3D-s számítógépes geometria és alakzatrekonstrukció

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "3D-s számítógépes geometria és alakzatrekonstrukció"

Átírás

1 3D-s számítógépes geometra és alakzatrekostrukcó b Háromszöghálók Dr Várady Tamás, Salv Péter BME, Vllamosmérök és Iformatka Kar Iráyítástechka és Iformatka Taszék

2 Tartalom háromszöghálók egyszerűsítése csúcspotok klaszterezése kremetáls eljárások progresszív hálók egyeletes mtavételezés és újrahálózás ormálvektorok és görbületek umerkus becslése felületek mőségéek javítása 3D-s számítógépes geometra

3 Háromszöghálók egyszerűsítése (decmálás) háromszögháló ksebb háromszögháló komplextás csökketése hatékoyság övelése adattárolás, adatátvtel herarchkus reprezetácó optmalzálás (eergafüggvéyek) mőség megőrzése távolság toleraca alaksajátosságok grafkus paraméterek, textúra égy algortmus csúcspotok klaszterezése kremetáls eljárások progresszív hálók (vsszaépíthető) mtavételezés és új háló létrehozása Háromszöghálók egyszerűsítése 3

4 Háromszöghálók egyszerűsítése példa (Botsch et al): háromszög 0 % % 0 % példa: (Garlad, Heckbert): a háromszögek követk a textúra struktúrát Háromszöghálók egyszerűsítése 4

5 Háromszöghálók egyszerűsítése3 Hátsó lap Távol lap Nem része a ézet tartomáyak 3 példa (Hoppe): ézőpot függő egyszerűsítés Háromszöghálók egyszerűsítése 5

6 Csúcspotok klaszterezése approxmácós toleraca: ε adaptív osztás: mde cella átmérője ε reprezetás mtapotok meghatározása az eredet háromszögek degeerálódak törlés, egyszerűsítés klaszterek között élek újraszámolása P klaszter, reprezetás: p, eredet potok: p 0, p, p Q klaszter, reprezetás: q, eredet potok: q 0, q, q m ha va (p,q j ) él új (p,q) él bellesztése aráylag gyors algortmus (leárs lépésszám) topológa változások a mőség em mdg megfelelő Klaszterezés 6

7 Négyzetes hba adott egy π sík; a v(x,y,z) pot π -től mért távolsága: D(v) v-p cosα(,v-p)(,v)+d π v D p ahol ( x, y, z ) egységvektor; p - tetszőleges pot a síkba, d kostas égyzetes hba: D ( v) ((, v) + d) T T T T (( v, ) + d)((, v ) + d) v[, ] v + d(, v) + d másodfokú felület: két hba (két felület) eseté - összeadás kompoesekét: égyzetes hba k síkra: T { A, b, c} {[, ], d, } T Q( v ) vav + ( b, v) + c, Q d { A + A, b + c } Q ( + c Q v) + Q ( v) b, { A *, b * * } * v ) Q ( ), k v k ( c Klaszterezés 7

8 Csúcspotok klaszterezése a) eredet b) átlag c) medá d) égyzetes (Botsch et al) mde cellára feltételezés: síkszerű háromszöghalmaz kszámítadó az optmáls reprezetás csúcs: v~ a legksebb égyzetes eltérés a háromszögek síkjától: Q * T * * * ( v) vav + bv + c m, Q / x Q / y Q / z ~ T * T v A b, Q ( ~ v) ba b + c 4 0 Klaszterezés 8

9 Ujjgyakorlat* - quadtree Klaszterezés ha egy cellába >4, tovább osztuk ha a cella kcs és reprezetás potot kell számol Végül háy cellát () és háy új reprezetás potot kapuk ()? Quadtree 9

10 Ujjgyakorlat - quadtree Klaszterezés ha egy cellába >4, tovább osztuk ha a cella kcs és reprezetás potot kell számol Cellák száma: 9, reprezetás potok száma: 3 Quadtree 0

11 Ikremetáls decmácó Euler szabály (poléderek): v-e+f csúcs (v), él (e), lap (f) elem műveletek: v v-, e e-3, f f- (a) csúcstörlés beszúrás a belső háromszögelés módja szabad (b) élösszehúzás ketté vágás az új csúcs választása szabad, optmalzálható (b) fél-él összehúzás ketté vágás az új csúcs az eredet pothalmaz tagja Ikremetáls decmácó

12 Ujjgyakorlat* - decmácó - mdg a legrövdebb élet írtjuk k - az új csúcs a rég él közepére kerül - két lépés Decmácó

13 Ujjgyakorlat - decmácó - mdg a legrövdebb élet írtjuk k - az új csúcs a rég él közepére kerül - két lépés Decmácó 3

14 Ikremetáls decmácó közelítés hbaösszeg becslése mde lépésél, mdegyk értett háromszögre a hbák összegződek hba: skalár vagy vektor vagy égyzetes égyzetes hbák eseté mde kduló potra Q 0, egyszerű összegzés mde új v csúcsra; az optmáls v meghatározható (korább slde) cél: mmáls összeerga, lletve összköltség v v v v v v az algortmus lépése mde potra a égyzetes hba meghatározása elsőbbség sor (prorty queue): összehúzható élek és ezek költsége 3 legolcsóbb élösszehúzás végrehajtása az adatstruktúra lokáls frssítése 4 terácó, amíg a termálás feltétel(ek) teljesülek Ikremetáls decmácó 4

15 Progresszív hálók (Hoppe) háromszöghálók herarchája cs formácóvesztés cél: hatékoy grafka, adattárolás, adatátvtel él-összehúzás (edge collapse) adatsor: (v s, v t, v s ) csúcs-széthúzás (vertex splt) adatsor: (v s, v l, v r, v t, v s + attrbútumok) Progresszív hálók 5

16 Progresszív hálók? Progresszív hálók 6

17 Progresszív hálók 3 az összehúzadó él kválasztása eerga mmumra való törekvés E : geometra jellemzők (távolság, ormálvektor eltérés) E : skalár jellemzők (pl szíek) E 3 : élek, határok ézőpot specfkus fomítás hátsó lapok, távol lapok, ks méretű lapok? Progresszív hálók 7

18 Öálló feladat** Progresszív hálók rövd szemárum és prototípus mplemetácó put: mesh output: amált progresszív háromszögháló az amácó megállítható, valamt tovább és vssza léptethető az egyszerűsítés módszere: () ézőpot szert () síklapuság szert () háromszögméret szert Progresszív hálók 8

19 Mtavételezés és új háló létrehozása Dóhéjba: új topológa struktúra zotrópára való törekvés mtavételezés szgorú távolság és mőség krtérumok alapjá Mtavételezés és új háló 9

20 Geometra jellemzők becslése a) ormálvektor: b) görbületek: Gauss-görbület: G κ κ,, Átlaggörbület: H (κ + κ ) / Főgörbületek (κ, κ ), főráyok (k, k ) q 4 q 3 p q Normálvektor becslése sík-llesztés alapjá adott pot: p, körülötte: q (x,y,z ), q 5 q smeretle ormálvektor : ( x, y, z ), legksebb égyzetes távolság: kéyszer (eukldesz távolság): Lagrage-féle multplkátor: D (égy smeretlees egyeletredszer) (, q p) x + y + z / y m F( x, y, z) m, G( x, y, z) c H ( x, y, z, λ) ( F( x, y, z) + λ( G( x, y, z) c) H / x H H / z H / λ 0 m Geometra jellemzők 0

21 Geometra jellemzők becslése Lokáls parabolod-llesztés q 4 q 3 q adott potoko keresztül q 5 p q legye p az orgó a lokáls koordáta redszerbe: q (u,v,w ), (,, 5), w (, q -p) a parabolod egyelete: f ( u, v) au + buv + cv + du + ev smeretleek: x [ a, b, c, d, e] azoosak a derváltakkal (u0, v0)-ba: x [ f, f, uu uv f vv, f u, f v ] legksebb égyzetes (algebra) távolság: D ( f ( u, v ) w ) m Geometra jellemzők

22 Geometra jellemzők Geometra jellemzők becslése 3 Legksebb égyzetes mmalzálás mátrx alakba: ahol m w v u f D ) ), ( ( b A A A x b A Ax A b Ax T T T T ) ( 0, ) ( m ) ( w e d c b a v u v u v u b Ax Opcoáls

23 Geometra jellemzők 3 Geometra jellemzők becslése 4 Háromszög alapú ormálvektor-becslés -edk háromszög: a) egységvektorok átlagolása: b) területaráyos súlyozás:, 0 0 p A A A A A p p,, 0 ) ( ) ( A p q p q + q q p q 3 q 4 q 5

24 Geometra jellemzők becslése 5 Háromszögalapú görbület-becslések az -edk háromszögbe: e ( q p), α ( e, e ), β (, ) + A ( p) A Gauss-görbület q - - β e e + q p α q + klasszkus dfferecálgeometra (Gauss-Boet tétel): GdA δ (p) A szögháy: dszkrét becslés: (körlapocska) Átlaggörbület (hegerdarabok) δ (p) π G( p) H ( p) δ ( p) 3 A( p) α β e 4 A( p) 3 q - q q + Geometra jellemzők 4 p

25 Geometra jellemzők becslése 6 Átlag (H) és Gauss (G) görbület Átlag (H) és Gauss (G) görbület Geometra jellemzők 5

26 Háromszöghálók smítása Eerga-mmalzálás (farg) mőségmérő tegrálok: a tökéletleséget bütetk A smaság fotos: pl megjeleítésél, ayagtulajdoságok, megmukálás stb (Kobbelt) Membrá eerga: - a felület legye kcs Rugalmas lap eerga (th plate): - e legye agy a görbület Mmáls görbület varácó: - e változzo gyorsa a görbület s da m r u + rv Ω dudv s κ + κ da m r uu + ruv + r Ω vv dudv s κ k + κ k da m Smítás 6

27 Háromszöghálók smítása Lokáls, teratív módszerek: q 3 () Laplace-féle smítás a potokat a szomszédok kovex kombácójáak ráyába mozgatja eseryő operátor, súlyozott átlag q 4 p old p ew q p U ( p) w ( q ), (a): w /, j (b): w j0 q j p, w j j j j w k j0 w k 0 q 5 q λ smítás mérték p ew p old + λu p () Görbület-áramlás (mea curvature flow) ( old ) pew pold + λ H ( pold ) ( pold ) Smítás 7

28 Háromszöghálók smítása 3 Globáls módszerek - umerkus vagy dszkrét smítás (farg) mde terácós lépésbe módosul a háló és csökke az eerga; valamey pot módosul: eergammalzáló egyeletredszrer: M { p }, E M { p }, E E () m az eerga? () hogya módosítjuk a potokat? smaság mértékek parametrkus görbületbecslés dszkrét átlaggörbület (Desbru et al) Smítás 8

29 Háromszöghálók smítása 4 eljárás: smaság mérték parametrkus görbület, dszkretzálva E fuu + fuv + f vv E ( α p ) + ( β p ) ( γ p ) ) ω + j j j j j j j j j (ω az -edk pot körül háromszögek területéek összege; α,β,γ a derváltakból adódó együtthatók, p j a p pot szomszéda) E másodfokú, leárs egyeletredszer, rtka mátrx, k első- és másodfokú szomszédok közelítő megoldás - Gauss-Sedel terácó, csak a dagoáls elemekre E( S) p p új w w k k p k k w k 0 p k Smítás 9

30 Háromszöghálók smítása 5 eljárás: smaság mérték dszkrét átlaggörbület H ( p ) ( p ) (cotγ j + cotδj ) ( qj p ) 4A j mmalzáló egyeletredszer, az új görbületekre kell megolda: j (cot γ + cotδ )( H ( p ) H ( q )) 0 j közelítő megoldás új átlaggörbület becslések, pot módosítás az új célgörbületek szert: ew old ew p p + λ H ( p ) ( p j ew ) j q, j γ j q j p δ j q, j Gyorsítás: először durva felbotás, utáa fomítás Peremfeltételek: az első (és a másodk) háromszögsor változatla marad 30

31 Háromszögháló smítás 6 Demó Smítás 3

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometra és alakzatrekostrukcó b Háromszöghálók - algortmusok http://cgtbmehu/portal/ode/3 https://wwwvkbmehu/kepzes/targyak/viiima0 Dr Várady Tamás, Dr Salv Péter BME, Vllamosmérök és

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometra modellezés, alakzatrekonstrukcó, nyomtatás b Háromszöghálók - algortmusok http://cgtbmehu/portal/node/3 https://wwwvkbmehu/kepzes/targyak/viiiav54 Dr Várady Tamás, Dr Salv Péter BME, Vllamosmérnök

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometra modellezés, alakzatrekostrukcó, yomtatás 8 Rekurzív felosztáso alauló felületek htt://cgtbmehu/ortal/ode/3 htts://wwwvkbmehu/kezes/targyak/viiiav54 Dr Várady Tamás, Dr Salv Péter BME, Vllamosmérök

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció D számítógées geometra és alakzatrekostrukcó 8 Rekurzív felosztáso alauló felületek htt://cgtbmehu/ortal/ode/ htts://wwwvkbmehu/kezes/targyak/viiima0 Dr Várady Tamás Dr Salv Péter BME Vllamosmérök és Iformatka

Részletesebben

3D-s számítógépes geometria

3D-s számítógépes geometria 3D-s számítógées geometra 7a. Rekurzív felosztáso alauló felületek htt://cg.t.bme.hu/ortal/ode/3 htts://www.vk.bme.hu/kezes/targyak/viiiav0 Dr. Várady Tamás BME, Vllamosmérök és Iformatka Kar Iráyítástechka

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometria és alakzatrekonstrukció 2a. Háromszöghálók http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki

Részletesebben

3D-s számítógépes geometria és alakzatrekonstrukció

3D-s számítógépes geometria és alakzatrekonstrukció 3D-s számítógépes geometria és alakzatrekonstrukció 2a. Háromszöghálók http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav08 Dr. Várady Tamás, Salvi Péter BME, Villamosmérnöki

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometra modellezés, alakzatrekonstrukcó, nyomtatás 17. 3D Szegmentálás http://cg.t.bme.hu/portal/node/312 https://www.vk.bme.hu/kepzes/targyak/viiiav54 Dr. Várady Tamás, Dr. Salv Péter BME, Vllamosmérnök

Részletesebben

3D-s számítógépes geometria

3D-s számítógépes geometria 3D-s számítógépes geometra 11. 3D szegmentálás http://cg.t.bme.hu/portal/node/31 https://www.vk.bme.hu/kepzes/targyak/viiiav01 Dr. Várady Tamás BME, Vllamosmérnök és Informatka Kar Irányítástechnka és

Részletesebben

3D-s számítógépes geometria

3D-s számítógépes geometria 3D-s számítógépes geometria 2. Háromszöghálók I. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav01 Dr. Várady Tamás BME, Villamosmérnöki és Informatikai Kar Irányítástechnika

Részletesebben

A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab

A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab öbbváltozós regresszók Paraméterbecslés-. A paraméterbecslés.. A probléma megfogalmazása A paramétereket kísérletleg meghatározott y értékekre támaszkodva becsülk. Ha darab ksérletet (megfgyelést, mérést

Részletesebben

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u Approxmácó Bevezetés A felhaszált térfogalmak: leárs tér (vektortér) ormált tér Baach tér eukldesz-tér Hlbert tér V ormált tér T V T kompakt halmaz Ekkor v V u ~ T legjobba közelítõ elem azaz v u ~ f {

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometra modellezés alazatreonstró nyomtatás 9. Szabadformáú felülete smtása http://g.t.bme.h/portal/node/3 https://www..bme.h/epzes/targya/viiiav54 Dr. Várady Tamás Dr. Sal éter BME Vllamosmérnö

Részletesebben

3D Számítógépes Geometria II.

3D Számítógépes Geometria II. 3D Számítógépes Geometra II. 3. Szabadformáú felületek llesztése és smítása http://cg.t.bme.h/portal/3dgeo https://www.k.bme.h/kepzes/targyak/viiiav16 Dr. Várady Tamás Dr. Sal Péter BME Vllamosmérnök és

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás Önálló projektek - 2017. április 7. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.

Részletesebben

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata 6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás ek - 2019. április 2. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME,

Részletesebben

GEOFIZIKA / 4. GRAVITÁCIÓS ANOMÁLIÁK PREDIKCIÓJA, ANALITIKAI FOLYTATÁSOK MÓDSZERE, GRAVITÁCIÓS ANOMÁLIATEREK SZŰRÉSE

GEOFIZIKA / 4. GRAVITÁCIÓS ANOMÁLIÁK PREDIKCIÓJA, ANALITIKAI FOLYTATÁSOK MÓDSZERE, GRAVITÁCIÓS ANOMÁLIATEREK SZŰRÉSE MSc GEOFIZIKA / 4. BMEEOAFMFT3 GRAVITÁCIÓS ANOMÁLIÁK REDIKCIÓJA, ANALITIKAI FOLYTATÁSOK MÓDSZERE, GRAVITÁCIÓS ANOMÁLIATEREK SZŰRÉSE A gravtácós aomálák predkcója Külöböző feladatok megoldása sorá - elsősorba

Részletesebben

Backtrack módszer (1.49)

Backtrack módszer (1.49) Backtrack módszer A backtrack módszer kombatorkus programozás eljárás, mely emleárs függvéy mmumát keres feltételek mellett, szsztematkus kereséssel. A módszer előye, hogy csak dszkrét változókat kezel,

Részletesebben

Statisztika I. 4. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 4. előadás. Előadó: Dr. Ertsey Imre Statsztka I. 4. előadás Előadó: Dr. Ertsey Imre KÖZÉPÉRTÉKEK A statsztka sor általáos jellemzésére szolgálak, a statsztka sokaságot egy számmal jellemzk. Számított középértékek: matematka számítás eredméyekét

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék Mskol Egyetem Gépészmérök és Iformatka Kar Alkalmazott Iformatka Taszék 2012/13 2. félév 9. Előadás Dr. Kulsár Gyula egyetem does Matematka modellek a termelés tervezésébe és ráyításába Néháy fotosabb

Részletesebben

Kényszereknek alávetett rendszerek

Kényszereknek alávetett rendszerek Kéyszerekek alávetett redszerek A koordátákak és sebességekek előírt egyeleteket kell kelégítee a mozgás olyamá. (Ezeket a eltételeket, egyeleteket s ayag kölcsöhatások bztosítják, de ezek a kölcsöhatások

Részletesebben

3D-s számítógépes geometria

3D-s számítógépes geometria 3D-s számítógépes geometria 2. Háromszöghálók http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav01 Dr. Várady Tamás BME, Villamosmérnöki és Informatikai Kar Irányítástechnika

Részletesebben

Molekulák elektronszerkezete - kv2n1p07/1 vázlat

Molekulák elektronszerkezete - kv2n1p07/1 vázlat Molekulák elektroszerkezete - kvp07/ vázlat Szalay Péter Eötvös Lorád Tudomáyegyetem, Kéma Itézet 0. szeptember 8. Tematka A Bor-Oppehemer közelítés. Az elektro-hullámfüggvéy közelítése; az eerga kfeezése

Részletesebben

Méréselmélet: 5. előadás,

Méréselmélet: 5. előadás, 5. Modellllesztés (folyt.) Méréselmélet: 5. előadás, 03.03.3. Út az adaptív elárásokhoz: (85) és (88) alapán: W P, ( ( P). Ez utóbb mndkét oldalát megszorozva az mátrxszal: W W ( ( n ). (9) Feltételezve,

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése 3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés

Részletesebben

i 0 egyébként ábra. Negyedfokú és ötödfokú Bernstein polinomok a [0,1] intervallumon.

i 0 egyébként ábra. Negyedfokú és ötödfokú Bernstein polinomok a [0,1] intervallumon. 3. Bézer görbék 3.1. A Berste polomok 3.1. Defícó. Legye emegatív egész, tetszőleges egész. A ( ) B (u) = u (1 u) polomot Berste polomak evezzük, ahol ( ) = {!!( )! 0, 0 egyébkét. A defícóból közvetleül

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

Serret-Frenet képletek

Serret-Frenet képletek Serret-Frenet képletek Vizsgáljuk meg az e n normális- és e b binormális egységvektorok változását. e n = αe t + βe n + γe b, e t e n e n = 1 e n e n = 0 β = 0 e n e t = e n e t illetve a α = 1/R. Ugyanakkor

Részletesebben

A szerkezetszintézis matematikai módszerei

A szerkezetszintézis matematikai módszerei 7 A szerkezetsztézs matematka módszere 1.5 Első derváltat géylő módszerek Az első derváltat géylő módszerek (elsőredű módszerek, melyek felhaszálják a grades formácókat, általába hatékoyabbak, mt a ulladredű

Részletesebben

Befektetett munka. Pontosság. Intuícióra, tapasztalatra épít. Intuitív Analóg Parametrikus Analitikus MI alapú

Befektetett munka. Pontosság. Intuícióra, tapasztalatra épít. Intuitív Analóg Parametrikus Analitikus MI alapú ..4. Óbuda Egyetem ák Doát Gépész és ztoságtechka Mérök Kar yagtudomáy és Gyártástechológa Itézet Termelés olyamatok II. Költségbecslés Dr. Mkó alázs mko.balazs@bgk.u-obuda.hu z dı- és költségbecslés eladata

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

Regresszió számítás. Mérnöki létesítmények ellenőrzése, terveknek megfelelése. Geodéziai mérések pontok helyzete, pontszerű információ

Regresszió számítás. Mérnöki létesítmények ellenőrzése, terveknek megfelelése. Geodéziai mérések pontok helyzete, pontszerű információ Regresszó számítás Mérök létesítméek elleőrzése, terekek megfelelése Deformácózsgálat Geodéza mérések potok helzete, potszerű formácó Leárs regresszó Regresszós sík Regresszós göre Legkse égzetek módszere

Részletesebben

Régió alapú szegmentálás. Digitális képelemzés alapvető algoritmusai. 2. példa: Elfogadható eredmények. 1. példa: Jó eredmények. Csetverikov Dmitrij

Régió alapú szegmentálás. Digitális képelemzés alapvető algoritmusai. 2. példa: Elfogadható eredmények. 1. példa: Jó eredmények. Csetverikov Dmitrij Régó alapú szegmentálás Dgtáls képelemzés alapvető algortmusa Csetverkov Dmtrj Eötvös Lóránd Egyetem, Budapest csetverkov@sztak.hu http://vson.sztak.hu Informatka Kar 1 Küszöbölés példá és elemzése Küszöbölés

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011 MÉRÉSTECHNIKA DR. HUBA ANTAL c. egy. taár BME Mechatroka, Optka és Gépészet Iformatka Taszék 0 Rövde a tárgyprogramról Előadások tematkája: Metrológa és műszertechka alapok Mérés adatok kértékelése Időbe

Részletesebben

3D-s számítógépes geometria és alakzatrekonstrukció

3D-s számítógépes geometria és alakzatrekonstrukció 3D-s számítógépes geometria és alakzatrekonstrukció Tesztkörnyezet III http://cg.iit.bme.hu/portal/node/312 https://portal.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki

Részletesebben

A szerkezetszintézis matematikai módszerei

A szerkezetszintézis matematikai módszerei 5 A szerkezetsztézs matematka módszere.4 Derváltat em haszáló elárások Azo optmáló elárások, melyek a keresés sorá csak a célfüggvéy értéket haszálák, derváltakat em, azokat derváltat em haszáló elárásak

Részletesebben

Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához

Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Dr. Nagy Gábor, Geometria Tanszék 2010. szeptember 16. Görbék paraméterezése 1. feladat. (A) Bizonyítsuk be a vektoriális szorzatra vonatkozó

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat:

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat: JÁRATTERVEZÉS Kapcsolatok szert: Sugaras, gaárat: Járattípusok Voalárat: Körárat: Targocás árattervezés egyszerű modelle Feltételek: az ayagáram determsztkus, a beszállítás és kszállítás dőpot em kötött

Részletesebben

3D Számítógépes Geometria II.

3D Számítógépes Geometria II. 3D Számítógépes Geometria II. Önálló hallgatói projektek, 2018. szept. 24. http://cg.iit.bme.hu/portal/3dgeo2 https://www.vik.bme.hu/kepzes/targyak/viiiav16 Dr. Várady Tamás, Dr. Salvi Péter, Vaitkus Márton

Részletesebben

Indirekt térfogat-vizualizáció. Fourier térfogat-vizualizáció. Tomográfiás rekonstrukció. Radon-transzformáció. A Fourier vetítő sík tétel

Indirekt térfogat-vizualizáció. Fourier térfogat-vizualizáció. Tomográfiás rekonstrukció. Radon-transzformáció. A Fourier vetítő sík tétel Vzualzácós algortmusok csoportosítása Indrekt térfogat-vzualzácó Csébfalv Balázs Budapest Műszak és Gazdaságtudomány Egyetem Irányítástechnka és Informatka Tanszék Drekt vzualzácó: Közvetlenül a dszkrét

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 202.03.0. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k. 8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),

Részletesebben

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETIA Készült a TÁMOP-4.1.-08//A/KM-009-0041pályázat projet eretébe Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomáy Taszéé az ELTE Közgazdaságtudomáy Taszé az MTA Közgazdaságtudomáy Itézet és a

Részletesebben

3D Számítógépes Geometria II.

3D Számítógépes Geometria II. 3D Számítógépes Geometria II. 1. Bevezetés http://cg.iit.bme.hu/portal/3dgeo2 https://www.vik.bme.hu/kepzes/targyak/viiiav16 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki és Informatikai Kar Irányítástechnika

Részletesebben

10.M ALGEBRA < <

10.M ALGEBRA < < 0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész

Részletesebben

Minősítéses mérőrendszerek képességvizsgálata

Minősítéses mérőrendszerek képességvizsgálata Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek

Részletesebben

É É É É É É Ü Á Ö Ü ű É Á É É Ü Ú É É É ű ú É ú ű Á ú É Á Ö Ö Ö Á ű Á Á Á ú Á É Ü ú É Á Á ú ú Ö ú ű Ö ű ú ú ú ú ú ú ű Á Á ú ű ű ű ú ú ű ű ú ű Á ú Á Á Á ű Á Á ú ú ú ú ú É Ö ú ű ű Á ű ú ű ú ű ű É ú É Ó

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometria és alakzatrekonstrukció 12. Tömör testek modellezése http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME,

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

Közösség detektálás gráfokban

Közösség detektálás gráfokban Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a

Részletesebben

3D Számítógépes Geometria II.

3D Számítógépes Geometria II. 3D Számítógépes Geometria II. 1. Bevezetés http://cg.iit.bme.hu/portal/3dgeo2 https://www.vik.bme.hu/kepzes/targyak/viiiav16 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki és Informatikai Kar Irányítástechnika

Részletesebben

Alkalmazzuk az egyváltozós esetben a legkisebb négyzetek módszerét. Legyen a mérések száma n, y (n 0). n 2

Alkalmazzuk az egyváltozós esetben a legkisebb négyzetek módszerét. Legyen a mérések száma n, y (n 0). n 2 . elődás 5 Alklmzzuk z egváltozós esetbe legksebb égzetek módszerét. Lege mérések szám ( ). F ( ( ) )! ( ( ) )!?? A két krtérum ekvvles egmássl hsze h z F üggvéek z prmétervektor hele mmum v kkor hele

Részletesebben

Emlékeztető: az n-dimenziós sokaság görbültségét kifejező mennyiség a Riemann-tenzor (Riemann, 1854): " ' #$ * $ ( ' $* " ' #µ

Emlékeztető: az n-dimenziós sokaság görbültségét kifejező mennyiség a Riemann-tenzor (Riemann, 1854):  ' #$ * $ ( ' $*  ' #µ Emlékeztető: az -dimeziós sokaság görbültségét kifejező meyiség a Riema-tezor (Riema, 1854: ' ( ' $ ' #µ $ µ# ahol a ú. koexiós koefficiesek (vagy Christoffel-szimbólumok a metrikus tezor g # x $ kompoeseiből

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 016.11.10 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló

Részletesebben

5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI-

5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- 5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- FÉLE RELATIVITÁSI ELV m, m,,m r, r,,r r, r,, r 6 db oordáta és sebességompoes 5.. Dama Mozgásegyelete: m r = F F, ahol F jelöl a

Részletesebben

Járműszerkezeti anyagok és megmunkálások II / II. félév ÉLGEOMETRIA. Dr. Szmejkál Attila Ozsváth Péter

Járműszerkezeti anyagok és megmunkálások II / II. félév ÉLGEOMETRIA. Dr. Szmejkál Attila Ozsváth Péter 2007-2008 / II. félév ÉLGEOMETRIA Dr. Szmejkál Attila Ozsváth Péter Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Járműgyártás és javítás Tanszék H-1111, Budapest Bertalan L. u.

Részletesebben

10. Alakzatok és minták detektálása

10. Alakzatok és minták detektálása 0. Alakzatok és mnták detektálása Kató Zoltán Képfeldolgozás és Számítógépes Grafka tanszék SZTE http://www.nf.u-szeged.hu/~kato/teachng/ 2 Hough transzformácó Éldetektálás során csak élpontok halmazát

Részletesebben

4 Approximációs algoritmusok szorzatalakú hálózatok esetén

4 Approximációs algoritmusok szorzatalakú hálózatok esetén 4 Approxmácós algortmusok szorzatalakú hálózatok esetén Az MVA-n alapuló approxmácó (Bard-Schwetzer-módszer): Beérkezés tétel: T () = 1 µ [1+ ( 1) ], =1,...,N Iterácó a következő approxmácó használatával:

Részletesebben

A gyakorlati jegy

A gyakorlati jegy . Bevezetés A félév anyaga: lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció

Részletesebben

3D Számítógépes Geometria II.

3D Számítógépes Geometria II. 3D zámítógépes Geomet II. 9. Négyoldlú felületekből összetett 3D modellek http://g.t.bme.h/potl/3dgeo https://www.k.bme.h/kepzes/tgyk/viiiav6 D. Vády Tmás D. l Péte BME Vllmosméök és Ifomtk K Iáyítástehk

Részletesebben

3D-s számítógépes geometria és alakzatrekonstrukció

3D-s számítógépes geometria és alakzatrekonstrukció 3D-s számítógépes geometria és alakzatrekonstrukció Tesztkörnyezet II http://cg.iit.bme.hu/portal/node/312 https://portal.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

16. Az AVL-fa. (Adelszon-Velszkij és Landisz, 1962) Definíció: t kiegyensúlyozott (AVL-tulajdonságú) t minden x csúcsára: Pl.:

16. Az AVL-fa. (Adelszon-Velszkij és Landisz, 1962) Definíció: t kiegyensúlyozott (AVL-tulajdonságú) t minden x csúcsára: Pl.: 6. Az AVL-fa Adelszo-Velszkij és Ladisz, 96 Defiíció: t kiegyesúlyozott AVL-tulajdoságú t mide x csúcsára: bal x jobb x. Pl.: A majdem teljes biáris fa AVLtulajdoságú. Az AVL-fára, mit speciális alakú

Részletesebben

A sokaság/minta eloszlásának jellemzése

A sokaság/minta eloszlásának jellemzése 3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,

Részletesebben

Előző óra összefoglalása. Programozás alapjai C nyelv 3. gyakorlat. Karakter típus (char) Karakter konstansok. Karaktersorozatot lezáró nulla

Előző óra összefoglalása. Programozás alapjai C nyelv 3. gyakorlat. Karakter típus (char) Karakter konstansok. Karaktersorozatot lezáró nulla Programozás alapja C yelv 3. gyakorlat Szeberéy Imre BME IIT Programozás alapja I. (C yelv, gyakorlat) BME-IIT Sz.I. 25..3.. -- Előző óra összefoglalása Algortmus leírása Sztaxs leírása

Részletesebben

Lineáris leképezések, mátrixuk, bázistranszformáció. Képtér, magtér, dimenziótétel, rang, invertálhatóság

Lineáris leképezések, mátrixuk, bázistranszformáció. Képtér, magtér, dimenziótétel, rang, invertálhatóság 1. Bevezetés A félév anyaga: lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció

Részletesebben

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje? Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]

Részletesebben

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje? Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]

Részletesebben

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel; Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;

Részletesebben

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek 1. MAEMAIKAI ÖSSZEFOGLALÓ 1.1. Vektorok közötti műveletek Azok a fizikai mennyiségek, melyeknek nagyságukon kívül irányuk is van, vektoroknak nevezzük. A vektort egyértelműen megadhatjuk a hosszával és

Részletesebben

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011 MÉRÉSTECHNIKA DR. HUBA ANTAL c. eg. taár BME Mechatroka, Optka és Gépészet Iformatka Taszék 0 Rövde a tárgprogramról Előadások tematkája: Metrológa és műszertechka alapok Mérés adatok kértékelése Időbe

Részletesebben

Függvénygörbe alatti terület a határozott integrál

Függvénygörbe alatti terület a határozott integrál Függvéygörbe alatt terület a határozott tegrál Tektsük az üggvéyt a ; tervallumo. Adjuk becslést a görbe az tegely és az egyees között síkdom területére! Jelöljük ezt a területet I-vel! A becslést legegyszerűbbe

Részletesebben

Geometriai modellezés. Szécsi László

Geometriai modellezés. Szécsi László Geometriai modellezés Szécsi László Adatáramlás vezérlés Animáció világleírás Modellezés kamera Virtuális világ kép Képszintézis A modellezés részfeladatai Geometria megadása [1. előadás] pont, görbe,

Részletesebben

I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor:

I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor: I. Vektorok 1. Vektorok összege Általánosan: Az ábra alapján Adott: a(4; 1) és b(; 3) a + b (4 + ; 1 + 3) = (6; ) a(a 1 ; a ) és b(b 1 ; b ) a + b(a 1 + b 1 ; a + b ). Vektorok különbsége Általánosan:

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika ... Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB

Részletesebben

Az egyenes és a sík analitikus geometriája

Az egyenes és a sík analitikus geometriája Az egyenes és a sík analitikus geometriája Az egyenes a kétdimenziós koordinátarendszerben A kétdimenziós koordinátarendszerben az egyenest egy n(a, B) normálvektorával és egy r 0 helyvektorú P(x 0,y 0

Részletesebben

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit 1. A térbeli irányított szakaszokat vektoroknak hívjuk. Két vektort egyenlőnek tekintünk, ha párhuzamos eltolással fedésbe hozhatók.

Részletesebben

Példa: Háromszög síkidom másodrendű nyomatékainak számítása

Példa: Háromszög síkidom másodrendű nyomatékainak számítása Példa: Háromszög síkidom másodrendű nyomatékainak számítása Készítette: Dr. Kossa Attila kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék. február 6. Határozzuk meg az alábbi ábrán látható derékszögű háromszög

Részletesebben

3D számítógépes geometria 2

3D számítógépes geometria 2 3D számítógépes geometria Numerikus analízis alapok ujjgyakorlat megoldások Várady Tamás, Salvi Péter / BME October, 18 Ujjgyakorlat 1 Feladat: 1 cos(x) dx kiszámítása trapéz-módszerrel Ujjgyakorlat 1

Részletesebben

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék Adatfeldolgozás, adatértékelés Dr. Szűcs Péter, Dr. Madarász Tamás Mskolc Egyetem, Hdrogeológa Mérökgeológa Taszék A vzsgált köryezet elemek, lletve a felszí alatt közeg megsmerése céljából számtala külöböző

Részletesebben

Digitális Domborzat Modellek (DTM)

Digitális Domborzat Modellek (DTM) Dgtáls Domborzat Modellek (DTM) DTM fogalma A földfelszín számítógéppel kezelhető topográfa modellje Cél: tetszőleges pontban magasság érték nterpolálása a rendelkezésre álló támpontok alapján Interpolácós

Részletesebben

1 Egydimenziós szórás, alagúteffektus

1 Egydimenziós szórás, alagúteffektus Egydmezós szórás, alagúteffektus Potecál barrer I : x a V x V > II : a x III : x > Hullámfüggvéyek és áramsűrűségek E k m ψ I x Ae kx + Be kx 3 ψ III x Ce kx 4 j I x m Im ψi x dψ I x A k dx m k B m + m

Részletesebben

Koordinátageometria összefoglalás. d x x y y

Koordinátageometria összefoglalás. d x x y y Koordiátageometria összefoglalás Vektorok A helyvektor hossza Két pot távolsága r x y d x x y y AB A két potot összekötő vektort megkapjuk, ha a végpot koordiátáiból kivojuk a kezdőpot koordiátáit. Vektor

Részletesebben

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y. Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME

Részletesebben

Energiatételek - Példák

Energiatételek - Példák 9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l

Részletesebben

Geometriai optika. Fénytani alapfogalmak, a fény egyenes vonalú terjedése

Geometriai optika. Fénytani alapfogalmak, a fény egyenes vonalú terjedése Az optka felosztása Geometra optka Fzka optka (hullámoptka) Kvatumoptka Geometra optka Féyta alapfogalmak, a féy egyees voalú terjedése Féyta alapfogalmak féyforrás féyyaláb féysugár F D F r O y x Potszerű

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben