BEVEZETÉS AZ ANALÍZISBE

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "BEVEZETÉS AZ ANALÍZISBE"

Átírás

1 BEVEZETÉS AZ ANALÍZISBE Mezei István, Frgó István, Simon Péter Eötvös Loránd Tudományegyetem Alklmzott Anlízis és Számításmtemtiki Tnszék

2 ii

3 Trtlomjegyzék 1. Előszó 1 2. Hlmzok, relációk, függvények Hlmzok, relációk, függvények A Hlmzok és relációk Relációk inverze és kompozíciój Függvények Feldtok Hlmzok, relációk, függvények E Ekvivlenci és rendezési reláció Hlmzok számosság Számhlmzok Vlós számok A A vlós számok xiómrendszere Természetes, egész és rcionális számok Felső és lsó htár Intervllumok és környezetek Vlós számok htványi Feldtok Komplex számok A A komplex szám foglm, műveletek Komplex számok trigonometrikus lkj Elemi függvények Vlós-vlós függvények lptuljdonsági A Az elemi függvények A Htványfüggvények Exponenciális és logritmus függvények Trigonometrikus függvények és inverzeik Hiperbolikus függvények és inverzeik iii

4 iv TARTALOMJEGYZÉK Néhány különleges függvény Feldtok Soroztok, sorok Soroztok, sorok A A sorozt foglm és tuljdonsági Sorozt htárértéke Divergens soroztok Sorok Feldtok Soroztok E Sorozt konvergenciáj Műveletek konvergens soroztokkl Részsoroztok Sorozt lim sup-j és lim inf-je Intervllumsorozt Cuchy konvergencikritérium Sorok E Sor konvergenciáj Konvergencikritériumok Végtelen sorok átrendezései Folytonosság Folytonosság A A folytonos függvény foglm és tuljdonsági A műveletek és folytonosság kpcsolt Intervllumon folytonos függvények tuljdonsági Feldtok Folytonosság E A folytonosság foglm és z átviteli elv Műveletek folytonos függvényekkel Intervllumon folytonos függvények tuljdonsági Az inverzfüggvény folytonosság Egyenletes folytonosság Függvény htárértéke Függvény htárértéke A "Végesben vett, véges" htárérték "Végtelenben vett", illetve "nem véges" htárérték Egyoldli htárérték Feldtok Függvény htárértéke E

5 TARTALOMJEGYZÉK v A htárérték áltlános definíciój és z átviteli elv Műveletek függvények htárértékével Differenciálhtóság Differenciálhtóság A A derivált foglm és geometrii jelentése Elemi függvények deriváltj és deriválási szbályok A derivált kpcsolt függvény tuljdonságivl Többszörös derivált és Tylor-polinom L Hospitl-szbály Feldtok Differenciálhtóság E A derivált foglm és kpcsolt folytonossággl Műveletek differenciálhtó függvényekkel, deriválási szbályok Lokális növekedés, fogyás, lokális szélsőérték Középértéktételek A globális monotonitás elégséges feltételei Konvex és konkáv függvények Tylor-formul L Hospitl-szbály Integrálhtóság, integrálszámítás Integrálszámítás A A Riemnn-integrál foglm és geometrii jelentése A Riemnn-integrál és műveletek kpcsolt Newton Leibniz-formul Primitív függvény Az integrál lklmzási Fourier-sor Az improprius integrál Feldtok Integrálszámítás E Az integrál foglm Az integrálhtóság feltételei Műveletek és z integrál kpcsolt Primitív függvény és Newton Leibniz-formul Függvénysoroztok, függvénysorok Függvénysoroztok, függvénysorok A Függvénysoroztok Függvénysorok Htványsorok

6 vi TARTALOMJEGYZÉK Feldtok Függvénysoroztok, függvénysorok E Függvénysoroztok Függvénysorok Htványsorok, Tylor-sorok Többváltozós függvények Többváltozós függvények A Az n-dimenziós tér Többváltozós függvények Htárérték és folytonosság Feldtok Többváltozós függvények E Metrikus tér Nyílt és zárt hlmzok; kompkt hlmz Folytonos függvények Fixponttétel Többváltozós differenciálás Többváltozós deriválás A Prciális derivált Deriváltmátrix Érintő Szélsőérték Feldtok Többváltozós deriválás E Prciális derivált és deriváltmátrix Második derivált; Tylor-formul Szélsőérték Implicit- és inverzfüggvény tétel Feltételes szélsőérték Vonlintegrál Vonlintegrál A A vonlintegrál foglm és tuljdonsági Potenciál Feldtok Vonlintegrál E A vonlintegrál foglm és tuljdonsági Potenciál

7 TARTALOMJEGYZÉK vii 14.Differenciálegyenletek Differenciálegyenletek A Alpfoglmk Szétválszthtó változójú differenciálegyenlet Alklmzás Feldtok Többváltozós függvény integrálj Többváltozós integrál A A többváltozós integrál foglm Az integrál kiszámítás tégllpon és normáltrtományon Az integrál trnszformációj Feldtok Vektornlízis Vektornlízis A Térgörbék Felületek A nbl Integrálátlkító tételek Feldtok Komplex függvények Komplex soroztok, végtelen sorok Komplex htványsorok Komplex függvény folytonosság Komplex függvény htárértéke Komplex függvény differenciálhtóság Komplex függvények integrálj Primitív függvény, z integrál kiszámítás Tylor-sor, hrmonikus függvények Komplex függvények zérushelyei Becslések Komplex függvény mximum Lurent-sor Szinguláris helyek A reziduum-tétel

8 viii TARTALOMJEGYZÉK

9 1. fejezet Előszó A jegyzet lpvetően z Eötvös Loránd Tudományegyetem Természettudományi Krán nem mtemtik szkos hllgtók nlízis okttásához készült, bár mtemtik lpszkos hllgtók kiegészítésként szintén hsználhtják. A fizikus, geofizikus, térképész, meteorológus, geológus, környezettudomány szkos hllgtók mtemtik okttás évtizedek ót z Alklmzott Anlízis és Számításmtemtiki Tnszék feldt. A jegyzet három szerzője szintén évek, évtizedek ót részt vesz ebben z okttásbn. A jegyzetben tárgylt nlízis nygot számos félévben szerzők már tnították, hosszú évek szkmi és pedgógii tpsztlt vn jegyzet trtlm mögött. Temtikáját tekintve jegyzet természetszerűleg hsonlít számos más nlízis tnkönyvre, zonbn hngsúlyozzuk, hogy ennek ellenére több szempontból hiánypótló szerepet tölt be. Egyrészt más nlízis témájú tnkönyvek ngyobbrészt mtemtik szkos hllgtók számár készültek. A nem mtemtik szkosoknk szóló tnkönyvek pedig más egyetemek speciális igényű hllgtói, pl. mérnök vgy közgzdász hllgtók okttásához illenek. Ez jegyzet z ELTE TTK nem mtemtik szkos hllgtóink igényeihez illeszkedik. Sokéves okttási tpsztlt muttj, hogy hllgtók mtemtikát nem z xiomtikus felépítés mentén sjátítják el, hnem fokoztosn, egyre mélyebb szinten értik meg mtemtiki foglmkt és tételeket. Ezért jegyzet nem hgyományos tárgylásmódot követi, hnem kétszer hld végig fent felsorolt fejezeteken. Először lpszinten tárgyl minden témkört. Ennek keretében inkább módszereket tnít. (A fizik szkon ez rész külön tntárgy Klkulus címen.) Ezután másodéves hllgtók számár ugynzok témkörök mélyebb szinten következnek, hgyományos "tétel-bizonyítás" szemlélet szerint. A jegyzet erősen lklmzás orientált. A térképészeknek fontos görbeelmélet, vgy geofizikusoknk szükséges vektornlízis is helyet kp benne. A fizikus hllgtók megtlálhtják benne vonlintegrál, felületi integrál és komplex függvények tárgylását, illetve nehezebb témköröket is, pl. metrikus terek, vgy implicit függvény tétel. 1

10 2 1. FEJEZET. ELŐSZÓ Köszönetnyilvánítás A szerzők köszönetet mondnk z Eötvös Loránd Tudományegyetem Mtemtiki Intézetében z Alklmzott Anlízis és Számításmtemtiki Tnszéken dolgozó kollégáink, kik konstruktív észrevételeikkel támogtták kurzus temtikájánk kilkítását és jegyzet megírását. Köszönet illeti jegyzet lektorát Ngy Bálint tnszékvezető főiskoli docenst, ki mindenre kiterjedő figyelemmel igyekezett jvítni hibákt, és elősegíteni z érthetőséget, és z egységes szerkezetét. A jegyzet TAMOP /2/A/KMR számú pályázt, Jegyzetek és példtárk mtemtik egyetemi okttásához című projektjének keretében készült.

11 2. fejezet Hlmzok, relációk, függvények Bemuttjuk mtemtik eszközeit, lépten-nyomon hsznált foglmkt, fontos megállpodásokt vezetünk be. Biztos lpokt készítünk további építkezéshez. Gykrn lklmzzuk "minden", illetve "tetszőleges" szvk rövidítésére, "létezik, illetve "vn olyn" kifejezések helyett pedig jelet. Az lábbi témköröket tárgyljuk. Hlmz foglm és hlmzműveletek Reláció Függvény foglm és tuljdonsági Kompozíció és inverz Hlmz számosság 2.1. Hlmzok, relációk, függvények A Hlmzok és relációk Egy hlmzt kkor tekintünk ismertnek, h minden jól megfoglmzhtó dologról el tudjuk dönteni, hogy hozzá trtozik vgy nem trtozik hozzá. (Az okos gondolt, szép lány, z elég ngy szám vgy kicsi pozitív szám nem tekinthető jól megfoglmzott dolognk, ezekről nem kérdezzük, hogy benne vnnk-e vlmilyen hlmzbn, hogy lkotnk-e hlmzt.) Legyen A hlmz, x egy jól definiált dolog. H x hozzátrtozik hlmzhoz, kkor ezt x A jelölje. H x nem trtozik hozzá hlmzhoz, kkor ezt x / A jelöli. A hlmz elemeit felsorolhtjuk, például A := {, b, c, d}, vgy értelmes tuljdonsággl djuk meg hlmzt, például B := {x x vlós szám és x 2 < 2}. 3

12 4 2. FEJEZET. HALMAZOK, RELÁCIÓK, FÜGGVÉNYEK 2.1. Definíció. Legyen A és B hlmz. Azt mondjuk, hogy A része B hlmznk, h minden x A esetén x B. Jele: A B Definíció. Legyen A és B hlmz. Az A hlmz egyenlő B hlmzzl, h ugynzok z elemei. Jele: A = B. Könnyen meggondolhtó következő tétel: 2.1. Tétel. Legyen A és B hlmz. A = B pontosn kkor, h A B és B A. Néhány eljárást muttunk, melyekkel újbb hlmzokhoz juthtunk Definíció. Legyen A és B hlmz. Az A és B egyesítése (uniój) z hlmz, melyre A B := {x x A vgy x B}. Az A és B metszete (közös része) z hlmz, melyre A B := {x x A és x B}. Az A és B különbsége z hlmz, melyre A \ B := {x x A és x / B}. A metszet és különbség képzése során elképzelhető, hogy egyetlen x dolog sem rendelkezik kívánt tuljdonsággl. Azt hlmzt, melynek bármely jól definiálhtó dolog sem eleme, üres hlmznk nevezzük. Jele:. Legyen H hlmz és A H egy részhlmz. Az A hlmz (H-r vontkozó) komplementerén z A := H \ A hlmzt értjük. De Morgn-zonosságoknk nevezik következő tételt: 2.2. Tétel. Legyen H hlmz, A, B H. Ekkor A B = A B és A B = A B. Legyen és b dolog. Az {, b} hlmz nyilván sok változtbn felírhtó: {, b} = {b, } = {, b, b, } = {, b, b,, b, b} = stb. Ezzel szemben tekintsük lpfoglomnk z (, b) rendezett párt, melynek lényeges tuljdonság legyen, hogy (, b) = (c, d) pontosn kkor, h = c és b = d. A rendezett pár segítségével értelmezzük hlmzok szorztát Definíció. Legyen A, B hlmz. Az A és B Descrtes-szorzt Például A := {2, 3, 5}, B := {1, 3} esetén A B := {(, b) A és b B}. A B = {(2, 1), (2, 3), (3, 1), (3, 3), (5, 1), (5, 3)}.

13 2.1. HALMAZOK, RELÁCIÓK, FÜGGVÉNYEK A 5 A rendezett pár foglmár épül reláció Definíció. Azt mondjuk, hogy z r hlmz reláció, h minden eleme rendezett pár. Egy mgyr-ngol szótár is egy reláció, hiszen elemei mgyr és neki megfelelő ngol szóból lkotott rendezett párok Definíció. Legyen r reláció. Az r reláció értelmezési trtomány Az r reláció értékkészlete z D(r) := {x vn olyn y, hogy (x, y) r}. R(r) := {y vn olyn x D(r), hogy (x, y) r}. Nyilván r D(r) R(r). Például r := {(4, 2), (4, 3), (1, 2)} esetén D(r) = {4, 1}, R(r) = {2, 3} Relációk inverze és kompozíciój Két eljárást muttunk be, mellyel dott reláció(k)ból újbb relációhoz juthtunk Definíció. Legyen r reláció. Az r reláció inverze z reláció, mely r 1 := {(s, t) (t, s) r}. Láthtó, hogy r := {(1, 3), (4, 2), (5, 2), (3, 3)} esetén r 1 = {(3, 1), (2, 4), (2, 5), (3, 3)}. A mgyr-ngol szótár inverze z ngol-mgyr szótár. Értelmezzük relációk kompozícióját (összetett reláció, közvetett reláció) is Definíció. Legyen r, s reláció. Az s belső reláció és r külső reláció kompozíciój legyen r s := {(x, z) vn olyn y R(s) D(r) közvetítő elem, hogy (x, y) s és (y, z) r}. Például s := {(1, 2), (1, 4), (2, 3)}, r := {(4, 3), (4, 4), (3, 5)} esetén r s := {(1, 3), (1, 4), (2, 5)}. Természetesen elkészíthető z s r reláció is, de ez most s r =. Áltlábn r s s r. Meglepően szép relációk kompozíciójánk inverze és z inverzek kompozíciójánk kpcsolt:

14 6 2. FEJEZET. HALMAZOK, RELÁCIÓK, FÜGGVÉNYEK 2.3. Tétel. Legyen r, s reláció. Ekkor (r s) 1 = s 1 r 1. Mivel hlmzok egyenlőségét szeretnénk igzolni, megmuttjuk, hogy 1.) (r s) 1 s 1 r 1 és 2.) s 1 r 1 (r s) Legyen (p, t) (r s) 1 (t, p) r s vn olyn q R(s) D(r) közvetítő elem, hogy (t, q) s és (q, p) r nyilván (p, q) r 1 és (q, t) s 1 (p, t) s 1 r Legyen (u, w) s 1 r 1 vn olyn v R(r 1 ) D(s 1 ) = R(s) D(r) közvetítő elem, hogy (u, v) r 1 és (v, w) s 1 nyilván (w, v) s és (v, u) r (w, u) r s (u, w) (r s) Függvények A függvény speciális reláció Definíció. Legyen f reláció. Azt mondjuk, hogy z f függvény, h bármely (x, y) f és (x, z) f esetén y = z. Például r := {(1, 2), (2, 3), (2, 4)} nem függvény, hiszen (2, 3) r és (2, 4) r, de 3 4; z f := {(1, 2), (2, 3), (3, 3)} viszont függvény. Néhány megállpodást teszünk függvények körében. H f függvény, kkor (x, y) f esetén y z f függvény x helyen vett helyettesítési értéke, vgy z f függvény z x-hez z y-t rendeli hozzá. Jelölésben: y = f(x). H f függvény és A := D(f), B pedig olyn hlmz, melyre R(f) B (nyilván A függvény értelmezési trtomány, B pedig függvény (egyik) képhlmz), kkor z f A B, f függvény kifejezés helyett z f : A B jelölést hsználjuk ( z f függvény z A hlmzt B hlmzb képezi ). H f függvény és D(f) A, R(f) B, kkor f : A B jelöli ezt ( f z A hlmzból B hlmzb képező függvény ). Például f := {(, α), (b, β), (g, γ), (d, δ), (e, ε)} függvény. Láthtó, hogy β z f függvény b helyen vett helyettesítési értéke, β = f(b). H L ltin betűk, G pedig görög betűk hlmz, kkor f : {, b, g, d, e} G, f() = α, f(b) = β, f(g) = γ, f(d) = δ, f(e) = ε. H csk függvény típusár krunk utlni, elég z f : L G. Természetesen egy függvénynek is vn inverze, ez zonbn nem biztos, hogy függvény lesz Definíció. Legyen f : A B függvény. Azt mondjuk, hogy z f kölcsönösen egyértelmű (injektív), h különböző x 1, x 2 A elemeknek különböző B-beli elemeket feleltet meg, zz bármely x 1, x 2 A, x 1 x 2 esetén f(x 1 ) f(x 2 ).

15 2.2. FELADATOK 7 Könnyen meggondolhtó, hogy kölcsönösen egyértelmű függvény inverze is függvény. Részletesebben: 2.4. Tétel. Legyen f függvény, A := D(f), B := R(f), f kölcsönösen egyértelmű. Ekkor z f inverze f 1 : B A olyn függvény, mely bármely s B ponthoz zt t A pontot rendeli, melyre f(t) = s, (röviden: bármely s B esetén f(f 1 (s)) = s.) Függvények kompozícióját is elkészíthetjük. Szerencsére ez mindig függvény lesz. Legyen g : A B, f : B C. Ekkor relációk kompozíciójánk felhsználásávl megmutthtó, hogy f g : A C, bármely x A esetén (f g)(x) = f(g(x)). Például g függvény minden szám duplájához 1-et djon hozzá (g : R R, g(x) := 2x + 1); z f függvény pedig minden számot emeljen négyzetre (f : R R, f(x) := x 2 ), kkor f g : R R, (f g)(x) = (2x + 1) 2 lesz z f és g kompozíciój. További hsznos foglmk Legyen f : A B és C A. Az f függvény C-re vló leszűkítése z z f C : C B függvény, melyre bármely x C esetén f C (x) := f(x). Legyen f : A B, C A és D B. Az f(c) := {y vn olyn x C, melyre f(x) = y} hlmzt C hlmz f függvénnyel létesített képének nevezzük. Az f 1 (D) := {x f(x) D} hlmz D hlmz f függvényre vontkozó ősképe. (Vigyázt! Az f 1 nem inverzfüggvényt jelöl ebben z esetben.) 2.2. Feldtok 1. Legyen A := {2, 4, 6, 3, 5, 9}, B := {4, 5, 6, 7}, H := {n n egész szám, 1 n 20}. Készítse el z A B, A B, A \ B, B \ A hlmzokt. Mi lesz z A hlmz H-r vontkozó A komplementere? 2. Legyen A := {, b}, B := {, b, c}. A B =? B A =? 3. Legyen r := {(x, y) x, y vlós szám, y = x 2 }. r 1 =? Függvény-e z r? Függvény-e z r 1? 4. Legyen f : R R, f(x) := x 1+x 2. Készítse el z f f, f (f f) függvényeket.

16 8 2. FEJEZET. HALMAZOK, RELÁCIÓK, FÜGGVÉNYEK 5. Gondoljuk végig egy f : A B kölcsönösen egyértelmű függvény inverzének szemléltetését! 6. Gondoljuk meg, hogy egy f : A B kölcsönösen egyértelmű függvény inverzét következő lépésekkel lehet előállítni: 1) Felírjuk, hogy y = f(x). 2) Felcseréljük z x és y változókt : x = f(y). 3) Ebből z egyenletből kifejezzük z y-t z x segítségével: y = g(x). Ez g lesz éppen z f 1 inverzfüggvény. Például: f : R R, f(x) = 2x 1. (Ez kölcsönösen egyértelmű függvény.) 1) y = 2x 1 2) x = 2y 1 3) x + 1 = 2y, y = 1 2 (x + 1). Tehát f 1 : R R, f 1 (x) = 1 2 (x + 1). Szemléltesse is z f és f 1 függvényt! 7. Legyen f : A B, C 1, C 2 A, D 1, D 2 B. Mutssuk meg, hogy f(c 1 C 2 ) = f(c 1 ) f(c 2 ) f(c 1 C 2 ) f(c 1 ) f(c 2 ) f 1 (D 1 D 2 ) = f 1 (D 1 ) f 1 (D 2 ) f 1 (D 1 D 2 ) = f 1 (D 1 ) f 1 (D 2 ). Igz-e, hogy h C 1 C 2, kkor f(c 1 ) f(c 2 )? Igz-e, hogy h D 1 D 2, kkor f 1 (D 1 ) f 1 (D 2 )? 8. Legyen f : A B, C A, D B. Igz-e, hogy f 1 (f(c)) = C? Igz-e, hogy f(f 1 (D)) = D? 2.3. Hlmzok, relációk, függvények E A rendezett párt lpfoglomnk tekintettük, de lehetőség vn hlmzok segítségével bevezetni rendezett pár foglmát Definíció. Legyen és b. Az (, b) rendezett pár legyen (, b) := {{}, {, b}}. Ezzel z értelmezéssel igzolhtó rendezett párt jellemző tuljdonság Tétel. (, b) = (c, d) = c és b = d. Bizonyítás. ( ) Legyen {{}, {, b}} = {{c}, {c, d}}. 1. Vgy {} = {c}, miből = c következik. Továbbá {, b} = {c, d}, de = c mitt b = d lehet csk.

17 2.3. HALMAZOK, RELÁCIÓK, FÜGGVÉNYEK E 9 2. Vgy {} = {c, d}, miből c = d és így = c = d következik. Ekkor (c, d) = {{}}, de kkor {} = {, b} is igz, így = b. Tehát = b = c = d. ( ) Nyilvánvló! Ekvivlenci és rendezési reláció A mtemtik néhány kényes foglmát relációkkl és függvényekkel hozzuk kpcsoltb Definíció. Legyen H, r H H, D(r) = H reláció. Azt mondjuk, hogy 1. r reflexív, h x H esetén (x, x) r; 2. r szimmetrikus, h (x, y) r esetén (y, x) r; 3. r ntiszimmetrikus, h minden olyn esetben, mikor (x, y) r és (y, x) r, kkor x = y; 4. r trnzitív, h minden olyn esetben, mikor (x, y) r és (y, z) r, kkor (x, z) r Definíció. H z r reláció reflexív, szimmetrikus és trnzitív, kkor r ekvivlenci-reláció Definíció. H z r reláció reflexív, ntiszimmetrikus és trnzitív, kkor r rendezési reláció. Legyen egy ekvivlenci-reláció H hlmzon (D( ) = H). Állpodjunk meg bbn, hogy (x, y) helyett z x y jelölést hsználjuk. A ekvivlenci-reláció segítségével H hlmzt részhlmzokr bontjuk következő lépésekkel. α) Legyen x H. Az x-hez trtozó ekvivlenci-osztály x / := {y y H, x y}. β) Könnyen beláthtó, hogy h x, z H, kkor vgy x / = z /, vgy x / z / =. Ez zt jelenti, hogy H hlmz felbonthtó közös pont nélküli ekvivlenci-osztályokr. γ) Legyen H / := {X x H, hogy X = x / }. A H / z ekvivlenci-osztályok hlmz. Igzolhtó, hogy

18 10 2. FEJEZET. HALMAZOK, RELÁCIÓK, FÜGGVÉNYEK 1. H / elemei közös pont nélküliek ( β) pontbn ezt foglmztuk meg), 2. H / elemeinek (hlmzoknk) z egyesítése kidj H hlmzt. Lássunk két fontos példát erre z eljárásr. 1. Legyen T törtek hlmz, zz { } p T = p, q egész szám, q 0. q A T hlmzon értelmezünk egy relációt: b c d = bc. d Végiggondolhtó, hogy ekvivlenci-reláció. Ekkor b / ekvivlenci-osztályb beletrtozik z összes olyn tört, mely egyenlő z b -vel. A T / hlmz pedig olyn közös elem nélküli hlmzokr vló felbontás T törtek hlmzánk, melyek egyesítéseként visszkpjuk T hlmzt. Az b / egy rcionális szám, T / pedig rcionális számok hlmz. Így válik érthetővé, hogy 1 2 egyenlő 2 4 -del, 6 12-del, hiszen ezek törtek reprezentánsi z 1 2/ rcionális számnk, és rcionális számokkl végzett műveletek során mindig megfelelő reprezentánst húzzuk elő z osztályból. Például zt sugllj, hogy = = / / = 3 6 / / = 7 6 /. 2. A másik példábn E legyen egy sík irányított szkszink hlmz. Bevezetünk E-n egy relációt: legyen b, h z szksz párhuzmos b-vel, zonos irányúk és egyform hosszúk. Könnyen láthtó, hogy ekvivlenci-reláció. Az / trtlmzz z -vl párhuzmos, vele zonos irányú és hosszúságú irányított szkszokt. Egy ilyen osztály legyen egy vektor. Az E / sík vektorink hlmz. Így válik érthetővé, hogy vektorok összedásánál z egyik vektort eltoljuk úgy, hogy két vektor kezdőpontj megegyezzék. Vlójábn mindkét vektorból z lklms reprezentáns irányított szkszt húzzuk elő, zokkl végezzük el műveletet, és z eredő irányított szkszhoz trtozó ekvivlenci-osztály lesz z összedás eredő vektor.

19 2.3. HALMAZOK, RELÁCIÓK, FÜGGVÉNYEK E 11 A rendezési relációkkl kpcsoltbn csk két egyszerű példát tárgylunk. Legyen N pozitív egész számok hlmz. Legyen z reláció, melyre b, h vn olyn nemnegtív c egész, hogy + c = b. Ez vlóbn rendezési reláció. Még z is igz, hogy bármely, b N esetén vgy b, vgy b. Az N pozitív egészek hlmzán egy másik relációt is bevezethetünk. Azt mondjuk, hogy osztój b-nek, h vn olyn k pozitív egész, hogy b = k. Az oszthtóság reláció reflexív ( = 1), ntiszimmetrikus (h b = k és = bl, kkor b = blk, miből lk = 1, de ez csk k = 1 és l = 1 esetén igz, tehát = b) és trnzitív (h b = k, c = bl, kkor c = kl, zz osztój c-nek), tehát z oszthtóság is rendezési reláció z N hlmzon. Csk nem olyn szép, mint volt, hiszen, vn olyn, b N, melyre nem osztój b-nek, és b sem osztój -nk. (Például := 4 és b := 7.) Hlmzok számosság Gykrn hsonlítjuk össze hlmzok elemszámát, ezt formlizáljuk z lábbi definícióbn Definíció. Legyen A, B hlmz. Azt mondjuk, hogy A számosság egyenlő B számosságávl, h vn olyn φ : A B függvény, melyre R(φ) = B, és φ kölcsönösen egyértelmű. [Az ilyen φ függvényt bijekciónk nevezzük A és B között.] Például pozitív egészek N hlmz és pozitív páros számok P hlmz egyenlő számosságú, hiszen φ : N P, φ(n) := 2n függvény bijekció N és P között Definíció. Legyen A hlmz. Azt mondjuk, hogy A végtelen (számosságú) hlmz, h A A, A A, hogy φ : A A bijekció. Az előbbi péld éppen zt muttj, hogy N végtelen hlmz Definíció. Legyen A végtelen hlmz. Azt mondjuk, hogy A megszámlálhtó, h φ : N A bijekció. Meglepő, de rcionális számok Q hlmz megszámlálhtó. Írjuk fel z 1, 2, 3,..., n,... nevezőjű törteket soronként

20 12 2. FEJEZET. HALMAZOK, RELÁCIÓK, FÜGGVÉNYEK A φ : N Q bijekciót úgy készítjük, hogy φ(1) := 0 1, φ(2) := 1 1, φ(3) := 1 2, φ(4) := 1 2,... A rjz szerinti lépegetéssel hldunk, ügyelve rr, hogy olyn törtet ugorjunk át, mely már egyszer sorr került. Ezzel biztosítjuk, hogy vlóbn kölcsönösen egyértelmű mrdjon függvényünk. Láthtó z is, hogy előbb-utóbb minden rcionális számhoz eljutunk, így φ bijekció lesz N és Q között, mi zt jelenti, hogy Q megszámlálhtó.

21 3. fejezet Számhlmzok Kiskorunktól számolunk vlós számokkl, összedjuk, szorozzuk, osztjuk őket, htványozunk, bszolút értékét vesszük számoknk. Egyenleteket, egyenlőtlenségeket rendezünk. Most lefektetjük zt viszonylg egyszerű szbályrendszert, melyből megtnult eljárások levezethetők. Az lábbi témköröket tárgyljuk. Vlós számok hlmz Természetes számok hlmz Egész számok és rcionális számok hlmz Felső és lsó htár Intervllum és környezet Htványozás definíciój és zonossági Komplex számok hlmz Komplex szám trigonometrikus lkj, műveletek 3.1. Vlós számok A A vlós számok xiómrendszere Legyen R nem üres hlmz. Tegyük fel, hogy vn még egy összedásnk nevezett + : R R R és egy szorzásnk nevezett : R R R függvény is, melyek következő tuljdonságokkl rendelkeznek: 1. bármely, b R esetén + b = b + (kommuttivitás) 2. bármely, b, c R esetén + (b + c) = ( + b) + c (sszocitivitás) 13

22 14 3. FEJEZET. SZÁMHALMAZOK 3. vn olyn 0 R elem, hogy bármely R esetén + 0 = (0 z összedásr nézve semleges elem) 4. bármely R esetén vn olyn R ellentett elem, hogy + ( ) = 0. m1. bármely, b R esetén b = b m2. bármely, b R esetén (b c) = ( b) c m3. vn olyn 1 R elem, hogy bármely R esetén 1 = (1 szorzásr nézve semleges elem) m4. bármely R \ {0} esetén vn olyn 1 R reciprok elem, hogy 1 = 1. d. bármely, b, c R esetén (b+c) = b+c (disztributív szorzás z összedásr nézve) Láthtó, hogy szorzás szbályrendszere 4. követelményben lényegesen eltér z összedástól (egyébként nem is különbözne z összedás és szorzás). A d. is z eltérést erősíti. Tegyük fel, hogy R-en vn egy olyn (kisebb vgy egyenlőnek nevezett) rendezési reláció, mely még következő tuljdonságokkl rendelkezik: r1. bármely, b R esetén vgy b, vgy b. r2. minden olyn esetben, mikor b és c R tetszőleges szám, kkor +c b+c. r3. minden olyn esetben, mikor 0 és 0 b, kkor 0 b. Állpodjunk meg bbn, hogy z b, b helyett < b jelölést hsználunk. (Sjnos < nem rendezési reláció, mert nem reflexív.) Az 1. 4., m1. m4., d., r1. r3. lpján levezethető z összes egyenlőséggel és egyenlőtlenséggel kpcsoltos szbály. Kiegészítésül három foglmt külön is megemlítünk Definíció. Legyen, b R, b 0. Ekkor b := 1 b. Az osztás tehát elvégezhető vlós számokkl Definíció. Legyen x R. Az x bszolút értéke { x, h 0 x x := x, h x 0, x 0. Hsznosk z bszolút értékkel kpcsoltos egyenlőtlenségek.

23 3.1. VALÓS SZÁMOK A Bármely x R esetén 0 x. 2. Legyen x R és ε R, 0 ε. Ekkor x ε, és x ε x ε. 3. Bármely, b R esetén + b + b (háromszög-egyenlőtlenség) 4. Bármely, b R esetén b b. Könnyen igzolhtók ezek z állítások. A 4. bizonyítását megmuttjuk. Tekintsük z = b + b egyenlőtlenséget. Ekkor 3. szerint = b + b b + b. Az r2. szerint b számot mindkét oldlhoz hozzádv nem változik z egyenlőtlenség + ( b ) = b b (3.1) Hsonló meggondolássl b = b + b = b + b + b b / ( b ) b = b (3.2) Az (3.1) és (3.2) 2. tuljdonság szerint (x := b ; ε := b szereposztássl) éppen zt jelenti, hogy b b Természetes, egész és rcionális számok Most elkülönítjük z R egy nevezetes részhlmzát. Legyen N R olyn részhlmz, melyre 1 o 1 N 2 o bármely n N esetén n + 1 N 3 o bármely n N esetén n (z 1 z első elem) 4 o bból, hogy ) S N b) 1 S c) bármely n S esetén n + 1 S következik, hogy S = N. (Teljes indukció.) Az R-nek z ilyen N részhlmzát természetes számok hlmzánk nevezzük. Kiegészítésül álljon itt még néhány megállpodás: Z := N {0} {m R m N} z egész számok hlmz Q := {x R hlmz vn olyn p Z, q N, hogy x = p q } rcionális számok

24 16 3. FEJEZET. SZÁMHALMAZOK Q := R \ Q z irrcionális számok hlmz Az N segítségével műveleti, rendezési szbályrendszer mellé hrmdik követelményt illesztjük z R-hez. Archimedesz-xióm: Bármely, b R, 0 < számokhoz vn olyn n N, hogy b < n. Az Archimedesz-xióm következményeként megmuttjuk, hogy bármely K R számhoz vn olyn n N természetes szám, melyre K < n, ugynis z := 1, b := K szereposztássl z xióm ilyen természetes számot biztosít. Megmuttjuk zt is, hogy bármely ε R, 0 < ε esetén vn olyn n N természetes szám, hogy 1 n < ε, ugynis legyen := ε és b := 1. Az xióm szerint vn olyn n N, hogy 1 < n ε. Rendre lklmzv megfelelő szbályt 1 < nε / + ( 1) 0 < nε 1 / 1 n 0 < 1 n (nε 1) = ε 1 n 1 n < ε. / + 1 n Az Archimedesz-xiómávl sem vált még minden igényt kielégítővé z R. Szükségünk lesz egy utolsó xiómár, melyet néhány foglomml készítünk elő Felső és lsó htár 3.3. Definíció. Legyen A R, A. Azt mondjuk, hogy A felülről korlátos számhlmz, h vn olyn K R, hogy bármely A esetén K. Az ilyen K z A hlmz egyik felső korlátj. Legyen A R, A felülről korlátos hlmz. Tekintsük B := {K R K felső korlátj z A hlmznk} hlmzt. Legyen α R B hlmz legkisebb eleme, zz olyn szám, melyre 1 o α B (α is felső korlátj z A hlmznk) 2 o bármely K B felső korlátr α K. A kérdés csupán z, hogy vn-e ilyen α R. Felső htár xiómáj: Minden felülről korlátos A R, A hlmznk vn

BEVEZETÉS AZ ANALÍZISBE

BEVEZETÉS AZ ANALÍZISBE BEVEZETÉS AZ ANALÍZISBE Jegyzetek és példtárk mtemtik egyetemi okttásához sorozt Algoritmuselmélet Algoritmusok bonyolultság Anlitikus módszerek pénzügyben és közgzdságtnbn Anlízis feldtgyűjtemény I Anlízis

Részletesebben

BEVEZETÉS AZ ANALÍZISBE

BEVEZETÉS AZ ANALÍZISBE BEVEZETÉS AZ ANALÍZISBE földtudomány szakos hallgatók számára Mezei István, Faragó István, Simon Péter Eötvös Loránd Tudományegyetem Alkalmazott Analízis és Számításmatematikai Tanszék ii Tartalomjegyzék

Részletesebben

GAZDASÁGI MATEMATIKA I.

GAZDASÁGI MATEMATIKA I. GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z

Részletesebben

Analízis II. harmadik, javított kiadás

Analízis II. harmadik, javított kiadás Ljkó Károly Anlízis II. hrmdik, jvított kidás Debreceni Egyetem Mtemtiki és Informtiki Intézet 2003 c Ljkó Károly ljko @ mth.klte.hu Amennyiben hibát tlál jegyzetben, kérjük jelezze szerzőnek! A jegyzet

Részletesebben

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0. Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N

Részletesebben

Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai

Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai Juhász István Orosz Gyul Próczy József Szászné Dr Simon Judit MATEMATIKA 0 Az érthetõ mtemtik tnkönyv feldtink megoldási A feldtokt nehézségük szerint szinteztük: K középszint, könnyebb; K középszint,

Részletesebben

Matematikai analízis. Editura Didactică şi Pedagogică

Matematikai analízis. Editura Didactică şi Pedagogică András Szilárd Mureşn Mrin Mtemtiki nlízis és lklmzási Editur Didctică şi Pedgogică Bucureşti, 2005 Descriere CIP Bibliotecii Nţionle României ANDRÁS SZILÁRD, MARIAN MUREŞAN Mtemtiki nlízis és lklmzási/

Részletesebben

Lajk o K aroly Kalkulus II. Debreceni Egyetem Matematikai es Informatikai Int ezet 2003 1

Lajk o K aroly Kalkulus II. Debreceni Egyetem Matematikai es Informatikai Int ezet 2003 1 Ljkó Károly Klkulus II. Debreceni Egyetem Mtemtiki és Informtiki Intézet 2003 1 c Ljkó Károly ljko @ mth.klte.hu Amennyiben hibát tlál jegyzetben, kérjük jelezze szerzőnek! A jegyzet dvi, pdf és ps formátumbn

Részletesebben

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei 7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,

Részletesebben

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7

Részletesebben

Bevezetés a funkcionálanalízisbe

Bevezetés a funkcionálanalízisbe Bevezetés funkcionálnlízisbe Krátson János elődási lpján írt: Kurics Tmás Trtlomjegyzék Előszó 3 1. Normált terek 5 1.1. Normált terek és tuljdonságik............................ 5 1.2. Metrikus és normált

Részletesebben

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Valós számok 1. Hogyan szól a Bernoulli-egyenl tlenség? Mikor van egyenl ség? Válasz. Minden h 1 valós számra

Részletesebben

Minta feladatsor I. rész

Minta feladatsor I. rész Mint feldtsor I. rész. Írj fel z A számot htványként! A / pont/. Mekkor hosszúságú dróttl lehet egy m m-es tégllp lkú testet z átlój mentén felosztni két derékszögű háromszögre? Adj meg hosszúságot mértékegységgel!

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logritmusos feldtok A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z

Részletesebben

Óravázlatok: Matematika 2. Tartományintegrálok

Óravázlatok: Matematika 2. Tartományintegrálok Órvázltok: Mtemtik 2. rtományintegrálok Brth Ferenc zegedi udományegyetem, Elméleti Fiziki nszék készültség: April 23, 23 http://www.jte.u-szeged.hu/ brthf/oktts.htm) ontents 1. A kettős integrál 1 1.1.

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

4 x. Matematika 0 1. előadás. Végezzük el a műveleteket! Alakítsuk szorzattá a következő kifejezéseket! 5. Oldjuk meg az alábbi egyenleteket!

4 x. Matematika 0 1. előadás. Végezzük el a műveleteket! Alakítsuk szorzattá a következő kifejezéseket! 5. Oldjuk meg az alábbi egyenleteket! Mtemtik 0. elődás Végezzük el műveleteket!. 6... Alkítsuk szorzttá következő kifejezéseket!. 8 6 6. 7. 8. y Oldjuk meg z lái egyenleteket! 9. 0. 7 0 7 6. 7. Egy kétjegyű szám számjegyeinek összege. H felseréljük

Részletesebben

Gazdasági matematika 1. tantárgyi kalauz

Gazdasági matematika 1. tantárgyi kalauz Dr Mdrs Lászlóné Gzdsági mtemtik tntárgyi kluz Szolnoki Főiskol Szolnok 005 Gzdsági mtemtik tntárgyi kluz A kluz következő három kidványhoz készült: Dr Csernyák László: Anlízis, Mtemtik közgzdászoknk sorozt,

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM Felhsznált segédletek, példtárk:. Nemzetközi Elıkészítı Int. NEI. Összefoglló feldtgőjtemén ÖF. Szécheni István Fıiskol Távokt. SzIT. Mőszki Fıiskol Példtár MFP Szent

Részletesebben

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése Hrmdik típusú nyelvek és véges utomták Formális nyelvek, 10. gykorlt Házi feldtok megoldás 1. feldt Melyik nyelvet fogdj el következő utomt? c q 0 q 1 q 2 q 3 q 1 q 4 q 2 q 4 q 2 q 0 q 4 q 3 q 3 q 4 q

Részletesebben

Matematika emelt szintû érettségi témakörök 2012. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Matematika emelt szintû érettségi témakörök 2012. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Mtemtik emelt szintû érettségi témkörök 0 Összeállított: Kovácsné Németh Srolt (gimnáziumi tnár) Tájékozttó vizsgázóknk Tisztelt Vizsgázó! szóeli vizsgán tétel címéen megjelölt tém kifejtését és kitûzött

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Mtemtik emelt szint 1111 ÉRETTSÉGI VIZSGA 011. május. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Formi előírások: Fontos tudnivlók 1.

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Matematika emelt szintû érettségi témakörök 2014. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Matematika emelt szintû érettségi témakörök 2014. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Mtemtik emelt szintû érettségi témkörök 04 Összeállított: Kovácsné Németh Srolt (gimnáziumi tnár) Tájékozttó vizsgázóknk Tisztelt Vizsgázó! szóeli vizsgán tétel címéen megjelölt tém kifejtését és kitûzött

Részletesebben

Gyakorló feladatsor 11. osztály

Gyakorló feladatsor 11. osztály Htvány, gyök, logritmus Gykorló feldtsor 11. osztály 1. Számológép hsznált nélkül dd meg z lábbi kifejezések pontos értékét! ) b) 1 e) c) d) 1 0, 9 = f) g) 7 9 =. Számológép hsznált nélkül döntsd el, hogy

Részletesebben

(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): ---

(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): --- A ttárgy eve: Mtemtik I Heti órszám: 3+3 (6 kredit) Ttárgy kódj: GEMAN0B (ygmérök ppli BSc + felsőf szkk) A tárgy lezárás: láírás + kollokvium Okttók: Dr Vrg Péter ETF (előt feltétel): --- Algebr, lieáris

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

2. modul Csak permanensen!

2. modul Csak permanensen! MATEMATIKA C. évfolym. modul Csk permnensen! Készítette: Kovács Károlyné Mtemtik C. évfolym. modul: Csk permnensen! Tnári útmuttó A modul célj Időkeret Ajánlott korosztály Modulkpcsolódási pontok A htványzonosságok

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 00-. I. Félév . fejezet Számhalmazok és tulajdonságaik.. Nevezetes számhalmazok ➀ a) jelölése: N b) elemei:

Részletesebben

5. A logaritmus fogalma, a logaritmus azonosságai

5. A logaritmus fogalma, a logaritmus azonosságai A ritmus foglm ritmus zonossági I Elméleti összefoglló H > 0 > 0 > 0 vlós számok és n tetszőleges vlós szám kkor 0 n n H > 0 > 0 > 0 vlós számok kkor H > kkor z f( ) kkor z f( ) függvén szigorún monoton

Részletesebben

Analízis Gyakorlattámogató jegyzet

Analízis Gyakorlattámogató jegyzet Analízis Gyakorlattámogató jegyzet Király Balázs. március. Tartalomjegyzék Előszó 7 I. Analízis I. 9. Számhalmazok tulajdonságai.. Gyakorlat.......................................... Házi Feladatok.....................................

Részletesebben

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6. Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L

Részletesebben

MATEMATIKA 1. GYAKORLATOK

MATEMATIKA 1. GYAKORLATOK Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA. GYAKORLATOK 0. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright ii A Matematika.

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2011. május 3. MINISZTÉRIUM NEMZETI ERFORRÁS

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2011. május 3. MINISZTÉRIUM NEMZETI ERFORRÁS Mtemtik emelt szint Jvítási-értékelési útmuttó MATEMATIKA EMELT SZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERFORRÁS MINISZTÉRIUM ÉRETTSÉGI VIZSGA 0. május. Mtemtik emelt szint

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Okttási Hivtl A 013/014 tnévi Országos Középiskoli Tnulmányi Verseny első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Jvítási-értékelési útmuttó 1 Oldj meg vlós számok hlmzán egyenletet! 3 5 16 0

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el.

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el. Végtele sok vlós számból álló összegeket sorokk evezzük. sorb szereplő tgokt képzeljük el úgy, mit egy bolh ugrásit számegyeese. sor összege h létezik ilye z szám hov bolh ugrási sorá eljut. Nézzük például

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

A VI. FEKETE MIHÁLY EMLÉKVERSENY

A VI. FEKETE MIHÁLY EMLÉKVERSENY A VI. FEKETE MIHÁLY EMLÉKVERSENY Elődó: Bgi Márk Elődás címe: Csillgászti elődás és kvíz A versenyzők feldtmegoldásokon törik fejüket. 88 VI. FEKETE MIHÁLY EMLÉKVERSENY Zent, 008. december. 9. évfolym.

Részletesebben

Matematika I. Mőszaki informatikai mérnm. rnökasszisztens. Galambos GáborG JGYPK 2011

Matematika I. Mőszaki informatikai mérnm. rnökasszisztens. Galambos GáborG JGYPK 2011 Mtemtik I. Mőszki informtiki mérnm rnöksszisztens http://jgypk.u jgypk.u-szeged.hu/tnszek/szmtech szmtech/oktts/mtemtik-.pdf Glmbos GáborG JGYPK - Mtemtik I. Felsıfokú Szkképzés A Mtemtik I. fıbb f témái:

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =

Részletesebben

Matematika emelt szintû érettségi témakörök 2015. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Matematika emelt szintû érettségi témakörök 2015. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Mtemtik emelt szintû érettségi témkörök 05 Összeállított: Kovácsné Németh Srolt (gimnáziumi tnár) Tájékozttó vizsgázóknk Tisztelt Vizsgázó! szóeli vizsgán tétel címéen megjelölt tém kifejtését és kitûzött

Részletesebben

1144 PROGRAMOZÁSMÓDSZERTAN, PROGRAMOZÁSI NYELVEK

1144 PROGRAMOZÁSMÓDSZERTAN, PROGRAMOZÁSI NYELVEK PROGRAMOZÁSMÓDSZERTAN, PROGRAMOZÁSI NYELVEK ESETFELVETÉS- MUNKAHELYZET A következő fejezetekben zokkl z lpvető mtemtiki lpokkl ismerkedhet meg, melyek tudás elengedhetetlen z lpvető progrmozási ismeretek

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

II. A számtani és mértani közép közötti összefüggés

II. A számtani és mértani közép közötti összefüggés 4 MATEMATIKA A 0. ÉVFOLYAM TANULÓK KÖNYVE II. A számtni és mértni közép közötti összefüggés Mintpéld 6 Számítsuk ki következő számok számtni és mértni közepeit, és ábrázoljuk számegyenesen számokt és közepeket!

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825.

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825. Egész kitevôjû htváok 7 8 A helese kitöltött keresztrejtvé: 8 ár 8 A rímek összege: + + 9 8 ) $ $ 8 ) $ $ 9$ $ 7 $ $ 0 c) $ ( + ) ( + ) 8 ) $ $ k ( - ) - - - ) r s - 7 m k l ( + ) 7 8 ( - ) 8 ( + ) 7 (

Részletesebben

Matematika emelt szintû érettségi témakörök 2011. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Matematika emelt szintû érettségi témakörök 2011. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Mtemtik emelt szintû érettségi témkörök 0 Összeállított: Kovácsné Németh Srolt (gimnáziumi tnár) Tájékozttó vizsgázóknk szóeli vizsg leírás: z emelt szintû szóeli vizsg z Okttási Hivtl áltl kidott tételsor

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1. Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)

Részletesebben

Mindig csak a kitevő?

Mindig csak a kitevő? MATEMATIKA C. évfolym. modul Mindig csk kitevő? Készítette: Kovács Károlyné Mtemtik C. évfolym. modul: Mindig csk kitevő? Tnári útmuttó A modul célj Időkeret Ajánlott korosztály Modulkpcsolódási pontok

Részletesebben

I. feladatsor. (t) z 1 z 3

I. feladatsor. (t) z 1 z 3 I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.

Részletesebben

Végeredmények, emelt szintû feladatok részletes megoldása

Végeredmények, emelt szintû feladatok részletes megoldása Végeredmények, emelt szintû feldtok részletes megoldás I. gyökvonás. gyökfoglom kiterjesztése. négyzetgyök lklmzási. számok n-edik gyöke 5. z n-edik gyökfüggvény, z n-edik gyök lklmzás 6 II. Másodfokú

Részletesebben

Gyakorló feladatsor 9. osztály

Gyakorló feladatsor 9. osztály Gykorló feldtsor 9. osztály Hlmzok. Sorold fel z lábbi hlmzok elemeit! ) A={ legfeljebb kétjegyű 9-cel oszthtó páros pozitív számok} b) B={:prímszám, hol < 7} c) C={b=n+, hol nϵz és- n

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Lineáris egyenletrendszerek Összeállított: dr. Leitold Adrien egyetemi docens 2008.09.08. Leontieff-modellek Leontieff-modellek: input-output modellek gzdság leírásár legyen n féle, egymássl összefüggésben

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS II. ***************

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS II. *************** JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS II. Folytonosság, differenciálhatóság *************** Pécs, 1996 Lektorok: DR. SZÉKELYHIDI LÁSZLÓ egyetemi tanár, a mat. tud. doktora DR. SZILI LÁSZLÓ

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

Ptolemaios-tétele, Casey-tétel, feladatok

Ptolemaios-tétele, Casey-tétel, feladatok Kutov ntl Ptolemios, sey, feldtok Kutov ntl (Kposvár) Ptolemios-tétele, sey-tétel, feldtok Ptolemios-tétel: H egy konvex négyszög szemközti oldli és, ill. és d; átlói e és f, kkor + d e f. Egyenlőség kkor

Részletesebben

Konfár László Kozmáné Jakab Ágnes Pintér Klára. sokszínû. munkafüzet. Harmadik, változatlan kiadás. Mozaik Kiadó Szeged, 2012

Konfár László Kozmáné Jakab Ágnes Pintér Klára. sokszínû. munkafüzet. Harmadik, változatlan kiadás. Mozaik Kiadó Szeged, 2012 Konfár László Kozmáné Jk Ágnes Pintér Klár sokszínû munkfüzet 8 Hrmdik, változtln kidás Mozik Kidó Szeged, 0 Szerzõk: KONFÁR LÁSZLÓ áltlános iskoli szkvezetõ tnár KOZMÁNÉ JK ÁGNES áltlános iskoli szkvezetõ

Részletesebben

Vektoralgebra előadás fóliák. Elméleti anyag tételek, definíciók, bizonyítás vázlatok. Bércesné Novák Ágnes 1. Források, ajánlott irodalom:

Vektoralgebra előadás fóliák. Elméleti anyag tételek, definíciók, bizonyítás vázlatok. Bércesné Novák Ágnes 1. Források, ajánlott irodalom: Bevezetés számítástudomány mtemtiki lpji Vektorlger elődás fóliák Elméleti nyg tételek, definíciók, izonyítás vázltok Bércesné Novák Ágnes Források, jánlott irodlom: Hjós György: Bevezetés geometriá, Tnkönyvkidó,

Részletesebben

PÁLYÁZATI ÚTMUTATÓ. a Társadalmi Megújulás Operatív Program keretében

PÁLYÁZATI ÚTMUTATÓ. a Társadalmi Megújulás Operatív Program keretében PÁLYÁZATI ÚTMUTATÓ Társdlmi Megújulás Opertív Progrm keretében Munkhelyi képzések támogtás mikro- és kisválllkozások számár címmel meghirdetett pályázti felhívásához Kódszám: TÁMOP-2.1.3/07/1 v 1.2 A projektek

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

Nagyordó, Omega, Theta, Kisordó

Nagyordó, Omega, Theta, Kisordó A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,

Részletesebben

Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA 1. 2011. Tartalomjegyzék

Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA 1. 2011. Tartalomjegyzék Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA.. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright ii A Matematika. elektronikus

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 007. október 5. KÖZÉPSZINT I. ) Az A hlmz elemei háromnál ngyobb egyjegyű számok, B hlmz elemei pedig húsznál kisebb pozitív pártln számok. Sorolj fel z hlmz elemeit! ( pont) A B AB

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

Gazdasági Matematika I.

Gazdasági Matematika I. Dr. Lajkó Károly Gazdasági Matematika I. NYÍREGYHÁZI FŐISKOLA GAZDASÁGMÓDSZERTANI TANSZÉK Dr. Lajkó Károly Gazdasági Matematika I. jegyzet az alapképzéshez NYÍREGYHÁZI FŐISKOLA GAZDASÁGMÓDSZERTANI TANSZÉK

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt2 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggonozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen

Részletesebben

GYAKORLAT. 1. Elemi logika, matematikai állítások és következtetések, halmazok (lásd EA-ban is; iskolából ismert)

GYAKORLAT. 1. Elemi logika, matematikai állítások és következtetések, halmazok (lásd EA-ban is; iskolából ismert) GYAKORLAT. Elemi logika, matematikai állítások és következtetések, halmazok lásd EA-ban is; iskolából ismert I. Halmazok.. Alapfogalmak: "halmaz" és "eleme". Halmaz kritériuma: egyértelm en eldönthet,

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet

Részletesebben

Matematika I. Mőszaki informatikai mérnm. rnökasszisztens. Galambos GáborG JGYPK 2008-2009. A Matematika I. fıbb f Halmazok: Alapfogalmak, mőveletek m

Matematika I. Mőszaki informatikai mérnm. rnökasszisztens. Galambos GáborG JGYPK 2008-2009. A Matematika I. fıbb f Halmazok: Alapfogalmak, mőveletek m Mtemtik I. Mőszki informtiki mérnm rnöksszisztens Glmbos GáborG JGYPK 8-9 9 Mtemtik I. Felsıfokú Szkképzés A Mtemtik I. fıbb f témái: t Hlmzok: Alpfoglmk, mőveletek m hlmzokkl, számhlm mhlm- zok,, végtelen

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym AMt2 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen

Részletesebben

Valós függvénytan Elektronikus tananyag

Valós függvénytan Elektronikus tananyag Valós függvénytan Elektronikus tananyag Valós függvénytan: Elektronikus tananyag TÁMOP-4.1.2.A/1-11/1 MSc Tananyagfejlesztés Interdiszciplináris és komplex megközelítésű digitális tananyagfejlesztés a

Részletesebben

1. Sorozatok 2014.03.12.

1. Sorozatok 2014.03.12. 1. Sorozatok Azokat a függvényeket, amelyek értelmezési tartománya a pozitív egész számok halmaza ( jelölése N ), a képhalmaz a valós számok halmaza, sorozatnak nevezzük. Az a függvény n N helyen vett

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

II. EGYENLETEK ÉS EGYENLŐTLENSÉGEK

II. EGYENLETEK ÉS EGYENLŐTLENSÉGEK Egyenletek és egyenlőtlenségek 5 II EGYENLETEK ÉS EGYENLŐTLENSÉGEK Az idők folymán ngyon sok gykorlti problém merült fel, melynek megoldásához egyenletekre volt szükség A mi egyszerű és tömör mtemtiki

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Bácsó Sándor Diszkrét Matematika I. mobidiák könyvtár Bácsó Sándor Diszkrét Matematika I. mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Bácsó Sándor Diszkrét Matematika I. egyetemi jegyzet mobidiák

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. tanulmányokhoz TÁVOKTATÁS 2015/2016-os tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika I. (Analízis) Tanszék: Módszertani

Részletesebben

Lineáris programozás

Lineáris programozás Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Függvények Analízis

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Függvények Analízis MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Függvények Anlízis A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z érintett feldtrészek megoldásához!

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben