file:///l:/valsz%c3%a1mstatv%c3%a9gleges/bernoulli/introduction...

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "file:///l:/valsz%c3%a1mstatv%c3%a9gleges/bernoulli/introduction..."

Átírás

1 1 / :23 Virtuális laboratóriumo > 10. Bernoulli ísérlete > Bevezetés Alapelmélet A Bernoulli ísérlet folyamat, melyne névadója Jacob Bernoulli a valószínűségszámítás egyi legegyszerűbb, de egyben egyi legfontosabb véletlen ísérlet folyamata is. Lényegében a folyamat az érmefeldobás matematiai absztraciója, de szélesörű alalmazhatóságána öveteztében megállapodun abban, hogy ielégíti a övetező feltételeet: Minden ísérletne ét lehetséges imenetele van, melyeet a megbízhatóság vizsgálatából származó ifejezéseel sieresne és siertelenne nevezün. A ísérlete függetlene. Egyi ísérlet imenetele sem befolyásolja egy mási ísérlet imenetelét. Minden ísérletnél anna valószínűsége, hogy a ísérlet sieres p és anna valószínűsége, hogy siertelen 1 p. Valószínűségi változó Matematiailag a Bernoulli ísérleteet egy valszínűségi változó indiátor sorozatána teintjü: X = (X 1, X 2,...) Egy indiátor változó egy valószínűségi változó, amely csa az 1 vagy 0 értéet veszi fel aszerint, hogy a ísérlet sieres, vagy nem sieres. Az X j indiátor változó egyszerűen a j-edi ísérlet imeneteléne az eredménye. Így az indiátor változó függetlene és ugyanolyan eloszlású sűrűségfüggvénnyel rendelezne: P(X i = 1) =p, P(X i = 0) = 1 p Az ezen sűrűségfüggvény által definiált eloszlás Bernoulli eloszlás néven ismeretes. Statisztiai értelemben a Bernoulli ísérlete a Benoulli eloszlásból vett mintána felelne meg. Speciálisan, az első n (X 1, X 2,..., X n ) ísérlet a Bernoulli eloszlásból vett n elemű véletlen mintát alot. Megjegyezzü, hogy a Bernoulli ísérlete egy paraméterrel, a p valószínűséggel jellemezhető. 1. Felhasználva az alapfeltevéseet mutassu meg, hogy az első n ísérlet sűrűségfüggvénye az alábbi módon adható meg P(X 1 =x 1, X 2 =x 2,..., X n =x n ) =p (1 p) n, (x 1, x 1,..., x n ) {0, 1} n n ahol = i = 1 x i 2. Feltételezve, hogy X = (X 1, X 2,...) egy p paraméterű Bernoulli ísérlet, mutassu meg, hogy 1 X = (1 X 1, 1 X 2,...) egy 1 p paraméterű Bernoulli ísérlet. 3. Tételezzü fel, hogy U = (U 1, U 2,...) független valószínűségi változóna egy sorozata, mindegyi egyenletes eloszlású a [ 0, 1] intervallumon. p [ 0, 1] és i +, esetén legyen X i (p) =1(U i p) az {U i p} esemény indiátor változój Mutassu meg, hogy X(p) = (X 1 (p), X 2 (p),...) p paraméterű Bernoulli ísérlet. Megjegyezzü, hogy az előző gyaorlatban a Bernoulli ísérlete a p paraméter minden lehetséges értée esetén egy özös valószínűségi téren vanna definiálv A onstrució ezen típusára néha mint összeapcsolt ísérletere hivatozun. Ez a gyaorlat azt is mutatja, hogyan szimulálju a Benoulli ísérleteet véletlen számo segítségével. Az összes többi véletlen ísérlet (folyamat), amit ebben a fejezetben tanulmányozun a Bernoulli ísérletsorozatna a függvényei és ezért is tudju szimulálni. Momentumo A ésőbbi hivatozásohoz számítsu i a P(X = 1) = p paraméterű X általános indiátor változó várható értéét, varianciáját, és a valószínűség generáló függvényét.

2 2 / :23 4. Mutassu meg, hogy (X) =p. 5. Mutassu meg, hogy var(x) =p (1 p). 6. Mutassu meg, hogy (t X ) = (1 p) +p t, t. 7. Vázolju fel az 5. gyaorlatban a varianciát, mint p függvényét. Figyeljü meg, hogy a variancia aor a legnagyobb, amior p = 1 és aor a legisebb, amior p = 0 vagy p = 1. 2 Példá és alalmazáso Mint orábban megjegyeztü, a Bernoulli ísérlete egy ézenfevő pédája a pénzérmeísérlete, ahol a síer jelenti a fej, a siertelenség az írásdobást. A p paraméter a fejdobás valószínűsége(így általában az érme nem szabályos.). 8. Az alap érmeísérletben legyen n = 20 és p = 0.1. Végezzü el a ísérletet és figyeljü meg az eredményeet. Ismétlejü meg a ísérletet az alábbi értéeel: p {0.3, 0.5, 0.7, 0.9}. Általános példá Egy bizonyos értelemben a Bernoulli ísérlete legáltalánosabb példája aor fordul elő, amior egy ísérletet megismétlün. Speciálisan tételezzü fel, hogy van egy alapísérletün és egy A esemény érdeel minet. Tegyü fel, hogy egy összetett eseményt hozun létre, ami az alapísérlet független megismétléseiből áll. Azt mondju, hogy az i-edi ísérlet sieres, ha az A esemény beövetezi az i-edi ismétlésre és az i-edi ísérlet siertelen, ha az A esemény nem övetezi be az i -edi ismétlésre. Ez nyilvánvalóan egy p = P(A) Bernoulli ísérlet sorozatot definiál. Bernoulli ísérleteet dichotom populációból is alothatun. Speciálisan tételezzü fel, hogy van egy populáción, amelyne ét típusú imenetele van, amelyere 0-val és 1-gyel hívatozun. Például lehet szó személyről ai vagy férfi vagy nő, vagy egy alatrészről, ami vagy jó vagy hibás. Válasszun i n objetumot véletlenszerűen a populációból; definíció szerint ez azt jelenti, hogy ha egyszerre (visszatevés nélül) történi az eleme iválasztása, aor a populációban mindegyi objetum egyenlő valószínűséggel választható i. Ha a mintavétel visszatevéssel történi, aor mindegyi objetum a övetező húzás elött visszaerül a ihúzandó özé. Ebben az esetben az egymás utáni húzáso függetlene, így a mintában lévő objetumo típusai p paraméterű Bernoulli ísérletene egy sorozatát alotjá. Ez a paraméter a populációban lévő 1-es objetumtípusaina hányad Ha a mintavétel visszatevés nélüli, aor az egymás utáni húzáso nem függetlene, így a mintában lévő objetumo típusai nem alotjá Bernoulli ísérletene egy sorozatát. Azonban, ha a populáció mérete a mintavétel méretéhez viszonyítva nagy, a függőség elhanyagolható, így az összes gyaorlati tervben a mintában lévő objetumo típusai Bernoulli ísérlete sorozataént ezelhető. További diszusszió található a dichotom populációból való mintavételről a Véges elemű mintamodelle c. fejezetben. 9. Tételezzü fel, hogy egy hallgató többválaszos tesztet tölt i. A teszt 10 érdésből áll, melye mindegyiére 4 lehetséges válasz van (de csa 1 a helyes). Ha a hallgató vaon találgat mindegyi érdésnél, meg tudju úgy csinálni a érdéseet, hogy Bernoulli ísérletsorzatot apjun? Ha így áll a dolog, azonosítsu a ísérlet imeneteleit és a p paramétert! 10. Az A pályázó egy bizonyos örzetben indul a jelölésért. Húsz személyt iválasztotta a szavazó özül véletlenszerűen és megérdezté tőlü, vajon az A személyre szavazna-e. A válaszo alothatna-e Bernoulli ísérletsorozatot? Ha igen, azonosítsu a ísérlet imeneteleit és a p paramétert! 11. Egy ameriai rulettben 38 vájat van; 18 piros, 18 feete és 2 zöld. A játéos 15-ször rulettezi, minden egyes alalommal a pirosra fogadv A imenetele alothatna-e Bernoulli ísérletsorozatot? Ha igen, azonosítsu a ísérlet imeneteleit és a p paramétert! A Rulettet részletesebben a Szerencsejáté fejezetben elemezzü.

3 3 / : Két tenisz játéos 6 gémből álló meccset játszi. A imenetele alothatna-e Bernoulli ísérletsorozatot? Ha igen, azonosítsu a ísérlet imeneteleit és a p paramétert! Megbízhatóság Emléeztetün ara, hogy a szerezeti megbízhatóság standard modelljében a rendszer n omponensből áll, amelye egymástól függetlenül műödne. Jelölje X i az i-edi omponens állapotát, ahol 1 jelenti, hogy műödi, 0 jelenti, hogy hibás a omponens. Ha a omponense mindegyie ugyanolyan típúsú, aor alapfeltevésün, hogy az X = (X 1, X 2,..., X n ) állapot vetor Bernoulli ísérletene egy sorozat A rendszer állapota (ismét 1 jelenti, hogy műödi, 0 jelenti, hogy hibás a omponens) csa a omponense állapotától függ és így egy valószínűségi változó Y =s(x 1, X 2,..., X n ) ahol s : {0, 1} n {0, 1} a strutúra függvény. Általában anna valószínűsége, hogy az eszöz műödi, az eszöz megbízhatósága, így a Bernoulli ísérletsorozat p paramétere a omponense özös megbízhatóság A függetlenség miatt a rendszer megbízhatósága r a omponens megbízhatóságna egy függvénye: r(p) = P p (Y = 1), p [ 0, 1] ahol hangsúlyozzu a p paraméteren értelmezett P valószínűségi mező függetlenségét. Általában elég, ha ezt a függvényt, mint megbízhatósági függvényt ismerjü. Rendszerint az a feladatun, hogy megtalálju a megbízhatósági függvényt, és megtalálju a strutúrafüggvényt. 13. Emléeztetün arra, hogy egy soros rendszer aor és csa aor műödi, ha mindegyi omponense műödi. Mutassu meg, hogy a rendszer állapota Y =X 1 X 2 X n = min {X 1, X 2,, X n } Mutassu meg, hogy a megbíhatósági függvény r(p) =p n p [ 0, 1] esetén. 14. Emléeztetün arra, hogy egy párhuzamos rendszer aor és csa aor műödi, ha legalább az egyi omponense műödi. Mutassu meg, hogy a rendszer állapota Y = 1 (1 X 1 ) (1 X 2 ) (1 X n ) = max {X 1, X 2,, X n } Mutassu meg, hogy a megbízhatósági függvény r(p) = 1 (1 p) n p [ 0, 1] esetén. Emléeztetün arra, hogy néhány esetben a rendszert reprezentálhatju, mint egy gráfot vagy hálózatot. Az éle a omponenseet, a csúcso a omponense özötti apcsolatoat reprezentáljá. A rendszer aor és csa aor műödi, ha létezi ét ijelölt csúcs özött műödő útvonal, amelyeet a-val és b-vel jelölün. 15. Adju meg az alábbi Wheatstone híd hálózatána megbízhatóságát (a névadó Charles Wheatstone) Összegyűjtött vérvizsgálat

4 4 / :23 Tételezzü fel, hogy egy populációban minden személy, egymástól függetlenül p valószínűséggel rendelezi egy bizonyos betegséggel. Így, a betegséget illetően a populációban lévő személye Bernoulli ísérletsorozatot alotna. A betegséget egy vérvizsgálattal lehet azonosítani, amine természetesen öltsége van. Egy létszámú csoport ( > 1 ) esetén ét stratégiát övethetün. Az első szerint minden személyt megvizsgálun egyenént, s ezért személyt ell vizsgálnun, s így vérvizsgálatot ell végeznün. A másodi stratégia szerint összegyűjtjü a személy vérmintáját és először együtt vizsgálju (egyetlen egy teszttel). Feltételezzü, hogy a teszt eredménye aor és csa aor negatív, ha a személy mindegyie egészséges. Ebben az esetben egy teszt elvégzése szüséges. Másrészről a teszt eredménye aor és csa pozitív, ha legalább egy személy beteg, eor egyenént tesztelni ell a személyeet. Ennél a stratégiánál + 1 teszt végrehajtása szüséges. Jelölje Y az összegyüjtött stratégia esetén a szüséges teszte számát. 16. Mutassu meg, hogy c. P(Y = 1) = (1 p), P(Y =+1) = 1 (1 p). (Y) = 1 + (1 (1 p) ). var(y) = 2 (1 p) (1 (1 p) ). 17. Mutassu meg, hogy várható értében megadva az összegyűjtött stratégia aor és csa aor jobb, mint az alapstratégia, ha p < 1 1 A p = 1 ( 1 1 ) ritius érté ábráját, mint [ 2, 20] -na a függvényét mutatja az alábbi ábra: Mutassu meg, hogy p maximális értée = 3 esetén van, és p p 0 ha. A 18. gyaorlatból övetezi, hogy ha p 0.307, aor az összegyűjtésne nincs értelme, teintet nélül a csoport méretére. A mási szélsőséges esetben, ha p nagyon icsi, a betegség igen rita, az összegyűjtés jobb, ivéve, ha a csoportméret nagyon nagy. Most tételezzü fel, hogy n személyün van. Ha n aor tudun csinálni részpopulációat, n csoport van és mindegyi csoportban személy. Alalmazzu az összegyüjtött stratégiát mindegyi csoportr Megjegyezzü, hogy = 1 megfelelel egyetlen egy tesztne és = n megfelelel a teljes populációra vonatozó összegyűjtött stratégiána. Jelölje Y i az i csoporthoz szüséges teszte számát. 19. Bizonyítsi be, hogy (Y 1, Y 2,..., Y n / ) függetlene és mindegyiü a 16. gyaorlatban megadott eloszlással rendelezi.

5 5 / :23 Az ehhez szüséges teszte teljes számára az alábbi terv érvényes Z n, =Y 1 +Y 2 + +Y n / 20. Mutassu meg, hogy a teszte teljes számána várható értée n, = 1 (Z n, ) = n (1 p), > Mutassu meg, hogy a teszte teljes számána varianciája var(z n, ) = 0, = 1 n (1 p) (1 (1 p) ), > 1 Így, a várható értéel apcsolatban az optimális stratégia a populáció felosztása n darab fős csoportra, ahol a 20. gyaorlatban definiált függvényt minimalizálj Igen nehéz optimális értéére zárt formulát adni, de ez az érté numeriusan meghatározható onrét n és p értéere. 22. n és p övetező értéeire adju meg az optimális összegyűjtéshez a értéet és a teszte várható számát. (Szorítozzun azon értéeire, amelye osztjá n értéét!) c. n = 100, p = n = 1000, p = n = 1000, p = Ha nem osztója n-ne, aor az n személyből álló populációt n / csoportra bontju személyt téve mindegyi csoportba és a maradé csoport n mod személyből áll. Ez nyilvánvalóan bonyolítja az elemzést, de nem vezet be új ötletet, így enne az esetne a vizsgálatát az érdelődő olvasóra bízzu. Virtuális laboratóriumo > 10. Bernoulli ísérlete > Tartalom Applete Adathalmazo Életrajzo Külső forrásmuná Kulcsszava Visszacsatolás

5 3 0,8 0,2. Számolja ki a 3

5 3 0,8 0,2. Számolja ki a 3 Megoldási útmutató, eredménye A feladato megoldásaor mindig ismételje át a feladatban szereplő fogalma definícióit. A szüséges fogalma, definíció: valószínűségi változó, diszrét-, folytonos valószínűségi

Részletesebben

Valószínűségszámítás és statisztika előadás Info. BSC B-C szakosoknak. Bayes tétele. Példák. Események függetlensége. Példák.

Valószínűségszámítás és statisztika előadás Info. BSC B-C szakosoknak. Bayes tétele. Példák. Események függetlensége. Példák. Valószínűségszámítás és statisztia előadás Info. BSC B-C szaosona 20018/2019 1. félév Zempléni András 2.előadás Bayes tétele Legyen B 1, B 2,..., pozitív valószínűségű eseményeből álló teljes eseményrendszer

Részletesebben

Legfontosabb bizonyítandó tételek

Legfontosabb bizonyítandó tételek Legfontosabb bizonyítandó tétele 1. A binomiális tétel Tetszőleges éttagú ifejezés (binom) bármely nem negatív itevőj ű hatványa polinommá alaítható a övetez ő módon: Az nem más, mint egy olyan n tényezős

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

BAYES-ANALÍZIS A KOCKÁZATELEMZÉSBEN, DISZKRÉT VALÓSZÍNŰSÉG ELOSZLÁSOK ALKALMAZÁSA 3

BAYES-ANALÍZIS A KOCKÁZATELEMZÉSBEN, DISZKRÉT VALÓSZÍNŰSÉG ELOSZLÁSOK ALKALMAZÁSA 3 Balogh Zsuzsanna Hana László BAYES-ANALÍZIS A KOCKÁZATELEMZÉSBEN, DISZKRÉT VALÓSZÍNŰSÉG ELOSZLÁSOK ALKALMAZÁSA 3 Ebben a dolgozatban a Bayes-féle módszer alalmazási lehetőségét mutatju be a ocázatelemzés

Részletesebben

6. Bizonyítási módszerek

6. Bizonyítási módszerek 6. Bizonyítási módszere I. Feladato. Egy 00 00 -as táblázat minden mezőjébe beírju az,, 3 számo valamelyiét és iszámítju soronént is, oszloponént is, és a ét átlóban is az ott lévő 00-00 szám öszszegét.

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007)

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) A Fibonacci-sorozat általános tagjára vontozó éplet máséppen is levezethető A 149 Feladatbeli eljárás alalmas az x n+1 ax n + bx, n 1 másodrendű állandó együtthatós lineáris reurzióal adott sorozato n-edi

Részletesebben

Matematika A4 III. gyakorlat megoldás

Matematika A4 III. gyakorlat megoldás Matematia A4 III. gyaorlat megoldás 1. Független eseménye Lásd másodi gyaorlat feladatsora.. Diszrét eloszláso Nevezetes eloszláso Binomiális eloszlás: Tipius példa egy pénzdobás sorozatban a feje száma.

Részletesebben

Villamosmérnök A4 3. gyakorlat ( ) Nevezetes diszkrét eloszlások

Villamosmérnök A4 3. gyakorlat ( ) Nevezetes diszkrét eloszlások 1. Nevezetes diszrét eloszláso bemutatása Villamosmérnö A4 3. gyaorlat (01. 09. 4.-5. Nevezetes diszrét eloszláso (a Bernoulli eloszlás: Olyan ísérletet hajtun végre, amine eredménye lehet "sier" vagy

Részletesebben

4. A negatív binomiális eloszlás

4. A negatív binomiális eloszlás 1 / 7 2011.03.17. 14:27 Virtuális laboratóriumok > 10. Bernoulli kísérletek > 1 2 3 4 5 6 4. Alapelmélet Tételezzük fel, hogy a véletlen kísérletünk, amit végrehajtunk Bernoulli kísérleteknek egy X = (X

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Folytonos valószínűségi változó: Lehetséges értéei egy folytonos tartományt alotna. Minden egyes érté 0 valószínűségű, csa tartományona van pozitív va

Folytonos valószínűségi változó: Lehetséges értéei egy folytonos tartományt alotna. Minden egyes érté 0 valószínűségű, csa tartományona van pozitív va Valószínűségi változó (véletlen változó, random variables) Változó: Névvel ellátott érté. (Képzeljün el egy fióot. A fió címéje a változó neve, a fió tartalma pedig a változó értée.) Valószínűségi változó:

Részletesebben

24. Kombinatorika, a valószínűségszámítás elemei

24. Kombinatorika, a valószínűségszámítás elemei 4. Kombiatoria, a valószíűségszámítás elemei Kombiatoria A véges halmazoal foglalozó tudomáyterület. Idő hiáyába csa a evezetes összeszámolásoal foglalozu. a) Sorbaállításo (ermutáció) alafeladat: ülöböző

Részletesebben

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL A primitív függvény és a határozatlan integrál 5 I A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL Gyaorlato és feladato ( oldal) I Vizsgáld meg, hogy a övetező függvényene milyen halmazon van primitív

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

Gazdasági matematika II. vizsgadolgozat megoldása A csoport Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1 Drótos G.: Fejezete az elméleti mechaniából 4. rész 4. Kis rezgése 4.. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan r pontoat nevezzü valamely oordináta-rendszerben, ahol a vizsgált tömegpont gyorsulása

Részletesebben

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,

Részletesebben

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 +

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 + . Fourier-soro. Bevezet definíció Enne a fejezetne a célja, hogy egy szerint periodius függvényt felírjun mint trigonometrius függvényeből épzett függvénysorént. Nyilván a cos x a sin x függvénye szerint

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Valószínűségszámítás feladatok

Valószínűségszámítás feladatok Valószínűségszámítás feladato A FELADATOK MEGOLDÁSAI A 0. FELADAT UTÁN TALÁLHATÓK.. Egyszerre dobun fel három érmét. Mi anna a valószínűsége, hogy mindegyine ugyanaz az oldala erül felülre?. Két dobóocát

Részletesebben

13. Előadás. 1. Aritmetikai Ramsey-elmélet (folytatás)

13. Előadás. 1. Aritmetikai Ramsey-elmélet (folytatás) Diszrét Matematia MSc hallgató számára 13. Előadás Előadó: Hajnal Péter Jegyzetelő: Virágh Zita 010. december 13. 1. Aritmetiai Ramsey-elmélet (folytatás) Eddig megemlített Ramsey-tételeet a övetező táblázatban

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)

Részletesebben

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként.

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként. A szta formula és alalmazása. Gyaran találozun az alább érdéssel, soszor egy összetett feladat részfeladataént. Tentsün bzonyos A 1,...,A n eseményeet, és számítsu anna a valószínűségét, hogy legalább

Részletesebben

3. Egy szabályos dobókockával háromszor dobunk egymás után. Legyen A az az esemény, hogy

3. Egy szabályos dobókockával háromszor dobunk egymás után. Legyen A az az esemény, hogy Valószínűségszámítás. zárthelyi dolgozat 009. október 5.. Egy osztályba 3-an járnak. Minden fizikaórán a a többi órától függetlenül a tanár kisorsol egy felelőt, véletlenszerűen, egyenletesen, azaz mindig

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projet eretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszéén az ELTE Közgazdaságtudományi

Részletesebben

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

1. Egyensúlyi pont, stabilitás

1. Egyensúlyi pont, stabilitás lméleti fizia. elméleti összefoglaló. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan pontoat nevezzü, ahol a tömegpont gyorsulása 0. Ha a tömegpont egy ilyen pontban tartózodi, és nincs sebessége,

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc

Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc Tizenegyedi gyaorlat: Parciális dierenciálegyenlete Dierenciálegyenlete, Földtudomány és Környezettan BSc A parciális dierenciálegyenlete elmélete még a özönséges egyenleteénél is jóval tágabb, így a félévben

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Valószínőségszámítás feladatok A FELADATOK MEGOLDÁSAI A 21. FELADAT UTÁN TALÁLHATÓK.

Valószínőségszámítás feladatok A FELADATOK MEGOLDÁSAI A 21. FELADAT UTÁN TALÁLHATÓK. Valószínőségszámítás feladato A FELADATOK MEGOLDÁSAI A 2. FELADAT UTÁN TALÁLHATÓK.. Egyszerre dobun fel három érmét. Mi anna a valószínősége, hogy mindegyine ugyanaz az oldala erül felülre? 2. Két teljesen

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,

Részletesebben

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Otatási Hivatal A 015/016 tanévi Országos Középisolai Tanulmányi Verseny másodi forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értéelési útmutató 1 Egy adott földterület felásását három munás

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

A feladatok megoldása

A feladatok megoldása A feladato megoldása A hivatozáso C jelölései a i egyenleteire utalna.. feladat A beérezési léps felszíne fölött M magasságban indul a mozgás, esési ideje t = M/g. Ezalatt a labda vízszintesen ut utat,

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

Hipotézis vizsgálatok

Hipotézis vizsgálatok Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével

Részletesebben

Digitál-analóg átalakítók (D/A konverterek)

Digitál-analóg átalakítók (D/A konverterek) 1.Laboratóriumi gyaorlat Digitál-analóg átalaító (D/A onvertere) 1. A gyaorlat célja Digitál-analóg onvertere szerezeti felépítése, műödése, egy négy bites DAC araterisztiájána felrajzolása, valamint az

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

A CSOPORT 4 PONTOS: 1. A

A CSOPORT 4 PONTOS: 1. A A CSOPORT 4 PONTOS:. A szám: pí= 3,459265, becslése: 3,4626 abszolút hiba: A szám és a becslés özti ülönbség abszolút értée Pl.: 0.000033 Relatív hiba: Az abszolút hiba osztva a szám abszolút értéével

Részletesebben

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Neurális hálózatok. Nem ellenőrzött tanulás. Pataki Béla. BME I.E. 414,

Neurális hálózatok. Nem ellenőrzött tanulás. Pataki Béla. BME I.E. 414, Neurális hálózato Nem ellenőrzött tanulás Patai Béla BME I.E. 414, 463-26-79 patai@mit.bme.hu, http://www.mit.bme.hu/general/staff/patai Nem ellenőrzött tanulás (Klaszterezés ) Az eseteet szoásos módon

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 5. gyakorlat 013/14. tavaszi félév 1. Folytonos eloszlások Eloszlásfüggvény és sűrűségfüggvény Egy valószínűségi változó, illetve egy eloszlás eloszlásfüggvényének egy

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

3. előadás Reaktorfizika szakmérnököknek TARTALOMJEGYZÉK. Az a bomlás:

3. előadás Reaktorfizika szakmérnököknek TARTALOMJEGYZÉK. Az a bomlás: beütésszám. előadás TARTALOMJEGYZÉK Az alfa-bomlás Az exponenciális bomlástörvény Felezési idő és ativitás Poisson-eloszlás Bomlási sémá értelmezése Bomlási soro, radioatív egyensúly Az a bomlás: A Z X

Részletesebben

Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2., 2012 tavasz

Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2., 2012 tavasz Félévi időbeosztás (nagyjából) házi feladat beadási határidőel (pontosan) Valószínűségszámítás, 1 tavasz Dátum Téma Beadandó Feb 8 Sze Alapfogalma és eszözö Feb 15 Sze Konvolúció (normális, Cauchy, exponenciális)

Részletesebben

Normális eloszlás tesztje

Normális eloszlás tesztje Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra

Részletesebben

III. FOLYTONOS OPTIMALIZÁCIÓ

III. FOLYTONOS OPTIMALIZÁCIÓ III FOLYTONOS OPTIMALIZÁCIÓ El szó Ebben a részben a folytonos optimalizáció néhány területét teintjü át Az elso ötetbe a játéelmélettel foglalozó nyolcadi fejezet erült: ebben a fejezetben a véges játéoat,

Részletesebben

Furfangos fejtörők fizikából

Furfangos fejtörők fizikából Furfangos fejtörő fiziából Vigh Máté ELTE Komple Rendszere Fiziája Tanszé Az atomotól a csillagoig 03. április 5. . Fejtörő. A,,SLINKY-rugó'' egy olyan rugó, melyne nyújtatlan hossza elhanyagolhatóan icsi,

Részletesebben

Mi az adat? Az adat elemi ismeret. Az adatokból információkat

Mi az adat? Az adat elemi ismeret. Az adatokból információkat Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás

Részletesebben

(Independence, dependence, random variables)

(Independence, dependence, random variables) Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

GAZDASÁGI MATEMATIKA II. VALÓSZÍNŰSÉGSZÁMÍTÁS

GAZDASÁGI MATEMATIKA II. VALÓSZÍNŰSÉGSZÁMÍTÁS Heller Faras Gazdasági és Turisztiai Szolgáltatáso Főisolája Levelező tagozat GAZDASÁGI MATEMATIKA II. VALÓSZÍNŰSÉGSZÁMÍTÁS Gyaorló feladato Összeállította: Kis Márta és Zombori Natasa Kedves Hallgató!

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

Statisztikai becslés

Statisztikai becslés Kabos: Statisztika II. Becslés 1.1 Statisztikai becslés Freedman, D. - Pisani, R. - Purves, R.: Statisztika. Typotex, 2005. Reimann J. - Tóth J.: Valószínűségszámítás és matematikai statisztika. Tankönyvkiadó,

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

A teveszabály és alkalmazásai

A teveszabály és alkalmazásai A teveszabály és alalmazásai Tuzso Zoltá, Széelyudvarhely Godolá-e valai, hogy a matematiáa lehete-e valami öze a tevéhez? Ha em aor a továbbiaba meggyzzü errl, mégpedig arról, hogy a matematiába ige is

Részletesebben

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58 u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Diszkrét matematika I. középszint Alapfogalmakhoz tartozó feladatok kidolgozása

Diszkrét matematika I. középszint Alapfogalmakhoz tartozó feladatok kidolgozása Diszrét matematia I. özépszint Alapfogalmahoz tartozó feladato idolgozása A doumentum a övetező címen elérhető alapfogalmahoz tartozó példafeladato lehetséges megoldásait tartalmazza: http://compalg.inf.elte.hu/~merai/edu/dm1/alapfogalma.pdf

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI, Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.

Részletesebben

Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS

Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS 1. Kihasználva a hosszasan elhúzódó jó időt, kirándulást szeretnénk tenni az ország tíz legmagasabb csúcsa közül háromra az elkövetkezendő

Részletesebben

Villamosmérnök A4 11. hét Kétdimenziós normális eloszlás, cht - Megoldások

Villamosmérnök A4 11. hét Kétdimenziós normális eloszlás, cht - Megoldások Villamosmérnök A 11. hét Kétdimenziós normális eloszlás, cht - Megoldások Kétdimenziós normális összefoglalás Egy kétdimenziós X, Y valószínűségi változó kovariancia mátrixa: VarX CovX, Y CovX, Y VarY

Részletesebben

Függvények hatványsorba fejtése, Maclaurin-sor, konvergenciatartomány

Függvények hatványsorba fejtése, Maclaurin-sor, konvergenciatartomány Függvénye hatványsorba fejtése, Maclaurin-sor, onvergenciatartomány Taylor-sor, ) Állítsu elő az alábbi függvénye x helyhez tartozó hatványsorát esetleg ülönféle módszereel) éa állapítsu meg a hatványsor

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2010. Június 4.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2010. Június 4. EURÓPAI ÉRETTSÉGI 2010 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2010. Június 4. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket!

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket! 1. Név:......................... Egy szabályos pénzérmét feldobunk, ha az els½o FEJ az i-edik dobásra jön, akkor a játékos nyereménye ( 1) i i forint. Vizsgálja szimulációval a játékot, különböz½o induló

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem

Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem Előadások-gyakorlatok 2018-ban (13 alkalom) IX.12, 19, 26, X. 3, 10, 17, 24, XI. 7, 14,

Részletesebben

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél Valószíűségszámítás előadás formata BSC/ szaosoa és matemata elemző BSC-see 2015/2016 1. félév Zemplé drás zemple@ludes.elte.hu http://www.cs.elte.hu/~zemple/ 1. előadás: Bevezetés Irodalom, övetelméye

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos?

1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos? Valószínűségszámítás, földtudomány alapszak, 2015/2016. őszi félév 1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos? 2. Két tizenhárom fős vízilabdacsapat mérkőzik

Részletesebben

6. HMÉRSÉKLETMÉRÉS. A mérés célja: ismerkedés a villamos elven mköd kontakthmérkkel; exponenciális folyamat idállandójának meghatározása.

6. HMÉRSÉKLETMÉRÉS. A mérés célja: ismerkedés a villamos elven mköd kontakthmérkkel; exponenciális folyamat idállandójának meghatározása. 6. HMÉRSÉKLETMÉRÉS A mérés célja: ismeredés a villamos elven möd ontathmérel; exponenciális folyamat idállandójána meghatározása. Elismerete: ellenállás hmérséletfüggése; ellenállás és feszültség mérése;

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

FELADATOK a Bevezetés a matematikába I tárgyhoz

FELADATOK a Bevezetés a matematikába I tárgyhoz FELADATOK a Bevezetés a matematiába I tárgyhoz a számítástechia taár főisolai és a programozó matematius szao számára 2004 ovember 4 FIGYELEM: a számtech szaosoa csa a övetező feladato ellee: 2,6,7,8,9-13,16-25,27,31-33

Részletesebben

1. Kombinatorikai bevezetés példákkal, (színes golyók):

1. Kombinatorikai bevezetés példákkal, (színes golyók): 1. Kombinatoriai bevezetés példáal, (színes golyó: (a ismétlés nélüli permutáció (sorba rendezés: n ülönböz szín golyót hányféleépp állíthatun sorba? 10-et? n! 10! (b ismétléses permutáció: n 1 piros,

Részletesebben

Valószín ségszámítás és statisztika

Valószín ségszámítás és statisztika Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@math.elte.hu fogadóóra: szerda 10-11 és 13-14, D 3-415 2018/2019. tavaszi félév Bevezetés A valószín ségszámítás

Részletesebben

Speciális függvénysorok: Taylor-sorok

Speciális függvénysorok: Taylor-sorok Speciális függvénysoro: Taylor-soro Állítsu elő az alábbi függvénye x 0 0 helyhez tartozó hatványsorát esetleg ülönféle módszereel és állapítsu meg a hatványsor onvergenciatartományát! A cos 5x függvény

Részletesebben

Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny

Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny Szűk elméleti összefoglaló Valószínűségi változó: egy függvény, ami az eseményteret a valós számok halmazára tudja vetíteni. A val.

Részletesebben