2. Pont operációk. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2. Pont operációk. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)"

Átírás

1 2. Pont operációk Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

2 2 Kép transzformációk típusai Kép értékkészletének (radiometriai információ) átalakítása: J( i, j) f ( I,( i, j)) Kép értelmezési tartományának geometriai transzformációja (warping): J ( i, j) I( t ( i, j), t ( i, j)) i j Mind az értékkészlet mind pedig az értelmezési tartomány átalakítása: J ( i, j) f ( I,( t ( i, j), t ( i, j))) i j

3 3 Értékkészlet transzformációk Lokális: Az új pixelérték a kiindulási pixel adott méretű S környezetének pixelértékeitől függ pl. konvolúció adott méretű maszkkal Ha függ a pozíciótól is, akkor lokálisan adaptív Globális: Ha S=teljes kép Pont operáció: ha S egyetlen pixelből áll. j Lokális operáció (pl. szűrőzés): J(x,y) = f ({I(u,v) (u,v) є S(i,j)}) j i S(i.j) lokális környezet (i,j) körül Input: I=[I(i,j)] i Output: J =[J(i,j)]

4 4 Lokális értékkészlet transzformációk Simítás / élesítés Éldetektálás Minta illesztés

5 5 Pont operáció Legegyszerűbb értékkészlet transzformáció a pont operáció: Nem függ a pixel környezetétől Az új pixelérték kizárólag a régi függvénye J ( i, j) f ( I( i, j)) I :[ M N] LI J :[ M N] LJ f : L L I J j J(i,j) = f(i(i,j)) j i i Input: I=[I(i,j)] Output: J =[J(i,j)]

6 6 Tipikus pont operációk Aritmetikai műveletek Azonos méretű képekre pixelenként elvégzett standard aritmetika Fényesség és kontraszt állítás Gamma korrekció Szín korrekció (fehér egyensúly) Hisztogram normalizálás Hisztogram kiegyenlítés Újra kvantálás Intenzitások/színek számának csökkentése Szteganográfia Rejtett képek

7 7 Aritmetikai műveletek: összeadás + = (Egy filmkockára kétszer exponálunk.)

8 8 Háttérzaj levonás - Eredeti kép + szenzor háttérzaj Háttérzaj (letakart objektívvel készült kép) = Kivonás eredménye Copyright Timo Autiokari,

9 9 Kivonás, abszolút differencia - = változások detektálása - = Mozgás detektálás két frame különbségével: 0, ha nincs mozgás 0, ahol elmozdulás történt

10 10 Képmontázs Két kép részleteinek felhasználásával egy új kép előállítása Ehhez szükség van egy harmadik képre (M), amely minden pixelben megadja a két kép közötti súlyozás értékét (alpha) J( i, j) M( i, j) I1( i, j) (1 M( i, j)) I2( i, j) M(i,j)=0 1. kép M(i,j)= 1 2. kép Köztes értékek megadják a két kép pixelértékeinek súlyát

11 11 Fehér egyensúly (white balance) Az emberi látás alkalmazkodik a különböző megvilágításokhoz (kromatikus adaptáció) A színeket a megvilágitástól függetlenül állandónak érzékeljük Film esetén megfelelő színhőmérsékletre hangolt nyersanyag + szűrők Digitális szenzor: algoritmikus korrekció A megvilágítás színe a fehér régiókban olvasható le Csatornánként skálázás (8 bit) 255 R' R G' B' w 255 G w 255 B w R G B Fehér pont ([R w,g w,b w ])

12 12 Színes kép szürkeárnyalatossá alakítása Egy RGB színes képet szürkeárnyalatossá konvertálhatunk a színcsatornák lineáris kombinációjaként: R G B A csatornák együtthatói az emberi látásnak megfelelő súllyal veszik az egyes színkomponenseket

13 Output érték (g) Pont operációk megadása Függvénnyel: f(x)=g, xϵl I, gϵl J, átszínező- vagy keresőtáblával (LUT: look-up-table) Függvényből képzett diszkrét (x,g) pixelérték-párok f(x) input érték (x) LUT: index érték input output

14 14 Példa transzformáló függvényekre új régi

15 15 Invertálás f 255 ( x) 255 x 255 f ( x) 255 x

16 Gamma korrekció Az emberi látás logaritmikus skálán érzékeli az intenzitásokat Az árnyalatokban részletgazdagabb, mint a csúcsfényekben Gamma korrekció az emberi érzékelésnek megfelelő intenzitástranszformációt jelent Általánosságban azonban nem más, mint egy nemlineáris transzformáció f f ( x) ( x) cx, 255 c, x 255 1/ 0,, x 1 0 x Gamma korrekció nélkül Gamma korrekció után

17 17 Példa gamma korrekcióra eredeti légifotó γ=3 γ=4 γ=5 (c=1)

18 18 Hisztogram Olyan függvény, amely minden lehetséges szürkeárnyalathoz megadja a képen az adott árnyalatú pixelek számát. Ha normalizáljuk (minden értéket elosztunk a kép méretével), akkor az egyes pixelértékek előfordulási valószínűségét kapjuk.

19 19 Szín-hisztogram: pontfelhőként Statisztikailag keveset mond (sokkal több lehetséges szín, mint pixel van) 3 dimenziós térben pontfelhőként ábrázoljuk

20 20 Szín-hisztogram: komponensenként Komponensenként mint szürkeárnyalatos hisztogram Valódi színeloszlásra nehezen következtethetünk belőle RGB kép hisztogram színkomponensenként

21 21 Hisztogram és képi tartalom A képpontok összerázásával a hisztogram nem változik, tehát a hisztogramból nem következtethetünk a látványra.

22 r 22 Hisztogram és képi tartalom invertálás sötét világos kontrasztszegény r 255-r 255-r kontrasztos

23 23 Hisztogram transzformációk Olyan pont-operációk, amelyeknek függvényét az input kép hisztogramjából vagy az output kép hisztogramjára vonatkozó elvárások alapján határozzák meg. hisztogram/kontraszt széthúzás hisztogram kiegyenlítés hisztogram specifikáció

24 24 Hisztogram normalizálás A hisztogram normalizálás (vagy széthúzás) függvénye egy lineáris skála-transzformáció: a képen előforduló intenzitástartományt, a [min,max] intervallumot skálázza a [0,L-1] (a teljes) intervallumba. L-1 f(x) J ( i, j) f ( I( i, j)) I :[ M N] [min, max] 0 0 min max L-1 J :[ M N] [0, L 1] f :[min, max] [0, L 1], f ( x) ( L 1) x min max min

25 25 Hisztogram normalizálás

26 Kontraszt széthúzás Hasonló a hisztogram normalizáláshoz, de az intenzitások egy megadott [low,high] intervallumát skálázza a [0,L-1]-be L-1 A megadott intervallum szűkebb lehet, mint az előforduló intenzitások [min,max] sávja f(x) 0 0 low high L-1 min max 26 f ( x) 0 ( L 1) L 1 ( x low) high low,,, ha ha ha x low low x x high high

27 27 hisztogram széthúzás kontraszt széthúzás

28 28 Hisztogram kiegyenlítés A hisztogram-specifikáció legegyszerűbb esete Azt várjuk, hogy a kimeneti kép hisztogramja egyenletes eloszlásnak feleljen meg eredeti hisztogram x 1/L kiegyenlített hisztogram f(x)

29 Hisztogram kiegyenlítés 29 x f(x) egyenlő területek! x i i p 0 ) ( L x f 1 ) ( x i x i i p L x f L x f i p 0 0 ) ( ) ( 1 ) ( ) ( Kumulatív hisztogram

30 30 Kumulatív hisztogram Míg a normalizált hisztogram az intenzitások valószínűségi sűrűségfüggvényét adja meg, addig a kumulatív hisztogram az intenzitásértékek x eloszlásfüggvényét adja: PDF ( x) x : 0 i 0 p( i) PDF ( x ) 1

31 31 Hisztogram kiegyenlítés és kumulatív hisztogram A transzformációs függvényt (LUT) a kumulatív hisztogram adja

32 32 Hisztogram kiegyenlítés függvények 4

33 33 Adaptív hisztogram kiegyenlítés A hisztogram kiegyenlítést (HK) pontonként, az adott pont egy lokális környezete alapján végezzük Alkalmazkodik a kép lokális karakterisztikájához Más pont operációknál is használhatunk hasonló adaptív technikát (ld. később: adaptív küszöbölés) kiindulási kép globális HK eredménye lokális (3x3-as) HK eredménye

34 P I ( g I ) P J ( g J ) 34 Hisztogram specifikáció A kiindulási I képből egy előre megadott J hisztogramú K képet eredményez Diszkrét értékek miatt csak megközelítőleg kapunk azonos hisztogramot Minden g I pixelértéket cseréljünk arra a g J értékre, amelynek kumulatív hisztogram értéke a legközelebb van Ha I(i,j)=g I, akkor legyen K(i,j)=g J, ahol g J kielégíti az alábbi feltételt: P I (g I ) > P J (g J -1) AND P I (g I ) P J (g J ). Példa: I(i,j) = 5 P I (5) = 0.65 P J (9) = 0.56 P J (10) = 0.67 K(i,j) = 10 g I g J

35 35 Hisztogram specifikáció eredeti várt kapott

36 36 Hisztogram specifikáció eredeti várt kapott

37 37 Képek újra kvantálása Képek újra kvantálása is egy pont operáció Hisztogram binning True color képek palettássá alakítása Az eredeti színtér/intenzitástartomány felosztása függ a kép tartalmától (adaptív kvantálás): A kép statisztikai elemzése (hisztogram) alapján választjuk ki a megfelelő számú új színt Az így előállt LUT alapján végezzük el a transzformációt eredeti színtér kvantált értékek a klaszterközéppontok

38 38 Uniform nem uniform kvantálás eredeti true-color uniform (8-szín) nem uniform (8-szín)

39 39 Kvantálási hiba csökkentése Ha túl kevés a kvantálási szint, akkor hamis kontúrok léphetnek fel A kvantálás előtt zaj hozzáadásával csökkenthetjük ezt a hatást =0, σ = M/q, ahol M a maximális intenzitásérték, q pedig a bitek száma a kvantálás során I + N(,σ) Quant(q) J

40 40 Dithering 8 bit 2 bit 2 bit + zaj

41 41 Szteganográfia 6bit csatornánként 8bit csatornánként 6 és 8 bites kvantálás között lenyegében nem érzékelhető lényeges különbség Pieter Bruegel (the Elder, ca ), The Peasant Dance, 1568, Oil on oak panel, 114x164 cm, Kunsthistorisches Museum Wien, Vienna

42 42 Szteganográfia b b b b b b 0 0 b = 0 or 1 always 0 Ha 6 biten kvantáljuk a képet, akkor a maradék alsó 2 biten tetszőleges információt, akár egy egész képet elrejthetünk Image 1 Image 2 felső 6bit R-Shift 2 R-Shift 6 L-Shift 2 Image Out 2bit

43 43 Felhasznált anyagok Palágyi Kálmán: Digitális Képfeldolgozás /pub/digitalis_kepfeldolgozas Trevor Darrell: C280, Computer Vision s06/lectures/ppts/ Richard Alan Peters: EECE/CS 253 Image Processing További források az egyes diákon megjelölve

3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Szűrés képtérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE http://www.inf.u-szeged.hu/~kato/teaching/ 2 Kép transzformációk típusai Kép értékkészletének radiometriai információ

Részletesebben

8. Pontmegfeleltetések

8. Pontmegfeleltetések 8. Pontmegfeleltetések Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Példa: panoráma kép készítés 1. Jellemzőpontok detektálása mindkét

Részletesebben

Színes képek feldolgozása

Színes képek feldolgozása Palágyi Kálmán Az oktató: SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék 6720 Szeged Árpád tér 2. 214-es szoba (tetıtér) (62) 546 197 palagyi@inf.u-szeged.hu www.inf.u-szeged.hu/~palagyi Kurzusanyagok

Részletesebben

1. Képalkotás. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

1. Képalkotás. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 1. Képalkotás Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Képalkotás fizikai paraméterei Geometriai Vetítés típusa (perspectív) Kamera

Részletesebben

Képfeldolgozás jól párhuzamosítható

Képfeldolgozás jól párhuzamosítható Képfeldolgozás jól párhuzamosítható B. Wilkinson, M. Allen: Parallel Programming, Pearson Education Prentice Hall, 2nd ed., 2005. könyv 12. fejezete alapján Vázlat A képfeldolgozás olyan alkalmazási terület,

Részletesebben

Híradástechikai jelfeldolgozás

Híradástechikai jelfeldolgozás Híradástechikai jelfeldolgozás 13. Előadás 015. 04. 4. Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu

Részletesebben

Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika 9. ea ősz

Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika 9. ea ősz Képfeldolgozó eljárások áttekintés Orvosi képdiagnosztika 9. ea. 2015 ősz Tartalomjegyzék Képmanipulációs eljárások Képjavítás (kontraszt módosítás, hisztogram módosítás, zajszűrés, élkiemelés) Képelemzés

Részletesebben

Bevezetés. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

Bevezetés. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) Bevezetés Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Digitális képfeldolgozás digitális képfeldolgozás számítógépes grafika digitális

Részletesebben

6. Éldetektálás. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

6. Éldetektálás. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 6. Éldetektálás Kató Zoltán Képeldolgozás és Számítógépes Graika tanszék SZTE (http://www.in.u-szeged.hu/~kato/teaching/) 2 Élek A képen ott található él, ahol a kép-üggvény hirtelen változik. A kép egy

Részletesebben

Képrestauráció Képhelyreállítás

Képrestauráció Képhelyreállítás Képrestauráció Képhelyreállítás Képrestauráció - A képrestauráció az a folyamat mellyel a sérült képből eltávolítjuk a degradációt, eredményképpen pedig az eredetihez minél közelebbi képet szeretnénk kapni

Részletesebben

Digitális képek szegmentálása. 5. Textúra. Kató Zoltán.

Digitális képek szegmentálása. 5. Textúra. Kató Zoltán. Digitális képek szegmentálása 5. Textúra Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Textúra fogalma Sklansky: Egy képen egy területnek állandó textúrája van ha a lokális statisztikák vagy

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

4. Jellemző pontok kinyerése és megfeleltetése

4. Jellemző pontok kinyerése és megfeleltetése 4. Jellemző pontok kinyerése és megfeleltetése Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Jellemzők és megfeleltetésük A képfeldolgozás,

Részletesebben

Térinformatika és Geoinformatika

Térinformatika és Geoinformatika Távérzékelés 1 Térinformatika és Geoinformatika 2 A térinformatika az informatika azon része, amely térbeli adatokat, térbeli információkat dolgoz fel A geoinformatika az informatika azon része, amely

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

Digitális képek feldolgozása Előfeldolgozás Radiometriai korrekció Geometriai korrekció Képjavítás Szűrők Sávok közötti műveletek Képosztályozás Utófe

Digitális képek feldolgozása Előfeldolgozás Radiometriai korrekció Geometriai korrekció Képjavítás Szűrők Sávok közötti műveletek Képosztályozás Utófe Távérzékelés Digitális felvételek előfeldolgozása (EENAFOTOTV, ETNATAVERV) Erdőmérnöki szak, Környezettudós szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés

Részletesebben

KÉPJAVÍTÁS A KÉPTARTOMÁNYBAN

KÉPJAVÍTÁS A KÉPTARTOMÁNYBAN KÉPJAVÍTÁS A KÉPTARTOMÁNYBAN Képjavítás Olyan eljárás melynek eredménye olyan kép amely jobban megfelel az adott alkalmazásnak - különböző módszereket kell alkalmazni egy Röntgenfelvétel és a Mars felvételének

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás

Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 2. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-2/1 Ellenállás mérés és adatbeolvasás Rn ismert

Részletesebben

Mit lássunk élnek? Hol van az él? Milyen vastag legyen? Hol

Mit lássunk élnek? Hol van az él? Milyen vastag legyen? Hol Textúra Könnyű az élt megtalálni? Mi lássunk élnek? Mit lássunk élnek? Hol van az él? Milyen vastag legyen? Mit lássunk élnek? Zaj A zajpontokat nem szabad az élpontokkal összekeverni Egy vagy két él?

Részletesebben

Számítógépes Grafika SZIE YMÉK

Számítógépes Grafika SZIE YMÉK Számítógépes Grafika SZIE YMÉK Analóg - digitális Analóg: a jel értelmezési tartománya (idő), és az értékkészletes is folytonos (pl. hang, fény) Diszkrét idejű: az értelmezési tartomány diszkrét (pl. a

Részletesebben

Számítógépi képelemzés

Számítógépi képelemzés Számítógépi képelemzés Elıadás vázlat Szerzık: Dr. Gácsi Zoltán, egyetemi tanár Dr. Barkóczy Péter, egyetemi docens Lektor: Igaz Antal, okl. gépészmérnök a Carl Zeiss technika kft. Ügyvezetı igazgatója

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1 Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 KONF-5_2/1 Ellenállás mérés és adatbeolvasás Rn

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Jelek típusai Átalakítás az analóg és digitális rendszerek között http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA 3/1

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Bevezetés. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

Bevezetés. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) Bevezetés Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Digitális képfeldolgozás digitális képfeldolgozás számítógépes grafika digitális

Részletesebben

4. Fejezet : Az egész számok (integer) ábrázolása

4. Fejezet : Az egész számok (integer) ábrázolása 4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

OPTIKA. Szín. Dr. Seres István

OPTIKA. Szín. Dr. Seres István OPTIKA Szín Dr. Seres István Additív színrendszer Seres István 2 http://fft.szie.hu RGB (vagy 24 Bit Color): Egy képpont a piros, a kék és a zöld 256-256-256 féle árnyalatából áll össze, összesen 16 millió

Részletesebben

10. Alakzatok és minták detektálása

10. Alakzatok és minták detektálása 0. Alakzatok és mnták detektálása Kató Zoltán Képfeldolgozás és Számítógépes Grafka tanszék SZTE http://www.nf.u-szeged.hu/~kato/teachng/ 2 Hough transzformácó Éldetektálás során csak élpontok halmazát

Részletesebben

Képfeldolgozás Szegmentálás Osztályozás Képfelismerés Térbeli rekonstrukció

Képfeldolgozás Szegmentálás Osztályozás Képfelismerés Térbeli rekonstrukció Mesterséges látás Miről lesz szó? objektumok Bevezetés objektumok A mesterséges látás jelenlegi, technikai eszközökön alapuló világunkban gyakorlatilag azonos a számítógépes képfeldolgozással. Számítógépes

Részletesebben

Automatikus gamma korrekció

Automatikus gamma korrekció Automatikus gamma korrekció Kovács György 1, Fazekas Attila 1 University of Debrecen Faculty of Informatics gykovacs@inf.unideb.hu fazekas.attila@inf.unideb.hu Absztrakt. Számos kontraszt javító algoritmus

Részletesebben

A tantárgyelem kódja: A tantárgyelem megnevezése: KIN2803G

A tantárgyelem kódja: A tantárgyelem megnevezése: KIN2803G A mérföldkő megnevezése: A tantárgy megnevezése: A mérföldkő kódja: A tantárgy kódja: A tantárgyelem megnevezése: Informatika II. gy A tantárgyelem kredit-értéke: 2 A tantárgyelem teljesítési formája:

Részletesebben

A távérzékelt felvételek tematikus kiértékelésének lépései

A távérzékelt felvételek tematikus kiértékelésének lépései A távérzékelt felvételek tematikus kiértékelésének lépései Csornai Gábor László István Földmérési és Távérzékelési Intézet Mezőgazdasági és Vidékfejlesztési Igazgatóság Az előadás 2011-es átdolgozott változata

Részletesebben

OPTIKA. Hullámoptika Színek, szem működése. Dr. Seres István

OPTIKA. Hullámoptika Színek, szem működése. Dr. Seres István OPTIKA Színek, szem működése Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu Színrendszerek: Additív színrendszer Seres István 3 http://fft.szie.hu

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Nem roncsoló tesztelés diszkrét tomográfiával

Nem roncsoló tesztelés diszkrét tomográfiával Nem roncsoló tesztelés diszkrét tomográfiával Dr. Balázs Péter, adjunktus Képfeldolgozás és Számítógépes Grafika Tanszék SZTE TTIK, Informatikai Tanszékcsoport A teszteléshez használt CT berendezés lapdetektor

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás

Részletesebben

A gyakorlat célja a fehér és a színes zaj bemutatása.

A gyakorlat célja a fehér és a színes zaj bemutatása. A gyakorlat célja a fehér és a színes zaj bemutatása. 1.@. FFT begyakorlása n = [:9]; % Harminc minta x = cos(*pi*n/1); % 1 mintát veszünk periodusonként N1 = 64; % Három módon számoljuk az FFT-t N = 18;

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Geoinformatika I. (vizsgakérdések)

Geoinformatika I. (vizsgakérdések) Geoinformatika I. (vizsgakérdések) 1.1. Kinek a munkásságához köthető a matematikai információelmélet kialakulása? 1.2. Határozza meg a földtani kutatás információértékét egy terület tektonizáltságának

Részletesebben

NEURONHÁLÓS HANGTÖMÖRÍTÉS. Áfra Attila Tamás

NEURONHÁLÓS HANGTÖMÖRÍTÉS. Áfra Attila Tamás NEURONHÁLÓS HANGTÖMÖRÍTÉS Áfra Attila Tamás Tartalom Bevezetés Prediktív kódolás Neuronhálós prediktív modell Eredmények Források Bevezetés Digitális hanghullámok Pulzus kód moduláció Hangtömörítés Veszteségmentes

Részletesebben

Digitális képfeldolgozás feladatgyűjtemény

Digitális képfeldolgozás feladatgyűjtemény Digitális képfeldolgozás feladatgyűjtemény Khoros Cantata és VisiQuest rendszerhez Készítették: Dr. Tanács Attila, Domokos Csaba, Gara Mihály, Kardos Péter, Németh Gábor, Németh József Szegedi Tudományegyetem

Részletesebben

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:

Részletesebben

6. Modell illesztés, alakzatok

6. Modell illesztés, alakzatok 6. Modell illesztés, alakzatok Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 ROBOSZTUS EGYENES ILLESZTÉS Egyenes illesztés Adott a síkban

Részletesebben

Projektor árlista 2008. november 13-tól Javasolt

Projektor árlista 2008. november 13-tól Javasolt Projektor árlista 2008. november 13-tól Javasolt Rendelési kód Megnevezés Kép végf. ár VPA75E VPA75E projektor Felbontás: XGA (1024x768) Fényerő: 2600 ANSI lumen Kontraszt: 400:1 Trapézkorrekció: Függőleges

Részletesebben

Jel, adat, információ

Jel, adat, információ Kommunikáció Jel, adat, információ Jel: érzékszerveinkkel, műszerekkel felfogható fizikai állapotváltozás (hang, fény, feszültség, stb.) Adat: jelekből (számítástechnikában: számokból) képzett sorozat.

Részletesebben

Objektív beszédminősítés

Objektív beszédminősítés Objektív beszédminősítés Fegyó Tibor fegyo@tmit.bme.hu Beszédinformációs rendszerek -- Objektív beszédminõsítés 1 Beszédinformációs rendszerek -- Objektív beszédminõsítés 2 Bevezető kérdések Mi a [beszéd]

Részletesebben

Képszűrés II. Digitális képelemzés alapvető algoritmusai. Laplace-operátor és approximációja. Laplace-szűrő és átlagolás. Csetverikov Dmitrij

Képszűrés II. Digitális képelemzés alapvető algoritmusai. Laplace-operátor és approximációja. Laplace-szűrő és átlagolás. Csetverikov Dmitrij Képszűrés II Digitális képelemzés alapvető algoritmusai Csetverikov Dmitrij Eötvös Lóránd Egyetem, Budapest csetverikov@sztaki.hu http://vision.sztaki.hu Informatikai Kar 1 Laplace-szűrő 2 Gauss- és Laplace-képpiramis

Részletesebben

Számítógépes Hálózatok 2012

Számítógépes Hálózatok 2012 Számítógépes Hálózatok 22 4. Adatkapcsolati réteg CRC, utólagos hibajavítás Hálózatok, 22 Hibafelismerés: CRC Hatékony hibafelismerés: Cyclic Redundancy Check (CRC) A gyakorlatban gyakran használt kód

Részletesebben

A színkezelés alapjai a GIMP programban

A színkezelés alapjai a GIMP programban A színkezelés alapjai a GIMP programban Alapok.Előtér és háttér színek.klikk, hogy alapbeállítás legyen ( d és x használata).hozzunk létre egy 640x400 pixeles képet! 4.Ecset eszköz választása 5.Ecset kiválasztása

Részletesebben

Digitális képalkotás a fogászatban Problémák - megoldások Dr. Ackermann Gábor gabor@dentesthic.hu www.dentesthic.hu/oktatas/

Digitális képalkotás a fogászatban Problémák - megoldások Dr. Ackermann Gábor gabor@dentesthic.hu www.dentesthic.hu/oktatas/ Digitális képalkotás a fogászatban Problémák - megoldások Dr. Ackermann Gábor gabor@dentesthic.hu www.dentesthic.hu/oktatas/ A sikeres gyógyító munkánk alapvető része a pontos diagnózis felállítása. Napjainkban,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATLAB Image Processing Toolbox

MATLAB Image Processing Toolbox Budapesti Műszaki Főiskola Neumann János Informatikai Kar 2007. november 12. Kép átméretezése imresize(a,m,method) Az A képet m-szeresére méretezi át. method értéke lehet: nearest (alapértelmezett) bilinear

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

A tervfeladat sorszáma: 1 A tervfeladat címe: ALU egység 8 regiszterrel és 8 utasítással

A tervfeladat sorszáma: 1 A tervfeladat címe: ALU egység 8 regiszterrel és 8 utasítással .. A tervfeladat sorszáma: 1 A ALU egység 8 regiszterrel és 8 utasítással Minimálisan az alábbi képességekkel rendelkezzen az ALU 8-bites operandusok Aritmetikai funkciók: összeadás, kivonás, shift, komparálás

Részletesebben

Panorámakép készítése

Panorámakép készítése Panorámakép készítése Képregisztráció, 2009. Hantos Norbert Blaskovics Viktor Összefoglalás Panoráma (image stitching, planar mosaicing): átfedő képek összeillesztése Lépések: Előfeldolgozás (pl. intenzitáskorrekciók)

Részletesebben

Képszerkesztés elméleti feladatainak kérdései és válaszai

Képszerkesztés elméleti feladatainak kérdései és válaszai Képszerkesztés elméleti feladatainak kérdései és válaszai 1. A... egyedi alkotóelemek, amelyek együttesen formálnak egy képet. Helyettesítse be a pixelek paletták grafikák gammák Helyes válasz: pixelek

Részletesebben

2. Gyakorlat Khoros Cantata

2. Gyakorlat Khoros Cantata 2. Gyakorlat Khoros Cantata Ismerkedés a Khoros Cantata-val: A Khoros Cantata egy képfeldolgozó műveletsorok készítésére szolgáló program. A műveleteket csővezetékszerűen lehet egymás után kötni. A műveleteket

Részletesebben

Az INTEL D-2920 analóg mikroprocesszor alkalmazása

Az INTEL D-2920 analóg mikroprocesszor alkalmazása Az INTEL D-2920 analóg mikroprocesszor alkalmazása FAZEKAS DÉNES Távközlési Kutató Intézet ÖSSZEFOGLALÁS Az INTEL D 2920-at kifejezetten analóg feladatok megoldására fejlesztették ki. Segítségével olyan

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Képfeldolgozás. 1. el adás. A képfeldolgozás alapfogalmai. Mechatronikai mérnök szak BME, 2008

Képfeldolgozás. 1. el adás. A képfeldolgozás alapfogalmai. Mechatronikai mérnök szak BME, 2008 Képfeldolgozás 1. el adás. A képfeldolgozás alapfogalmai BME, 2008 A digitális képfeldolgozás alapfeladata Deníció A digitális képfeldolgozás során arra törekszünk, hogy a természetes képek elemzése révén

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

Köszönetnyilványítás. Digitális képelemzés alapvető algoritmusai. A kurzus témái. Képelemzés és képszűrés alapfogalmai. Csetverikov Dmitrij

Köszönetnyilványítás. Digitális képelemzés alapvető algoritmusai. A kurzus témái. Képelemzés és képszűrés alapfogalmai. Csetverikov Dmitrij Köszönetnyilványítás Digitális képelemzés alapvető algoritmusai Csetverikov Dmitrij Eötvös Lóránd Egyetem, Budapest csetverikov@sztaki.hu http://vision.sztaki.hu Informatikai Kar A kurzus megírásában az

Részletesebben

Képszerkesztés elméleti kérdések

Képszerkesztés elméleti kérdések Képszerkesztés elméleti kérdések 1. A... egyedi alkotó elemek, amelyek együttesen formálnak egy képet.(pixelek) a. Pixelek b. Paletták c. Grafikák d. Gammák 2. Az alábbiak közül melyik nem színmodell?

Részletesebben

1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió

1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió Mérés és adatgyűjtés - Kérdések 2.0 verzió Megjegyzés: ezek a kérdések a felkészülést szolgálják, nem ezek lesznek a vizsgán. Ha valaki a felkészülése alapján önállóan válaszolni tud ezekre a kérdésekre,

Részletesebben

Informatika Rendszerek Alapjai

Informatika Rendszerek Alapjai Informatika Rendszerek Alapjai Dr. Kutor László Jelek típusai Átalakítás analóg és digitális rendszerek között http://uni-obuda.hu/users/kutor/ IRA 2014 2014. ősz IRA3/1 Analóg jelek digitális feldolgozhatóságának

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

LOGIKAI TERVEZÉS HARDVERLEÍRÓ NYELVEN. Dr. Oniga István

LOGIKAI TERVEZÉS HARDVERLEÍRÓ NYELVEN. Dr. Oniga István LOGIKI TERVEZÉS HRDVERLEÍRÓ NYELVEN Dr. Oniga István Digitális komparátorok Két szám között relációt jelzi, (egyenlő, kisebb, nagyobb). három közül csak egy igaz Egy bites komparátor B Komb. hál. fi

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

f(x) a (x x 0 )-t használjuk.

f(x) a (x x 0 )-t használjuk. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Rendszámfelismerő rendszerek

Rendszámfelismerő rendszerek Problémamegoldó szeminárium Témavezető: Pataki Péter ARH Zrt. ELTE-TTK 2013 Tartalomjegyzék 1 Bevezetés 2 Út a megoldás felé 3 Felmerült problémák 4 Alkalmazott matematika 5 További lehetőségek Motiváció

Részletesebben

Számítógépes grafika

Számítógépes grafika Számítógépes grafika HEFOP 3.5.1 Korszerű felnőttképzési módszerek kifejlesztése és alkalmazása EMIR azonosító: HEFOP-3.5.1-K-2004-10-0001/2.0 Tananyagfejlesztő: Máté István Lektorálta: Brückler Tamás

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI, Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.

Részletesebben

Hőképek feldolgozása: passzív és aktív termográfia

Hőképek feldolgozása: passzív és aktív termográfia Hőképek feldolgozása: passzív és aktív termográfia Jancskárné Anweiler Ildikó Főiskolai docens PTE PMMK Műszaki Informatika Tanszék E- mail: jai@morpheus.pte.hu Infravörös termográfia látható képpé alakítja

Részletesebben

11. Alakzatjellemzők. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

11. Alakzatjellemzők. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 11. Alakzatjellemzők Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Alakzat = pontok összefüggő rendszere példák síkbeli alakzatokra 3 Az

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Elektronika Előadás. Digitális-analóg és analóg-digitális átalakítók

Elektronika Előadás. Digitális-analóg és analóg-digitális átalakítók Elektronika 2 9. Előadás Digitális-analóg és analóg-digitális átalakítók Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök, Műszaki

Részletesebben

A számítástudomány alapjai

A számítástudomány alapjai A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Képek manipulálása a matematika, ami mögötte van

Képek manipulálása a matematika, ami mögötte van Képek manipulálása a matematika, ami mögötte van Írta: Zahalka Bence 2011-1- Tartalomjegyzék Képek manipulálása a matematika, ami mögötte van... 1 Bevezető... 3 Alapvetően szükséges ismeretek... 3 A képek

Részletesebben

kompakt fényképezőgép

kompakt fényképezőgép kompakt fényképezőgép A digitális fényképezőgépek legszélesebb kategóriája, minden olyan, viszonylag kis méretű gép ide sorolható, amely egymagában sokféle fotós feladatra alkalmas. Előnyük a relatíve

Részletesebben

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 . Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,

Részletesebben

Napenergia potenciál térképezése Debrecenben légi LIDAR adatok és légifelvételek alapján

Napenergia potenciál térképezése Debrecenben légi LIDAR adatok és légifelvételek alapján Napenergia potenciál térképezése Debrecenben légi LIDAR adatok és légifelvételek alapján Enyedi Péter, Dr. Szabó Szilárd Fény-Tér-Kép Konferencia Gyöngyös, Károly Róbert Főiskola 2015. október 29-30. Távérzékelési

Részletesebben

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva: Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 12 3.1. Megoldások... 14 A gyakorlósor lektorálatlan,

Részletesebben

Analóg digitális átalakítók ELEKTRONIKA_2

Analóg digitális átalakítók ELEKTRONIKA_2 Analóg digitális átalakítók ELEKTRONIKA_2 TEMATIKA Analóg vs. Digital Analóg/Digital átalakítás Mintavételezés Kvantálás Kódolás A/D átalakítók csoportosítása A közvetlen átalakítás A szukcesszív approximációs

Részletesebben

1. kép: Raszterek betöltése

1. kép: Raszterek betöltése Ebben a gyakorlatban a QGIS segítségével néhány terep elemzési módszert fogunk bemutatni. A gyakorlatot HGT (a NASA SRTM projektjében készült, globális magassági adatokat tároló fájlok) raszterek feldolgozásával

Részletesebben

Objektív beszédminısítés

Objektív beszédminısítés Objektív beszédminısítés Fegyó Tibor fegyo@tmit.bme.hu Beszédinformációs rendszerek -- Objektív beszédminõsítés 1 Bevezetı kérdések Mi a [beszéd] minıség [a beszédkommunikációban]? Mi befolyásolja a minıséget?

Részletesebben

OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István

OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István OPTIKA Diszperzió, interferencia Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu : A fény elektromágneses hullám: Diszperzió: Különböző hullámhosszúságú

Részletesebben

2012. október 9 és 11. Dr. Vincze Szilvia

2012. október 9 és 11. Dr. Vincze Szilvia 2012. október 9 és 11. Dr. Vincze Szilvia Egyváltozós valós függvények nevezetes osztályai I. Algebrai függvények Racionális egész függvények (polinomok) Racionális törtfüggvények Irracionális függvények

Részletesebben

Jelfeldolgozás - ANTAL Margit. impulzusválasz. tulajdonságai. Rendszerek. ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem

Jelfeldolgozás - ANTAL Margit. impulzusválasz. tulajdonságai. Rendszerek. ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem Sapientia - Erdélyi Magyar Tudományegyetem 2007 Megnevezések Diszkrét Dirac jel Delta függvény Egységimpluzus függvény A diszkrét Dirac jel δ[n] = { 1, n = 0 0, n 0 d[n] { 1, n = n0 δ[n n 0 ] = 0, n n

Részletesebben

Optikai mikroszkópia. Bereznai Miklós SZTE Optika és Kvantumelektronikai Tanszék

Optikai mikroszkópia. Bereznai Miklós SZTE Optika és Kvantumelektronikai Tanszék Optikai mikroszkópia Bereznai Miklós SZTE Optika és Kvantumelektronikai Tanszék Vázlat A mikroszkópiáról általában Lupétól a mikroszkópig (nagyítás) Mikroszkóp feloldási határa Lencsehibák Fejezetek a

Részletesebben

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben