Blaise Pascal ( )

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Blaise Pascal ( )"

Átírás

1 Stonehenge

2 ABACUS

3 John Napier

4 Blaise PASCAL

5 Blaise Pascal (6-66) Francia filozófus és matematikus. A tízes számrendszer jegyeit egy körtárcsa kerületére írva megoldja az átvitel (carry) automatizálását s ezzel a számlálás, valamint az erre alapuló összeadás illetve kivonás gépesítését.

6

7 PASCAL KALKULÁTORA

8

9 PASCAL KALKULÁTORA (64) 9 9 Az átvitel-jegy automatikusan tovább vonul! A kallantyúval számlálásra is alkalmazható 9

10 Gottfried Wilhelm LEIBNIZ

11 Gottried Wilhelm von LEIBNI(T)Z Német filozófus és matematikus. Pascal kalkulátorát továbbfejleszti, bevezetve az alapműveletek mindkét operandusa számára egy-egy regisztert, melyek közül az egyik eltolható. Így megvalósíthatja a tízzel, majd ismételt összeadás ill. kivonás segítségével a tetszőleges számmal való szorzást ill. osztást is.

12 LEIBNITZ KALKULÁTORA (69)

13 LEIBNITZ KALKULÁTORA (69) A ( itt gyűlik és jelenik meg az eredmény ) A akkumulátor accumulator B buffer regiszter ( nincs semmiféle fogaskerék! ; eltolható! )

14 AZ ANALÍZIS MEGJELENÉSE Leibnitz és Newton kialakítják az infinitezimális számítást. Kialakul az analízis. Fel lehet írni differenciálegyenleteket. Még a legegyszerübbeknek sincs zárt alakú megoldása: -x y + y = megoldása y = e ; y nem számítható ki x-ből y + y = y = sin x ; cos x Ezeknek a függvényeknek az értékét táblázatok adják meg. Ezeket a táblázatokat meg kellett csinálni. (Logar- tábla) Babbage ezt a táblázatkészítést akarta automatizálni.

15 Charles BABBAGE

16 Charles Babbage A polinómok táblázatolására kifejleszti és megépíti az u.n. Differencia Gépet. Ennek továbbfejlesztése képen az egymáshoz kapcsolt hat összeadó helyett egyetlen kalkulátort (aritmetikai egységet) és sok tároló rekeszt tartalmazó memóriát javasol, melyből az adatok lyukkártyákon tárolt utasítások nyomán jutnak az aritmetikai egységbe ill. abból vissza a memóriába. Ez a mai számítógép őse.

17 TAYLOR SOR Babbage tudta, hogy minden folytonos függvény hatványsorba fejthető: f(x) = f() + f ().x/! + f ().x^/! +.. Pl.: sin (x) = x - x^/! + x^5/5! - x^7/7! +..

18 DIFFERENCIA GÉP Babbage ugyancsak tudta, hogy egy n-ed rendű polinóm n-edik differenciája konstans Pl.: y = x^ + x + x y dy d^y ADD ADD

19 DIFFERENCIA GÉP

20 ax^ + bx + c X= :N digit pontos BABBAGE s DIFFERENCE ENGINE

21 A MEMÓRIA MEGJELENÉSE Babbage megépített hat regiszteres differencia gépe maximum ötödfokú polinómok táblázatolását engedte meg. Bonyolultabb pl. trigonometrikus függvények megközelítéséhez nem elégséges egy ötödfokú hatványsor.,, 5 vagy tetszőleges n-ed fokú polinómokra lehet szükség. Ez ugyanennyi bonyolult fogaskerekes összeadómű megépítését tenné szükségessé. És itt jött Babbage korszaknyitó ötlete: Használjunk csak egyetlenegy -- felépítésében a szűkséges fogaskerékrendszer miatt bonyolult -- összeadóművet, vagy általában aritmetikai egységet, s n darab közönséges keréktárcsákból álló tároló regisztert. Ez lesz a MEMÓRIA. Meg kell oldani, hogy a kezdő és átmeneti értékeket tároló memóriaregiszterek tartalma -- valamilyen módon megvalósítandó adatátvitel révén -cserélhető legyen az aritmetikai egység A és B regisztereinek tartalmával. Az adatátvitelek sorrendjét egy lyukkártyán tárolt program alapján működő vezérlőmű vezérelné. És ez lett a később megtáltosodó gondolatok magja.

22 Analytical Engine

23 Analytical Engine ADAT BUS BABBAGE ~84 ADAT BUS LYUKKÁRTYA Y= DY = DY = VÉGREHAJTÓ KERÉK 4 I. I. II. KLAVIATÚRA MEMÓRIA IN OUT IN OUT PRINTER A STORE CLEAR II. ADD LOAD ADAT BUS ADAT BUS ALU B

24 GÉPI és ASSEMBLY KÓD KÓD LD AD CL ST CÍM PR RD CLR A LOAD B, () ADD A, B LOAD B, () ADD A, B STR (), A OUT (P), A CLR A ADD A, B LOAD B, () ADD A, B STR (), A LOAD B, () LYUKKÁRTYA... READ PRINT STORE CLEAR ADD LOAD

25 KETTES SZÁMRENDSZER A tizes számrendszerben működő aritmetikai egység és az ugyancsak tizes számrendszerű memóriarekeszek közötti ADATÁTVITEL nem volt megvalósítható a kor technológiai szinvonalán Babbage minden erőfeszítései ellenére sem. A minimális számjegyű, csak két számjegyet tartalmazó kerekek felvetése villantott fel a megoldható adatátvitelre némi reményt, de csak év késéssel és kerekek nélkül.

26 REGISZTEREK DECIMÁLIS (TIZES) BINÁRIS (KETTES) HA BINÁRIS, ÚGY DOMINÓKBÓL IS LEHETNE

27

28 ÍRHATÓ - OLVASHATÓ REGISZTEREK Két értéket (bináris jegyet, bitet) tároló (elektromosan írható és olvasható) eszközt először relékkel, majd elektronikusan, úgy nevezett FLIP-FLOP-okkal tudtak megvalósítani. A kerekek alkalmazása helyett ezekkel a működési sebesség jelentősen megugorhatott között NEUMANN János elemezte, hogy ilyen ígéretes sebességek mellett milyen kell legyen egy számítógép méltó architektúrája. Megszületett a tárolt programmozású COMPUTER gondolata. A több száz millió PC is von Neumann computer.

29 Herman Hollerith

30 NEUMANN János Budapest 9 - Princeton (USA) 957

31 Von NEUMANN COMPUTER NEUMANN ~944 MEMÓRIA. Utasítás... PROCESSZOR PC RA CÍM BUS A MUX AND OR XOR CLR ADD SUB SHR SHL UTASÍTÁSOK ADATOK KLAVIATÚRA PRINTER Y= DY = D^Y = IN OUT IR ALU B ID CONTROL UNIT ADAT BUS CLOCK

32 A LOGIKA ELEMEI A logikai változók lehetséges értékei:, Ezeket V illetve +5 V feszültségszinttel fogjuk reprezentálni Egyváltozós logikai művelet a NEGÁLÁS: Y = A A Kétváltozós logikai művelet az ÉS és VAGY Y = AB Y = A+B Y

33 LOGIKAI KAPUK

34 INVERTER = MEMORIA?? _ DATA BUS??? _? _ DATA BUS DATA BUS DATA BUS DATA BUS _ / DATA BUS _ DATA BUS _ DATA BUS /

35 ARITMETIKAI-LOGIKAI EGYSÉG i. bit D C ajel Ai+ SUM TÖ Cout Cin D ajel C A A 8xmultiplexer A C D Ai SUM TÖ Cout Cin Ci+ Bi+ D órajel C órajel Ai- SUM TÖ Cout Cin Ci- Bi D C... I I I CLA A regiszter törlés CMA A komplementer (- csere) utasításregiszter AND ÉS művelet A^B IOR VAGY művelet A_B RAL A bitenkénti eltolás balra (szorzás -vel) RAR A bitenkénti eltolás jobbra (osztás -vel) ADD összeadás A + B LD olvasás az adatbuszról az A regiszterbe órajel A A 8xmultiplexer A D i-. bit órajel adatbusz írás adatbusz i. bit C Bi- A i+. bit

36 ÖSSZEADÓ Teljes összeadó: Félösszeadó, HA: AB A B ci- ai bi ci si CS S S A C B Cin HA S HA Cout

37 ELEKTRONIKUS VERKLI ROM DECODER A A 4 A ADR COUNTER DATA BUS pl. zongora billentyűkhöz

38 FLEXIBILISEBB VERKLI ROM DECODER NEXT ADDRESS A A 4 A 5 DATA ADR LATCH DATA BUS

39 MÉG FLEXIBILISEBB VERKLI ROM Even = Odd = DECODER NEXT ADDRESS A A A A A A A DATA ADR a a. a a+ DATA BUS

40 Közlekedési lámpa x= P x= PS x= x= x= S x= x= Z

41 Véges állapotú automata / Algorithmic State Machine X X Xm Clk Kombinációs logikai hálózat X J Clk piros K visszacsatolás D 56 x 8 ROM A D D A D D D A D D D A D D D4 4 A4 D4 D5 5 A5 D5 D6 6 A6 D6 D7 7 A7 D7 D tároló J Clk sárga K J Clk zöld K n bemenet órajel D kimenet

42 Von NEUMANN COMPUTER NEUMANN ~944 MEMÓRIA. Utasítás... PROCESSZOR PC RA CÍM BUS A MUX AND OR XOR CLR ADD SUB SHR SHL UTASÍTÁSOK ADATOK KLAVIATÚRA PRINTER Y= DY = D^Y = IN OUT IR ALU B ID CONTROL UNIT ADAT BUS CLOCK

43 INPUT - OUTPUT UTASÍTÁSOK ASSEMBLY Language MOV DX, IN AL, MOV MOV OUT DX, AL, DX, H DX ;Move Port Address into DX ;Input from Port into AX H 55H AL ;Move Port Address into DX ;Move DATA (55H) into AL ;Output DATA to Port BASIC PASCAL PA = &H DATA = INP ( PA ) OUT PA, DATA ;Port Address Assignment ;Input from Port PA into DATA ;Output DATA to Port PA PA := $; DATA := PORT [PA]; PORT [PA] := $55; {Port Address assignment} {Input from Port into DATA} {Output DATA to Port PA} pa = x; indata = inportb (pa); outportb (pa,outdata; /*Port Address assignment*/ /*Input from Port into indata*/ /*Ouput outdata to Port pa*/ C

44 ADAT, CÍM és CONTROL BUS DATA D D M E M O R Y D5 ADDRESS A A A5 CONTROL RD WR MEM I/O INT BUS BUS CONNECTORS for I / O interfaces Interfészek: KEYBOARD DISPLAY DISK PRINTER Ezeket nekünk kell csinálni SERIAL SPECIAL P R O C E S S O R

45 I/O CIKLUS IDŐDIAGRAMMJA T CLK AEN OUT INP DATA IOW DATA IOR T T T4

46 DMA (DIRECT MEMORY ACCESS) DATA D D M E M O R Y DMA I/O D5 ADDRESS A A A5 CONTROL RD WR MEM I/O INT DMA MEM ADR COUNTER I / O ADR P R O C E S S O R DATA DMA CONTROLLER

47

48

49 MOORE TÖRVÉNY Gordon E. Moore, 965: a processzorok sebessége közel megduplázódik évente. Más elektronikai komponensek is hasonlóan viselkednek!

50 MOORE TÖRVÉNY

51 MOORE TÖRVÉNY

52 MOORE TÖRVÉNY

53 MOORE TÖRVÉNY `

54 MIKROSZÁMÍTÓGÉPEK Amint idővel tekintélyesebb (>kbyte) mennyiségű memóriát is sikerült a processzor mellett egy chipen megvalósítani, úgy megszülettek az egy chipes MICROCOMPUTER-ek. PIC ATMEL/Arduino Raspberry Pi Ezek ma már évi milliárdos szériákban készülnek.

A SZÁMÍTÓGÉP KIALAKULÁSA. Zámori Zoltán, KFKI

A SZÁMÍTÓGÉP KIALAKULÁSA. Zámori Zoltán, KFKI A SZÁMÍTÓGÉP KIALAKULÁSA Zámori Zoltán, KFKI ABACUS SZÁMLÁLÁS A MATEMATIKA ALAPJA Nézzük meg mi történik törzsvendégek esetén egy kocsmában. A pintek száma egy középkori kocsmában: Arató András Bornemissza

Részletesebben

Számítógépes alapismeretek

Számítógépes alapismeretek Számítógépes alapismeretek Heti óraszáma: 2 (Bagoly Zsolt, Papp Gábor) + (Barnaföldi Gergely) A tantárgy célja: korszerű információtechnológiai alapismeretek elsajátítása megismerkedés az informatikai

Részletesebben

Assembly Utasítások, programok. Iványi Péter

Assembly Utasítások, programok. Iványi Péter Assembly Utasítások, programok Iványi Péter Assembly programozás Egyszerű logikán alapul Egy utasítás CSAK egy dolgot csinál Magas szintű nyelven: x = 5 * z + y; /* 3 darab művelet */ Assembly: Szorozzuk

Részletesebben

Számítógépek felépítése, alapfogalmak

Számítógépek felépítése, alapfogalmak 2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd, Krankovits Melinda SZE MTK MSZT kmelinda@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? 2 Nem reprezentatív felmérés

Részletesebben

Számítógépek felépítése, alapfogalmak

Számítógépek felépítése, alapfogalmak 2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd SZE MTK MSZT lovas.szilard@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? Nem reprezentatív felmérés kinek van

Részletesebben

A mikroprocesszor felépítése és működése

A mikroprocesszor felépítése és működése A mikroprocesszor felépítése és működése + az egyes részegységek feladata! Információtartalom vázlata A mikroprocesszor feladatai A mikroprocesszor részegységei A mikroprocesszor működése A mikroprocesszor

Részletesebben

2. Fejezet : Számrendszerek

2. Fejezet : Számrendszerek 2. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 . Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,

Részletesebben

3. óra Számrendszerek-Szg. történet

3. óra Számrendszerek-Szg. történet 3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1

Részletesebben

A fejlődés megindulása. A Z3 nevet viselő 1941-ben megépített programvezérlésű elektromechanikus gép már a 2-es számrendszert használta.

A fejlődés megindulása. A Z3 nevet viselő 1941-ben megépített programvezérlésű elektromechanikus gép már a 2-es számrendszert használta. Kezdetek A gyors számolás vágya egyidős a számolással. Mind az egyiptomiak mind a babilóniaiak számoló táblázatokat használtak. A helyiérték és a 10-es számrendszer egyesítése volt az első alapja a különböző

Részletesebben

A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg.

A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg. Mikroprocesszor A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg. A mikroprocesszor részei A mikroprocesszor a szokásos

Részletesebben

3. óra Számrendszerek-Szg. történet

3. óra Számrendszerek-Szg. történet 3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1

Részletesebben

7.hét: A sorrendi hálózatok elemei II.

7.hét: A sorrendi hálózatok elemei II. 7.hét: A sorrendi hálózatok elemei II. Tárolók Bevezetés Bevezetés Regiszterek Számlálók Memóriák Regiszter DEFINÍCIÓ Tárolóegységek összekapcsolásával, egyszerű bemeneti kombinációs hálózattal kiegészítve

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 8

Dr. Oniga István DIGITÁLIS TECHNIKA 8 Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók

Részletesebben

Informatika érettségi vizsga

Informatika érettségi vizsga Informatika 11/L/BJ Informatika érettségi vizsga ÍRÁSBELI GYAKORLATI VIZSGA (180 PERC - 120 PONT) SZÓBELI SZÓBELI VIZSGA (30 PERC FELKÉSZÜLÉS 10 PERC FELELET - 30 PONT) Szövegszerkesztés (40 pont) Prezentáció-készítés

Részletesebben

5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI

5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a

Részletesebben

funkcionális elemek regiszter latch számláló shiftregiszter multiplexer dekóder komparátor összeadó ALU BCD/7szegmenses dekóder stb...

funkcionális elemek regiszter latch számláló shiftregiszter multiplexer dekóder komparátor összeadó ALU BCD/7szegmenses dekóder stb... Funkcionális elemek Benesóczky Zoltán 24 A jegyzetet a szerzői jog védi. Azt a BM hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerző belegyezése szükséges. funkcionális

Részletesebben

Számítógépek felépítése

Számítógépek felépítése Számítógépek felépítése Emil Vatai 2014-2015 Emil Vatai Számítógépek felépítése 2014-2015 1 / 14 Outline 1 Alap fogalmak Bit, Byte, Word 2 Számítógép részei A processzor részei Processzor architektúrák

Részletesebben

Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév

Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév Az informatika története (ebből a fejezetből csak a félkövér betűstílussal szedett részek kellenek) 1. Számítástechnika

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő

Részletesebben

A 2. levél feladatainak megoldása

A 2. levél feladatainak megoldása A 2. levél feladatainak megoldása Az első levelet beküldő 25 tanuló közül csak 15 küldte el a második levél megoldásait. Ugyanakkor 4 újabb tanuló csatlakozott a feladatmegoldókhoz, nekik az első levelet

Részletesebben

A számítástechnika fejlődése

A számítástechnika fejlődése A számítástechnika fejlődése Az 1600-as évektől kezdődően az emberek igyekeztek olyan gépeket építeni, melyek megkönnyítik a számolást. A számítógépek fejlődését nagy lépésekben követjük. Az egymástól

Részletesebben

Operandus típusok Bevezetés: Az utasítás-feldolgozás menete

Operandus típusok Bevezetés: Az utasítás-feldolgozás menete Operandus típusok Bevezetés: Az utasítás-feldolgozás menete Egy gépi kódú utasítás általános formája: MK Címrész MK = műveleti kód Mit? Mivel? Az utasítás-feldolgozás általános folyamatábrája: Megszakítás?

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 3. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Az informatika fejlődéstörténete. A számítástechnika kezdetei

Az informatika fejlődéstörténete. A számítástechnika kezdetei Az informatika fejlődéstörténete A számítástechnika kezdetei A mechanikus számológépek a mechanikus golyós számológépek az abakusz i.e. 2000-től Fogaskerekes számológépek Schickard 1623 négy alapművelet

Részletesebben

A mikroszámítógép felépítése.

A mikroszámítógép felépítése. 1. Processzoros rendszerek fő elemei mikroszámítógépek alapja a mikroprocesszor. Elemei a mikroprocesszor, memória, és input/output eszközök. komponenseket valamilyen buszrendszer köti össze, amelyen az

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Összeadó áramkör A legegyszerűbb összeadó két bitet ad össze, és az egy bites eredményt és az átvitelt adja ki a kimenetén, ez a

Részletesebben

DIGITÁLIS TECHNIKA 8 Dr Oniga. I stván István

DIGITÁLIS TECHNIKA 8 Dr Oniga. I stván István Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók

Részletesebben

Az integrált áramkörök kimenetének kialakítása

Az integrált áramkörök kimenetének kialakítása 1 Az integrált áramörö imeneténe ialaítása totem-pole three-state open-olletor Az áramörö általános leegyszerűsített imeneti foozata: + tápfeszültség R1 V1 K1 imenet V2 K2 U i, I i R2 ahol R1>>R2, és K1,

Részletesebben

4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök

4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök 4. hét: Ideális és valódi építőelemek Steiner Henriette Egészségügyi mérnök Digitális technika 2015/2016 Digitális technika 2015/2016 Bevezetés Az ideális és valódi építőelemek Digitális technika 2015/2016

Részletesebben

A Számítógépek felépítése, mőködési módjai

A Számítógépek felépítése, mőködési módjai Mechatronika, Optika és Gépészeti Informatika Tanszék Kovács Endre tud. Mts. A Számítógépek felépítése, mőködési módjai Mikroprocesszoros Rendszerek Felépítése Buszrendszer CPU OPERATÍV TÁR µ processzor

Részletesebben

Informatika 1 2. el adás: Absztrakt számítógépek

Informatika 1 2. el adás: Absztrakt számítógépek Informatika 1 2. el adás: Budapesti M szaki és Gazdaságtudományi Egyetem 2015-09-08 1 2 3 A egy M = Q, Γ, b, Σ, δ, q 0, F hetes, ahol Q az 'állapotok' nem üres halmaza, Γ a 'szalag ábécé' véges, nem üres

Részletesebben

A számítógép története (olvasmány)

A számítógép története (olvasmány) A számítógép története (olvasmány) A számítógép szóról általában a számítás, a számolás jut elsőként az eszünkbe. A számítások gépesítésének története megelőzi a számítógép történetét. Számolást segítő

Részletesebben

SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1

SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1 INFORMATIKAI RENDSZEREK ALAPJAI (INFORMATIKA I.) 1 NEUMANN ARCHITEKTÚRÁJÚ GÉPEK MŰKÖDÉSE SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1 Ebben a feladatban a következőket fogjuk áttekinteni: Neumann rendszerű számítógép

Részletesebben

Adatok ábrázolása, adattípusok

Adatok ábrázolása, adattípusok Adatok ábrázolása, adattípusok Összefoglalás Adatok ábrázolása, adattípusok Számítógépes rendszerek működés: információfeldolgozás IPO: input-process-output modell információ tárolása adatok formájában

Részletesebben

Verilog HDL ismertető 2. hét : 1. hét dia

Verilog HDL ismertető 2. hét : 1. hét dia BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Verilog HDL ismertető 2. hét : 1. hét + 15 25 dia Fehér Béla, Raikovich

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 9

Dr. Oniga István DIGITÁLIS TECHNIKA 9 r. Oniga István IGITÁLIS TEHNIKA 9 Regiszterek A regiszterek több bites tárolók hálózata S-R, J-K,, vagy kapuzott tárolókból készülnek Fontosabb alkalmazások: adatok tárolása és adatmozgatás Funkcióik:

Részletesebben

1. Az utasítás beolvasása a processzorba

1. Az utasítás beolvasása a processzorba A MIKROPROCESSZOR A mikroprocesszor olyan nagy bonyolultságú félvezető eszköz, amely a digitális számítógép központi egységének a feladatait végzi el. Dekódolja az uatasításokat, vezérli a műveletek elvégzéséhez

Részletesebben

A számolás és a számítástechnika története. Feladat:

A számolás és a számítástechnika története. Feladat: A számolás és a számítástechnika története Kezdetektől, a huszadik század közepéig Feladat: Milyen eszközöket használtak a számoló/számítógépek megjelenése elo tt a számolás segítésére? Kik készítettek

Részletesebben

Egyszerű RISC CPU tervezése

Egyszerű RISC CPU tervezése IC és MEMS tervezés laboratórium BMEVIEEM314 Budapesti Műszaki és Gazdaságtudományi Egyetem Egyszerű RISC CPU tervezése Nagy Gergely Elektronikus Eszközök Tanszéke (BME) 2013. február 14. Nagy Gergely

Részletesebben

Számítógép felépítése

Számítógép felépítése Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége

Részletesebben

ELŐADÁS 2016-01-05 SZÁMÍTÓGÉP MŰKÖDÉSE FIZIKA ÉS INFORMATIKA

ELŐADÁS 2016-01-05 SZÁMÍTÓGÉP MŰKÖDÉSE FIZIKA ÉS INFORMATIKA ELŐADÁS 2016-01-05 SZÁMÍTÓGÉP MŰKÖDÉSE FIZIKA ÉS INFORMATIKA A PC FIZIKAI KIÉPÍTÉSÉNEK ALAPELEMEI Chip (lapka) Mikroprocesszor (CPU) Integrált áramköri lapok: alaplap, bővítőkártyák SZÁMÍTÓGÉP FELÉPÍTÉSE

Részletesebben

Az INTEL D-2920 analóg mikroprocesszor alkalmazása

Az INTEL D-2920 analóg mikroprocesszor alkalmazása Az INTEL D-2920 analóg mikroprocesszor alkalmazása FAZEKAS DÉNES Távközlési Kutató Intézet ÖSSZEFOGLALÁS Az INTEL D 2920-at kifejezetten analóg feladatok megoldására fejlesztették ki. Segítségével olyan

Részletesebben

Assembly. Iványi Péter

Assembly. Iványi Péter Assembly Iványi Péter További Op. rsz. funkcionalitások PSP címének lekérdezése mov ah, 62h int 21h Eredmény: BX = PSP szegmens címe További Op. rsz. funkcionalitások Paraméterek kimásolása mov di, parameter

Részletesebben

LOGIKAI TERVEZÉS HARDVERLEÍRÓ NYELVEN. Dr. Oniga István

LOGIKAI TERVEZÉS HARDVERLEÍRÓ NYELVEN. Dr. Oniga István LOGIKI TERVEZÉS HRDVERLEÍRÓ NYELVEN Dr. Oniga István Digitális komparátorok Két szám között relációt jelzi, (egyenlő, kisebb, nagyobb). három közül csak egy igaz Egy bites komparátor B Komb. hál. fi

Részletesebben

Újrakonfigurálható eszközök

Újrakonfigurálható eszközök Újrakonfigurálható eszközök 8. Egy minimalista 8-bites mikrovezérlő tervezése 1 Felhasznált irodalom és segédanyagok Icarus Verilog Simulator: htttp:iverilog.icarus.com/ University of Washington Comttputer

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 4

Digitális technika (VIMIAA02) Laboratórium 4 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 4 Fehér Béla Raikovich Tamás,

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 9

Dr. Oniga István DIGITÁLIS TECHNIKA 9 r. Oniga István IGITÁLIS TEHNIKA 9 Regiszterek A regiszterek több bites tárolók hálózata S-R, J-K,, vagy kapuzott tárolókból készülnek Fontosabb alkalmazások: adatok tárolása és adatmozgatás Funkcióik:

Részletesebben

Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6

Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6 Informatika alapjai-5 Logikai áramkörök 1/6 Logikai áramkörök Az analóg rendszerekben például hangerősítő, TV, rádió analóg áramkörök, a digitális rendszerekben digitális vagy logikai áramkörök működnek.

Részletesebben

Szekvenciális hálózatok és automaták

Szekvenciális hálózatok és automaták Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával

Részletesebben

A SZÁMÍTÓGÉP FELÉPÍTÉSE.

A SZÁMÍTÓGÉP FELÉPÍTÉSE. A SZÁMÍTÓGÉP FELÉPÍTÉSE. Alapfogalmak: CPU : Central Processing Unit a központi feldolgozó egység, ez értelmezi a parancsokat és hajtja végre a memóriában tárolt utasításokat. RAM : Random Access Memory

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Multiplexer (MPX) A multiplexer egy olyan áramkör, amely több bemeneti adat közül a megcímzett bemeneti adatot továbbítja a kimenetére.

Részletesebben

Digitális technika VIMIAA hét

Digitális technika VIMIAA hét BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 14. hét Fehér Béla BME MIT Rövid visszatekintés, összefoglaló

Részletesebben

Számítógép architektúrák I. Várady Géza varadygeza@pmmik.pte.hu

Számítógép architektúrák I. Várady Géza varadygeza@pmmik.pte.hu Számítógép architektúrák I. Várady Géza varadygeza@pmmik.pte.hu 1 Bevezetés - fogalmak Informatika sokrétű Információk Szerzése Feldolgozása Tárolása Továbbítása Információtechnika Informatika a technikai

Részletesebben

Adatelérés és memóriakezelés

Adatelérés és memóriakezelés Adatelérés és memóriakezelés Jelen nayagrészben az Intel x86-os architektúrára alapuló 32 bites processzorok programozását tekintjük. Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről)

Részletesebben

találhatók. A memória-szervezési modell mondja meg azt, hogy miként

találhatók. A memória-szervezési modell mondja meg azt, hogy miként Memória címzési módok Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről) a program utasításai illetve egy utasítás argumentumai a memóriában találhatók. A memória-szervezési

Részletesebben

Számítógép architektúrák. Bevezetés

Számítógép architektúrák. Bevezetés Számítógép architektúrák Bevezetés Mechanikus számológépek Blaise Pascal (1642) Gottfried Willhelm von Leibniz báró (~1676) Összeadás, kivonás Mai négyműveletes zsebszámológépek mechanikus őse Charles

Részletesebben

Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk

Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Elméleti anyag: Processzoros vezérlés általános tulajdonságai o z induló készletben

Részletesebben

1. Fejezet: Számítógép rendszerek. Tipikus számítógép hirdetés

1. Fejezet: Számítógép rendszerek. Tipikus számítógép hirdetés 1. Fejezet: Számítógép The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda

Részletesebben

A számítástechnika rövid története

A számítástechnika rövid története Budapest XIV. Kerületi Németh Imre Általános Iskola, 1148 Bp. Lengyel u.23. számítástechnika - informatika oktatás A számítástechnika rövid története Tartalomjegyzék 1. A számolást segítő eszközök története,

Részletesebben

Digitális technika VIMIAA hét

Digitális technika VIMIAA hét BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 14. hét Fehér Béla BME MIT Digitális technika

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 4

Digitális technika (VIMIAA02) Laboratórium 4 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 4 Fehér Béla Raikovich Tamás,

Részletesebben

DIGITÁLIS TECHNIKA I

DIGITÁLIS TECHNIKA I DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS 1 PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ A B C E 1 E 2 3/8 O 0 O 1

Részletesebben

A számítástechnika történeti áttekintése

A számítástechnika történeti áttekintése A számítástechnika történeti áttekintése Források: Markó Tamás PHARE támogatással készült jegyzete Wikipedia Google képkereső Prohardver 1 Előzmények Ókor: abacus a képen kínai abakusz látható: szuan-pan

Részletesebben

DIGITÁLIS TECHNIKA feladatgyűjtemény

DIGITÁLIS TECHNIKA feladatgyűjtemény IGITÁLIS TEHNIK feladatgyűjtemény Írta: r. Sárosi József álint Ádám János Szegedi Tudományegyetem Mérnöki Kar Műszaki Intézet Szerkesztette: r. Sárosi József Lektorálta: r. Gogolák László Szabadkai Műszaki

Részletesebben

Aritmetikai utasítások I.

Aritmetikai utasítások I. Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást

Részletesebben

1. ábra: Perifériára való írás idődiagramja

1. ábra: Perifériára való írás idődiagramja BELÉPTETŐ RENDSZER TERVEZÉSE A tárgy első részében tanult ismeretek részbeni összefoglalására tervezzük meg egy egyszerű mikroprocesszoros rendszer hardverét, és írjuk meg működtető szoftverét! A feladat

Részletesebben

Hardver ismeretek. Várady Géza, B144 varadygeza@gmail.com

Hardver ismeretek. Várady Géza, B144 varadygeza@gmail.com Hardver ismeretek Várady Géza, B144 varadygeza@gmail.com Bevezetés Informatika sokrétű Információk Információtechnika Szerzése Feldolgozása Tárolása Továbbítása Informatika a technikai eszköz oldalról

Részletesebben

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához XIII. szekvenciális hálózatok tervezése ) Tervezzen digitális órához, aszinkron bináris előre számláló ciklus rövidítésével, 6-os számlálót! megvalósításához negatív élvezérelt T típusú tárolót és NN kaput

Részletesebben

A számítógép alapfelépítése

A számítógép alapfelépítése Informatika alapjai-6 számítógép felépítése 1/8 számítógép alapfelépítése Nevezzük számítógépnek a következő kétféle elrendezést: : Harvard struktúra : Neumann struktúra kétféle elrendezés alapvetően egyformán

Részletesebben

A 32 bites x86-os architektúra regiszterei

A 32 bites x86-os architektúra regiszterei Memória címzési módok Jelen nayagrészben az Intel x86-os architektúrára alapuló 32 bites processzorok programozását tekintjük. Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről)

Részletesebben

Véges állapotú gépek. Steiner Henriette

Véges állapotú gépek. Steiner Henriette Véges állapotú gépek Steiner Henriette Logikai hálózat Logikai hálózatnak nevezzük azokat a rendszereket, melyeknek bemeneti illetve kimeneti jelei logikai jelek, a kimeneti jeleket a bemeneti jelek függvényében

Részletesebben

A MiniRISC processzor

A MiniRISC processzor BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK A MiniRISC processzor Fehér Béla, Raikovich Tamás, Fejér Attila BME MIT

Részletesebben

Mikroprocesszor CPU. C Central Központi. P Processing Számító. U Unit Egység

Mikroprocesszor CPU. C Central Központi. P Processing Számító. U Unit Egység Mikroprocesszor CPU C Central Központi P Processing Számító U Unit Egység A mikroprocesszor általános belső felépítése 1-1 BUSZ Utasítás dekóder 1-1 BUSZ Az utasítás regiszterben levő utasítás értelmezését

Részletesebben

DIGITÁLIS TECHNIKA 7. Előadó: Dr. Oniga István

DIGITÁLIS TECHNIKA 7. Előadó: Dr. Oniga István IGITÁLIS TECHNIKA 7 Előadó: r. Oniga István Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók S tárolók JK tárolók T és típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók

Részletesebben

Alapfogalmak. Dr. Kallós Gábor A Neumann-elv. Számolóeszközök és számítógépek. A számítógép felépítése

Alapfogalmak. Dr. Kallós Gábor A Neumann-elv. Számolóeszközök és számítógépek. A számítógép felépítése Alapfogalmak Dr. Kallós Gábor 2007-2008. A számítógép felépítése A Neumann-elv A számítógéppel szemben támasztott követelmények (Neumann János,. Goldstine, 1945) Az elv: a szekvenciális és automatikus

Részletesebben

Integrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta

Integrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta Integrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta Elektronikus Eszközök Tanszék Mai témák Transzfer kapu Kombinációs logikai elemek különböző CMOS megvalósításokkal Meghajtó áramkörök

Részletesebben

1. Fejezet: Számítógép rendszerek

1. Fejezet: Számítógép rendszerek 1. Fejezet: Számítógép The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda

Részletesebben

3.6. HAGYOMÁNYOS SZEKVENCIÁLIS FUNKCIONÁLIS EGYSÉGEK

3.6. HAGYOMÁNYOS SZEKVENCIÁLIS FUNKCIONÁLIS EGYSÉGEK 3.6. AGYOMÁNYOS SZEKVENCIÁIS FUNKCIONÁIS EGYSÉGEK A fenti ismertető alapján elvileg tetszőleges funkciójú és összetettségű szekvenciális hálózat szerkeszthető. Vannak olyan szabványos funkciók, amelyek

Részletesebben

6. óra Mi van a számítógépházban? A számítógép: elektronikus berendezés. Tárolja az adatokat, feldolgozza és az adatok ki és bevitelére is képes.

6. óra Mi van a számítógépházban? A számítógép: elektronikus berendezés. Tárolja az adatokat, feldolgozza és az adatok ki és bevitelére is képes. 6. óra Mi van a számítógépházban? A számítógép: elektronikus berendezés. Tárolja az adatokat, feldolgozza és az adatok ki és bevitelére is képes. Neumann elv: Külön vezérlő és végrehajtó egység van Kettes

Részletesebben

A Számítógépek felépítése, mőködési módjai. A Számítógépek hardverelemei

A Számítógépek felépítése, mőködési módjai. A Számítógépek hardverelemei Mechatronika, Optika és Gépészeti Informatika Tanszék Kovács Endre tud. Mts. A Számítástudomány alapjai Szemelvények az Elméleti Számítástudomány területérıl A Számítógépek felépítése, mőködési módjai

Részletesebben

Differenciálegyenletek. Vajda István március 4.

Differenciálegyenletek. Vajda István március 4. Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:

Részletesebben

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu

Részletesebben

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr. 26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben

Részletesebben

4. Fejezet : Az egész számok (integer) ábrázolása

4. Fejezet : Az egész számok (integer) ábrázolása 4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson

Részletesebben

2. Számítógépek működési elve. Bevezetés az informatikába. Vezérlés elve. Külső programvezérlés... Memória. Belső programvezérlés

2. Számítógépek működési elve. Bevezetés az informatikába. Vezérlés elve. Külső programvezérlés... Memória. Belső programvezérlés . Számítógépek működési elve Bevezetés az informatikába. előadás Dudásné Nagy Marianna Az általánosan használt számítógépek a belső programvezérlés elvén működnek Külső programvezérlés... Vezérlés elve

Részletesebben

A nulladik generációs számítógépek közé a különbözõ mechanikus mûködésû szerkezeteket soroljuk.

A nulladik generációs számítógépek közé a különbözõ mechanikus mûködésû szerkezeteket soroljuk. III. AZ INFORMATIKA FEJLÕDÉSTÖRTÉNETE K A számolás fejlõdése Az ember már az õskorban is számolt: megszámolta a zsákmányt, a társait, az ellenségeit. Egyszerû számításokat végzett: összeadott, kivont.

Részletesebben

Digitális rendszerek. Utasításarchitektúra szintje

Digitális rendszerek. Utasításarchitektúra szintje Digitális rendszerek Utasításarchitektúra szintje Utasításarchitektúra Jellemzők Mikroarchitektúra és az operációs rendszer közötti réteg Eredetileg ez jelent meg először Sokszor az assembly nyelvvel keverik

Részletesebben

Az interrupt Benesóczky Zoltán 2004

Az interrupt Benesóczky Zoltán 2004 Az interrupt Benesóczky Zoltán 2004 1 Az interrupt (program megszakítás) órajel generátor cím busz környezet RESET áramkör CPU ROM RAM PERIF. adat busz vezérlõ busz A periféria kezelés során információt

Részletesebben

Példa:

Példa: Digitális információ ábrázolása A digitális technika feladata: információ ábrázolása és feldolgozása a digitális technika eszközeivel Szakterület Jelkészlet Digitális technika "0" és "1" Fizika Logika

Részletesebben

Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította:

Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította: Áramkörök elmélete és számítása Elektromos és biológiai áramkörök 3. heti gyakorlat anyaga Összeállította: Kozák László kozla+aram@digitus.itk.ppke.hu Elkészült: 2010. szeptember 30. Utolsó módosítás:

Részletesebben

A számítástechnika története

A számítástechnika története A számítástechnika története A számolás igénye már igen korán megjelent az emberiség történetében. Eleinte csak megszámlálásos feladatok léteztek. Például meg kellett számolni hány állat van a csordában,

Részletesebben

Központi vezérlőegység

Központi vezérlőegység Központi vezérlőegység A számítógép agya a központi vezérlőegység (CPU: Central Processing Unit). Két fő része a vezérlőegység (CU: Controll Unit), ami a memóriában tárolt program dekódolását és végrehajtását

Részletesebben

DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 12. LECTURE: FUNCTIONAL BUILDING BLOCKS III

DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 12. LECTURE: FUNCTIONAL BUILDING BLOCKS III 22.2.7. DIGITL TECHNICS I Dr. álint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: FUNCTIONL UILDING LOCKS III st year Sc course st (utumn) term 22/23 (Temporary, not-edited

Részletesebben

IT - Alapismeretek. Feladatgyűjtemény

IT - Alapismeretek. Feladatgyűjtemény IT - Alapismeretek Feladatgyűjtemény Feladatok PowerPoint 2000 1. FELADAT TÖRTÉNETI ÁTTEKINTÉS Pótolja a hiányzó neveket, kifejezéseket! Az első négyműveletes számológépet... készítette. A tárolt program

Részletesebben

Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész

Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész Hobbi Elektronika A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog

Részletesebben

Összeadás BCD számokkal

Összeadás BCD számokkal Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok

Részletesebben

A Memory Interface Generator (MIG) beállítása a Logsys Kintex-7 FPGA kártyához

A Memory Interface Generator (MIG) beállítása a Logsys Kintex-7 FPGA kártyához A Memory Interface Generator (MIG) beállítása a Logsys Kintex-7 FPGA kártyához Ellenőrizzük a projektből importált adatokat. Ha rendben vannak, akkor kattintsunk a Next gombra. Válasszuk a Create Design

Részletesebben

Véges állapotú gépek (FSM) tervezése

Véges állapotú gépek (FSM) tervezése Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit

Részletesebben