy a nem megfelelően megválasztott indikátor-ion koncentrációval: 1. Hány százalékos hibát vétünk akkor, ha 15,00 cm 3 0,110 M koncentrációjú ecetsav-oldatot CH3CH ( K = 1, ) 0,105 M nátrium-hidroxiddal metilnarancs indikátor jelenlétében s titrálunk? Az ekvivalenciapontig szükséges mérőoldattérfogat (V ekv ) = 15,00 0,110 / 0,105 = 15,71 cm 3 lenne. Az ekvivalenciapontban gyakorlatilag csak a reakcióban keletkezett acetát-ion (és ellenionja, a Na + ) lenne jelen, ami gyenge bázis lévén (az ecetsav konjugált bázisa) 7-től nagyobb ph-t határoz meg az oldatnak. Metilnarancsra a pk Ind = 3,8 és ha feltételezzük, hogy az indikátor átmeneti színét, tehát a titrálás végpontját a [HInd] = [Ind ] pontban, ahol pk Ind = ph, állapítjuk meg akkor a mérést ph = 3,8-nál, azaz az ekvivalenciapont előtt fejezzük be. Az ekvivalenciapont előtt egy ilyen rendszer puffer, mivel együtt van a még el nem reagált gyenge sav és a reakcióban képződött CH3CH gyenge bázisának sója. A ph = pk + log c só /c sav képlet alapján: 3,8 =,732 + log c só /c sav =,732 + log n só /n sav. Ebből n só /n sav = 0,1169. s Mivel tudjuk, hogy a rendszerben az n só + n sav = 15,00 0,110 = 1,65 mmol, az n sav, mely a még el nem reagált sav anyagmennyisége = 1,77 mmol. Ez az érték a teljes 1,65 mmol-nak a 89,53 %-a, és ez adja azt a hibát, amit a nem megfelelő indikátorválasztás miatt elkövettünk! 2. Hány százalékos hibát vétünk, ha 20,00 cm 3 0,05 M KCl oldatot 0,06 M AgN 3 mérőoldattal titrálunk, és a mintában az AgCr indikátor-csapadék megjelenését éppen megelőzően a K 2 Cr koncentrációja 0,005 M? (L AgCl = 1, ; L Ag 2 Cr = 2, ) Az ekvivalenciapontig szükséges mérőoldattérfogat (V ekv ) = 20,00 0,05 / 0,06 = 21,7 cm 3 lenne. A végpontot azonban ott fogjuk megállapítani, ahol a vörösbarna színű Ag 2 Cr csapadék megjelelését észleljük. E csapadék megjelenésének feltétele pedig az, hogy éppen elérjük, hogy a mintánk Ag 2 Cr -re nézve túltelített legyen. Azaz ha az éppen telítetthez képest bármilyen csekély mértékben további mérőoldatot adunk, a csapadék megjelenik. Telített az oldatra: 1, = [Ag + ] 2 [0,005] [Ag + ] = 1,1 10 M Ez az ezüstion-koncentráció fölös ezüst-nitrát hozzáadását igényli. A teljes hozzáadott ezüstnitrát mérőoldat mennyisége: V 0,06 mmol, melyből az ekvivalenciapontig elreagált 21,7 0,06 mmol. A különbség a teljes térfogattal osztva éppen az ezüst-kromátra nézve telített oldatnak az ezüstion-koncentrációját adja meg: (V 0,06 21,7 0,06)/(20,00 + V) = 1,1 10, melyből V = 21,87 cm 3 adódik. A számolható hiba tehát: ((21,87 21,7)/21,7) 100 = 0,6 %. A titrimetriás meghatározások csoportosíthatók a meghatározás érdekében lejátszatott reakciók típusa szerint. 6

11 Sav-bázis mérések 1. SAV-BÁZIS MÉRÉSEK (Acidimetria és alkalimetria) A cél: Sav-bázis reakciót lejátszatva különféle erősségű savak, illetve bázisok koncentrációjának meghatározása. A sav mérőoldat legtöbbször sósav, esetleg kénsav vagy perklórsav lehet, míg lúg mérőoldatként nátrium-hidroxid, kálium-hidroxid, esetleg bárium-hidroxid szerepel Mérések vizes oldatban Mérőoldatok készítése és koncentrációjuk meghatározása 0,1 mol/dm 3 HCl mérőoldat készítése és pontos koncentrációjának meghatározása a.) ldatkészítés: Az 500 cm 3, közelítőleg 0,1 mol/dm 3 koncentrációjú HCl oldatot 36 (m/m)%- os, 1,18g/cm 3 sűrűségű sósav oldatból hígítással készítjük. Az oldat készítésénél nem kell 500,00 cm 3 -es mérőlombikot használni, olyan főzőpohár is jó, amelyen látszik az 500 ml-es beosztás! b.) A készített oldat pontos koncentrációjának meghatározása: A meghatározás reakcióegyenlete: HC 3 + H + = H 2 C 3 H 2 + C 2 Recept: Analitikai tisztaságú KHC 3 -ból analitikai mérlegen visszaméréssel 0,1 g körüli mennyiségeket mérünk be cm 3 -es titrálólombikokba. A bemért anyagot cm 3 desztillált vízben oldjuk és 1-3 csepp metilvörös indikátort alkalmazva a közelítőleg 0,1 mol/dm 3 HCl oldattal hagymavörös színig titráljuk. A lombik tartalmát ezt követően (horzsakövet használva) a C 2 eltávolítása végett 2-3 percig forraljuk. A szobahőmérsékletre lehűtött oldatot cseppenként tovább titráljuk az átmeneti hagymavörös színig. Másik lehetőség szerint a KHC 3 -ból analitikai mérlegen történő közvetlen beméréssel kb. ~0,1 mol/dm 3 (pontosan ismert) koncentrációjú 100,00 cm 3 térfogatú törzsoldatot készítünk, melyből a fentiekben leírtak szerinti titrálásokhoz 10,00-10,00 cm 3 -es részleteket használunk. A KHC 3 molekulatömege: 100,12 g/mol Forrás: Schulek-Szabó, 113. o. 0,1 mol/dm 3 NaH mérőoldat készítése és pontos koncentrációjának meghatározása a.) ldatkészítés: A szilárd NaH egyrészt higroszkópos, másrészt a felületén megkötött C 2 miatt több-kevesebb karbonátot tartalmaz, beméréssel tehát pontos koncentrációjú oldatot nem lehet készíteni. Karbonátmentes mérőoldatot nyerhetünk, ha a készítendő oldathoz szükséges NaH mennyiségnek kétszeresét mérjük be gyorsan, táramérlegen egy 250 cm 3 térfogatú Erlenmeyer-lombikba. Ezt követően az előre elkészített (kiforralt, lehűtött) desztillált víz kb. 100 cm 3 -ével a NaH-ot rázogatjuk megközelítőleg a fele mennyiség feloldódásáig. Az oldatot gyorsan leöntjük a maradék NaH-ról. Ezt a maradék NaH-ot kiforralt, lehűtött desztillált 7

12 Sav-bázis mérések vízben azonnal oldva készítjük a mérőoldatot, amit a karbonátosodás megakadályozására jól zárt üvegedényben tárolunk. Másik eljárás szerint kb. 50 (m/m) % koncentrációjú NaH-oldatot készítünk, melyben a Na 2 C 3 nem oldódik, az oldatból kiülepszik. A csapadék feletti és a folyadék felületén lévő vékony karbonáthártya alatti tiszta oldatból hígítással készíthető mérőoldat. A hígítást elegendő beosztással ellátott főzőpohárban végezni, nem kell mérőlombikot használni! b.) A készített NaH oldat pontos koncentrációjának meghatározása ismert koncentrációjú HCl oldatra: A meghatározás ionegyenlete (molekulaegyenlete): H + + H = H 2 (HCl + NaH = H 2 + NaCl) Recept: A már ismert koncentrációjú, közelítőleg 0,1 mol/dm 3 HCl oldat 10,00-10,00 cm 3 -es részleteit 100 cm 3 -es titrálólombikba mérjük. A mintákat desztillált vízzel cm 3 -re hígítjuk és 2-3 csepp metilvörös indikátort alkalmazva hagymavörös színig titráljuk. A NaH molekulatömege: 0,00 g/mol Forrás: Schulek-Szabó, 116. o Erős és gyenge savak/bázisok, savelegyek/báziselegyek mérése Eetsav meghatározása Az ecetsav egyértékű gyenge sav (K s = 1, ), fenolftalein indikátor jelenlétében titrálható. A meghatározás ionegyenlete: CH 3 CH + H = CH 3 C + H 2 Recept: A kiadott ismeretlen oldatból 100,00 cm 3 törzsoldatot készítünk. A törzsoldat 10,00-10,00 cm 3 -es részleteit desztillált vízzel kb cm 3 -re hígítjuk, majd 5-6 csepp fenolftalein indikátort adunk hozzá. Az oldatot ismert koncentrációjú NaH mérőoldattal a halvány rózsaszín megjelenéséig titráljuk. Beadandó: ecetsav mennyisége mg-ban Az ecetsav molekulatömege: 60,05 g/mol Hibahatár: 3% Forrás: Schulek-Szabó, 122. o. Szilárd minta bóraxtartalmának meghatározása acidi-alkalimetriás titrálással A meghatározás ionegyenlete: 2 B H H 2 = H 3 B 3 8

13 Sav-bázis mérések Recept: Az ismeretlen összetételű porkeveréket, mely bóraxot és inert szennyezést tartalmaz, homogenizálni kell. Homogenizálás után analitikai mérlegen visszaméréses technikával kb. 0,g 0,g, pontosan ismert mennyiséget mérünk titráló lombikba. A mintákat desztillált vizes oldás után (térfogat cm 3 ) két csepp metilnarancs indikátor jelenlétében, ismert koncentrációjú HCl mérőoldattal átmeneti színig titráljuk. Beadandó a minta %(m/m) bóraxtartalma. Molekulatömeg: (Na 2 B 7 10H 2 ): 381,37 g/mol Hibahatár: % xálsav meghatározása Az oxálsav olyan kétértékű, közepes erősségű sav, amelynél a konszekutív disszociáció egyes szakaszai nem különíthetők el jól egymástól (K sl = 6,5 10 2, K s2 = 6, ). Meghatározása az egyes titrálási lépcsők alapján, külön-külön csak nagy hibával, egy lépésben viszont minden különösebb nehézség nélkül elvégezhető. CH C H - = + 2 H 2 CH C - Recept: A kiadott ismeretlen oldatból 100,00 cm 3 törzsoldatot készítünk. A törzsoldat 10,00-10,00 cm 3 -es részleteihez 2-3 csepp fenolftalein indikátort adunk. Az oldatot a halvány rózsaszín szín megjelenéséig titráljuk. Beadandó: oxálsav mennyisége mg-ban Molekulatömeg: (CH) 2 2H 2 : g/mol Hibahatár: % Forrás: Schulek-Szabó, 125. o. NaH és Na 2 C 3 meghatározása egymás mellett (Warder szerint) A meghatározás egyenletei: A végpontot fenolftaleinnel jelezve: NaH + HCl = H 2 + NaH 2 C 3 + H + = Metilnarancs/vörös indikátor mellett továbbtitrálva: HC 3 HC 3 + H + = H 2 C 3 H 2 + C 2 Recept: Az ampullában kiadott ismeretlent maradék nélkül 100,00 cm 3 -es mérőlombikba mossuk, majd jelig töltjük. A törzsoldat 10,00 cm 3 -es részleteit 100 cm 3 -es titrálólombikba mérjük, majd desztillált vízzel ~0 cm 3 -re hígítjuk a mintákat. Egy-egy mintához ~3 g NaCl-ot és 3- csepp fenoftalein indikátort adunk, majd rázogatás nélkül (csak amennyi szükséges az oldat homogenizálásához) óvatosan halvány rózsaszínig titráljuk HCl mérőoldattal. Ezt követően 9

14 Sav-bázis mérések 1-3 csepp metilvörös indikátort viszünk a rendszerbe és átmeneti hagymaszínig tovább titrálunk. A titrálás végpontja előtt a C 2 -ot kiforraljuk és lehűtött oldatban befejezzük a titrálást. Molekulatömegek: NaH: 0,00; Na 2 C 3 : 106,00 g/mol Hibahatár: NaH: %; Na 2 C 3 : % Forrás: Schulek-Szabó, 12. o. H 3 P és KH 2 P meghatározása egymás mellett A meghatározás ionegyenletei: A végpontot metilnaranccsal jelezve: H 3 P + H = Fenolftalein mellett továbbtitrálva: H 2P + H = H 2P + H 2 2 HP + H 2 Recept: Az ampullában kiadott ismeretlent maradék nélkül 100,00 cm 3 -es mérőlombikba mossuk, majd jelig töltjük. A törzsoldat 10,00 cm 3 -es részleteit 100 cm 3 -es titrálólombikba mérjük.a mintákat cm 3 -re hígítjuk, és NaH mérőoldattal 1-3 csepp metilnarancs indikátor mellett kezdődő sárga színig titrálunk. A megtitrált oldathoz ~ 1 g szilárd NaCl-ot adunk és ennek feloldódása után -5 csepp fenolftalein indikátor mellett maradandó rózsaszíníg tovább titrálunk. Molekulatömegek: H 3 P : 98,00; KH 2 P :136,09 g/mol Hibahatár: H 3 P : 3 %; KH 2 P : % Forrás: Schulek-Szabó, 125. o. Kénsav és bórsav egymás melletti meghatározása A meghatározás ionegyenletei: A végpontot metilnaranccsal jelezve: H 2 S + 2 H = ( HS + H H = 2 S + 2 H 2 2 S + 2 H 2 ) Mannit hozzáadása után fenolftalein mellett továbbtitrálva: C H H B H H C C + + C H H C C H B C C - + H H 2 H + + H = H 2 A bórsav olyan gyenge sav, hogy 0,1 mol/dm 3 koncentrációjú oldatának a ph-ja nagyobb, mint 5. Ennél kisebb indikátorexponensű indikátorok (metilvörös, metilnarancs) a bórsavra gyakorlatilag nem érzékenyek. Ezek alkalmazásával a bórsav mellett jelenlevő erős savak megtitrálhatók. A titrálás többértékű alkohol hozzáadása után folytatható és a bórsav mennyisége meghatározható. 10

15 Sav-bázis mérések Recept: A kiadott ismeretlen oldatból 100,00 cm 3 törzsoldatot készítünk. A törzsoldatból 10,00 cm 3 -t titrálólombikba pipettázunk. Hozzáadunk 1 csepp metilvörös indikátort és a nátriumhidroxid-mérőoldattal átmeneti (hagymavörös) színűre titráljuk. Ezután 1,0 g mannitot és 2 csepp fenolftalein indikátort adunk a titrálandó oldathoz, majd a nátrium-hidroxiddal a rózsaszín megjelenéséig folytatjuk a titrálást. (A mannit hozzáadása után az oldat színe ismét piros lesz, majd a titrálás folyamán sárgává változik, tehát az indikátor rózsaszínének megjelenését a sárga oldatban észleljük.) Meghatározandó: a kapott oldat kénsav- és bórsavtartalma mg-ban. Molekulatömegek: H 2 S : 98,08; H 3 B 3 : 61,8 g/mol Hibahatár: H 2 S : 3%, H 3 B 3 : % Forrás: Schulek-Szabó, 119. és 137. o Meghatározások előkészítő kémiai reakciók (redoxireakció, komplexképződés) során felszabaduló hidrogén-, illetve hidroxidionok mérése alapján Hg meghatározása A meghatározás ionegyenletei: Hg + I + H 2 = [HgI ] H H + H + = H 2 Recept: A kapott porkeveréket dörzscsészében gondosan homogenizáljuk, majd analitikai mérlegen 0,2 g körüli mennyiségeket 100,00 cm 3 -es titrálólimbikba mérünk, hozzáadjunk körülbelül 2 g szilárd KI-ot, majd cm 3 vízben oldjuk a keveréket. A Hg teljes feloldódása után 1-3 csepp metilvörös indikátor mellett a már ismert koncentrációjú 0,1 mol/dm 3 HCl oldattal hagymavörös színig titráljuk. Beadandó a szilárd porkeverék Hg tartalma (m/m) %-ban. Hibahatár: % A Hg molekulatömege: 216,62 g/mol Forrás: Schulek-Szabó, 113. és 139. o. Na 2 S 2 3 meghatározása brómos oxidáció során képződő savmennyiség mérése alapján A meghatározás ionegyenletei: 2 S Br H 2 = 2 H + H + = H S + 8 Br + 10 H + Recept: Az ampullában kiadott ismeretlent maradék nélkül 100,00 cm 3 -es mérőlombikba mossuk, majd jelig töltjük. A törzsoldat 10,00 cm 3 -es részleteit 100 cm 3 -es Erlenmeyer lombikba mérjük, térfogatukat desztillált vízzel ~ 50 cm 3 -re növeljük, majd elszívófülke alatt lassan annyi, frissen készült, brómos vizet csepegtetünk hozzájuk, míg a gyengén sárga szín meg nem marad.

16 Sav-bázis mérések A felesleges brómot ezután forralással távolítjuk el. (Mintegy percre van szükség a brómfelesleg elűzéséhez. Horzsakő! Elszívófülke használata kötelező.) A kiforralás eredményességét úgy ellenőrizzük, hogy tízszeresére hígított metilvörös indikátorból 1 cseppet adunk az oldathoz. Amennyiben még Br 2 van jelen, az az indikátort elroncsolja. Ilyen esetben meg kell ismételni. A Br 2 teljes eltávozása után az oldatot lehűtjük és 1-3 csepp metilvörös indikátor mellett NaH mérőoldattal átmeneti színig titráljuk. Beadandó a minta nátrium-tioszulfát tartalma mg-ban. A Na 2 S 2 3 molekulatömege: 158,12 g/mol Hibahatár: % Forrás: Schulek-Szabó, 136. o. Nikkel(II)ionok meghatározása acidi-alkalimetriásan kationcserélő gyanta segítségével A meghatározás ionegyenletei: 2 H + (gyantán) + Ni 2+ (oldatban) = 2 H + (oldatban) + Ni 2+ (gyantán) H + H + = H 2 Recept: A H + formára hozott kationcserélő oszlopon az ismertelen oldat Ni 2+ ionjait H + onokra cseréljük. A szabaddá váló ekvivalens H + -t eluáljuk, majd NaH mérőoldattal mérjük. Az eljárás leírása: A H + formára hozott és átmosott oszlopot ~50 cm 3 desztillált vízzel semlegesre mossuk. Arról, hogy az oszlop tartalmaz-e szabad H + -ionokat, az elfolyó víz ph-jának mérésével (indikátor papír) győződünk meg. Az ampullában kiadott ismeretlent maradék nélkül 100,00 cm 3 -es mérőlombikba mossuk, majd jelig töltjük. A törzsoldat 5,00 cm 3 -es részletét visszük fel a fentiek szerint előkészített oszlopra. Kb csepp/perc átfolyási sebesség mellett cm 3 desztillált víz szükséges az elucióhoz. Ügyeljünk arra, hogy a gyantaoszlop állandóan folyadék alatt maradjon. Az elúció bejezésekor (indikátorpapírral) győződjünk meg annak teljességéről. Az eluátumot metilvörös indikátor vagy metilvörös-metilénkék indikátorkeverék hozzáadása után NaH mérőoldattal titráljuk. Beadandó a kiadott minta nikkel(ii)ion tartalma mg-ban. Nikkel atomtömege: 58,71 g/mol Hibahatár: % 1.2. Mérések nemvizes közegben Jégecetes mérőoldat készítése és koncentrációjának meghatározása A jégecetes perklórsav mérőoldat készítéséhez analitikai tisztaságú tömény (69-71 %-os) perklórsavat, valamint jégecetet használunk. ( A jégecet használata nagy körültekintést igényel: a bőrre jutva fájdalmas gyulladást okozhat!) Az ecetsav legfeljebb 0,5 % vizet tartalmazhat. Amennyiben a víztartalom ennél nagyobb, az ecetsavat a víztartalommal ekvivalens, számított mennyiségű ecetsavanhidriddel elegyítjük és egy napig állni hagyjuk. 12

17 Sav-bázis mérések A mérőoldat készítése során 9 cm 3 tömény perklórsavhoz 1000,0 cm 3 -es mérőlombikban ~ 600 cm 3 jégecetet öntünk, majd a víztartalomnak megfelelő, számított mennyiségű (~16 cm 3 ) ecetsavanhidriddel elegyítjük. Az oldatot összerázzuk, és egy napi állás után a térfogatot 1000,0 cm 3 -re egészítjük ki. A pontos koncentráció meghatározáshoz analitikai pontossággal lemért ~ 0,2 g, előzőleg 120 o C-on 2 óra hosszat szárított kálium-hidrogén-ftalátot 15 cm 3 jégecetben oldunk. Ha szükséges, a teljes oldódásig enyhén melegítjük az oldatot.(nyílt láng használata tűzveszély miatt tilos!) A szobahőmérsékletű oldatot 2-3 csepp kristályibolya indikátor jelenlétében (az indikátorra nézve 0,1 %-os jégecet oldat) 0,1 mol/dm 3 perklórsavval kékeszöld szín eléréséig titráljuk. A kálium-hidrogén-ftalát molekulatömege: 20,23 g/mol Alkaloidok (papaverin) meghatározása nemvizes közegben H 3 C H 3 C H 2 C N CH 3 CH 3 Papaverin (Alk.) A 10 8 értéknél kisebb disszociációs állandójú gyenge bázisokat és savakat vízmentes körülmények között savas, illetve bázikus oldószert alkalmazva megtitrálhatjuk. Bázisok mérésére sav mérőoldatként jégecetes perklórsavat alkalmaznak leggyakrabban. A papaverinium-klorid (Alk.HCl vagy (Alk.H + )(Cl )) sóból jégecetes közegben, higany(ii)-acetát hatására a rosszul disszociáló higany(ii)-klorid képződik és ilymódon a papaverinium ellenionja acetátra cserélődik. Reakcióegyenlet: 2 Alk.HCl + Hg(CH 3 C) 2 = HgCl (Alk.H + )(CH 3 C ) Jégecetes perklórsavval titrálva az oldatot a bázistartalom meghatározható. A higany(ii)-acetát fölöslege a mérést nem zavarja, mert ez a vegyület jégecetben csak igen gyenge bázisként viselkedik. Recept: A porkeverék analitikai pontossággal mért ~0, g-os részletét 100 cm 3 -es csiszolatos dugóval ellátott Erlenmeyer-lombikban 5 cm 3 jégecetben oldjuk, és az oldatot 10 cm 3 jégecetes higany(ii)-acetáttal elegyítjük. 2-3 csepp kristályibolya indikátor-oldat hozzáadása után 0,1 mol/dm 3 koncentrációjú perklórsavval kékeszöld szín eléréséig titráljuk. (A titrálás során KCl válhat ki, de ez a végpont észlelését nem zavarja.) Számítsuk ki a porkeverék papaverinium-klorid-tartalmát %(m/m)-ban! Molekulatömeg: 375,8 g/mol Hibahatár: % Forrás: Schulek-Szabó, o. 13

18 xidációs és redukciós mérések 2. XIDÁCIÓS ÉS REDUKCIÓS MÉRÉSEK A cél: Redoxireakció(ko)n alapuló titrálásokban történő mennyiségi meghatározás. xidimetria: a mérőoldat hatóanyaga oxidálószere a meghatározandó komponensnek. Ezen belül a mérőoldat hatóanyaga alapján történhet a csoportosítás: pl. permanganometria, kromatometria, bromatometria... Reduktometria: a mérőoldat hatóanyaga oxidálódik a meghatározás során (pl. aszkorbinometria, titanometrai...). Mindkét csoportba tartozó meghatározásra is több példa ismert a jodometriában, mivel a jódot redukáló, valamint a jodidot oxidáló anyagok mérése egyaránt történhet egy meghatározásban. Így tehát a jodometria reakciópartnertől függően az oxidimetria, illetve a reduktometria csoportjába is sorolható Permanganometria 0,02 mol/dm 3 KMn mérőoldat készítése és koncentrációjának meghatározása a.) ldatkészítés: A 250 cm 3, 0,02 mol/dm 3 KMn oldat készítéséhez a számított mennyiségű, analitikai tisztaságú vegyszert táramérlegen mérjük be. A frissen elkészített oldatot ülepítjük, majd pár óra elteltével üvegszűrőn átszűrjük. b.) A készített oldat pontos koncentrációjának meghatározása Na 2 (C) 2 -ra történik. A meghatározás ionegyenlete: 2 Mn + 5 (CH) H + = 2 Mn C H 2 Na 2 (C) 2 törzsoldat készítése: A megfelelő tisztaságú szilárd Na 2 (C) 2 analitikai mérlegen történő bemérésével készül az 0,05 mol/dm 3 koncentrációjú oldat. Recept: A Na 2 (C) 2 törzsoldat 10,00 cm 3 -es részleteit 100 cm 3 -es titrálólombikba visszük, térfogatukat desztillált vízzel ~30 cm 3 -re növeljük majd 10 cm 3 10 (m/m)%-os H 2 S oldatot adunk az egyes mintákhoz. A reakcióelegybe 0,2-0,3 g MnS -ot szórunk, majd a o C-ra melegített oldatot a KMn mérőoldattal halvány rózsaszínig titráljuk. Időben elhúzódó titrálásnál a mintát a titrálás vége felé ismét felmelegítjük. A KMn molekulatömege: 158,0 g/mol; a Na 2 (C) 2 molekulatömege: 13,00 g/mol Forrás: Schulek-Szabó, 18. o. Fe(II)-Fe(III) meghatározása permanganometriásan A meghatározás ionegyenletei: 2 Fe 3+ + SnCl Cl = 2 Fe 2+ + SnCl SnCl 2 + 2Hg 2+ + Cl = SnCl + Hg 2 Cl 2(szilárd) 5 Fe 2+ + Mn + 8 H + = Mn Fe 3+ + H 2 1

19 xidációs és redukciós mérések Recept: A kapott mintát maradék nélkül 100,00 cm 3 -es mérőlombikba mossuk és azt jelig töltjük. Az így nyert törzsoldat 10,00 cm 3 -es részleteit 100 cm 3 -es titrálólombikba pipettázzuk cm 3 Zimmermann-Reinhardt oldatot adunk egy-egy mintához, majd hidegen a KMn mérőoldattal a halvány rózsaszín megjelenésig titrálunk. (A halvány rózsaszín legalább 30 s-ig megmarad!) A megtitrált mintához 10 cm 3 20 (m/m) %-os sósavat adunk, majd horzsakő jelenlétében forrásig hevítjük. A forró oldathoz cseppenként cc. HCl-val frissen készült 15 (m/m) %-os SnCl 2 -ot adunk, az oldat teljes elszíntelenedésig. Célszerű ezután még egy csepp SnCl 2 -ot juttatni a rendszerbe. Ezt követően lehűtjük az oldatot, majd hirtelen mozdulattal 10 cm 3 5 (m/m) %-os HgCl 2 -ot adunk hozzá. Fehér, selymes fényű Hg 2 Cl 2 válik ki (esetleg 500) cm 3 -es lombikba 300 cm 3 desztillált vizet, pár csepp permanganátot adunk az oldathoz (amit a teljes fogyásba természetesen beszámítunk), majd maradéktalanul belemossuk a már előzőleg redukált vassó oldatot, és állandó kevergetés közben a KMn mérőoldattal tartós rózsaszínig titráljuk. A vas atomtömege: 55,85 g/mol Hibahatár: Fe(II):3 %; Fe(III): %. Forrás: Schulek-Szabó, o. Fe(III) meghatározása permanganometriásan A meghatározás ionegyenletei: 2 Fe 3+ + SnCl Cl = 2 Fe 2+ + SnCl SnCl 2 + 2Hg 2+ + Cl = SnCl + Hg 2 Cl 2(szilárd) 5 Fe 2+ + Mn + 8 H + = Mn Fe 3+ + H 2 Recept: A kapott mintát maradék nélkül 100,00 cm 3 -es mérőlombikba mossuk és azt jelig töltjük. Az így nyert törzsoldat 10,00 cm 3 -es részleteit 100 cm 3 -es titráló lombikokba pipettázzuk cm 3 Zimmermann-Reinhardt oldatot és 10 cm 3 20 (m/m) %-os sósavat adunk egy-egy mintához, majd horzsakő jelenlétében forrásig hevítjük. A forró oldathoz cseppenként cc. HCl-val frissen készült 15 (m/m) %-os SnCl 2 -ot adunk, az oldat teljes elszintelenedéséig. Célszerű ezután még egy csepp SnCl 2 -ot juttatni a rendszerbe. Ezt követően lehűtjük az oldatot, majd hirtelen mozdulattal 10 cm 3 5 (m/m) %-os HgCl 2 -ot adunk hozzá. Fehér, selymes fényű HgCl 2 válik ki (esetleg 500) cm 3 -es lombikba 300 cm 3 desztillált vizet teszünk, pár csepp permanganátot adunk az oldathoz (amit a teljes fogyásba természetesen beszámítunk), majd maradéktalanul belemossuk a már előzőleg redukált vas(ii)-oldatot, és állandó kevergetés közben a KMn mérőoldattal tartós rózsaszínig titráljuk. A vas atomtömege: 55,85 g/mol Hibahatár: % Forrás: Schulek-Szabó, o. 15

20 xidációs és redukciós mérések Mn(II) meghatározása Volhard-Wolf szerint A meghatározás ionegyenlete: 2 Mn + 3 Mn H 2 = 5 Mn(H) 2 + H + Recept: Az ampullában kiadott ismeretlen maradéktalanul 100,00 cm 3 -es mérőlombikba mossuk, majd jelig töltjük. A törzsoldat 10,00 cm 3 -es részleteit 1000 cm 3 -es Erlenmeyer lombikokban desztillált vízzel ~500 cm 3 -re hígitjuk. A mintákba 1-2 g Zn-ot szórunk és ~5 g ZnS 7H 2 - ot oldunk fel bennük. A forrásig melegített oldatokat KMn mérőoldattal titráljuk oly módon, hogy előbb apróbb részletekben, majd cseppenként adjuk a mérőoldatot, míg folyadék tisztája 2-3 percig rózsaszínű marad. Amennyiben a titrálás időben elhúzódik, a végpont előtt ismét forrásig kell melegíteni a mintát! Mn atomtömege: 59,9 g/mol Hibahatár: 5 % Forrás: Schulek-Szabó, 191. o Bromatometria 0,02 mol/dm 3 koncentrációjú KBr 3 mérőoldat készítése Analitikatisztaságú vegyszerből analitikai mérlegen bemérve készítjük a KBr 3 törzsoldatot. A KBr 3 molekulatömege: g/mol Forrás: Schulek-Szabó, 206. o. C-vitamin hatóanyagtartalmának meghatározása A meghatározás egy példa a bróm-addíciós meghatározásokra. A reakcióban az aszkorbinsav dehidroaszkorbinsavvá oxidálódik. A meghatározás egyenlete: H H KBr KBr + 6 HCl = 3 Br H KCl Br H + Br H Br H Br H H H H H H 16

Oktatási segédanyag az ODLA szakos hallgatók Analitikai Kémia I. laboratóriumi gyakorlatához

Oktatási segédanyag az ODLA szakos hallgatók Analitikai Kémia I. laboratóriumi gyakorlatához ktatási segédanyag az DLA szakos hallgatók Analitikai Kémia I. laboratóriumi gyakorlatához Összeállította: Buglyó Péter DE TEK, Természettudományi Kar Szervetlen és Analitikai Kémiai Tanszék 2004 2 Analitikai

Részletesebben

Az oldatok összetétele

Az oldatok összetétele Az oldatok összetétele Az oldatok összetételét (töménységét) többféleképpen fejezhetjük ki. Ezek közül itt a tömegszázalék, vegyes százalék és a mólos oldat fogalmát tárgyaljuk. a.) Tömegszázalék (jele:

Részletesebben

Ag + +Cl - AgCl (1) HCl + NaOH NaCl + H 2 O (2)

Ag + +Cl - AgCl (1) HCl + NaOH NaCl + H 2 O (2) 3. gyak. Titrimetria I: Sósav mérőoldat készítése, pontos koncentrációjának meghatározása (faktorozása). Vízminta karbonát ill. hidrogén-karbonát tartalmának meghatározása. (Levegő CO 2 tartalmának meghatározása

Részletesebben

MUNKAANYAG. Stankovics Éva. Térfogatos elemzés. A követelménymodul megnevezése: Laboratóriumi technikus és vegyipari technikus alapfeladatok9

MUNKAANYAG. Stankovics Éva. Térfogatos elemzés. A követelménymodul megnevezése: Laboratóriumi technikus és vegyipari technikus alapfeladatok9 Stankovics Éva Térfogatos elemzés A követelménymodul megnevezése: Laboratóriumi technikus és vegyipari technikus alapfeladatok9 A követelménymodul száma: 2049-06 A tartalomelem azonosító száma és célcsoportja:

Részletesebben

EGYÉB GYAKORLÓ FELADATOK Összetétel számítás

EGYÉB GYAKORLÓ FELADATOK Összetétel számítás EGYÉB GYAKORLÓ FELADATOK Összetétel számítás 1. Mekkora tömegű NaOH-ot kell bemérni 50 cm 3 1,00 mol/dm 3 koncentrációjú NaOH-oldat elkészítéséhez? M r (NaCl) = 40,0. 2. Mekkora tömegű KHCO 3 -ot kell

Részletesebben

a) 4,9 g kénsavat, b) 48 g nikkel(ii)-szulfátot, c) 0,24 g salétromsavat, d) 65 g vas(iii)-kloridot?

a) 4,9 g kénsavat, b) 48 g nikkel(ii)-szulfátot, c) 0,24 g salétromsavat, d) 65 g vas(iii)-kloridot? 2.2. Anyagmennyiség-koncentráció 1. Hány mol/dm 3 koncentrációjú az az oldat, amelynek 200 cm 3 -ében 0,116 mol az oldott anyag? 2. 2,5 g nátrium-karbonátból 500 cm 3 oldatot készítettünk. Számítsuk ki

Részletesebben

Laboratóriumi gyakorlat kémia OKTV I. kategória Budapest, 2008. április 12.

Laboratóriumi gyakorlat kémia OKTV I. kategória Budapest, 2008. április 12. Oktatási Hivatal OKTV 2007/2008 Kémia I. kategória döntő forduló Feladatlap és megoldások Laboratóriumi gyakorlat kémia OKTV I. kategória Budapest, 2008. április 12. A feladathoz kérdések társulnak, amelyek

Részletesebben

2. MENNYISÉGI ANALÍZIS II. 2.3. Oxidációs és redukciós titrálási módszerek

2. MENNYISÉGI ANALÍZIS II. 2.3. Oxidációs és redukciós titrálási módszerek 2. MENNYISÉGI ANALÍZIS II. 2.3. Oxidációs és redukciós titrálási módszerek Oxidáció-redukció Oxidációnak nevezzük azokat a folyamatokat, amelyek során valamely ion, vagy atom elektronokat veszít, vagyis

Részletesebben

4. táblázat. 1. osztály 2. osztály 3. osztály 4. osztály SO 4 Cl NO 3 HCO 3

4. táblázat. 1. osztály 2. osztály 3. osztály 4. osztály SO 4 Cl NO 3 HCO 3 59 2.1.2. Anionok kimutatása Az anionokat közös reagensekkel történı vizsgálatok megfigyelései alapján, a kationokhoz hasonlóan, analitikai osztályokba sorolhatjuk. A fontosabb anionok négy osztályba kerültek.

Részletesebben

Víztechnológiai mérőgyakorlat 2. Klórferőtlenítés törésponti görbe felvétele. Jegyzőkönyv

Víztechnológiai mérőgyakorlat 2. Klórferőtlenítés törésponti görbe felvétele. Jegyzőkönyv A mérést végezte: NEPTUNkód: Víztechnológiai mérőgyakorlat 2. Klórferőtlenítés törésponti görbe felvétele Jegyzőkönyv Név: Szak: Tagozat: Évfolyam, tankör: AABB11 D. Miklós Környezetmérnöki Levlező III.,

Részletesebben

KÉMIA FELVÉTELI DOLGOZAT

KÉMIA FELVÉTELI DOLGOZAT KÉMIA FELVÉTELI DOLGOZAT I. Egyszerű választásos teszt Karikázza be az egyetlen helyes, vagy egyetlen helytelen választ! 1. Hány neutront tartalmaz a 127-es tömegszámú, 53-as rendszámú jód izotóp? A) 74

Részletesebben

Oktatási segédanyag a II. ODLA szakos levelező hallgatók Analitikai Kémia I. tantárgyához

Oktatási segédanyag a II. ODLA szakos levelező hallgatók Analitikai Kémia I. tantárgyához ktatási segédanyag a II. DLA szakos levelező hallgatók Analitikai Kémia I. tantárgyához Összeállította: Buglyó Péter DE TEK, Természettudományi Kar Szervetlen és Analitikai Kémiai Tanszék 2004 2 Tantárgy:

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997 1. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997 JAVÍTÁSI ÚTMUTATÓ I. A HIDROGÉN, A HIDRIDEK 1s 1, EN=2,1; izotópok:,, deutérium,, trícium. Kétatomos molekula, H 2, apoláris. Szobahőmérsékleten

Részletesebben

2. MENNYISÉGI ANALÍZIS. 2.1. Bevezetés a mennyiségi kémiai analízisbe

2. MENNYISÉGI ANALÍZIS. 2.1. Bevezetés a mennyiségi kémiai analízisbe 2. MENNYISÉGI ANALÍZIS 2.1. Bevezetés a mennyiségi kémiai analízisbe A mennyiségi analízis megmondja, hogy az anyag adott alkotórészekből mennyit, általában hány százalékot tartalmaz. A keresett alkotórész

Részletesebben

ANALITIKA GYAKORLAT 12. ÉVFOLYAM INFORMÁCIÓS LAPOK. Szerző: Fogarasi József. Lektor: Baranyiné C Veres Anna

ANALITIKA GYAKORLAT 12. ÉVFOLYAM INFORMÁCIÓS LAPOK. Szerző: Fogarasi József. Lektor: Baranyiné C Veres Anna ANALITIKA GYAKORLAT 1 ÉVFOLYAM INFORMÁCIÓS LAPOK Szerző: Fogarasi József Lektor: Baranyiné C Veres Anna TARTALOMJEGYZÉK 1. Aszpirintabletta acetil-szalicilsav-tartalmának meghatározása sav-bázis titrálással...3

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2001

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2001 2001 1. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2001 Ha most érettségizik, az 1. feladat kidolgozását karbonlapon végezze el! Figyelem! A kidolgozáskor tömör és lényegretörő megfogalmazásra

Részletesebben

ORVOSI KÉMIA GYAKORLATOK 2014/2015, ÁOK, FOK, OLKDA 1.év/1. félév CSOPORT A GYAKORLATI TEREM CSOPORT B GYAKORLATI TEREM

ORVOSI KÉMIA GYAKORLATOK 2014/2015, ÁOK, FOK, OLKDA 1.év/1. félév CSOPORT A GYAKORLATI TEREM CSOPORT B GYAKORLATI TEREM TAN. HÉT 1., 8-14. 2., 15-21. 3., 22-28. ORVOSI KÉMIA GYAKORLATOK 2014/2015, ÁOK, FOK, OLKDA 1.év/1. félév CSOPORT A GYAKORLATI TEREM CSOPORT B GYAKORLATI TEREM Balesetvédelmi és tűzvédelmi oktatás. Alapvető

Részletesebben

KÉMIA 11. ÉVFOLYAM EMELT SZINT. Tanulói munkafüzet

KÉMIA 11. ÉVFOLYAM EMELT SZINT. Tanulói munkafüzet Projektazonosító: TÁMOP 3.1.3-11/1-2012-0013 KÉMIA 11. ÉVFOLYAM EMELT SZINT Tanulói munkafüzet Műveltségterület: Ember és természet Összeállította: Pintér Bertalan Lektorálta: Kónya Noémi 2014 Tartalomjegyzék

Részletesebben

3.1.2.6.1. Ismeretlen koncentrációjú ecetsavoldat koncentrációjának meghatározása

3.1.2.6.1. Ismeretlen koncentrációjú ecetsavoldat koncentrációjának meghatározása 8 3.1..6. Sav-bázis titrálási gyakorlatok 3.1..6.1. Ismeretlen koncentrációjú ecetsavoldat koncentrációjának meghatározása A gyakorlaton elvégzendı feladatok: 0,1 M HCl-oldat készítése 0,1 M KHCO 3 -oldat

Részletesebben

Magyar tannyelvű középiskolák VII Országos Tantárgyversenye Fabinyi Rudolf - Kémiaverseny 2012 XI osztály

Magyar tannyelvű középiskolák VII Országos Tantárgyversenye Fabinyi Rudolf - Kémiaverseny 2012 XI osztály 1. A Freon-12 fantázianéven ismert termék felhasználható illatszerek és más kozmetikai cikkek tartályainak nyomógázaként, mert: a. nagy a párolgási hője b. szobahőmérsékleten cseppfolyós c. szagtalan és

Részletesebben

5. gyak. Titrimetria III: Vízminta kémiailag oxidálható szerves anyag tartalmának meghatározása (Kémiai oxigénigény (KOI)

5. gyak. Titrimetria III: Vízminta kémiailag oxidálható szerves anyag tartalmának meghatározása (Kémiai oxigénigény (KOI) 5. gyak. Titrimetria III: Vízminta kémiailag oxidálható szerves anyag tartalmának meghatározása (Kémiai oxigénigény (KOI) A gyakorlat célja: Az un. összegző analitikai módszerek fogalmának megismerése,

Részletesebben

ANALITIKA GYAKORLAT 12. ÉVFOLYAM TANULÓI JEGYZET. Szerző: Fogarasi József Lektor: Baranyiné C Veres Anna

ANALITIKA GYAKORLAT 12. ÉVFOLYAM TANULÓI JEGYZET. Szerző: Fogarasi József Lektor: Baranyiné C Veres Anna ANALITIKA GYAKORLAT 12. ÉVFOLYAM TANULÓI JEGYZET Szerző: Fogarasi József Lektor: Baranyiné C Veres Anna Moduláris korszerű szakmacsoportos alapozó gyakorlatok vegyipari területre TARTALOMJEGYZÉK BEVEZETÉS...

Részletesebben

KÖRNYEZETVÉDELEM ÉS VÍZGAZDÁLKODÁS. 9. évfolyam. a. növényhatározás a Kisnövényhatározó segítségével. a. vegyszer fogalma, vegyszerhasználat szabályai

KÖRNYEZETVÉDELEM ÉS VÍZGAZDÁLKODÁS. 9. évfolyam. a. növényhatározás a Kisnövényhatározó segítségével. a. vegyszer fogalma, vegyszerhasználat szabályai KÖRNYEZETVÉDELEM ÉS VÍZGAZDÁLKODÁS 9. évfolyam Első félév 1. Ismertesse a terepi munka szabályait. a. növényhatározás a Kisnövényhatározó segítségével 2. A laboratórium rendje, szabályai b. tűz és baleset

Részletesebben

Az 2009/2010. tanévi ORSZÁGOS KÖZÉPISKOLAI TANULMÁNYI VERSENY első (iskolai) fordulójának. feladatmegoldásai K É M I Á B Ó L

Az 2009/2010. tanévi ORSZÁGOS KÖZÉPISKOLAI TANULMÁNYI VERSENY első (iskolai) fordulójának. feladatmegoldásai K É M I Á B Ó L Oktatási Hivatal Az 009/010. tanévi ORSZÁGOS KÖZÉPISKOLAI TANULMÁNYI VERSENY első (iskolai) fordulójának feladatmegoldásai K É M I Á B Ó L Az értékelés szempontjai Egy-egy feladat összes pontszáma a részpontokból

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév. Kémia I. kategória - Döntő

Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév. Kémia I. kategória - Döntő Oktatási ivatal Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév 1. feladat Kémia I. kategória - Döntő A feladathoz egy külön lapon kérdések társulnak, a válaszokat arra a lapra kérjük megadni.

Részletesebben

1. laborgyakorlat. Irodalom: Torkos Kornél, Meszticzky Aranka: Általános kémiai praktikum (ELTE Eötvös Kiadó) Folyadék sűrűségmérés (I.6, I.6.1.

1. laborgyakorlat. Irodalom: Torkos Kornél, Meszticzky Aranka: Általános kémiai praktikum (ELTE Eötvös Kiadó) Folyadék sűrűségmérés (I.6, I.6.1. 1. laborgyakorlat Irodalom: Torkos Kornél, Meszticzky Aranka: Általános kémiai praktikum (ELTE Eötvös Kiadó) Folyadék sűrűségmérés (I.6, I.6.1.) 1.1. Oldatkészítés, oldatok sűrűségének meghatározása Eszközök:

Részletesebben

XXIII. SZERVES KÉMIA (Középszint)

XXIII. SZERVES KÉMIA (Középszint) XXIII. SZERVES KÉMIA (Középszint) XXIII. 1 2. FELELETVÁLASZTÁSOS TESZTEK 0 1 2 4 5 6 7 8 9 0 E D D A A D B D B 1 D D D C C D C D A D 2 C B D B D D B D C A A XXIII.. TÁBLÁZATKIEGÉSZÍTÉS Az etanol és az

Részletesebben

*, && #+& %-& %)%% & * &% + $ % !" #!$"" #%& $!#!'(!!"$!"%#)!!!*

*, && #+& %-& %)%% & * &% + $ % ! #!$ #%& $!#!'(!!$!%#)!!!* ! "#$% &'(&&)&&) % *'&"#%+#&) *, && #+& %-& %)%% & * &% + "#$%%(%((&,)' %(%(&%, & &% +$%,$. / $ %)%*)* "& 0 0&)(%& $ %!" #!$"" #%& $!#!'(!!"$!"%#)!!!* 1234 5151671345128 51 516 5 " + $, #-!)$. /$#$ #'0$"!

Részletesebben

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola VIDÉKFEJLESZTÉSI MINISZTÉRIUM Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola Budapest, Thököly út 48-54. XV. KÖRNYEZETVÉDELMI ÉS VÍZÜGYI ORSZÁGOS SZAKMAI TANULMÁNYI

Részletesebben

SZERVETLEN PREPARÁTUMOK KÉSZÍTÉSE

SZERVETLEN PREPARÁTUMOK KÉSZÍTÉSE SZERVETLEN PREPARÁTUMOK KÉSZÍTÉSE KAPCSOLÓDÓ SZÁMÍTÁSOK Készítette dr. Golopencza Pálné Tartalomjegyzék Szennyezett K 2 SO 4 tisztítása...2 Szennyezett KCl tisztítása...3 Lecsapott CaCO 3 készítése...4

Részletesebben

GLUCAGONUM HUMANUM. Humán glükagon

GLUCAGONUM HUMANUM. Humán glükagon 01/2008:1635 GLUCAGONUM HUMANUM Humán glükagon C 153 H 225 N 43 O 49 S M r 3483 DEFINÍCIÓ A humán glükagon 29 aminosavból álló polipeptid; szerkezete megegyezik az emberi hasnyálmirígy α-sejtjei által

Részletesebben

Feladatgyőjtemény a 2061-es modul írásbeli vizsgájához. Oldatkészítés

Feladatgyőjtemény a 2061-es modul írásbeli vizsgájához. Oldatkészítés Oldatkészítés 1. 100 g vízbıl és 40 g cukorból oldatot készítünk. Hány gramm lett az oldat tömege? Mennyi lett az oldat tömegszázalékos összetétele? 2. Készítsünk 625 g 33 tömegszázalékos káliumhidroxid-oldatot!

Részletesebben

Kémia (K kategória) Levelező forduló Beküldési határidő : 2013. November 25.

Kémia (K kategória) Levelező forduló Beküldési határidő : 2013. November 25. Kémia (K kategória) Levelező forduló Beküldési határidő : 2013. November 25. 1. feladat Egy alkáliföldfém ötvözet alkotói a periódusos rendszerben közvetlenül egymás alatt találhatóak. Az ötvözet 12,83

Részletesebben

Látványos kémiai kísérletek

Látványos kémiai kísérletek Látványos kémiai kísérletek Mottó: Chuwie, add rá a tartalékot! Bemutatja: Kémia BSc, I. évfolyam 2009. 611. Labor Laborvezető: Tarczay György Laboráns: Éva néni Sarka János Italok borból KMnO 4 -oldat

Részletesebben

ALPHA spektroszkópiai (ICP és AA) standard oldatok

ALPHA spektroszkópiai (ICP és AA) standard oldatok Jelen kiadvány megjelenése után történõ termékváltozásokról, új standardokról a katalógus internetes oldalán, a www.laboreszközkatalogus.hu-n tájékozódhat. ALPHA Az alábbi standard oldatok fémek, fém-sók

Részletesebben

SZERVETLEN ALAPANYAGOK ISMERETE, OLDATKÉSZÍTÉS

SZERVETLEN ALAPANYAGOK ISMERETE, OLDATKÉSZÍTÉS SZERVETLEN ALAPANYAGOK ISMERETE, OLDATKÉSZÍTÉS ESETFELVETÉS MUNKAHELYZET Az eredményes munka szempontjából szükség van arra, hogy a kozmetikus, a gyakorlatban használt alapanyagokat ismerje, felismerje

Részletesebben

SAPIENTIA ERDÉLYI MAGYAR TUDOMÁNYEGYETEM KOLOZSVÁR

SAPIENTIA ERDÉLYI MAGYAR TUDOMÁNYEGYETEM KOLOZSVÁR SAPIENTIA ERDÉLYI MAGYAR TUDOMÁNYEGYETEM KOLOZSVÁR Csíkszeredai Campus Élelmiszer-tudományi Tanszék ÉLELMISZERHAMISÍTÁS MINIMÁLIÁK Csapó János Csíkszereda 2012 2 A Minimália szerzője, Bevezetés Tartalomjegyzék

Részletesebben

Térfogatmérés. Térfogatmérő eszközök

Térfogatmérés. Térfogatmérő eszközök Térfogatmérés Térfogatmérő eszközök A folyadék-térfogfatmérő eszközöket két nagy csoportra oszthatunk aszerint, hogy a belőlük kifolyatható, vagy a beléjük tölthető folyadék térfogatának mérésére használhatók.

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

Magyarázat a feladatgyűjtemény használatához

Magyarázat a feladatgyűjtemény használatához Magyarázat a feladatgyűjtemény használatához A példatár különböző témaköreit fejezetszámok jelzik. A fejezeteken belül alfejezetek találhatók. Ezek közül az 1. számú a témakör főbb alapfogalmait és képleteit

Részletesebben

1. táblázat. I. osztály II. osztály III. osztály IV. osztály V. osztály

1. táblázat. I. osztály II. osztály III. osztály IV. osztály V. osztály 40. Minıségi kémiai analízis.1. Kationok és anionok kimutatása kémcsıreakciókkal.1.1. Kationok kimutatása Vizsgálatainkat vizes oldatokban, kémcsıreakciókkal végezzük. A minıségi analízist elıször a kationokra

Részletesebben

Középszintű kémia írásbeli feladatlap CSOMAGOLÓANYAGOK

Középszintű kémia írásbeli feladatlap CSOMAGOLÓANYAGOK I. feladat (elérhető: 16 pont) Esettanulmány Középszintű kémia írásbeli feladatlap CSOMAGOLÓANYAGOK Olvassa el figyelmesen az alábbi szöveget, majd a szöveg alapján és kémiai ismeretei alapján válaszoljon

Részletesebben

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Kémia emelt szint 0803 ÉRETTSÉGI VIZSGA 2010. május 13. KÉMIA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Az írásbeli feladatok értékelésének

Részletesebben

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Kémia emelt szint 1312 ÉRETTSÉGI VIZSGA 2013. május 15. KÉMIA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Az írásbeli feladatok értékelésének alapelvei

Részletesebben

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK I.2. Konverziók Geokémiai vizsgálatok során gyakran kényszerülünk arra, hogy különböző kémiai koncentrációegységben megadott adatokat hasonlítsunk össze vagy alakítsuk

Részletesebben

Vegyületek oldékonysága vízben A táblázat a vegyület 100 g vízben oldódó tömegét mutatja grammban!

Vegyületek oldékonysága vízben A táblázat a vegyület 100 g vízben oldódó tömegét mutatja grammban! Vegyületek oldékonysága vízben A táblázat a vegyület 100 g vízben oldódó tömegét mutatja grammban! Vegyület 0 C 10 C 20 C 40 C 60 C 80 C 100 C BaCl 2 31,6 33,3 35,7 40,7 42,1 45,9 51,2 Ba(NO 3 ) 2 5,0

Részletesebben

1. Melyik az az elem, amelynek csak egy természetes izotópja van? 2. Melyik vegyület molekulájában van az összes atom egy síkban?

1. Melyik az az elem, amelynek csak egy természetes izotópja van? 2. Melyik vegyület molekulájában van az összes atom egy síkban? A 2004/2005. tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatlapja KÉMIA (I. kategória) I. FELADATSOR 1. Melyik az az elem, amelynek csak egy természetes izotópja van? A) Na

Részletesebben

Laboratóriumi technikus laboratóriumi technikus 54 524 01 0010 54 02 Drog és toxikológiai

Laboratóriumi technikus laboratóriumi technikus 54 524 01 0010 54 02 Drog és toxikológiai A 10/007 (II. 7.) SzMM rendelettel módosított 1/006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Versenyfeladatsor. 2. feladat

Versenyfeladatsor. 2. feladat Versenyfeladatsor 1. feladat Egy nyíltláncú alként brómmal reagáltatunk. A reakció során keletkező termék moláris tömege 2,90-szerese a kiindulási vegyület moláris tömegének. Mi a neve ennek az alkénnek,

Részletesebben

Emelt szintű kémia írásbeli feladatlap

Emelt szintű kémia írásbeli feladatlap I. feladat (elérhető: 10 pont) Esettanulmány Olvassa el figyelmesen az alábbi szöveget! KÁBÍÓSZEREK Emelt szintű kémia írásbeli feladatlap Az ópiumot amelyet a mák zöld gubójából nyernek ősidők óta ismeri

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2006. május 16. KÉMIA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. május 16. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Kémia emelt szint

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 16. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 16. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM

Részletesebben

EUSO felkészít és el feladatok

EUSO felkészít és el feladatok EUSO felkészít és el feladatok Daru János daru@bolyai.elte.hu 1. Általános tudnivalók Az EUSO válogatón nem sok háttértudással kell rendelkezni, sokkal fontosabb, hogy ügyesen gondolkozz és számolj. Ennek

Részletesebben

LAUROMACROGOLUM 400. Lauromakrogol 400

LAUROMACROGOLUM 400. Lauromakrogol 400 01/2009:2046 javított 7.0 LAUROMACROGOLUM 400 Lauromakrogol 400 DEFINÍCIÓ Különböző makrogolok lauril-alkohollal (dodekanollal) képzett étereinek keveréke. Szabad makrogolokat tartalmazhat. Szabad lauril-alkohol-tartalma

Részletesebben

Laboratóriumi munkához szükséges alapvető kémiai számítások

Laboratóriumi munkához szükséges alapvető kémiai számítások Oktatási segédanyag Petőcz György Laboratóriumi munkához szükséges alapvető kémiai számítások A KÉMIAI KÉPLETEK A képletek (a tapasztalati, a molekula- és a szerkezeti képletek) egyszerű és egyértelmű

Részletesebben

Nátrium és Kalcium részösszefoglaló feladatlap

Nátrium és Kalcium részösszefoglaló feladatlap Nátrium és Kalcium részösszefoglaló feladatlap 1. Írd le a következő elemek és vegyületek kémiai nevét: 1.NaOH, 2.Ca, 3.Mg, 4.CaCO 3, 5.NaCl, 6.Na 2 CO 3 7.CaSO 4, 8.Ca(OH) 2, 9.CaO, 10CO 2, 11.HCl, 12.Na,

Részletesebben

SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY

SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 51. ročník, školský rok 2014/2015 Kategória D Krajské kolo TEORETICKÉ A PRAKTICKÉ ÚLOHY TEORETICKÉ ÚLOHY Chemická olympiáda kategória D 51. ročník

Részletesebben

Példa tételek az emelt szintű kémia szóbeli vizsgához

Példa tételek az emelt szintű kémia szóbeli vizsgához Példa tételek az emelt szintű kémia szóbeli vizsgához I. tétel 1. A periódusos rendszer felépítése és kapcsolata az atomok elektronszerkezetével. Periódikusan változó tulajdonságok és értelmezésük. 2.

Részletesebben

HEVESY GYÖRGY ORSZÁGOS KÉMIAVERSENY

HEVESY GYÖRGY ORSZÁGOS KÉMIAVERSENY MAGYAR TERMÉSZETTUDOMÁNYI TÁRSULAT HEVESY GYÖRGY ORSZÁGOS KÉMIAVERSENY A megyei (fővárosi) forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:...

Részletesebben

Kémia Tanszék KÉMIAII 2003.

Kémia Tanszék KÉMIAII 2003. Budapesti özgazdaságtudományi és Államigazgatási Egyetem Élelmiszertudományi ar, Alkalmazott émia Tanszék ÉMIAII SZÁMÍTÁSI GYAORLATO Szerkesztette: Novákné dr. Fodor Marietta Alkalmazott émia Tanszék 00.

Részletesebben

O k t a t á si Hivatal

O k t a t á si Hivatal O k t a t á si Hivatal KÓDSZÁM: Országos Középiskolai Tanulmányi Verseny Kémia I. kategória 1. feladat Budapest, 2014. március 29. Egy egyértékű szerves sav moláris tömegének és disszociációállandójának

Részletesebben

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése Szegény Zsigmond WESSLING Közhasznú Nonprofit Kft., Jártassági Vizsgálati Osztály szegeny.zsigmond@qualcoduna.hu 2014.01.21. 2013.

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI - FELVÉTELI FELADATOK 2004.

KÉMIA ÍRÁSBELI ÉRETTSÉGI - FELVÉTELI FELADATOK 2004. KÉMIA ÍRÁSBELI ÉRETTSÉGI - FELVÉTELI FELADATOK 2004. I. Útmutató! Ha most érettségizik, az I. feladat kidolgozását karbonlapon végezze el! Figyelem! A kidolgozáskor tömör és lényegre törő megfogalmazásra

Részletesebben

A VÍZ KÉMIAI JELLEMZŐI

A VÍZ KÉMIAI JELLEMZŐI A VÍZ KÉMIAI JELLEMZŐI A természetes vizek összetételében szerepet játszik az oldott szervetlen és szerves anyagok minősége és mennyisége, vagyis a só-koncentráció. Ezt a víz a talajból, a mederanyagból,

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

2.4.22. ZSÍRSAVÖSSZETÉTEL GÁZKROMATOGRÁFIÁS VIZSGÁLATA

2.4.22. ZSÍRSAVÖSSZETÉTEL GÁZKROMATOGRÁFIÁS VIZSGÁLATA 2.4.22 Ph.Hg.VIII. Ph.Eur.5.6-1 01/2007:20422 2.4.22. ZSÍRSAVÖSSZETÉTEL GÁZKROMATOGRÁFIÁS VIZSGÁLATA Az idegen olajok vizsgálatát gázkromatográfiásan végezzük (2.2.28), és ehhez a vizsgálandó olajban található

Részletesebben

Tűzijáték. 10. évfolyam 1. ESETTANULMÁNY. Olvassa el figyelmesen az alábbi szöveget és válaszoljon a kérdésekre!

Tűzijáték. 10. évfolyam 1. ESETTANULMÁNY. Olvassa el figyelmesen az alábbi szöveget és válaszoljon a kérdésekre! Beadás határideje 2012. április 30. A megoldásokat a kémia tanárodnak add oda! 1. ESETTANULMÁNY 10. évfolyam Olvassa el figyelmesen az alábbi szöveget és válaszoljon a kérdésekre! Tűzijáték A tűzijáték

Részletesebben

Laboratóriumi vizsgálati díjak vizsgálattípusonként. Vizsgálat típus. membránszűréses módszer. membránszűréses módszer. membránszűréses módszer

Laboratóriumi vizsgálati díjak vizsgálattípusonként. Vizsgálat típus. membránszűréses módszer. membránszűréses módszer. membránszűréses módszer I-4 2-02 F07 v4 Laboratóriumi vizsgálati díjak vizsgálattípusonként MIKROBIOLÓGIAI VIZSGÁLATOK Coccus szám coliformszám coliformszám szennyvíz többcsöves 2 700 3 429 Endo szám Escherichia coli szám Escherichia

Részletesebben

VEGYSZEREK JEGYZÉKE.

VEGYSZEREK JEGYZÉKE. VEGYSZEREK JEGYZÉKE. Elsősorban szükséges vegyszerek. A zárójelben található mennyiség az első beszerzésre ajánlható mennyiséget jelenti. Tömény sósav, HCl. Töménysége 37%, fajsúlya 1,19 gramm/cm 3. Üvegdugós

Részletesebben

tervezet tervezet4. gyakorlat Terner rendszer vizsgálata 4.1. Bevezetés x B =0, 25 x B

tervezet tervezet4. gyakorlat Terner rendszer vizsgálata 4.1. Bevezetés x B =0, 25 x B Terner rendszer vizsgálata gyakorlat célja a fázisszabály gyakorlati alkalmazása, valamint a háromszögdiagram használata olyan háromkomponensű (terner) rendszer vizsgálatával, amelyben egymással nem tetszőleges

Részletesebben

Általános kémiai munkafüzet Környezettan BSc hallgatók számára

Általános kémiai munkafüzet Környezettan BSc hallgatók számára DEBRECENI EGYETEM TERMÉSZETTUDOMÁNYI KAR Szervetlen és Analitikai Kémiai Tanszék Várnagy Katalin Általános kémiai munkafüzet Környezettan BSc hallgatók számára Oktatási segédanyag A munkafüzet Kiss Tamás,

Részletesebben

Mérések hibája pontosság, reprodukálhatóság és torzítás

Mérések hibája pontosság, reprodukálhatóság és torzítás Mérések hibája pontosság, reprodukálhatóság és torzítás A kémiai mérések és számítások során számos adat felhasználásával jutunk a végeredményhez. Gyakori eset, hogy egyszerű mérési eredményekből a köztük

Részletesebben

2.9.34. POROK TÖMÖRÍTETLEN ÉS TÖMÖRÍTETT SŰRŰSÉGE. Tömörítetlen sűrűség

2.9.34. POROK TÖMÖRÍTETLEN ÉS TÖMÖRÍTETT SŰRŰSÉGE. Tömörítetlen sűrűség 2.9.34. Porok tömörítetlen és tömörített sűrűsége Ph.Hg.VIII. - Ph.Eur.7.6-1 2.9.34. POROK TÖMÖRÍTETLEN ÉS TÖMÖRÍTETT SŰRŰSÉGE Tömörítetlen sűrűség 01/2013:20934 Tömörítetlen sűrűségnek nevezzük a tömörítetlen

Részletesebben

MUNKAANYAG. Stankovics Éva. Oldatkészítés. A követelménymodul megnevezése: Laboratóriumi technikus és vegyipari technikus alapfeladatok9

MUNKAANYAG. Stankovics Éva. Oldatkészítés. A követelménymodul megnevezése: Laboratóriumi technikus és vegyipari technikus alapfeladatok9 Stankovics Éva Oldatkészítés A követelménymodul megnevezése: Laboratóriumi technikus és vegyipari technikus alapfeladatok9 A követelménymodul száma: 2049-06 A tartalomelem azonosító száma és célcsoportja:

Részletesebben

Pató Zsanett Környezettudomány V. évfolyam

Pató Zsanett Környezettudomány V. évfolyam Pató Zsanett Környezettudomány V. évfolyam Budapest, Témavezető: Dr. Konzulensek: Dr. Dr. Dr. Homonnay Zoltán Varga Beáta Süvegh Károly Marek Tamás A csernobili baleset és következményei Mérési módszerek:

Részletesebben

ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás

ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás ELEKTROKÉMIA 1 ELEKTROKÉMIA Elektromos áram: - fémekben: elektronok áramlása - elektrolitokban: ionok irányított mozgása Elektrolízis: elektromos áram által előidézett kémiai átalakulás Galvánelem: elektromos

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2010. október 26. KÉMIA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 26. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM

Részletesebben

KÉMIA PÉLDATÁR (5. javított kiadás)

KÉMIA PÉLDATÁR (5. javított kiadás) MECHATRONIKAI SZAKKÖZÉPISKOLA ÉS GIMNÁZIUM 1118 BUDAPEST RÉTKÖZ U. 39. KÉMIA PÉLDATÁR (5. javított kiadás) Szerkesztette: Kleeberg Zoltánné Budapest 2009 2 AZ ATOM FELÉPÍTÉSE 1.1. Hány db proton, neutron

Részletesebben

MUNKAANYAG. Demkó Csaba. A természetes vizek fizikai és kémiai vízvizsgálata

MUNKAANYAG. Demkó Csaba. A természetes vizek fizikai és kémiai vízvizsgálata Demkó Csaba A természetes vizek fizikai és kémiai vízvizsgálata A követelménymodul megnevezése: Víz- és szennyvíztechnológus és vízügyi technikus feladatok A követelménymodul száma: 1223-06 A tartalomelem

Részletesebben

(11) Lajstromszám: E 006 903 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 006 903 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU000006903T2! (19) HU (11) Lajstromszám: E 006 903 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 0 808194 (22) A bejelentés napja:

Részletesebben

Név:............................ Helység / iskola:............................ Beküldési határidő: Kémia tanár neve:........................... 2014.ápr.1. TAKÁCS CSABA KÉMIA EMLÉKVERSENY, X.-XII. osztály,

Részletesebben

A sóháztartás alapján történő vízminősítés elemeinek bemutatása a Lázbérci-tározó példáján

A sóháztartás alapján történő vízminősítés elemeinek bemutatása a Lázbérci-tározó példáján EÖTVÖS JÓZSEF FŐISKOLA Műszaki és Közgazdaságtudományi Kar Vízellátási és Környezetmérnöki Intézet elemeinek bemutatása a Lázbérci-tározó példáján Készítette: Témavezető: Fehér László Alex (W1KLPY) Építőmérnök

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2013. május 15. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 15. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Kémia

Részletesebben

Tűzijáték. 9. évfolyam 1. ESETTANULMÁNY. Olvassa el figyelmesen az alábbi szöveget és válaszoljon a kérdésekre!

Tűzijáték. 9. évfolyam 1. ESETTANULMÁNY. Olvassa el figyelmesen az alábbi szöveget és válaszoljon a kérdésekre! Beadás határideje 2012. április 30. A megoldásokat a kémia tanárodnak add oda! 1. ESETTANULMÁNY 9. évfolyam Olvassa el figyelmesen az alábbi szöveget és válaszoljon a kérdésekre! Tűzijáték A tűzijáték

Részletesebben

2. Fotometriás mérések I.

2. Fotometriás mérések I. 2. Fotometriás mérések I. 2008 október 17. 1. Szín mérése Pt-Co skálán[5] 1.1. Háttér A platina-kobalt színskála közel színtelen folyadékok sárga árnyalatainak meghatározására alkalmas. Eredetileg szennyvizek

Részletesebben

ÉGHAJLATI ÉS KÖRNYEZETI VÁLTOZÁSOK REGIONÁLIS HATÁSÁNAK FELTÁRÁSA ÉS ÖSSZEHASONLÍTÓ ELEMZÉSE VIZES ÉLŐHELYEKEN

ÉGHAJLATI ÉS KÖRNYEZETI VÁLTOZÁSOK REGIONÁLIS HATÁSÁNAK FELTÁRÁSA ÉS ÖSSZEHASONLÍTÓ ELEMZÉSE VIZES ÉLŐHELYEKEN Magyarország-Románia Határon Átnyúló Együttműködési Program 2007-2013 pályázati programra benyújtott ÉGHAJLATI ÉS KÖRNYEZETI VÁLTOZÁSOK REGIONÁLIS HATÁSÁNAK FELTÁRÁSA ÉS ÖSSZEHASONLÍTÓ ELEMZÉSE VIZES ÉLŐHELYEKEN

Részletesebben

GYÓGYSZERÉSZI KÉMIAI GYAKORLAT JEGYZET

GYÓGYSZERÉSZI KÉMIAI GYAKORLAT JEGYZET GYÓGYSZEÉSZI KÉMIAI GYAKLAT JEGYZET 2. FÉLÉV Dr. Pelyvás István Dr. Gunda Tamás Dr. Bakai-Bereczki Ilona Dr. Fejes Zsolt Debrecen, 2012. február Módosítva: 2012.01.31. 11:39 Tartalomjegyzék 9. TÉMA...3

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. május 16. KÉMIA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 16. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Kémia

Részletesebben

Paradicsom és paprika tápoldatozása fejlődési fázisai szerint. Szőriné Zielinska Alicja Rockwool B.V

Paradicsom és paprika tápoldatozása fejlődési fázisai szerint. Szőriné Zielinska Alicja Rockwool B.V Paradicsom és paprika tápoldatozása fejlődési fázisai szerint Szőriné Zielinska Alicja Rockwool B.V page 2 A növények növekedésének alapjai: Napenergia,CO2, víz, tápelemek Tápelemeket 2 csoportra osztjuk:

Részletesebben

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát!

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát! Konduktometriás titrálás kiértékelése Excel program segítségével (Office 2007) Alapszint 1. A mérési adatokat írjuk be a táblázat egymás melletti oszlopaiba. Az első oszlopba kerül a fogyás, a másodikba

Részletesebben

Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz KÉMIA 3.

Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz KÉMIA 3. Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz KÉMIA 3. MINTAFELADATSOR KÖZÉPSZINT 2015 Az írásbeli vizsga időtartama: 120 perc

Részletesebben

SZILÁRD FÁZISÚ EXTRAKCIÓ MINDIG UGYANÚGY

SZILÁRD FÁZISÚ EXTRAKCIÓ MINDIG UGYANÚGY SZILÁRD FÁZISÚ EXTRAKCIÓ MINDIG UGYANÚGY Szakács Tibor, Szepesi Ildikó ABL&E-JASCO Magyarország Kft. 1116 Budapest, Fehérvári út 130. ablehun@ablelab.com www.ablelab.com SZILÁRD FÁZISÚ EXTRAKCIÓ SOLID

Részletesebben

Víz - és környezetanalitikai gyorstesztek

Víz - és környezetanalitikai gyorstesztek Víz - és környezetanalitikai gyorstesztek Chemetrics Inc. már több, mint 35 éve jelen van a picaon, számos Európai Uniós országban terjedtek már el termékei. Kifejezetten vízminta elemző készleteket és

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2014. május 15. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 15. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Kémia

Részletesebben

KÉMIA MUNKAFÜZET EMELT SZINTŰ KÍSÉRLETEK. Készült a

KÉMIA MUNKAFÜZET EMELT SZINTŰ KÍSÉRLETEK. Készült a KÉMIA MUNKAFÜZET EMELT SZINTŰ KÍSÉRLETEK Készült a TÁMOP-3.1.3-11/2-2012-0008 azonosító számú A természettudományos oktatás módszertanának és eszközrendszerének megújítása a Vajda Péter Evangélikus Gimnáziumban"

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. országos döntı. Az írásbeli forduló feladatlapja. 7. osztály

T I T - M T T. Hevesy György Kémiaverseny. országos döntı. Az írásbeli forduló feladatlapja. 7. osztály T I T - M T T Hevesy György Kémiaverseny országos döntı Az írásbeli forduló feladatlapja 7. osztály A versenyzı azonosítási száma:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:...

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2013. május 15. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 15. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

EMELT SZINTŰ SZÁMÍTÁSI PÉLDÁK

EMELT SZINTŰ SZÁMÍTÁSI PÉLDÁK EMELT SZINTŰ SZÁMÍTÁSI PÉLDÁK 2004.május 6. A táblázat különböző sorai a következő anyagok vizes oldataira vonatkoznak: HCl,CH3COOH, NaOH, NH3. Azonosítsa, melyik sorban melyik vegyület szerepel, majd

Részletesebben

2.5.33. ÖSSZES FEHÉRJE

2.5.33. ÖSSZES FEHÉRJE 2.5.33. Összes fehérje Ph.Hg.VIII. - Ph.Eur.6. 2.5.33. -1 2.5.33. ÖSSZES FEHÉRJE 01/2008:20533 javított 6.0 Az alábbi meghatározási módszerek között több olyan található, amely kereskedelemből beszerezhető

Részletesebben

A hulladék alapjellemzés során nyert vizsgálati eredmények értelmezési kérdései Dr. Ágoston Csaba

A hulladék alapjellemzés során nyert vizsgálati eredmények értelmezési kérdései Dr. Ágoston Csaba A hulladék alapjellemzés során nyert vizsgálati eredmények értelmezési kérdései Dr. Ágoston Csaba 1 Hulladékvizsgálatok 98/2001 (VI. 15.) Korm. rendelet 20/2006 (IV. 5.) KvVM rendelet Hulladék minősítés

Részletesebben