2. előadás. égitestek mozgása csillagkatalógusok méréskori látszó hely számítása

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2. előadás. égitestek mozgása csillagkatalógusok méréskori látszó hely számítása"

Átírás

1 2. előadás égitestek mozgása csillagkatalógusok méréskori látszó hely számítása

2 A csillagok látszólagos mozgása égi pólus körüli látszólagos forgás póluskörüli (cirkumpoláris) csillagok kelés, delelés (kulminálás), nyugvás nem látható csillagok Láthatóság: Nap a horizont alatt Nap látszólagos mozgása napi pályaíve 8-16 óra között

3 Oregon, USA

4 A csillagképek látszólag összetartozó csillagok csoportjai távolságuk nagyon különböző lehet elnevezésük mondabeli alakról vagy állatról az égbolt részterületeit is jelentik 88 csillagkép, 3 betűs rövidítések (pl. UMi) Csillagok megjelölése csillagkép és görög betűk számok (fényesség alapján), pl αumi név (Poláris, azaz Sarkcsillag) csillagkatalógus jele és csillag sorszáma Helyzet megadása égi koordinátákkal jegyzékben (katalógus, évkönyv, adatbázis)

5

6 Frederik de Wit csillagtérképe (17. szd.)

7

8

9

10 Fényszennyezés az Orion csillagkép nem fényszennyezett (bal oldali kép) illetve nagyvárosi fényszennyezett helyről (jobb oldali kép) fotózva

11 A zöld és kék szín elfogadható minőségű eget jelent +6m-s határfényességgel. A sárga szín külvárosi jellegű ég általában 5m határfényességgel, néha jobb. A vörös és narancs szín városi, erősen fényszennyezett égboltot jelöl

12 A zöld és kék szín elfogadható minőségű eget jelent +6m-s határfényességgel. A sárga szín külvárosi jellegű ég általában 5m határfényességgel, néha jobb. A vörös és narancs szín városi, erősen fényszennyezett égboltot jelöl

13 A Naphoz közel eső csillagok

14 Naprendszer

15 Bolygók látszólagos mozgása hátráló (retrográd) mozgás Kelet Nyugat

16 Mars hátráló mozgása 2005-ben 35 különböző időpontban 1 hetes időközzel készült felvételek

17 Analemma 10:00:00 UT+2 Jan 07/03 - Dec 20/03 (47+1 kép) Jan 12, Dec 21, :28:16 UT+2 (41+1 kép) Jan 07, Dec 20, :00:00 UT+2 (44+1 kép)

18 Hold látszó méretének változása

19 Csillagászati programok HNSKY

20 HNSKY

21 Stellarium

22 Csillagkatalógusok csillagok koordinátái asztrometriai módszerrel (pozíciós csillagászat) t 0 vonatkoztatási időpont vonatkoztatási rendszer (csillagászati alaprendszer) közepes égi egyenlítői (ICRS) koordinátái: rektaszcenzió, deklináció 100 évre vonatkoztatott sajátmozgás Fundamental Katalog FK4 (1963): 1535 alapcsillag (1950.0, ) FK5 (1988): 1535 alapcsillag (2000.0) FK5(II) kiegészítés: további 3117 csillag FK6 (2000): ICRF-el összekapcsolt rendszerben (FK5 + Hipparcos asztrometriai mesterséges hold, ESA, ) FK6(I): 878 csillag, FK6(III): 3272 csillag

23 FK5 adatok RA: rektaszcenzió DEC: deklináció RA, DEC PM: sajátmozgás MAG: látszó magnitúdó FK5 No. : katalógus szám Spec: színképosztály

24 FK6 katalógus

25 FK6 katalógus csillagai

26 Csillagkatalógusok 2. HIPPARCOS (ESA, 1997) >9 m, csillag, 0.001" pontosság SAO >9.5 m, csillag Tycho-2 >9.5 m, csillag, 23 MB GSC-I, II (Guide Star Catalog) 6 m -15 m (21) m, 20(946) millió csillag UCAC3 (2009), UCAC4 (2012) USNO CCD Astrometry C. >16 m, 101 millió csillag (< m -14 m ), 2.4 GB

27 Csillagkatalógusok 3. USNO-A 2.0, USNO B 1.0 >21 m, 526/1043 millió csillag (<0.2 pontosság, 6/80 GB) PPMXL >20 m, 910,468,710 égi objektum (USNO-B1.0 és az infravörös 2MASS katalógus kombinációja (39.4 GB) az ICRS pozíciók és sajátmozgások jelenleg legnagyobb adatrendszere pontos, ahol van 2MASS asztrometriai adat (410 millió objektum) pontos, ahol nincs 2MASS adat

28 Tycho-2 katalógus csillagsűrűség [csillag/négyzetfok]

29 USNO A 2.0 GSC UCAC2 USNO A 2.0

30 Gaia ESA asztrometriai űrprojektje felbocsátása: ,5 éves mérési idő, >1 milliárd csillag, 70 mérés/csillag, 1 Gpixeles kamera mérési pontosság: <10 m : 7 µas, (hajszál 2000 km-ről, 100x pontosabb a Hipparcos-nál) színkép, radiális sebesség archivált adatmennyiség 1 millió GB (200 ezer DVD) az észlelések első évét befejezte augusztus 21-én (272 md. pozíció adat) végső katalógus:

31 Lissajous pálya L 2 körül Lagrange (librációs) pontok: 5 pont, ahol egy kis test relatív helyzete 2 nagyobb testhez képest fix maradhat (L 4, L 5 stabil)

32 Tejútrendszer ahogy a Gaia látja 2015 július 3. (ESA)

33 Szükségünk van-e ilyen részletes csillagkatalógusokra? TZK-2D zenitkamera: egy CCD felvételen látható csillagok (>14 m ) átlagos száma (min. 20 kell képenként) Tycho-2: 2 50 (Tejút) GSC: 135 >100 (Tejút) UCAC3/4: 135 >100 (Tejút)

34 A Hannoveri Egyetem digitális zenitkamerája 2003-ban a Svájci Alpokban (már közel 1000 ponton mértek vele) Az AlpTransit alagút építéséhez a svájci Daedalus műszerrel mért függővonal-elhajlások és azimutok

35 Mérhető mennyiségek Koordinátarendszer valódi égi egyenlítői rendszer Észlelő a geocentrumban méréskori látszó hely Észlelő a földfelszínen topocentrikus hely átmeneti égi rendszer átmeneti hely [nincs neve] GCRS (geocentrikus ICRS) képzetes hely lokális hely GCRS (geocentrikus ICRS) asztrometriai hely [nincs neve]

36 A méréskori látszó hely látszó hely: az az irány, ahol a Nap körül keringő Föld középpontjába képzelt észlelő, a légkör hatása nélkül a csillagot (égitestet) látná ICRS baricentrikus közepes égi egyenlítői (katalógus) hely sajátmozgás (t t 0 ) precesszió (t t 0 ) nutáció (t) évi keringési aberráció (v/c értéke, max ") évi keringési parallaxis ( < 1", α Centauri: 0.75") fényelhajlás (napkorong szélén: 1.74", 20 -ra tőle: 0.02") mérési eredmények javításai (topocentrikus észlelés) napi (forgási) aberráció (max. 0.32" ) napi (forgási) parallaxis légköri sugártörés (refrakció; zenit: ~0, horizonton 35' 24")

37 Cs Z ICRS katalógus hely t 0 vonatkozási időpontban O Bc [t 0 = J2000.0] X ICRS Nemzetközi Égi Vonatkoztatási Rendszer ICRS [t-től független tengelyirányok] barycentrikus ICRS = BCRS

38 ω = ω(t) valódi forgástengely Cs Bc keringési parallaxis Föld méréskori valódi hely ω(t) méréskori látszó hely O Gc keringési aberráció ^(t) ^ ^(t) valódi tavaszpont A látszó hely kiszámítása geocentrikus ICRS = GCRS

39 Zenit ω(t) ω(t) Cs Áp z forgási parallaxis refrakció forgási aberráció topocentrikus látszó hely méréskori látszó hely A mérési eredmény átszámítása látszó helyre Gc Föld napi (forgási) parallaxis Hold: < 57 Nap: < 8.8" napi (forgási) aberráció < 0.32" ^(t)

40 Számítógépes implementáció QDaedalus rendszer feldolgozó programja (BME; 2000 programsor; ebből ~1000 sor az átszámítás) function fk6itrs(fk6data, jdutc, iers) ## FK6 ICRS katalógus hely átszámítása ITRS-be ## fk6data: [RA,DEC,uRA,uDEC,parallaxis,vr] FK6 katalógus adatok: ## RA,DEC: rektaszcenzió [óra],deklináció [fok] ## ura,udec: sajátmozgás [mas/év] ## parallaxis [mas] ## vr : sugár irányú sebesség [km/s] ## jdutc : JD UTC időpont ## iers : IERS adatok 4 elemű vektora: ## dat : szökőmásodpercek száma ( = ban) ## dutc : UT1 - UTC (másodperc) ## xp,yp : az égi pólus koordinátái ITRS-ben (szögmásodperc)

41 két lépéses számítás: r1 = fk6gcrs(fk6data, jdutc); r2 = gcrsitrs(jdutc,dat,dutc,xp,yp,r1); function fk6gcrs(fk6data, jdutc) ## FK6 ICRS katalógus hely átszámítása GCRS-be ## fk6data: [RA,DEC,uRA,uDEC,parallaxis,vr] FK6 katalógus adatok: ## RA,DEC: rektaszcenzió [óra],deklináció [fok] ## ura,udec: sajátmozgás [mas/év] ## parallaxis [mas] ## vr : sugár irányú sebesség [km/s] ## jdutc : JD UTC időpont ## eredmény: ## r : csillag iránya egységvektora GCRS-ben // Föld helyzete és sebessége ICRS-ben {re, ve} = earth(jdtt); // csillagra mutató vektor ICRS-ben {r, v} = starvectors(fk6data); // fényidő különbség Bc és Gc között [nap] dt = dlight(r,re); // sajátmozgás r1 = propmot(t0, r,v,jdtt+dt); // éves parallaxis javítás {r2, tl} = bary2obs(r1, re); // fényelhajlás javítás (csillagészati aberráció) r3 = aberration(r2, ve, tl); return r3; // GCRS egységvektor endfunction

42 function gcrsitrs(jdutc, dat, dutc, xp, yp, vec1) ## forgatás az égi GCRS rendszerből a földi ITRS-be ## jdutc = utc julian dátum ## dat = szökőmásodpercek száma ( = ban) ## dutc = UT1 - UTC (másodperc) ## xp, yp = póluskoordináták (szögmásodperc) ## vec1 = GCRS helyvektor ## vec2 = ITRS helyvektor (ki) // ---- frame-tie mátrix forgatás v1 = frametie(vec1, 1); // precesszió és csillagászati nutáció v2 = preces(t0, v1, tdbjd); {v3, eqe} = nutation(tdbjd,0,v2); // földforgás (GAST) miatti forgatás gast = sidtime(utjd,t, eqe); gast = rad(15*gast); // radián // forgatási mátrix GCRS -> ITRS S = [cos(gast),-sin(gast),0; sin(gast), cos(gast), 0; 0,0,1]; v4 = S'.v3'; // pólusmozgás xpole = xp * s2r; ypole = yp * s2r; W = [1,0,-xpole; 0,1,ypole;xpole,-ypole,1]; vec2 = W'.v4; return vec2 ; // ITRS helyvektor (sorvektor) endfunction

Kozmikus geodézia MSc

Kozmikus geodézia MSc Kozmikus geodézia MSc 1-4 előadás: Tóth Gy. 5-13 előadás: Ádám J. 2 ZH: 6/7. és 12/13. héten (max. 30 pont) alapismeretek, csillagkatalógusok, koordináta- és időrendszerek, függővonal iránymeghatározása

Részletesebben

Hogyan mozognak a legjobb égi referenciapontok?

Hogyan mozognak a legjobb égi referenciapontok? Hogyan mozognak a legjobb égi referenciapontok? Moór Attila, Frey Sándor, Sebastien Lambert, Oleg Titov, Bakos Judit FÖMI Kozmikus Geodéziai Obszervatóriuma, Penc MTA Fizikai Geodézia és Geodinamikai Kutatócsoport,

Részletesebben

Az éggömb. Csillagászat

Az éggömb. Csillagászat Az éggömb A csillagászati koordináta-rendszerek típusai topocentrikus geocentrikus heliocentrikus baricentrikus galaktocentrikus alapsík, kiindulási pont, körüljárási irány (ábra forrása: Marik Miklós:

Részletesebben

Csillagászati földrajz I-II.

Csillagászati földrajz I-II. Tantárgy neve Csillagászati földrajz I-II. Tantárgy kódja FDB1305; FDB1306 Meghirdetés féléve 2 Kreditpont 2+1 Összóraszám (elm.+gyak.) 1+0, 0+1 Számonkérés módja kollokvium + gyakorlati jegy Előfeltétel

Részletesebben

2. előadás: A Föld és mozgásai

2. előadás: A Föld és mozgásai 2. előadás: A Föld és mozgásai 2. előadás: A Föld és mozgásai A Föld a Naprendszer kis bolygója, melynek egy saját holdja van. Egyenlítői félátmérője a=6 378 l37 m, lapultsága f=1/298,257..., a vele egyenlő

Részletesebben

6. A FÖLD TENGELYKÖRÜLI FORGÁSA.

6. A FÖLD TENGELYKÖRÜLI FORGÁSA. 6. A FÖLD TENGELYKÖRÜLI FORGÁSA. A Föld saját tengelye körüli forgását az w r forgási szögsebességvektor jellemzi, ezért a Föld forgásának leírásához ismernünk kell a szögsebességvektor térbeli irányát

Részletesebben

GLOBÁLIS HELYMEGHATÁROZÁS

GLOBÁLIS HELYMEGHATÁROZÁS Budapesti Műszaki és Gazdaságtudományi Egyetem ÁLTALÁNOS ÉS FELSŐGEODÉZIA TANSZÉK GLOBÁLIS HELYMEGHATÁROZÁS Oktatási segédlet Budapest, 2007 TARTALOM BEVEZETÉS 1. CSILLAGÁSZATI ALAPISMERETEK 1.1. A világmindenség

Részletesebben

5. előadás: Földi vonatkoztatási rendszerek

5. előadás: Földi vonatkoztatási rendszerek 5. előadás: Földi vonatkoztatási rendszerek 5. előadás: Földi vonatkoztatási rendszerek A Nemzetközi Földi Vonatkoztatási Rendszer A csillagászati geodézia története során egészen a XX. század kezdetéig

Részletesebben

ŰRCSILLAGÁSZAT ŰRASZTROMETRIA. MSc kurzus Szegedi Tudományegyetem

ŰRCSILLAGÁSZAT ŰRASZTROMETRIA. MSc kurzus Szegedi Tudományegyetem ŰRCSILLAGÁSZAT ŰRASZTROMETRIA MSc kurzus Szegedi Tudományegyetem Az asztrometria fontossága Az égitestek helyzetének és mozgásának meghatározása. Korábbi neve pozíciós vagy fundamentális csillagászat (19.

Részletesebben

Időrendszerek áttekintése

Időrendszerek áttekintése Időrendszerek áttekintése mérés mikor? t időpont mióta? t 0 epocha mennyi ideig? t t 0 időtartam jelenségek jól reprodukálható nagy megbízhatóságú periodikus időpont és időköz (egység) határozza meg Föld

Részletesebben

Földünk a világegyetemben

Földünk a világegyetemben Földünk a világegyetemben A Tejútrendszer a Lokális Galaxiscsoport egyik küllős spirálgalaxisa, melyben a Naprendszer és ezen belül Földünk található. 200-400 milliárd csillag található benne, átmérője

Részletesebben

11. A FÖLD FORGÁSA, AZ ÁLTALÁNOS PRECESSZIÓ

11. A FÖLD FORGÁSA, AZ ÁLTALÁNOS PRECESSZIÓ 11. A FÖLD FORGÁSA, AZ ÁLTALÁNOS PRECESSZIÓ A Föld saját tengelye körüli forgását az ω r forgási szögsebesség-vektora jellemzi, ezért a Föld forgásának leírásához ismernünk kell a szögsebesség-vektor térbeli

Részletesebben

FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ 1 / 6 feladatlap Elméleti szöveges feladatok 1. Egészítse ki az alábbi szöveget a Glonassz GNSS alaprendszerrel

Részletesebben

Mérések és Megfigyelések Csillagászat. Süli Áron ELTE TTK FFI Csill. Tsz. adjunktus

Mérések és Megfigyelések Csillagászat. Süli Áron ELTE TTK FFI Csill. Tsz. adjunktus Mérések és Megfigyelések ELTE TTK FFI Csill. Tsz. adjunktus Áttekintés A Naprendszer Tájékozódás az égbolton A csillagok mozgása az égbolton A Nap mozgása az égbolton A Hold mozgása az égbolton A bolygók

Részletesebben

A világegyetem szerkezete és fejlődése. Összeállította: Kiss László

A világegyetem szerkezete és fejlődése. Összeállította: Kiss László A világegyetem szerkezete és fejlődése Összeállította: Kiss László Szerkezeti felépítés A világegyetem galaxisokból és galaxis halmazokból áll. A galaxis halmaz, gravitációsan kötött objektumok halmaza.

Részletesebben

Csillagászati megfigyelések

Csillagászati megfigyelések Csillagászati megfigyelések Napszűrő Föld Alkalmas szűrő nélkül szigorúan tilos a Napba nézni (még távcső nélkül sem szabad)!!! Solar Screen (műanyag fólia + alumínium) Olcsó, szürkés színezet. Óvatosan

Részletesebben

Kettőscsillagok vizuális észlelése. Hannák Judit

Kettőscsillagok vizuális észlelése. Hannák Judit Kettőscsillagok vizuális észlelése Hannák Judit Miért észleljünk kettősöket? A kettőscsillagok szépek: Rengeteg féle szín, fényesség, szinte nincs is két egyforma. Többes rendszerek különösen érdekesek.

Részletesebben

A függőleges irányának szélső pontosságú meghatározása

A függőleges irányának szélső pontosságú meghatározása Budapesti Műszaki és Gazdaságtudományi Egyetem Általános és Felsőgeodézia Tanszék TDK dolgozat A függőleges irányának szélső pontosságú meghatározása Készítette: Csala Bettina Konzulensek: Dr. Tóth Gyula

Részletesebben

Mérések és Megfigyelések. Csillagászat

Mérések és Megfigyelések. Csillagászat Mérések és Megfigyelések ELTE i Tanszék tudományos segédmunkatárs Áttekintés Áttekintés A Naprendszer Tájékozódás az égbolton A csillagok mozgása az égbolton A Nap mozgása az égbolton A Hold mozgása az

Részletesebben

Időrendszerek áttekintése

Időrendszerek áttekintése Időrendszerek áttekintése mérés mikor? t időpont mióta? t 0 epocha mennyi ideig? t t 0 időtartam jelenségek jól reprodukálható nagy megbízhatóságú periodikus időpont és időköz (egység) határozza meg Föld

Részletesebben

Összeállította: Juhász Tibor 1

Összeállította: Juhász Tibor 1 A távcsövek típusai Refraktorok és reflektorok Lencsés távcső (refraktor) Galilei, 1609 A TÁVCSŐ objektív Kepler, 1611 Tükrös távcső (reflektor) objektív Newton, 1668 refraktor reflektor (i) Legnagyobb

Részletesebben

A Föld helye a Világegyetemben. A Naprendszer

A Föld helye a Világegyetemben. A Naprendszer A Föld helye a Világegyetemben A Naprendszer Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. (A fény terjedési sebessége: 300.000 km.s -1.) Egy év alatt: 60.60.24.365.300 000

Részletesebben

7. előadás: Az idő. A Föld forgásán alapuló időrendszerek. 7. előadás: Az idő

7. előadás: Az idő. A Föld forgásán alapuló időrendszerek. 7. előadás: Az idő 7. előadás: Az idő Az idő filozófiai fogalma: Az anyag objektív létformája, melyet a világban lejátszódó események egymásutánja határoz meg. A múltból a jövőbe, azonosan egy irányban, érzékelésünktől függetlenül,

Részletesebben

Csillagászattörténet, szérikus csillagászat, időszámítás

Csillagászattörténet, szérikus csillagászat, időszámítás , szérikus csillagászat, időszámítás Bevezetés a csillagászatba 1. Muraközy Judit Debreceni Egyetem, TTK 2016. 09. 29. Bevezetés a csillagászatba- 2016. szeptember 29. 1 / 28 Kitekintés Miről lesz szó

Részletesebben

A csillagok fénye 1. Az atomoktól a csillagokig. Dávid Gyula 2016. 01. 21. Az atomoktól a csillagokig dgy 2015. 01. 21.

A csillagok fénye 1. Az atomoktól a csillagokig. Dávid Gyula 2016. 01. 21. Az atomoktól a csillagokig dgy 2015. 01. 21. A csillagok fénye 1. Az atomoktól a csillagokig Dávid Gyula 2016. 01. 21. Az atomoktól a csillagokig dgy 2015. 01. 21. A csillagok fénye 1 Az atomoktól a csillagokig sorozat 150. előadása 2016. 01. 21.

Részletesebben

Az asztrolábium és használata

Az asztrolábium és használata Az asztrolábium és használata Szerkesztette: Matisz Attila (2010) Szétszedett asztrolábium a 18. századból. 1 Az asztrolábium Asztrolábiumot (görögül: ἁστρολάβον) már az ókori görögök is használtak ( i.

Részletesebben

OPT TIKA. Hullámoptika. Dr. Seres István

OPT TIKA. Hullámoptika. Dr. Seres István OPT TIKA Dr. Seres István : A fény elektromágneses hullám r S S = r E r H Seres István 2 http://fft.szie.hu Elektromágneses spektrum c = λf Elnevezés Hullámhossz Frekvencia Váltóáram > 3000 km < 100 Hz

Részletesebben

A Föld pályája a Nap körül. A világ országai. A Föld megvilágítása. A sinus és cosinus függvények. A Föld megvilágítása I. A Föld megvilágítása II.

A Föld pályája a Nap körül. A világ országai. A Föld megvilágítása. A sinus és cosinus függvények. A Föld megvilágítása I. A Föld megvilágítása II. Föld pályája a ap körül TVSZI TL TVSZ PJEGYELŐSG Márc. 21. világ országai P TLI PFORULÓ ec. 21. YÁRI PFORULÓ Jún. 22. ŐSZ YÁR ŐSZI PJEGYELŐSG Szept. 23. sinus és cosinus függvények III. Föld megvilágítása

Részletesebben

A TERRESZTRIKUS-NAVIGÁCIÓS IDŐSZÁMÍTÁS ÉS GYAKORLATI ALKALMAZÁSAI BEVEZETÉS AZ IDŐ ÉS FAJTÁI

A TERRESZTRIKUS-NAVIGÁCIÓS IDŐSZÁMÍTÁS ÉS GYAKORLATI ALKALMAZÁSAI BEVEZETÉS AZ IDŐ ÉS FAJTÁI Urbán István A TERRESZTRIKUS-NAVIGÁCIÓS IDŐSZÁMÍTÁS ÉS GYAKORLATI ALKALMAZÁSAI BEVEZETÉS A terresztrikus navigáció alkalmazásáról elmondható, hogy kis túlzással ugyan, de egyidős az emberiséggel. A navigáció

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

HIPPARCOS (HIgh Precision PARallax COllec7ng Satellite)

HIPPARCOS (HIgh Precision PARallax COllec7ng Satellite) HIPPARCOS (HIgh Precision PARallax COllec7ng Satellite) ESA, 1989-1993 Első űrbéli asztrometriai műhold 120,000 csillag, 1 mas pontosság Magnitúdólimit M V =12.5 10% pontosság parallaxisban >10 mas, távolságban

Részletesebben

Égboltfelmérési módszerek szerepe a Naprendszer vizsgálatában

Égboltfelmérési módszerek szerepe a Naprendszer vizsgálatában Égboltfelmérési módszerek szerepe a Naprendszer vizsgálatában Szabó M. Gyula ELTE Gothard Asztrofizikai Obszervatórium és Multidiszciplináris Kutatóközpont, Szombathely, HUNGARY Bevezetés A Big Data módszerek

Részletesebben

Földrajzi helymeghatározás

Földrajzi helymeghatározás Földrajzi helymeghatározás Feladata az álláspont F és L szintfelületi földrajzi koordinátáinak meghatározása. Ez az álláspont helyi függőlegese térbeli irányának meghatározását jelenti a Földhöz kötött,

Részletesebben

Méréselmélet és mérőrendszerek

Méréselmélet és mérőrendszerek Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o

Részletesebben

Meteor csillagászati évkönyv 2007

Meteor csillagászati évkönyv 2007 Meteor csillagászati évkönyv 2007 csillagászati évkönyv 2007 szerkesztette: Mizser Attila Taracsák Gábor Magyar Csillagászati Egyesület Budapest, 2006 Az évkönyv összeállításában közrem ködött: Jean Meeus

Részletesebben

Földön kívüli területek térképezése. Burián Gábor

Földön kívüli területek térképezése. Burián Gábor Földön kívüli területek térképezése Burián Gábor 1 2 Földön kívüli területek térképezése Diplomamunka Burián Gábor Belső konzulens: Dr. Márton Mátyás Külső konzulens: Hargitai Henrik ELTE Térképtudományi

Részletesebben

CSILLAGÁSZATI TESZT. 1. Csillagászati totó

CSILLAGÁSZATI TESZT. 1. Csillagászati totó CSILLAGÁSZATI TESZT Név: Iskola: Osztály: 1. Csillagászati totó 1. Melyik bolygót nevezzük a vörös bolygónak? 1 Jupiter 2 Mars x Merkúr 2. Melyik bolygónak nincs holdja? 1 Vénusz 2 Merkúr x Szaturnusz

Részletesebben

Mi a fata morgana? C10:: légköri tükröződési jelenség leképezési hiba arab terrorszervezet a sarki fény népies elnevezése

Mi a fata morgana? C10:: légköri tükröződési jelenség leképezési hiba arab terrorszervezet a sarki fény népies elnevezése A fény melyik tulajdonságával magyarázható, hogy a vizes aszfalton elterülő olajfolt széleit olyan színesnek látjuk, mint a szivárványt? C1:: differencia interferencia refrakció desztilláció Milyen fényjelenségen

Részletesebben

Kora modern kori csillagászat. Johannes Kepler ( ) A Világ Harmóniája

Kora modern kori csillagászat. Johannes Kepler ( ) A Világ Harmóniája Kora modern kori csillagászat Johannes Kepler (1571-1630) A Világ Harmóniája Rövid életrajz: Született: Weil der Stadt (Német -Római Császárság) Protestáns környezet, vallásos nevelés (Művein érezni a

Részletesebben

A FÖLD PRECESSZIÓS MOZGÁSÁNAK FIZIKAI ALAPJAI. Völgyesi Lajos *

A FÖLD PRECESSZIÓS MOZGÁSÁNAK FIZIKAI ALAPJAI. Völgyesi Lajos * A FÖLD PRECESSZIÓS MOZGÁSÁNAK FIZIKAI ALAPJAI Völgyesi Lajos * Physical backgrounds of the Earth s precession. Rotation of the Earth is a quite involved process. Deep knowledge of certain areas of physics

Részletesebben

Merev testek mechanikája. Szécsi László

Merev testek mechanikája. Szécsi László Merev testek mechanikája Szécsi László Animáció időfüggés a virtuális világmodellünkben bármely érték lehet időben változó legjellemzőbb: a modell transzformáció időfüggése mozgó tárgyak módszerek az időfüggés

Részletesebben

Geodézia 1. A helymeghatározás alapjai Gyenes, Róbert

Geodézia 1. A helymeghatározás alapjai Gyenes, Róbert Geodézia 1. A helymeghatározás alapjai Gyenes, Róbert Geodézia 1.: A helymeghatározás alapjai Gyenes, Róbert Lektor: Homolya, András Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel a

Részletesebben

CSILLAGÁSZATI HÉT BEREKFÜRDŐN AZ EGRI VARÁZSTORONY SZERVEZÉSÉBEN JÚLIUS

CSILLAGÁSZATI HÉT BEREKFÜRDŐN AZ EGRI VARÁZSTORONY SZERVEZÉSÉBEN JÚLIUS CSILLAGÁSZATI HÉT BEREKFÜRDŐN AZ EGRI VARÁZSTORONY SZERVEZÉSÉBEN 2012. JÚLIUS 02-08. 2012. 07. 02. Hétfő Előadó: Bölcskey Miklós, Vasné Tana Judit Földünk kísérője a Hold Vetítettképes csillagászati előadás.

Részletesebben

Tömegvonzás, bolygómozgás

Tömegvonzás, bolygómozgás Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test

Részletesebben

Színképelemzés. Romsics Imre 2014. április 11.

Színképelemzés. Romsics Imre 2014. április 11. Színképelemzés Romsics Imre 2014. április 11. 1 Más néven: Spektrofotometria A színképből kinyert információkból megállapítható: az atomok elektronszerkezete az elektronállapotokat jellemző kvantumszámok

Részletesebben

BBS-INFO Kiadó, 2016.

BBS-INFO Kiadó, 2016. BBS-INFO Kiadó, 2016. 2 Amatőr csillagászat számítógépen és okostelefonon Minden jog fenntartva! A könyv vagy annak oldalainak másolása, sokszorosítása csak a kiadó írásbeli hozzájárulásával történhet.

Részletesebben

Földrajzi helymeghatározás

Földrajzi helymeghatározás Földrajzi helymeghatározás Feladata az álláspont F és L szintfelületi földrajzi koordinátáinak meghatározása. Ez az álláspont helyi függőlegese térbeli irányának meghatározását jelenti a Földhöz kötött,

Részletesebben

TERMÉSZETTUDOMÁNY JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

TERMÉSZETTUDOMÁNY JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Természettudomány középszint 1012 ÉRETTSÉGI VIZSGA 2010. október 26. TERMÉSZETTUDOMÁNY KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM I. Enzimek, katalizátorok

Részletesebben

OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István

OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István OPTIKA Diszperzió, interferencia Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu : A fény elektromágneses hullám: Diszperzió: Különböző hullámhosszúságú

Részletesebben

A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER

A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER 1. Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. A fény terjedési sebessége: 300.000 km/s, így egy év alatt 60*60*24*365*300 000 km-t,

Részletesebben

STELLARIUM HASZNÁLATI ÚTMUTATÓ

STELLARIUM HASZNÁLATI ÚTMUTATÓ Rendszer követelmények: Windows (XP, Vista, 7) a legújabb DirectX 9.x és Szervizcsomagért vagy MacOS X 10.3.x (vagy magasabb), 3D videokártya OpenGL támogatással, min. 512 MB RAM, 1 GB szabad hely a merevlemezen.

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

Szegedi Tudományegyetem

Szegedi Tudományegyetem Szegedi Tudományegyetem Természettudományi és Informatikai Kar Kísérleti Fizikai Tanszék SZAKDOLGOZAT Csillagászati és űrkutatási ismeretek alkalmazása a középiskolai fizika oktatásában Készítette: Árokszállási

Részletesebben

Robotika. Kinematika. Magyar Attila

Robotika. Kinematika. Magyar Attila Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc

Részletesebben

Meteor csillagászati évkönyv 2007

Meteor csillagászati évkönyv 2007 Meteor csillagászati évkönyv 2007 csillagászati évkönyv 2007 szerkesztette: Mizser Attila Taracsák Gábor Magyar Csillagászati Egyesület Budapest, 2006 Az évkönyv összeállításában közrem ködött: Jean Meeus

Részletesebben

OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István

OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István OPTIKA Diszperzió, interferencia Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu : A fény elektromágneses hullám: Diszperzió: Különböző hullámhosszúságú

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

A NEMZETKÖZI ÉGI REFERENCIARENDSZER (ICRS) ÚJ MEGVALÓSÍTÁSA: ICRF2

A NEMZETKÖZI ÉGI REFERENCIARENDSZER (ICRS) ÚJ MEGVALÓSÍTÁSA: ICRF2 Geomatikai Közlemények XII/2, 2010 A NEMZETKÖZI ÉGI REFERENCIARENDSZER (ICRS) ÚJ MEGVALÓSÍTÁSA: ICRF2 Frey Sándor, Gabányi Krisztina ICRF2: the new realisation of the International Celestial Reference

Részletesebben

Koordinátarendszerek, dátumok, GPS

Koordinátarendszerek, dátumok, GPS Koordinátarendszerek, dátumok, GPS KOORDINÁTARENDSZEREK A SPATIAL-BEN Koordinátarendszer típusok 1. Descartes-féle koordinátarendszer: egy adott pontból (origó) kiinduló, egymásra merőleges egyenesek alkotják,

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav54

Részletesebben

FELHASZNÁLÓI KÉZIKÖNYV

FELHASZNÁLÓI KÉZIKÖNYV FELHASZNÁLÓI KÉZIKÖNYV SynScan TM 1.1 Megjelenés és kezelõfelület I. Bevezetés A SynScan kézivezérlõt és a kezeléséhez használatnó egységeket az 1.1 ábra mutatja. LCD kijelzõ: a kijelzõ két sorban, soronként

Részletesebben

Bevezetés A Föld alakja A Föld mozgása Az égitestek mozgása Összefoglalás. Az ókori kozmoszkép. SZE, Fizika és Kémia Tsz. v 1.0

Bevezetés A Föld alakja A Föld mozgása Az égitestek mozgása Összefoglalás. Az ókori kozmoszkép. SZE, Fizika és Kémia Tsz. v 1.0 Fizikatörténet Az ókori kozmoszkép Horváth András SZE, Fizika és Kémia Tsz. v 1.0 Bevezetés AFKT 1.3.3., AFKT 1.4.2., AFKT 1.4.3. Szó értelme: kozmosz = rend. Ősi megfigyelés: az égitestek mozgása rendezettebb,

Részletesebben

Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer

Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer Spektrográf elvi felépítése A: távcső Itt lencse, de általában komplex tükörrendszer Kis kromatikus aberráció fontos Leképezés a fókuszsíkban: sugarak itt metszik egymást B: maszk Fókuszsíkba kerül (kamera

Részletesebben

SZE, Fizika és Kémia Tsz. v 1.0

SZE, Fizika és Kémia Tsz. v 1.0 Fizikatörténet A fénysebesség mérésének története Horváth András SZE, Fizika és Kémia Tsz. v 1.0 Kezdeti próbálkozások Galilei, Descartes: Egyszerű kísérletek lámpákkal adott fényjelzésekkel. Eredmény:

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

ÁLTALÁNOS JÁRMŰGÉPTAN

ÁLTALÁNOS JÁRMŰGÉPTAN ÁLTALÁNOS JÁRMŰGÉPTAN ELLENŐRZŐ KÉRDÉSEK 3. GÉPEK MECHANIKAI FOLYAMATAI 1. Definiálja a térbeli pont helyvektorát! r helyvektor előáll ortogonális (a 3 tengely egymásra merőleges) koordinátarendszer koordinátairányú

Részletesebben

Matematikai geodéziai számítások 9.

Matematikai geodéziai számítások 9. Matematikai geodéziai számítások 9 Szabad álláspont kiegyenlítése Dr Bácsatyai, László Created by XMLmind XSL-FO Converter Matematikai geodéziai számítások 9: Szabad álláspont kiegyenlítése Dr Bácsatyai,

Részletesebben

DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév)

DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév) DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév) Dinamika Pontszám 1. A mechanikai mozgás fogalma (1) 2. Az anyagi pont pályája (1) 3. A mozgástörvény

Részletesebben

5. előadás. Skaláris szorzás

5. előadás. Skaláris szorzás 5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút

Részletesebben

1. ábra Egy terület DTM-je (balra) és ugyanazon terület DSM-je (jobbra)

1. ábra Egy terület DTM-je (balra) és ugyanazon terület DSM-je (jobbra) Bevezetés A digitális terepmodell (DTM) a Föld felszínének digitális, 3D-ós reprezentációja. Az automatikus DTM előállítás folyamata jelenti egyrészt távérzékelt felvételekből a magassági adatok kinyerését,

Részletesebben

Égi mechanika tesztkérdések. A hallgatók javaslatai 2008

Égi mechanika tesztkérdések. A hallgatók javaslatai 2008 Égi mechanika tesztkérdések A hallgatók javaslatai 2008 1 1 Albert hajnalka 1. A tömegközéppont körüli mozgást leíró m 1 s1 = k 2 m 1m 2 r,m s r 2 r 2 2 = k 2 m 1m 2 r r 2 r mozgásegyenletek ekvivalensek

Részletesebben

205 00 00 00 Mûszertan

205 00 00 00 Mûszertan 1. oldal 1. 100710 205 00 00 00 Mûszertan A sebességmérõ olyan szelencés mûszer, mely nyitott Vidi szelence segítségével méri a repülõgép levegõhöz viszonyított sebességét olyan szelencés mûszer, mely

Részletesebben

Fizika 1X, pótzh (2010/11 őszi félév) Teszt

Fizika 1X, pótzh (2010/11 őszi félév) Teszt Fizika X, pótzh (00/ őszi félév) Teszt A sebessé abszolút értékének időszerinti interálja meadja az elmozdulást. H Az átlayorsulás a sebesséváltozás és az eltelt idő hányadosa. I 3 A harmonikus rező mozást

Részletesebben

A vasút életéhez. Örvény-áramú sínpálya vizsgáló a Shinkawa-tól. Certified by ISO9001 SHINKAWA

A vasút életéhez. Örvény-áramú sínpálya vizsgáló a Shinkawa-tól. Certified by ISO9001 SHINKAWA SHINKAWA Certified by ISO9001 Örvény-áramú sínpálya vizsgáló a Shinkawa-tól Technikai Jelentés A vasút életéhez A Shinkawa örvény-áramú sínpálya vizsgáló rendszer, gyors állapotmeghatározásra képes, még

Részletesebben

Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán

Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Célja: Várható elmozdulások előrejelzése (erőhatások alatt, Siógemenci árvízkapu) Már bekövetkezett mozgások okainak vizsgálata (Pl. kulcsi löszpart) Laboratóriumi

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK Földtudomány BSc Mészáros Róbert Eötvös Loránd Tudományegyetem Meteorológiai Tanszék MIÉRT MÉRÜNK? A meteorológiai mérések célja: 1. A légkör pillanatnyi állapotának

Részletesebben

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04. .feladat A derékszögű koordinátarendszer origójába elhelyezünk egy q töltést. Mekkora ennek a töltésnek a 4,32 0 nagysága, ha a töltés a koordinátarendszer P(0,03;0,04)[m] pontjában E(r ) = 5,76 0 nagyságú

Részletesebben

HUNGARY. A csapatverseny szabályai. A csapatversenyre három vagy több diákból álló csapatok jelentkezhetnek

HUNGARY. A csapatverseny szabályai. A csapatversenyre három vagy több diákból álló csapatok jelentkezhetnek v3 A csapatverseny szabályai 1. A csapatversenyre áro vagy több diákból álló csapatok jelentkezetnek 2. Minden csapat 5 feladatot kap, aelyet 60 perc alatt kell egoldania. 3. A csapat eredényét az 5 feladatra

Részletesebben

Gömbháromszögek és néhány alkalmazásuk bemutatása a Lénárt-gömb segítségével

Gömbháromszögek és néhány alkalmazásuk bemutatása a Lénárt-gömb segítségével Gömbháromszögek és néhány alkalmazásuk bemutatása a Lénárt-gömb segítségével Farkas Éva Témavezető: Dr. Fodor Ferenc Szegedi Tudományegyetem Bolyai Intézet 2013 Tartalomjegyzék 1. Összegzés 3 2. Bevezetés

Részletesebben

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia, Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus

Részletesebben

1. A komplex számok ábrázolása

1. A komplex számok ábrázolása 1. komplex számok ábrázolása Vektorok és helyvektorok. Ismétlés sík vektorai irányított szakaszok, de két vektor egyenlő, ha párhuzamosak, egyenlő hosszúak és irányúak. Így minden vektor kezdőpontja az

Részletesebben

Herceg Esterházy Miklós Szakképző Iskola Speciális Szakiskola és Kollégium TANMENET. Természetismeret. tantárgyból

Herceg Esterházy Miklós Szakképző Iskola Speciális Szakiskola és Kollégium TANMENET. Természetismeret. tantárgyból Herceg Esterházy Miklós Szakképző Iskola Speciális Szakiskola és Kollégium TANMENET a Természetismeret tantárgyból a TÁMOP-2.2.5.A-12/1-2012-0038 Leleményesen, élményekkel, Társakkal rendhagyót alkotni

Részletesebben

Trócsányi Zoltán. Kozmológia alapfokon

Trócsányi Zoltán. Kozmológia alapfokon Magyar fizikatanárok a CERN-ben 2015. augusztus 16-22. Trócsányi Zoltán Kozmológia alapfokon Részecskefizikai vonatkozásokkal Hogy kerül a csizma az asztalra? Az elmúlt negyedszázad a kozmológia forradalmát,

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Dinamika A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Newton törvényei: I. Newton I. axiómája: Minden nyugalomban lévő test megtartja nyugalmi állapotát, minden mozgó test

Részletesebben

METEOROLÓGIAI CSILLAGÁSZATI FÖLDRAJZI ÉRTELMEZÔ SZÓTÁR. Összeállította: GERENCSÉR FERENC. Munkatársak: MIHÁLYI GABRIELLA OLÁH KÁROLY

METEOROLÓGIAI CSILLAGÁSZATI FÖLDRAJZI ÉRTELMEZÔ SZÓTÁR. Összeállította: GERENCSÉR FERENC. Munkatársak: MIHÁLYI GABRIELLA OLÁH KÁROLY METEOROLÓGIAI CSILLAGÁSZATI FÖLDRAJZI ÉRTELMEZÔ SZÓTÁR Összeállította: GERENCSÉR FERENC Munkatársak: MIHÁLYI GABRIELLA OLÁH KÁROLY ISBN 963 9111 39 2 A kiadásért felel az Inter M. D. vezetôje. Készült

Részletesebben

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 INFORMATIKA ÁGAZATI ALKALMAZÁSAI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 10. GPS, GPRS (mobilkommunikációs) ismeretek Helymeghatározás GPS rendszer alapelve GNSS rendszerek

Részletesebben

Csillagászati földrajzzal. Megoldási útmutatókkal

Csillagászati földrajzzal. Megoldási útmutatókkal Csillagászati földrajzzal kapcsolatos feladatok Megoldási útmutatókkal A Nap delelési magasságának kiszámítása Feladat: Hány fokos szögben látják delelni a Napot június 22-én a következő szélességi körökön?

Részletesebben

Matematikai geodéziai számítások 9.

Matematikai geodéziai számítások 9. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 9 MGS9 modul Szabad álláspont kiegyenlítése SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői

Részletesebben

Mennyit is késik? Troposzféra-modellezés a GNSSnet.hu rendszerében

Mennyit is késik? Troposzféra-modellezés a GNSSnet.hu rendszerében Mennyit is késik? Troposzféra-modellezés a GNSSnet.hu rendszerében Tea előadás 2012. 02. 07. Penc Braunmüller Péter A GNSSnet.hu hálózati szoftverében (Geo++ GNSMART) elérhető troposzféra modellek vizsgálata

Részletesebben

32 B Környezetünk. Ederlinda Viñuales Gavín Cristina Viñas Viñuales. A nap hossza

32 B Környezetünk. Ederlinda Viñuales Gavín Cristina Viñas Viñuales. A nap hossza 32 B Környezetünk Ederlinda Viñuales Gavín Cristina Viñas Viñuales B A hossza Környezetünk B 33 BEVEZETÉS Ebben az anyagrészben az a célunk, hogy a diákok megmérjék vagy kiszámítsák a következőket: A kelte

Részletesebben

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük. Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Csillagászati tankönyv kezdőknek és haladóknak

Csillagászati tankönyv kezdőknek és haladóknak Csillagászati tankönyv kezdőknek és haladóknak Szerkesztették: Kereszturi Ákos és Tepliczky István (elektronikus változat) Magyar Csillagászati Egyesület Tartalom Égi mozgások A nappali égbolt Az éjszakai

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

Az idő története múzeumpedagógiai foglalkozás

Az idő története múzeumpedagógiai foglalkozás Az idő története múzeumpedagógiai foglalkozás 2. Ismerkedés a napórával FELADATLAP A az egyik legősibb időmérő eszköz, amelynek elve azon a megfigyelésen alapszik, hogy az egyes testek árnyékának hossza

Részletesebben

1. Néhány híres magyar tudós nevének betűit összekevertük;

1. Néhány híres magyar tudós nevének betűit összekevertük; 1. Néhány híres magyar tudós nevének betűit összekevertük; Tudod-e, kik ők, es melyik találmány fűződik a nevükhöz az alább felsoroltak közül? MÁJUS NE ONNAN... találmánya:... SOK DELI NYÁJ... találmánya:...

Részletesebben

HÉTKÖZNAPI CSILLAGÁSZATI ÉSZLELÉSEK, KÍSÉRLETEK EVERYDAY ASTRONOMICAL COGNITIONS, EXPERIMENTS

HÉTKÖZNAPI CSILLAGÁSZATI ÉSZLELÉSEK, KÍSÉRLETEK EVERYDAY ASTRONOMICAL COGNITIONS, EXPERIMENTS HÉTKÖZNAPI CSILLAGÁSZATI ÉSZLELÉSEK, KÍSÉRLETEK EVERYDAY ASTRONOMICAL COGNITIONS, EXPERIMENTS Kriska Ádám, Juhász András Eötvös Loránd Tudományegyetem, Természettudományi Kar, Anyagfizikai Tanszék ÖSSZEFOGLALÁS

Részletesebben

Matematikai geodéziai számítások 2.

Matematikai geodéziai számítások 2. Matematikai geodéziai számítások 2. Geodéziai vonal és ábrázolása gömbön és vetületben Dr. Bácsatyai, László Matematikai geodéziai számítások 2.: Geodéziai vonal és ábrázolása Dr. Bácsatyai, László Lektor:

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben