BODE-diagram. A frekvencia-átviteli függvény ábrázolására különféle módszerek terjedtek el:

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "BODE-diagram. A frekvencia-átviteli függvény ábrázolására különféle módszerek terjedtek el:"

Átírás

1 BODE-diagram Egy lineáris ulajdonságú szabályozandó szakasz (process) dinamikus viselkedése egyérelmő kapcsolaban áll a rendszer szinuszos jelekre ado válaszával, vagyis a G(j) frekvenciaávieli függvénnyel egyérelmően jellemezheı. Még jelenleg is széles körben alkalmazzák a szabályozók ervezése során a frekvencia-arománybeli módszereke. Bár a jellemzı diagramoka manapság már szine kizárólag számíógéppel rajzolaják meg, mégis elengedheelen a diagramok szerkeszési lépéseinek ismeree. frekvencia-ávieli függvény ábrázolására különféle módszerek erjedek el: a) BODE-diagramok Egy komplex számo ampliúdójával és fázisszögével jellemezheünk. Ezér kézenfekvı a jϕ( ) komplex G(j ) = G(j) e frekvencia-ávieli függvény ampliúdójá és fázisszögé külön diagramokban, a körfrekvencia függvényében ábrázolni: ( ) = G(j) G( j) ϕ( ) Ennek megfelelıen ké diagram szolgál a G(j) frekvencia ávieli függvény eljes információaralmának ábrázolására: 1. Logarimikus lépékő ampliúdó nagyíás vs. körfrekvencia diagram: log G( j) = f (log) z ampliúdó-nagyíási függvény (a kimenı jel és a gerjeszı jel ampliúdójának arányá) logarimikus lépékben (decibelben) ábrázoljuk a gerjeszı jel logarimikus lépékben mér körfrekvenciájának függvényében. Megjegyzés: az ampliúdó-arány decibelben () mérve megállapodás szerin = az ampliúdó-arány logarimusának hússzorosával: = log. Szigorúan véve csak ké azonos dimenziójú mennyiség arányának kifejezésére alkalmas. Például ha a kimenıjel ampliúdója 7V, a gerjeszı jel ampliúdója pedig 1V, akkor az ampliúdónagyíás 7 = log = 3 1. Fázisolás-körfrekvencia diagram: ϕ = g(log) fokokban mér fázisolás ábrázoljuk a gerjeszı jel logarimikus lépékben mér körfrekvenciájának függvényében. Megjegyzés: a vízszines engelyen mér ké körfrekvencia (vagy bármely más fizikai mennyiség) ízszeres arányá dekádnak nevezzük, vagyis Körfrekvencia arány dekád = log. 1 Például 1 1/s és 1 1/s aránya = dekád, mivel = log =. 1 1

2 z ampliúdó nagyíás logarimikus ábrázolása azér elınyös, mivel α) egy összee (öbb ényezıbıl álló) ávieli függvény eredı BODE-diagramja az egyes ényezık BODE-diagramjainak egyszerő összeadásával nyerheı. ( szorzás mővelee a logarimus arományban összeadássá módosul - Lásd középiskolai maemaika) β ) logarimikus lépék nagy, öbb nagyságrende áfogó arományok ábrázolásá eszi leheıvé mind a vízszines, mind a függıleges engelyen. Jellegzees ényezık és azok függvényei G(j) frekvencia-ávieli függvény álalában öbb ényezı szorzaakén állíhaó elı, melyek közül a leggyakoribb három a kövekezı alakú: 1) ) 3) K (j, n=, ±1,±, sb. n (j ) (j + 1) ) + Dj + 1 Nézzük az egyes ípusok ulajdonságai és jellemzı diagramjai. 1. ípusú ényezı G(j)= K n (j) Mivel n csak egész szám lehe, ezér a kifejezés vagy iszán valós (n= páros), vagy iszán képzees (n=páralan). Ennek megfelelıen ( ) = K n n (j) = K ( ) Mindké oldal logarimusá véve és -szal szorozva log = log K + n log Ez a kifejezés egy egyenes egyenlee az -log koordináarendszerben: = nlog + log K y m x b z egyenes meredeksége (n) /dekád, vagyis lehe /dekád (vízszines), ± /dekád, ±4 /dekád, sb. z egyenes ábrázolásához célszerő elıször az egyenes egy kiünee ponjá ábrázolni, célszerően az =1 rad/s abszcisszájú pono, mivel ennek oordináája az = log K összefüggéssel egyszerően számíhaó. fázisolás illeıen a kövekezı megállapíás ehejük: Ha n=, akkor G(j)=K, valós szám fázisolása φ= Ha n=1, akkor G(j)=jK, iszán képzees szám, aminek fázisolása φ=9 Ha n=, akkor G(j)=-K, negaív valós szám (ellenfázis), fázisolása φ=18

3 Ha n=3, akkor G(j)=-jK 3, negaív képzees szám, fázisolása ϕ=7..sb. Álalánosíva: eszıleges n kievıre a fázisolás φ=n9 Példa Legyen G(j ) = 1( j). Rajzoljuk meg az ampliúdó nagyíási függvény, valamin a fázisolás! z egyenes egy ponja P(1 rad/s, 6 ), ugyanis =1 rad/s körfrekvencián az erısíés =log1=6. kifejezés kievıje n=+, ennek megfelelıen az egyenes meredeksége + =+4 /dekád. fázisolás φ=n*9 =*9 =18. z ampliúdó nagyíási függvény a felsı ábrán láhaó, alaa a fázisolás ábrázoluk a gerjeszés körfrekvenciájának függvényében ϕ 18 m= 4 / dekád P(1;6) 4 dekád, , ípusú ényezı G(j ) = (j + 1), árolós, elsırendő ag. z ampliúdó-nagyíás ( ) = ( ) + 1 BODE-diagramok szerkeszése fáradságos munkával jár, ezér szokás azoka érinıikkel közelíeni, nem csökkenve jelenısen a diagramok információaralmá.

4 a) Kis ( << ) gerjeszı frekvenciákra a gyök alai mennyiség elsı agja az 1 melle elhanyagolhaó, így ( ) 1 Logarimálás uán a bal oldali (kisfrekvenciás) aszimpoa egyenlee: log = log1= (Vízszines koordináaengely egyenlee) b) Nagy ( >> ) gerjeszı frekvenciákra az 1 elhanyagolhaó a másik ag melle, így ( ) Logarimálás és -szal való szorzás uán a jobboldali aszimpoa egyenlee: log = ± log log (± /dekád meredekségő ferde egyenes egyenlee) m x b Érinık meszésponja z aszimpoák megrajzolásá megkönnyíi azok meszésponjának ismeree. ké aszimpoa meszésponja a kövekezı egyenlerendszerbıl kaphaó: = =± log log Innen = adódik. Mos már fonos jelenés ulajdoníhaunk a kifejezésben -vel jelöl mennyiségnek. z jelenése: örésponi körfrekvencia. Ennél a körfrekvenciánál válozik az érinık meredeksége. mennyiben a kievı n=1, a jobboldali aszimpoa meredeksége + /dekád érékkel válozik a baloldali aszimpoa meredekségéhez képes (felüláereszı jelleg). mennyiben a kievı n= -1, a jobboldali aszimpoa meredeksége - /dekád érékkel válozik a baloldali aszimpoa meredekségéhez képes (aluláereszı jelleg). Közelíés hibája Mos nézzük meg, hogy mekkora maximális hibá köveünk el, ha az ampliúdó nagyíási függvény az érinıivel helyeesíjük! z ampliúdó nagyíás ponos éréke a örésponi körfrekvencián ( = ± ( ) 1 ) = ( ) + 1 = Decibelben mérve ( = ) = log ±,5 = log =± 3 kisfrekvenciás erısíéshez képes ( ) a örésponban énylegesen ± 3 erısíés van (az elıjel a kievı elıjelével egyezik meg), ezér az érinıkkel való közelíés hibája a örésponban ± 3. fázisolás kis frekvencián (<< ) φ=, mivel G(j) 1, valós szám.

5 nagyfrekvenciás fázisolás (>> ) φ= ± 9, mivel G(j) (j/ ) ±1, képzees szám. Példa 1 Haározzuk meg a G( j ) = frekvencia-ávieli függvény (aluláereszı j+ 1 jellegő ag) aszimpoái! Elıször hozzuk ismer alakra a kifejezés: m= / dekád j) = 1 j = 1( j+ 1) + 1 j = 1[1( + 1)] 1 = (j + 1) 5 z áalakío formulából kiolvashajuk a örésponi körfrekvencia éréké: =5 1/s. kifejezés kievıje n= -1, ezér a jobboldali érinı meredeksége (-1)* /dekád, az egyenes lefelé lej. z ábrán jól lászik a ényleges (kék) görbe és az érinıkkel helyeesíe (piros) görbe maximális elérése a örésponban (3 ). z érinık a örésponól ávol nagyon jól közelíik a görbé. fázisgörbé érinıivel helyeesíve 9 fokos fázisugrás a örésponi frekvencián kövekezik be. valóságban a fázisválozás nem élesen, hanem folyamaosan örénik (kék görbe). örésponól ávol a közelíés jó ϕ = 5, m= / dekád dekád - 3 m= - /dekád -, ípusú ényezı G(j)= (j ) + Dj + 1, másodrendő ag. a) Kis frekvencián (<< )az ampliúdó nagyíási függvény () 1, vagyis ().

6 b) Nagy frekvencián (>> és >>D ) az ampliúdó nagyíási függvény ( ), vagyis ( ) ± 4 log 4 log. z érinık meszésponja mos is =. legnagyobb elérés a örésponi frekvencián van, éréke a kövekezı: ( = ) = (1 ) + (D ) = D. fázisolás nagy frekvencián, mivel G(j ) ( ) nagy negaív valós szám, a kövekezı összefüggéssel számíhaó: ϕ = arcg = n18 ± Példa Rajzoljuk meg a (j) = ( j) BODE-diagramjai! G 5 frekvencia-ávieli függvény érinıkkel közelíe + 3( j) + 5 lakísuk á a kifejezés a kövekezı módon: D n G(j) = ( j) 5 5 j 3 j = = (j) + 5 j j z áalakío kifejezésbıl az alábbi információkaz olvashajuk ki: örésponi körfrekvencia =5 rad/s. csillapíás D=,3 örésponi erısíés-elérés (D) -1 =1,66, decibelben +4,4. kievı n=-1, a jobboldali érinı n= -4 /dekád meredekségő. fázisolás a örésponi körfrekvenciánál n9=-18 fokkal válozik

7 ,4, m= / dekád = 5 m= - 4 /dekád ϕ, MTLB programmal a NEW, m-file menü válaszása uán írjuk be a kövekezı uasíásoka: num=[5]; den=[1 3 5]; bode(num,den)

8 Bode Diagram Magniude () Phase (deg) Frequency (rad/sec) Példa összee frekvencia-ávieli függvény ábrázolására Ábrázoljuk érinıivel a 1 (j+,1) (j) = frekvencia-ávieli függvény! j (j) + 5j+ 4 G Áalakíva a kifejezés ismer ípusú ényezık szorzaára: j,1( + 1) 1 (j+,1) 1,1 G(j) = = j (j) + 5j+ 4 j j j 4 +,5 + 1 j + 1 j j = 5( j) ( + 1), ípus,1.ípus 3.ípus = z ábrázolás során a kövekezı sorrende célszerő köveni: 1) Ha van K (j) n ípusú ényezı, akkor annak ábrázolásával kezdjük a szerkeszés, mivel az ilyen ényezıbıl származik a görbe bal oldali érinıje. z érinınek célszerően az a P ponjá haározzuk meg, melynek abszcisszája =1 rad/s. I az erısíés = 5(j =5 ami decibelben ( = 1) = log 5 8 P ) = 1 P =

9 P, z egyenes meredeksége annyiszor /dekád, amennyi (j) kievıje. Jelen eseben n= -1, ehá az egyenes meredeksége - /dekád. m= - / dekád P -, ) zzal a ényezıvel folyajuk a szerkeszés, melynek örésponi körfrekvenciája a j + 1 legkisebb. Jelen eseben ez a ( + 1) ényezı, melynek örésponi körfrekvenciája,1 1 =,1 rad / s. Mivel ez a ényezı elsırendő és kievıje n=+1, ezér a öréspon uán az érinı meredeksége n= + /dekád érékkel válozik a öréspon elıi érékhez képes. öréspon elı a meredekség - /dekád vol, így a öréspon uán - /dekád+ db/dekád= /dekád lesz. m= - / dekád -6 m= / dekád , ) kövekezı ényezı az, melynek örésponi körfrekvenciája soron kövekezik. j j +,5 + 1 másodrendő ényezı örésponi körfrekvenciája = rad / s, kievıje n=-1. Ebben a örésponban az érinı meredeksége a öréspon elıi /dekád érékhez képes n /dekád érékkel, ehá -4 /dekád érékkel válozik.

10 m= - / dekád -6 m= / dekád , m= -4 / dekád 1 Végezeül a közelíı görbé is berajzoljuk az ábrába. z erısíés elérés az elsı 1 =,1 rad/s örésponi körfrekvencián 3 (elsırendő ad!), míg a második = rad/s örésponban (D) n =,5-1 =4, ami decibelben log4= ϕ, =,1 =, Ellenırzésül Malab programmal is megrajzolajuk a BODE-diagramoka. frekvenciaávieli függvény számlálójának (numeraor=számláló) és nevezıjének (denominaor=nevezı) megadása uán a bode(számláló,nevezı) uasíással megkapjuk a BODE-diagramoka. program az alábbi m-file begépelésébıl áll:

11 num=[1 1]; % számláló j csökkenı haványai szerin rendeze együhaói den=[1 5 4 ]; % nevezı j csökkenı haványai szerin rendeze együhaói bode(num,den) ile( Bode Diagram ) % a diagram címe 1 Bode Diagram 8 Magniude () Phase (deg) Frequency (rad/sec) kézzel szerkesze, valamin a számíógéppel rajzolao BODE-diagramok ökélees egyezés muanak. BODE-diagramok ovábbi ulajdonságai Erısíés válozaása Vizsgáljuk meg, hogy mikén módosulnak egy G (j) alakú frekvencia-ávieli függvény BODE-diagramjai, ha a függvény λ skalár együhaóval megszorozzuk a) Elıször vizsgáljuk az ( ) =λ ( ) ampliúdó nagyíás. Vegyük mindké oldal logarimusának hússzorosá: log ( ) = logλ+ log ( ) ( ) ( ) Megállapíhajuk, hogy az új ampliúdó nagyíási függvény csupán egy logλ konsansban ér el az eredei ( ) ampliúdó nagyíási függvényıl. Egy λ konsanssal való szorzás az eredei BODE-diagramo függıleges irányban olja el logλ érékkel.

12 Ha λ>1, akkor az eredei BODE-diagram felfelé, ha λ<1, akkor lefelé olódik el. b) Mos vizsgáljuk meg, hogy a λ konsanssal való szorzásnak van-e haása a fázisolásra? fázisolás a komplex G (j) függvény komplex N (j) számlálójának és komplex D (j) nevezıjének fázisolásával kifejezve ϕ ) =ϕ ( ) ϕ ( ) ( N D λn (j Tudjuk, hogy a ) mővele az N (j) komplex számnak mind a valós, mind a képzees részé ugyanolyan arányban nyújja meg, hiszen λ N ( j) =λ(re N ( j) + Im N (j)) Kövekezésképpen a valós számo ábrázoló vekornak csak a hossza válozik, a szöge nem. z elmondoakból kövekezik, hogy Egy λ konsanssal való szorzásnak a fázisviszonyokra nincs haása. Távoli örésponokra érinıkkel való közelíés jó m1=f([1 1],[1 5 4 ]); m=f(1*[1 1],[1 5 4 ]); m3=f(1*[1 1],[1 5 4 ]); bode(m1,m,m3) 15 Bode Diagram Magniude () Phase (deg) Frequency (rad/sec)

3. Gyakorlat. A soros RLC áramkör tanulmányozása

3. Gyakorlat. A soros RLC áramkör tanulmányozása 3. Gyakorla A soros áramkör anlmányozása. A gyakorla célkiőzései Válakozó áramú áramkörökben a ekercsek és kondenzáorok frekvenciafüggı reakív ellenállással ún. reakanciával rendelkeznek. Sajáságos lajdonságaik

Részletesebben

Jelformálás. 1) Határozza meg a terheletlen feszültségosztó u ki kimenı feszültségét! Adatok: R 1 =3,3 kω, R 2 =8,6 kω, u be =10V. (Eredmény: 7,23 V)

Jelformálás. 1) Határozza meg a terheletlen feszültségosztó u ki kimenı feszültségét! Adatok: R 1 =3,3 kω, R 2 =8,6 kω, u be =10V. (Eredmény: 7,23 V) Jelformálás ) Haározza meg a erhelelen feszülségoszó ki kimenı feszülségé! Adaok: =3,3 kω, =8,6 kω, e =V. (Eredmény: 7,3 V) e ki ) Haározza meg a feszülségoszó ki kimenı feszülségé, ha a mérımőszer elsı

Részletesebben

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és Házi feladaok megoldása 0. nov. 6. HF. Haározza meg az f 5 ugyanabban a koordináarendszerben. Mi a leheséges legbővebb érelmezési arománya és érékkészlee az f és az f függvényeknek? ( ) = függvény inverzé.

Részletesebben

5. Differenciálegyenlet rendszerek

5. Differenciálegyenlet rendszerek 5 Differenciálegyenle rendszerek Elsőrendű explici differenciálegyenle rendszer álalános alakja: d = f (, x, x,, x n ) d = f (, x, x,, x n ) (5) n d = f n (, x, x,, x n ) ömörebben: d = f(, x) Definíció:

Részletesebben

Rendszervizsgálat frekvencia tartományban

Rendszervizsgálat frekvencia tartományban DR. GYURCSEK ISTVÁN Rendszervizsgálat frekvencia tartományban Bode-diagramok Forrás és irodalom: http://lpsa.swarthmore.edu/bode/bode.html 1 2016.11.11.. Miről lesz szó? Bode-diagram alapfüggvények Elsőfokú

Részletesebben

Síkalapok vizsgálata - az EC-7 bevezetése

Síkalapok vizsgálata - az EC-7 bevezetése Szilvágyi László - Wolf Ákos Síkalapok vizsgálaa - az EC-7 bevezeése Síkalapozási feladaokkal a geoehnikus mérnökök szine minden nap alálkoznak annak ellenére, hogy mosanában egyre inkább a mélyépíés kerül

Részletesebben

MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR ELEKTROTECHNIKAI-ELEKTRONIKAI TANSZÉK DR. KOVÁCS ERNŐ ELEKTRONIKA II.

MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR ELEKTROTECHNIKAI-ELEKTRONIKAI TANSZÉK DR. KOVÁCS ERNŐ ELEKTRONIKA II. MISKOLCI EGYETEM GÉPÉSZMÉNÖKI ÉS INFOMATIKAI KA ELEKTOTECHNIKAI-ELEKTONIKAI TANSZÉK D. KOVÁCS ENŐ ELEKTONIKA II. (MŰVELETI EŐSÍTŐK II. ÉSZ, OPTOELEKTONIKA, TÁPEGYSÉGEK, A/D ÉS D/A KONVETEEK) Villamosmérnö

Részletesebben

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Rendszer és irányításelmélet Rendszerek idő és frekvencia tartományi vizsgálata Irányítástechnika Budapest, 29 2 Az előadás felépítése

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

4. HÁZI FELADAT 1 szabadsági fokú csillapított lengırendszer

4. HÁZI FELADAT 1 szabadsági fokú csillapított lengırendszer Lenésan 4.1. HF BME, Mőszaki Mechanikai sz. Lenésan 4. HÁZI FELD 1 szabadsái fokú csillapío lenırendszer 4.1. Felada z ábrán vázol lenırendszer (az m öme anyai ponnak ekinheı, a 3l hosszúsáú rúd merev,

Részletesebben

Digitális technika felvételi feladatok szeptember a. Jelölje meg, hogy X=1 esetén mit valósít meg a hálózat! (2p) X. órajel X X X X /LD

Digitális technika felvételi feladatok szeptember a. Jelölje meg, hogy X=1 esetén mit valósít meg a hálózat! (2p) X. órajel X X X X /LD Nepun: Digiális echnika felvéeli feladaok 008. szepember 30. D :.a:.b: 3: Σ:. Adja meg annak a 4 bemeneő (ABCD), kimeneő (F) kombinációs hálózanak a Karnaugh áblázaá, amelynek kimenee, ha: - A és B bemenee

Részletesebben

Járműelemek I. Tengelykötés kisfeladat (A típus) Szilárd illesztés

Járműelemek I. Tengelykötés kisfeladat (A típus) Szilárd illesztés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki Kar Járműelemek I. (KOJHA 7) Tengelyköés kisfelada (A ípus) Szilárd illeszés Járműelemek és Hajások Tanszék Ssz.: A/... Név:...................................

Részletesebben

5. HŐMÉRSÉKLETMÉRÉS 1. Hőmérséklet, hőmérők Termoelemek

5. HŐMÉRSÉKLETMÉRÉS 1. Hőmérséklet, hőmérők Termoelemek 5. HŐMÉRSÉKLETMÉRÉS 1. Hőmérsékle, hőmérők A hőmérsékle a esek egyik állapohaározója. A hőmérsékle a es olyan sajáossága, ami meghaározza, hogy a es ermikus egyensúlyban van-e más esekkel. Ezen alapszik

Részletesebben

Tiszta és kevert stratégiák

Tiszta és kevert stratégiák sza és kever sraégák sza sraéga: Az -edk áékos az sraégá és ez alkalmazza. S sraégahalmazból egyérelműen válasz k egy eknsük a kövekező áéko. Ké vállala I és II azonos erméke állí elő. Azon gondolkodnak,

Részletesebben

Tartalom. Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák

Tartalom. Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák Tartalom Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák 215 1 Tervezési célok Szabályozó tervezés célja Stabilitás biztosítása

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN Dr. Gyurcsek István Példafeladatok Helygörbék Bode-diagramok 1 2016.11.11.. Helygörbe szerkesztése VIZSGÁLAT: Mi a következménye annak, ha az áramkör valamelyik jellemző paramétere változik? Helygörbe

Részletesebben

párhuzamosan kapcsolt tagok esetén az eredő az egyes átviteli függvények összegeként adódik.

párhuzamosan kapcsolt tagok esetén az eredő az egyes átviteli függvények összegeként adódik. 6/1.Vezesse le az eredő ávieli üggvény soros apcsolás eseén a haásvázla elrajzolásával. az i-edi agra, illeve az uolsó agra., melyből iejezheő a sorba apcsol ago eredő ávieli üggvénye: 6/3.Vezesse le az

Részletesebben

Mechanikai munka, energia, teljesítmény (Vázlat)

Mechanikai munka, energia, teljesítmény (Vázlat) Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai

Részletesebben

Elektronika 2. TFBE1302

Elektronika 2. TFBE1302 DE, Kísérlei Fizika Tanszék Elekronika 2. TFBE302 Jelparaméerek és üzemi paraméerek mérési módszerei TFBE302 Elekronika 2. DE, Kísérlei Fizika Tanszék Analóg elekronika, jelparaméerek Impulzus paraméerek

Részletesebben

GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK

GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK BG PzK Módszerani Inézei Tanszéki Oszály GAZDAÁGI É ÜZLETI TATIZTIKA jegyze ÜZLETI ELŐREJELZÉI MÓDZEREK A jegyzee a BG Módszerani Inézei Tanszékének okaói készíeék 00-ben. Az idősoros vizsgálaok legfonosabb

Részletesebben

4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia.

4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia. 4 Lneárs csllapíalan szabad rezgés Lneárs csllapío szabad rezgés Gyenge csllapíás Ger-jesze rezgés Aplúdó rezonanca Lneárs csllapíalan szabad rezgés: Téelezzük fel hogy a öegponra a kvázelaszkus vagy közel

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

Ancon feszítõrúd rendszer

Ancon feszítõrúd rendszer Ancon feszíõrúd rendszer Ancon 500 feszíőrúd rendszer Az összeköő, feszíő rudazaoka egyre gyakrabban használják épíészei, lászó szerkezei elemkén is. Nagy erhelheősége melle az Ancon rendszer eljesíi a

Részletesebben

Túlgerjesztés elleni védelmi funkció

Túlgerjesztés elleni védelmi funkció Túlgerjeszés elleni védelmi unkció Budapes, 2011. auguszus Túlgerjeszés elleni védelmi unkció Bevezeés A úlgerjeszés elleni védelmi unkció generáorok és egységkapcsolású ranszormáorok vasmagjainak úlzoan

Részletesebben

Előszó. 1. Rendszertechnikai alapfogalmak.

Előszó. 1. Rendszertechnikai alapfogalmak. Plel Álalános áekinés, jel és rendszerechnikai alapfogalmak. Jelek feloszása (folyonos idejű, diszkré idejű és folyonos érékű, diszkré érékű, deerminiszikus és szochaszikus. Előszó Anyagi világunkban,

Részletesebben

F1301 Bevezetés az elektronikába Műveleti erősítők

F1301 Bevezetés az elektronikába Műveleti erősítők F3 Beezeés az elekronikába Műelei erősíők F3 Be. az elekronikába MŰVELET EŐSÍTŐK Műelei erősíők: Kiáló minőségű differenciálerősíő inegrál áramkör, amely egyenfeszülség erősíésére is alkalmas. nalóg számíás

Részletesebben

Jelek és rendszerek Gyakorlat_02. A gyakorlat célja megismerkedni a MATLAB Simulink mőködésével, filozófiájával.

Jelek és rendszerek Gyakorlat_02. A gyakorlat célja megismerkedni a MATLAB Simulink mőködésével, filozófiájával. A gyakorlat célja megismerkedni a MATLAB Simulink mőködésével, filozófiájával. A Szimulink programcsomag rendszerek analóg számítógépes modelljének szimulálására alkalmas grafikus programcsomag. Egy SIMULINK

Részletesebben

7.1 ábra Stabilizált tápegység elvi felépítése

7.1 ábra Stabilizált tápegység elvi felépítése 7. Tápegységek A ápegységek az elekronikus rendezések megfelelő működéséhez szükséges elekromos energiá bizosíják. Felépíésüke és jellemzőike a áplálandó rendezés igényei haározzák meg. A legöbb elekronikus

Részletesebben

Alaptagok Nyquist- és Bode-diagramjai

Alaptagok Nyquist- és Bode-diagramjai C Alaptagok Nyquist- és Bode-diagramjai C.1. Bevezetés - Átviteli függvény, frekvenciafüggvény Dinamikus rendszerek leírásának egyik módja az átviteli függvények segítségével történik. Az átviteli függvényeket

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Fluoreszkáló festék fénykibocsátásának vizsgálata, a kibocsátott fény időfüggésének megállapítása

Fluoreszkáló festék fénykibocsátásának vizsgálata, a kibocsátott fény időfüggésének megállapítása Fluoreszkáló fesék fénykibocsáásának vizsgálaa, a kibocsáo fény időfüggésének megállapíása A) A méréshez használ eszközök: 1. A fekee színű doboz aralmaz egy fluoreszkáló fesékkel elláo felülee, LED-eke

Részletesebben

1 g21 (R C x R t ) = -g 21 (R C x R t ) A u FE. R be = R 1 x R 2 x h 11

1 g21 (R C x R t ) = -g 21 (R C x R t ) A u FE. R be = R 1 x R 2 x h 11 ELEKTONIKA (BMEVIMIA7) Az ún. (normál) kaszkád erősíő. A kapcsolás: C B = C c = 3 C T ki + C c = C A ranziszorok soros kapcsolása mia egyforma a mnkaponi áramk (I B - -nak véve, + -re való leoszásával

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Okaási Hivaal A 015/016 anévi Országos Közéiskolai Tanulmányi Verseny dönő forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javíási-érékelési úmuaó 1 Ado három egymásól és nulláól különböző számjegy, melyekből

Részletesebben

REZONANCIÁRA HANGOLVA

REZONANCIÁRA HANGOLVA REZONANCIÁRA HANGOLVA r. Bagány Mihály, r Kodácsy János, Nagy Péer 3, r. Pinér Isván 4 Jelen anulmányunkban egy igen onos izikai jelensége a rezonanciá járjuk körül. Az elsı három részben sajá munkáink

Részletesebben

Elektromágneses indukció (Vázlat)

Elektromágneses indukció (Vázlat) Elekromágneses ndukcó (Vázla). z elekromágneses ndukcó és annak fajá. mozgás ndukcó 3. Lenz-örvény 4. yugalm ndukcó 5. Időben válozó mágneses mező álal kele elekromos mező ulajdonsága 6. Kölcsönös és önndukcós

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

SPEKTROSZKÓPIA: Atomok, molekulák energiaállapotának megváltozásakor kibocsátott ill. elnyeld sugárzások vizsgálatával foglalkozik.

SPEKTROSZKÓPIA: Atomok, molekulák energiaállapotának megváltozásakor kibocsátott ill. elnyeld sugárzások vizsgálatával foglalkozik. SPEKTROFOTOMETRI SPEKTROSZKÓPI: omok, molekulák energiaállapoának megválozásakor kibosáo ill. elnyeld sugárzások vizsgálaával foglalkozik. Más szavakkal: anyag és elekromágneses sugárzás kölsönhaása eredményeképp

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

RC tag Amplitúdó és Fáziskarakterisztikájának felvétele

RC tag Amplitúdó és Fáziskarakterisztikájának felvétele RC tag Amplitúdó és Fáziskarakterisztikájának felvétele Mérésadatgyűjtés és Jelfeldolgozás 12. ELŐADÁS Schiffer Ádám Egyetemi adjunktus Közérdekű 2008.05.09. PTE PMMK MIT 2 Közérdekű PÓTMÉRÉS: Akinek elmaradása

Részletesebben

A Lorentz transzformáció néhány következménye

A Lorentz transzformáció néhány következménye A Lorenz ranszformáció néhány köekezménye Abban az eseben, ha léezik egy sebesség, amely minden inercia rendszerben egyforma nagyságú, akkor az egyik inercia rendszerből az áérés a másik inercia rendszerre

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin 3 ÉETTSÉG VZSG 04. május 0. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSBE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ EMBE EŐFOÁSOK MNSZTÉM Egyszerű, rövid feladaok Maximális ponszám: 40.)

Részletesebben

DIPLOMADOLGOZAT Varga Zoltán 2012

DIPLOMADOLGOZAT Varga Zoltán 2012 DIPLOMADOLGOZAT Varga Zolán 2012 Szen Isván Egyeem Gazdaság- és Társadalomudományi Kar Markeing Inéze Keresle-előrejelzés a vállalai logiszikában Belső konzulens neve, beoszása: Dr. Komáromi Nándor, egyeemi

Részletesebben

! Védelmek és automatikák!

! Védelmek és automatikák! ! Védelmek és auomaikák! 4. eloadás. Védelme ápláló áramváló méreezése. 2002-2003 év, I. félév " Előadó: Póka Gyula PÓKA GYULA Védelme ápláló áramváló méreezése sacioner és ranziens viszonyokra. PÓKA GYULA

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin ÉETTSÉG VZSGA 0. május. ELEKTONKA ALAPSMEETEK KÖZÉPSZNTŰ ÍÁSBEL ÉETTSÉG VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ EMBE EŐFOÁSOK MNSZTÉMA Egyszerű, rövid feladaok Maximális ponszám:

Részletesebben

Irányítástechnika. II. rész. Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu

Irányítástechnika. II. rész. Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu Irányítástechnika II. rész Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu Lineáris tagok jelátvivő tulajdonságai Lineáris dinamikus rendszerek, folyamatok Lineáris tagok modellje Differenciálegyenlettel

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az

Részletesebben

Fenntartható makrogazdaság és államadósság-kezelés

Fenntartható makrogazdaság és államadósság-kezelés és államadósság-kezelés Balaoni András Tóh G. Csaba (Századvég Gazdaságkuaó Zr.) Budapes, 2011. május Taralom 1. Bevezeés...4 2. A fennarhaó gazdasági növekedés...10 2.1. A neoklasszikus növekedési modell...

Részletesebben

Dinamikus optimalizálás és a Leontief-modell

Dinamikus optimalizálás és a Leontief-modell MÛHELY Közgazdasági Szemle, LVI. évf., 29. január (84 92. o.) DOBOS IMRE Dinamikus opimalizálás és a Leonief-modell A anulmány a variációszámíás gazdasági alkalmazásaiból ismere hárma. Mind három alkalmazás

Részletesebben

KIS MATEMATIKA. 1. Bevezető

KIS MATEMATIKA. 1. Bevezető KIS MATEMATIKA. Bevezeő Fizikus vagyok, és azon belül is elmélei fizikusnak arom magam, mindemelle nagyon fonosnak arom a kísérlei fiziká is, ső magam is kísérleezem a graviáció erüleén. A maemaikával

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin Javíási-érékelési úmaó 09 ÉETTSÉGI VIZSG 00. májs 4. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ OKTTÁSI ÉS KULTUÁLIS MINISZTÉIUM

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek emel szin Javíási-érékelési úmuaó ÉETTSÉGI VIZSG 0. okóber. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ EMEI EŐFOÁSOK MINISZTÉIUM Elekronikai

Részletesebben

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2 Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...

Részletesebben

Tantárgytömbösítés a matematika tantárgyban 5. évfolyamon

Tantárgytömbösítés a matematika tantárgyban 5. évfolyamon TÁMOP-3.1.4-08/2-2008-0123 Kompetencia alapú oktatás a Bonyhádi Oktatási Nevelési Intézményben Tantárgytömbösítés a matematika tantárgyban 5. évfolyamon Készítette: Bölcsföldi Árpádné A BONI Arany János

Részletesebben

Villamosságtan II. főiskolai jegyzet. Írta: Isza Sándor. Debreceni Egyetem Kísérleti Fizika Tanszék Debrecen, 2002.

Villamosságtan II. főiskolai jegyzet. Írta: Isza Sándor. Debreceni Egyetem Kísérleti Fizika Tanszék Debrecen, 2002. Villamosságan II főiskolai jegyze Íra: Isza Sándor Debreceni Egyeem Kísérlei Fizika anszék Debrecen, Uolsó frissíés: 93 :5 Villamosságan II félév oldal aralom aralom emaikus árgymuaó 3 Bevezeés 4 Válóáramú

Részletesebben

RC tag Amplitúdó és Fáziskarakterisztikájának felvétele

RC tag Amplitúdó és Fáziskarakterisztikájának felvétele RC tag Amplitúdó és Fáziskarakterisztikájának felvétele Mérésadatgyűjtés és Jelfeldolgozás 11. ELŐADÁS Schiffer Ádám Egyetemi adjunktus Közérdekű PÓTMÉRÉS: Akinek elmaradása van, egy mérést pótolhat a

Részletesebben

A MAGYAR KÖZTÁRSASÁG NEVÉBEN!

A MAGYAR KÖZTÁRSASÁG NEVÉBEN! i 7-5'33/07 A Fovárosi Íéloábla 2.Kf.27.561/2006/8.szám "\"?,', " R ".,--.ic-" i" lvöj.bul.lape" evlcz,,-.'{i-.)., Erkze:.. 2007 JúN 1 :szám:......,;.?:j.or; lvi\:dekleek:,""" : Ekiira ik szam ' m.:...,.

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

Dr. Walter Bitterlich

Dr. Walter Bitterlich Dr. Walter Bitterlich 1908.02.19. 2008.02.09. Ha a távolság- vagy magasságmérés lejtıs terepen történik, az adott hajlásszögnek megfelelıen elvégzett automatikus korrekció igen nagy elıny! 20 m-es

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin Javíási-érékelési úmuaó 063 ÉETTSÉG VZSG 006. okóber 4. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ OKTTÁS ÉS KTÁS MNSZTÉM Elekronikai alapismereek

Részletesebben

FIZIKA FELVÉTELI MINTA

FIZIKA FELVÉTELI MINTA Idő: 90 perc Maximális pon: 100 Használhaó: függvényábláza, kalkuláor FIZIKA FELVÉTELI MINTA Az alábbi kérdésekre ado válaszok közül minden eseben ponosan egy jó. Írja be a helyesnek aro válasz beűjelé

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Statisztika gyakorló feladatok

Statisztika gyakorló feladatok . Konfidencia inervallum beclé Saizika gyakorló feladaok Az egyeemiák alkoholfogyazái zokáainak vizgálaára 995. avazán egy mina alapján kérdıíve felméré végezek. A vizgál egyeemek: SOTE, ELTE Jog, KözGáz.

Részletesebben

Statisztika II. előadás és gyakorlat 1. rész

Statisztika II. előadás és gyakorlat 1. rész Saiszika II. Saiszika II. előadás és gyakorla 1. rész T.Nagy Judi Ajánlo irodalom: Ilyésné Molnár Emese Lovasné Avaó Judi: Saiszika II. Feladagyűjemény, Perfek, 2006. Korpás Ailáné (szerk.): Álalános Saiszika

Részletesebben

Hcserélk alapegyenlete (írta : Ortutay Miklós)

Hcserélk alapegyenlete (írta : Ortutay Miklós) Hcserél lpegyenlee (ír : Oruy Milós). Hávieli ényez. Közepes hmérséle ülönség (egyenárm) 3. Háviel csoldlon éjárú, öpenyoldlon egyjárú hcseréél. Hávieli ényez Állndósul állpon cs üls és els felüleén hádássl,

Részletesebben

Számítógépes gyakorlat Irányítási rendszerek szintézise

Számítógépes gyakorlat Irányítási rendszerek szintézise Számítógépes gyakorlat Irányítási rendszerek szintézise Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges

Részletesebben

ismerd meg! A digitális fényképezgép VII. rész

ismerd meg! A digitális fényképezgép VII. rész ismerd meg! A digiális ényképezgép VII. rész 3.5.3. Mélységélesség A képérzékel síkjábn kelekez kép szigorún véve cskis beállío ávolságr ekv árgyknál éles. Az ennél közelebb és ávolbb lev árgyk képe z

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

Elektronika 2. INBK812E (TFBE5302)

Elektronika 2. INBK812E (TFBE5302) Elekronika 2. NBK812E (FBE5302) áplálás Analóg elekronika Az analóg elekronikai alkalmazásoknál a részfeladaok öbbsége öbb alkalmazási erüleen is elıforduló, közös felada. Az ilyen álalános részfeladaok

Részletesebben

Elektronika 2. TFBE1302

Elektronika 2. TFBE1302 Elekronika. TFE30 Analóg elekronika áramköri elemei TFE30 Elekronika. Analóg elekronika Elekronika árom fő ága: Analóg elekronika A jelordozó mennyiség érékkészlee az érelmezési arományon belül folyonos.

Részletesebben

1. feladat Összesen: 17 pont

1. feladat Összesen: 17 pont 1. felada Összesen: 17 pon Ké arály közöi folyadékszállíás végzünk. Az ábrán egy cenrifugálszivayú és egy csővezeéki (erhelési) jelleggörbe láhaó. A) Mekkora a saikus szállíómagasság éréke? h s = Nm/N

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

[ ] ELLENÁLLÁS-HİMÉRİK

[ ] ELLENÁLLÁS-HİMÉRİK endszerek Tanszék HİMÉSÉKLETFÜGGİ ELLENÁLLÁSOK Alapfogalmak és meghaározások ELLENÁLLÁS-HİMÉİK (Elmélei összefoglaló) Az ellenállás fogalma és egysége Valamely homogén, végig állandó kereszmeszeő vezeı

Részletesebben

3. Mekkora feszültségre kell feltölteni egy defibrillátor 20 μf kapacitású kondenzátorát, hogy a defibrilláló impulzus energiája 160 J legyen?

3. Mekkora feszültségre kell feltölteni egy defibrillátor 20 μf kapacitású kondenzátorát, hogy a defibrilláló impulzus energiája 160 J legyen? Impulzusgeneráorok. a) Mekkora kapaciású kondenzáor alko egy 0 MΩ- os ellenállással s- os időállandójú RC- kör? b) Ezen RC- kör kisüésekor az eredei feszülségnek hány %- a van még meg s múlva?. Egy RC-

Részletesebben

Navier-formula. Frissítve: Egyenes hajlítás

Navier-formula. Frissítve: Egyenes hajlítás Navier-formula Akkor beszélünk egyenes hajlításról, ha a nyomatékvektor egybeesik valamelyik fő-másodrendű nyomatéki tengellyel. A hajlítást mindig súlyponti koordinátarendszerben értelmezzük. Ez még a

Részletesebben

1. A komplex számok ábrázolása

1. A komplex számok ábrázolása 1. komplex számok ábrázolása Vektorok és helyvektorok. Ismétlés sík vektorai irányított szakaszok, de két vektor egyenlő, ha párhuzamosak, egyenlő hosszúak és irányúak. Így minden vektor kezdőpontja az

Részletesebben

Izzítva, h tve... Látványos kísérletek vashuzallal és grafitceruza béllel

Izzítva, h tve... Látványos kísérletek vashuzallal és grafitceruza béllel kísérle, labor Izzíva, h ve... Láványos kísérleek vashuzallal és graficeruza béllel Az elekromos, valamin az elekronikus áramköröknél is, az áfolyó elekromos áram h"haása mia az egyes áramköri alkoóelemek

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

1. feladat Összesen 25 pont

1. feladat Összesen 25 pont É 047-06//E. felada Összesen 5 pon Bepárló készülékben cukoroldao öményíünk. A bepárló páraerében 0,6 bar abszolú nyomás uralkodik. A hidroszaikus nyomás okoza forrponemelkedés nem hanyagolhaó el. A függőleges

Részletesebben

Középszintű érettségi feladatsor Fizika. Első rész

Középszintű érettségi feladatsor Fizika. Első rész Középzinű éreégi feladaor Fizika Elő réz 1. Egy cónak vízhez vizonyío ebeége 12. A cónakban egy labda gurul 4 ebeéggel a cónak haladái irányával ellenéeen. A labda vízhez vizonyío ebeége: A) 8 B) 12 C)

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

Alaptagok Nyquist és Bode diagramjai

Alaptagok Nyquist és Bode diagramjai Alaptagok Nyquist és Bode diagramjai Luspay Tamás, Bauer Péter BME Közlekedésautomatikai Tanszék 212. január 1. 1. Bevezetés - Átviteli függvény, frekvenciafüggvény Dinamikus rendszerek leírásának egyik

Részletesebben

RÖVID TÁVÚ ELİREJELZİ MODELL MAGYARORSZÁGRA

RÖVID TÁVÚ ELİREJELZİ MODELL MAGYARORSZÁGRA Közgazdasági és Regionális Tudományok Inézee Pécsi Tudományegyeem Közgazdaságudományi Kar MŐHELYTANULMÁNYOK RÖVID TÁVÚ ELİREJELZİ MODELL MAGYARORSZÁGRA Balaoni András - Mellár Tamás 2011/3 2011. szepember

Részletesebben

Vektorok. Octave: alapok. A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István

Vektorok. Octave: alapok. A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Vektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Octave: alapok Az octave mint számológép: octave:##> 2+2 ans = 4 Válasz elrejtése octave:##> 2+2; octave:##> + - / * () Hatványozás:

Részletesebben

Egy idõállandós rendszer modell

Egy idõállandós rendszer modell Egy idõállandós rendszer modell Egyszerű, gyaran használ (öbb öölszabályban is eenérheő) özelíés; az áviel RC (aluláeresző) - szűrő [ τ = RC időállandó] modellezi.. ALAPÖSSZEFÜGGÉSEK A. Szinuszos, ω =

Részletesebben

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két

Részletesebben

A tudás szerepe a gazdasági növekedésben az alapmodellek bemutatása*

A tudás szerepe a gazdasági növekedésben az alapmodellek bemutatása* A udás szerepe a gazdasági növekedésben az alapmodellek bemuaása* Jankó Balázs, az ECOSTAT közgazdásza E-mail: Balazs.Janko@ecosa.hu A anulmányban azoka a nemzeközi közgazdasági irodalomban fellelheő legfonosabb

Részletesebben

2012. október 9 és 11. Dr. Vincze Szilvia

2012. október 9 és 11. Dr. Vincze Szilvia 2012. október 9 és 11. Dr. Vincze Szilvia Egyváltozós valós függvények nevezetes osztályai I. Algebrai függvények Racionális egész függvények (polinomok) Racionális törtfüggvények Irracionális függvények

Részletesebben

J Á R M Ű R E N D S Z E R - D I A G N O S Z T I K A

J Á R M Ű R E N D S Z E R - D I A G N O S Z T I K A BDPESTI MŰSZKI és GZDSÁGTDOMÁNYI EGYETEM Közlekedésmérnöki Kar J Á M Ű E N D S Z E - D I G N O S Z T I K 3 merológia a járműrendszer-diagnoszikában Mérésechnika Okaási segédle Készíee:: Dr Zobory Isván

Részletesebben

1. Transzformációk mátrixa

1. Transzformációk mátrixa 1 Transzformáiók mátrixa Lineáris transzformáiók Definíió T test Az A : T n T n függvény lineáris transzformáió, ha tetszőleges v,w T n vektorra és λ skalárra teljesül, hogy A(v + w) A(v) + A(w) és A(λv)

Részletesebben

Alapvető polinomalgoritmusok

Alapvető polinomalgoritmusok Alapvető polinomalgoritmusok Maradékos osztás Euklideszi algoritmus Bővített euklideszi algoritmus Alkalmazás: Véges testek konstrukciója Irodalom: Iványi Antal: Informatikai algoritmusok II, 18. fejezet.

Részletesebben

Komplex számok trigonometrikus alakja

Komplex számok trigonometrikus alakja Komplex számok trigonometrikus alakja 015. február 15. 1. Alapfeladatok 1. Feladat: Határozzuk meg az alábbi algebrai alakban adott komplex számok trigonometrikus alakját! z 1 = 4 + 4i, z = 4 + i, z =

Részletesebben

Gemeter Jenő 5. ELEKTRONIKUS KOMMUTÁCIÓJÚ MOTOROK.

Gemeter Jenő 5. ELEKTRONIKUS KOMMUTÁCIÓJÚ MOTOROK. Gemeer Jenő 5. ELEKTRONKS KOMMTÁÓJÚ MOTOROK. Számos eseben felmerül az igény villamos hajásokkal kapcsolaban, hogy a fordulaszámo ág haárok közö, folyamaosan lehessen válozani. z igény kielégíésére öbbféle

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben