Biztonságos kulcscsere-protokollok

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Biztonságos kulcscsere-protokollok"

Átírás

1 Biztonságos kulcscsere-protokollok Összefoglalás (Victor Shoup: On Formal Methods for Secure Key Exchange alapján) II. rész Tóth Gergely 1 Bevezetés A következőkben a Shoup által publikált cikk fő vonulatának (statikus és adaptív feltörés esetére vonatkozó kulcscsere-protokollok) összefoglalása olvasható. A cikkben a következő feltörési módok definíciója található: statikus feltörés: a támadó különböző álnevekkel is megjelenhet a rendszerben, de becsületes felhasználókat nem tud feltörni (korrumpálni); adaptív feltörés: a támadó feltörhet (korrumpálhat) becsületes felhasználókat, és így hozzájuthat ezen felhasználók hosszú távú titkaihoz (long-term secret, LTS); erősen adaptív feltörés: a támadó feltörhet (korrumpálhat) becsületes felhasználókat, és így azok minden belső információjához (amit azok előzőleg kifejezetten nem töröltek) hozzájuthat. Az összefoglalóban csak a protokollok rövid ismertetése és az üzenetek specifikációja kerül bemutatásra. Az egyes protokollok biztonságának formális bizonyítása a teljes cikkben olvasható. Az specifikált protokollok csoportosítása az alábbi táblázatban látható: Fajta Statikus feltörés esetére Statikus feltörés esetére (anonim) Adaptív feltörés esetére Diffie-Hellman alapú DHKE A-DHKE DHKE-1 DHKE-2 DHKE-3 Titkosítás alapú EKE A-EKE-1 EKE-1 A-EKE-2 Adaptív feltörés esetére (anonim) A-DHKE-1 A-DHKE-3 2 Statikus feltörés Először a statikus feltörés esetére vizsgálunk meg protokollokat. Ebben az esetben a támadó a hálózati forgalomtól függetlenül tör fel (korrumpál) felhasználókat. Mivel a támadóról feltesszük, hogy tetszőlegesen befolyásolhatja a hálózatot, a továbbiakban magát a hálózatot beleolvasztjuk a támadóba, így maga a támadó kézbesíti az üzeneteket. Létezik a valós világ a korábban ismertetett módon. Ennek modellezésére definiáltuk az ideális világot. A két világ eseményeinek leírására mindkét esetben készül egy napló Tóth Gergely, május 5. 1

2 (transcript). A két naplónak megkülönböztethetetlennek kell lennie. Amennyiben ez teljesül, úgy egy az ideális világban modellezhető protokoll a valós világban biztonságos. Példa: tegyük fel, létezik egy A valós világbeli támadó, aki az egyeztetett viszonykulcsot az egyeztetés után, de még a használat előtt kideríti és beleírja a naplóba. A valós világban tehát a kulcs kitalált és a tényleges értéke tehát megegyezne, amennyiben A meg tudja törni a protokollt. Az ideális világban ez a két érték azonban csak nagyon kis valószínűséggel lenne ugyanaz. Ez azonban statisztikai tesztelésre adna lehetőséget, amivel a valós és az ideális világ naplóját meg lehetne különböztetni. Tehát vagy nincs ilyen A, vagy a kulcscsere protokoll nem biztonságos. Ismétlés: Ideális világ start session operátora: create: start session i, j, create: a porondmester K ij kulcsot véletlen kulcsra állítja connect: start session i, j, connect i, j : a porondmester K ij és K i j kulcsot egyenlővé teszi compromize: start session i, j, compromize, W: a porondmester K ij kulcsot a támadó által adott W kulcsra állítja. Feltételek: C1: create mindig lehetséges: utána I ij izolált. C2: connect akkor lehetséges, ha I i j izolált és kompatibilis I ij -vel. Ezek után I i j már nem izolált. C3: compromize akkor lehetséges, ha PID ij nem. 3 Diffie-Hellman alapú protokoll (DHKE) Minden felhasználó kiválaszt magának egy q-ad rendű G csoportot és ennek egy g generátorát. Ezek után minden felhasználó generál magának egy nyilvános/titkos aláíró kulcspárt. A felhasználó teljes nyilvános kulcsa ezek után G, g és az aláíró nyilvános kulcs, míg a teljes titkos kulcs az aláíró titkos kulcs. sig i (msg) jelenti msg digitális aláírását, melyet az U i felhasználó készített, míg cert i az a tanúsítvány, mely U i felhasználó nyilvános kulcsát és személyazonosságát összekapcsolja. A protokoll szerint U i és U i cserél kulcsot. G, g, q az U i felhasználó tanúsítványában leírt csoportra vonatkozik. A protokollt U i indítja. H k páronként független hash-függvények családja, ahol k egy előre meghatározott hosszúságú véletlenül választott bitsorozat. U i U i : g x, sig i (g x, ID i ), cert i U i U i : g y, k, sig i (g x, g y, k, ID i ), cert i A viszonykulcs ezek után H k (g xy ). Ezen felül minkét fél ellenőrzi a tanúsítványokat és digitális aláírásokat. Amennyiben ezek hibát eredményeznek, úgy nem számolják ki viszonykulcsot és visszautasítják a kapcsolatot. DDH feltételezés: nincs hatékony algoritmus DHP kiszámítására. g 1, g 2, u 1, u 2 G, DHP(g 1, g 2, u 1, u 2 ) 1 ha létezik x Z q, hogy u 1 =g 1 x és u 2 =g 2 x, máskülönben 0. Tóth Gergely, május 5. 2

3 F1 feltételezés: A (g, g x, g y, k, H k (g xy )) és a (g, g x, g y, k, K) eloszlás megkülönböztethetetlen (K H k (g xy ) hosszú véletlen szám). T1 tétel: DHKE biztonságos kulcscsere protokoll a DDH feltételezés (F1 feltételezés) mellet, feltéve hogy az alkalmazott aláírási rendszer biztonságos. első üzenet megérkezett I i j -höz PID i j nem PID i j U i második PID ij nem üzenet megérkezett I ij -hez PID ij U i 1. Az ideális világban compromize I i j, a valós világból nyerjük a kulcsot. 1. Azt állítjuk, hogy egy egyértelmű I ij van, úgy hogy PID ij = ID i és I ij küldte g x -et. Ez a protokoll lefolyásából és az aláírások biztonságosságából következik. 2. Emiatt create I i j lehetséges csak és a porondmester kicseréli az aktuális viszonykulcsot egy véletlen viszonykulcsra. Bizonyítandó, hogy ez megkülönböztethetetlen. Ez következik a F1 feltételezésből, feltéve ha I ij nem volt és soha nem is kompromittálódik. Ez azonban fenn áll, hiszen PID ij = ID i és ilyen I ij -re nem megengedett a compromize operátor: I ij vagy soha nem jut elfogadó állapotba vagy I i j -vel connect kapcsolatba lép vagy U i másik példányával kerül kapcsolatba. 1. Az ideális világban compromize I ij, a kulcsot magából I ij -ből nyerjük. 1. Azt állítjuk, hogy egy egyértelmű I i j van úgy, hogy PID i j = ID i és g x, g y, k megegyeznek. Ez a protokoll lefolyásából és az aláírások biztonságosságából következik. Ebben az esetben connect I ij és I i j következik, és a porondmester I ij kulcsát I i j kulcsára állítja be (amit előzőleg szintén a porondmester generált). Ez a csere megkülönböztethetetlen. Ezzel a szimulálhatóság bizonyított. Az életképesség és a befejeződés triviális. 4 Titkosítás alapú protokoll (EKE) Minden felhasználó generál magának egy aláíró és egy titkosító nyilvános/titkos kulcspárt. Hasonlóan az előzőekhez sig i (msg) U i felhasználó msg digitális aláírása, míg E i (msg) U i felhasználó titkosító nyilvános kulcsával való kódolása. U i U i : r, cert i // r egy megfelelően hosszú véletlen bitsorozat U i U i : α = E i (K, ID i ), sig i (α, r, ID i ), cert i // K egy véletlen bitsorozat Ezek után a viszonykulcs K. Ezen felül minkét fél ellenőrzi a tanúsítványokat és digitális aláírásokat. Továbbá U i ellenőrzi, hogy α visszakódolása helyes formájú eredményt ad és a megfelelő személyazonosságot tartalmazza. T2 tétel: EKE biztonságos kulcscsere protokoll, feltéve hogy az alkalmazott aláírási rendszer biztonságos és a titkosítási rendszer rejtjeles szöveg módosíthatatlan biztonságos (nonmalleable). Tóth Gergely, május 5. 3

4 első üzenet PID i j nem megérkezett I i j -höz második üzenet megérkezett I ij -hez PID i j U i PID ij nem PID ij U i 1. Az ideális világban compromize I i j, a valós világból nyerjük a kulcsot. 1. create I i j és a porondmester kicseréli az aktuális viszonykulcsot egy véletlen viszonykulcsra. Mivel a titkosítás módosíthatatlan ez a csere megkülönböztethetetlen, feltéve (T2a), hogy a titkosított α-t soha nem kódolják vissza. Ezt a későbbiekben bizonyítjuk. 1. Amennyiben α-t egy olyan I i j generálta, ahol PID i j = ID i, akkor I ij elutasít, mivel az α-ban levő ID i identitás nem az, amit I ij vár (PID ij ). Ezt α dekódolása nélkül megtehető. 2. Amennyiben nem az előbbi eset áll fenn, akkor I ij befejezi a protokollt. Ha elfogadó állapotba kerül, akkor compromize I ij, a kulcsot magából I ij -ből nyerjük. Ez persze implicit módon használja U i dekódoló függvényét, de az előbbiekben biztosítottuk, hogy nem dekódolunk semmit, amit olyan I i j titkosított, ahol PID i j = ID i. Mivel csak itt dekódolunk bármit is ebben a játékban, a fenti kitételt (T2a) miszerint nem dekódolunk olyan titkosított szöveget, amit create operátoros felhasználó generált bizonyítottuk. 1. Amennyiben az aláírás ellenőrzése sikerült, úgy α-t olyan I i j készítette, ahol PID i j = ID i és az α-ban levő identitás ID i. Továbbá connect I ij és I i j érvényes, mivel az r érték egyértelmű (legalábbis óriási valószínűséggel). Tehát connect I ij és I i j, és a porondmester I ij kulcsát I i j kulcsára állítja be (amit előzőleg szintén a porondmester generált). Ez a csere megkülönböztethetetlen. Ezzel a szimulálhatóság bizonyított. Az életképesség és a befejeződés triviális. 5 Anonim alanyok Anonim alany (U 0 ) alatt olyan felhasználót értünk, akinek nincs tanúsítványa. Ennek megfelelően szinonimaként talán a nem hitelesített felhasználót is használhatnánk. Mivel az anonim felhasználó a támadó is lehet, a nem anonim felhasználó számára ezek a protokollok nem tudnak sokat garantálni. Azonban amennyiben felsőbb protokollban (pl. az egyeztetett kulccsal titkosított csatornán keresztül) az anonim alany azonosítja magát (pl. jelszó segítségével), úgy a kommunikáció során mindkét fél személyazonosságának hitelessége garantálható. Ebben az esetben az ideális világ szabályrendszerét módosítani kell: C3*: compromize akkor lehetséges, ha PID ij nem vagy PID ij =anonymous. Tóth Gergely, május 5. 4

5 5.1 Anonim Diffie-Hellman alapú protokoll (A-DHKE) A-DHKE a DHKE protokoll módosítása anonim alanyok kezelése érdekében. U 0 U i : g x U i U 0 : g y, k, sig i (g x, g y, k, anonymous), cert i A kulcs ezek után H k (g xy ). Természetesen az anonim alany ellenőrzi a digitális aláírásokat. 5.2 Anonim titkosítás alapú protokollok (A-EKE-1 és A-EKE-2) EKE módosítása A-EKE-1 anonim alanyok kezelése érdekében. U i U 0 : r, cert i // r egy megfelelően hosszú véletlen bitsorozat U 0 U i : α = E i (K, anonymous, r) // K egy véletlen bitsorozat Mint általában, a viszonykulcs K és U i ellenőrzi, hogy a titkosított üzenetben levő értékek megfelelőek-e. Alternatívaként A-EKE-2 protokoll is használható. Legyen f egy K kulccsal indexelt véletlenfüggvény család. U i U 0 : cert i U 0 U i : E i (K, anonymous) // K egy véletlen bitsorozat U i U 0 : r // r egy véletlen bitsorozat Az egyeztetett viszonykulcs f K (r) Mivel általában a gyakorlatban az anonim alany kezdi a kommunikációt, A-EKE-1 és A-EKE-2 implementációja esetén az anonim alany pl. egy üres üzenettel jelezheti kommunikációs szándékát. 6 Adaptív feltörés Adaptív feltörés esetén a támadó hozzájut a felhasználó hosszú távú titkaihoz (LTS), de máshoz nem (így ideiglenes adatokhoz csak a későbbiekben ismertetett erősen adaptív feltörés esetén jut). Ezen kívül megengedjük, hogy a megbízható harmadik félnél is történjen hiba (pl. a támadó beszerezhet olyan tanúsítványt, mely őt mint egy felhasználót jelöli meg). Az elemzéseink során egy feltört felhasználó normálisan vesz továbbra is részt a protokollok lefolyásában, azaz minden üzenetet megfelelően generál és küld. Természetesen mivel a támadó megszerezte a feltört felhasználó hosszú távú titkait, az ő nevében tud más felhasználókkal kapcsolatba lépni. Tóth Gergely, május 5. 5

6 Az ideális világ szabályrendszerét módosítani kell: C3*: compromize akkor lehetséges, ha o PID ij nem vagy o PID ij korrumpált vagy o U i korrumpált. A következőkben az adaptív feltörésnek két alfaját különböztetjük meg: általános adaptív kompromittálás: ha U i feltört (korrumpált), akkor minden I ij példánya kompromittálható (compromize érvényes). szigorú adaptív kompromittálás: csak akkor kompromittálható I ij, ha PID ij nincs hozzárendelve semelyik még nem korrumpált. Különbség: Alice a következőképpen gondolkodhat: egy biztonságosan egyeztetett viszonykulccsal titkosított csatornán érkezett üzenet vagy Bob-tól érkezett, vagy Bob korrumpált. Alice ebben biztos lehet, függetlenül attól, hogy az ő kulcsa kiderült-e, azaz függetlenül attól, hogy ő korrumpált-e. 7 Adaptív feltörésnek ellenálló Diffie-Hellman alapú protokollok (DHKE-1, DHKE-2 és DHKE-3) 7.1 DHKE-1 DKHE-1 a DHKE protokoll módosításával kapható és ellenáll adaptív feltörések ellen is. Alapvetően a DHKE protokoll kiegészítése egy kulcs-visszaigazolás üzenettel. U i U i : g x, sig i (g x, ID i ), cert i U i U i : g y, k, sig i (g x, g y, k, ID i ), cert i U i U i : k 1 // ahol (k 1, k 2 ) = BitGen(H k (g xy )) Az egyeztetett viszonykulcs k 2. Az általános aláírás ellenőrzéseken kívül U i ellenőrzi, hogy a megkapott k 1 üzenet megegyezik a várt értékkel. Feltételezzük, hogy k 1 egy elegendően hosszú bitsorozat. A következőkben jelölje G i a cert i -ben leírt csoportot. Hasonlóan az előzőekben ismertetett módszerhez, DHKE-1-et is lehet úgy módosítani, hogy támogasson anonim felhasználókat. Az így kapott protokoll A-DHKE-1. U 0 U i : g x U i U 0 : g y, k, sig i (g x, g y, k, anonymous), cert i U 0 U i : k 1 // ahol (k 1, k 2 ) = BitGen(H k (g xy )) Tóth Gergely, május 5. 6

7 7.2 DHKE-2 DHKE-1 DHKE minimális módosítása volt. Most ismertetjük DHKE-2-t, ami egy másik megközelítés. U i U i : g x, cert i U i U i : g y, k, sig i (g x, g y, k, ID i ), cert i U i U i : sig i (g x, g y, k, ID i ) A feltételek azonosak DHKE-vel, azaz a viszonykulcs H k (g xy ). 7.3 DHKE-3 Bár DHKE-1 és DHKE-2 biztonságos általános adaptív kompromittálás esetén, érdemes megjegyezni, hogy a szigorú adaptív kompromittálás esetén nem biztonságosak. DHKE-1 esetén nincs egyszerű mód eme hiányosság kijavítására, azonban DHKE-2 könnyen módosítható úgy, hogy a szigorú szabálynak is megfeleljen. Az így létrejött protokoll DHKE-3. U i U i : G i, g x, cert i U i U i : g y, k, sig i (G i, g x, g y, k, ID i ), cert i U i U i : sig i (G i, g x, g y, k, ID i ) Természetesen DHKE-3 is módosítható úgy, hogy támogassa az anonim felhasználókat. Az így kapott protokoll A-DHKE-3. U i U 0 : G i, g x, cert i U 0 U i : g y, k U i U 0 : sig i (G i, g x, g y, k, anonymous) 8 Adaptív feltörésnek ellenálló titkosítás alapú protokoll (EKE-1) Legvégül ismertetésre kerül az EKE-1 protokoll, ami az EKE protokoll kicsit módosított változata. A módosítás lényege, hogy nem csak hosszú-távú aszimmetrikus kulcsokat használ, hanem ideiglenes (csak egy viszony alatt élő) kulcsokat is. Minden felhasználó egyrészt generál magának egy aláíró kulcspárt, melynek nyilvános része kerül a felhasználó tanúsítványába. Ezen felül minden felhasználó rendelkezik egy kulcsgeneráló algoritmussal KeyGen(), ami egy nyilvános/titkos kulcspárt (E, D) generál. U i U i : E, sig i (E, ID i ), cert i // ahol (E, D) = KeyGen() U i U i : α = E(K), sig i (α, E, ID i ), cert i // K egy véletlen bitsorozat Tóth Gergely, május 5. 7

8 Az egyeztetett viszonykulcs K, amit U i D(α) kiszámolásával kap meg. Mint mindig, mindkét fél ellenőrzi a digitális aláírásokat. Megjegyzés: EKE-vel ellentétben U i nem rakja bele személyazonosságát (ID i ) a titkosított üzenetbe. 9 Összefoglaló A biztonságos kulcscsere protokollok legelterjedtebb alkalmazási területe az ún. rejtjel protokollok (pl. SSL, TLS, SSH, WTLS) első lépése, melynek során a két kommunikáló fél megegyezik a közös titokban (master secret), amelyből aztán mindketten legenerálják a titkosítási és üzenet-hitelesítési kulcsokat. Az összefoglaló ismertetett Diffie-Hellman és titkosítás alapú protokollokat, melyek különböző feltételek (pl. statikus feltörés, anonim alanyok, adaptív feltörés) mellett biztosítják a kulcsok biztonságos (titkos és hiteles) egyeztetését. Tóth Gergely, május 5. 8

Kriptográfiai alapfogalmak

Kriptográfiai alapfogalmak Kriptográfiai alapfogalmak A kriptológia a titkos kommunikációval foglalkozó tudomány. Két fő ága a kriptográfia és a kriptoanalízis. A kriptográfia a titkosítással foglalkozik, a kriptoanalízis pedig

Részletesebben

IT BIZTONSÁGTECHNIKA. Tanúsítványok. Nagy-Löki Balázs MCP, MCSA, MCSE, MCTS, MCITP. Készítette:

IT BIZTONSÁGTECHNIKA. Tanúsítványok. Nagy-Löki Balázs MCP, MCSA, MCSE, MCTS, MCITP. Készítette: IT BIZTONSÁGTECHNIKA Tanúsítványok Készítette: Nagy-Löki Balázs MCP, MCSA, MCSE, MCTS, MCITP Tartalom Tanúsítvány fogalma:...3 Kategóriák:...3 X.509-es szabvány:...3 X.509 V3 tanúsítvány felépítése:...3

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Titkosítás NetWare környezetben

Titkosítás NetWare környezetben 1 Nyílt kulcsú titkosítás titkos nyilvános nyilvános titkos kulcs kulcs kulcs kulcs Nyilvános, bárki által hozzáférhető csatorna Nyílt szöveg C k (m) Titkosított szöveg Titkosított szöveg D k (M) Nyílt

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék.

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017 Miről volt szó az elmúlt előadáson? A Crypto++

Részletesebben

SSL elemei. Az SSL illeszkedése az internet protokoll-architektúrájába

SSL elemei. Az SSL illeszkedése az internet protokoll-architektúrájába SSL 1 SSL elemei Az SSL illeszkedése az internet protokoll-architektúrájába 2 SSL elemei 3 SSL elemei 4 SSL Record protokoll 5 SSL Record protokoll Az SSL Record protokoll üzenet formátuma 6 SSL Record

Részletesebben

IP alapú távközlés. Virtuális magánhálózatok (VPN)

IP alapú távközlés. Virtuális magánhálózatok (VPN) IP alapú távközlés Virtuális magánhálózatok (VPN) Jellemzők Virtual Private Network VPN Publikus hálózatokon is használható Több telephelyes cégek hálózatai biztonságosan összeköthetők Olcsóbb megoldás,

Részletesebben

Dr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás

Dr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás 2017.10.13. Dr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás 1 Tartalom Alapvetések Alapfogalmak Változatok Tradicionális Szimmetrikus Aszimmetrikus Kombinált Digitális

Részletesebben

Sapientia Egyetem, Matematika-Informatika Tanszék.

Sapientia Egyetem, Matematika-Informatika Tanszék. Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? az RSA titkosító

Részletesebben

Elektronikus aláírás. Gaidosch Tamás. Állami Számvevőszék

Elektronikus aláírás. Gaidosch Tamás. Állami Számvevőszék Elektronikus aláírás Gaidosch Tamás Állami Számvevőszék 2016.05.24 Tartalom Mit tekintünk elektronikus aláírásnak? Hogyan működik? Kérdések 2 Egyszerű elektronikus aláírás 3 Demo: valódi elektronikus aláírás

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 11. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Kongruenciák Diszkrét matematika I. középszint 2014.

Részletesebben

A Z E L E K T R O N I K U S A L Á Í R Á S J O G I S Z A B Á L Y O Z Á S A.

A Z E L E K T R O N I K U S A L Á Í R Á S J O G I S Z A B Á L Y O Z Á S A. JOGI INFORMATIKA A Z E L E K T R O N I K U S A L Á Í R Á S J O G I S Z A B Á L Y O Z Á S A. A kutatás a TÁMOP 4.2.4.A/2-11-1-2012-0001 azonosító számú Nemzeti Kiválóság Program Hazai hallgatói, illetve

Részletesebben

Elektronikus aláírás. Miért van szükség elektronikus aláírásra? A nyiltkulcsú titkosítás. Az elektronikus aláírás m ködése. Hitelesít szervezetek.

Elektronikus aláírás. Miért van szükség elektronikus aláírásra? A nyiltkulcsú titkosítás. Az elektronikus aláírás m ködése. Hitelesít szervezetek. Elektronikus aláírás Miért van szükség elektronikus aláírásra? A nyiltkulcsú titkosítás. Az elektronikus aláírás m ködése. Jogi háttér Hitelesít szervezetek. Miért van szükség elektronikus aláírásra? Elektronikus

Részletesebben

Adat és Információvédelmi Mesteriskola 30 MB. Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA

Adat és Információvédelmi Mesteriskola 30 MB. Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA 30 MB Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA Tartalom Alapvetések - kiindulópontok Alapfogalmak Változatok Tradicionális módszerek Szimmetrikus kriptográfia Aszimmetrikus

Részletesebben

Data Security: Protocols Integrity

Data Security: Protocols Integrity Integrity Az üzenethitelesítés (integritásvédelem) feladata az, hogy a vételi oldalon detektálhatóvá tegyük azon eseményeket, amelyek során az átviteli úton az üzenet valamilyen módosulást szenvedett el.

Részletesebben

S, mint secure. Nagy Attila Gábor Wildom Kft. nagya@wildom.com

S, mint secure. Nagy Attila Gábor Wildom Kft. nagya@wildom.com S, mint secure Wildom Kft. nagya@wildom.com Egy fejlesztő, sok hozzáférés Web alkalmazások esetében a fejlesztést és a telepítést általában ugyanaz a személy végzi Több rendszerhez és géphez rendelkezik

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Biztonság a glite-ban

Biztonság a glite-ban Biztonság a glite-ban www.eu-egee.org INFSO-RI-222667 Mi a Grid biztonság? A Grid probléma lehetővé tenni koordinált erőforrás megosztást és probléma megoldást dinamikus több szervezeti egységből álló

Részletesebben

ELEKTRONIKUS ALÁÍRÁS E-JOG

ELEKTRONIKUS ALÁÍRÁS E-JOG E-JOG 2001. évi XXXV. törvény Az elektronikus aláírás törvényi fogalma: elektronikusan aláírt elektronikus dokumentumhoz azonosítás céljából logikailag hozzárendelt vagy azzal elválaszthatatlanul összekapcsolt

Részletesebben

Elektronikus hitelesítés a gyakorlatban

Elektronikus hitelesítés a gyakorlatban Elektronikus hitelesítés a gyakorlatban Tapasztó Balázs Vezető termékmenedzser Matáv Üzleti Szolgáltatások Üzletág 2005. április 1. 1 Elektronikus hitelesítés a gyakorlatban 1. Az elektronikus aláírás

Részletesebben

Sapientia Egyetem, Matematika-Informatika Tanszék.

Sapientia Egyetem, Matematika-Informatika Tanszék. Kriptográfia és Információbiztonság 11. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? hash függvények

Részletesebben

Kvantumkriptográfia II.

Kvantumkriptográfia II. LOGO Kvantumkriptográfia II. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Titkos kommunikáció modellje k 1 k 2 k n k 1 k 2 k n A titkos kommunikáció során Alice és Bob szeretne egymással üzeneteket

Részletesebben

Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens

Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens A nyílt kulcsú titkosítás és a digitális aláírás Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens Budapest Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar Műszertechnikai és Automatizálási

Részletesebben

5.1 Környezet. 5.1.1 Hálózati topológia

5.1 Környezet. 5.1.1 Hálózati topológia 5. Biztonság A rendszer elsodleges célja a hallgatók vizsgáztatása, így nagy hangsúlyt kell fektetni a rendszert érinto biztonsági kérdésekre. Semmiképpen sem szabad arra számítani, hogy a muködo rendszert

Részletesebben

Elektronikus aláírás és titkosítás beállítása MS Outlook 2010 levelezőben

Elektronikus aláírás és titkosítás beállítása MS Outlook 2010 levelezőben Elektronikus aláírás és titkosítás beállítása MS Outlook 2010 levelezőben Verziószám 2.0 Objektum azonosító (OID) Hatálybalépés dátuma 2013. november 6. 1 Változáskövetés Verzió Dátum Változás leírása

Részletesebben

PKI: egy ember, egy tanúsítvány?

PKI: egy ember, egy tanúsítvány? PKI: egy ember, egy tanúsítvány? Dr. Berta István Zsolt Endrıdi Csilla Éva Microsec Kft. http://www.microsec.hu PKI dióhéjban (1) Minden résztvevınek van

Részletesebben

Adatbiztonság PPZH 2011. május 20.

Adatbiztonság PPZH 2011. május 20. Adatbiztonság PPZH 2011. május 20. 1. Mutassa meg, hogy a CBC-MAC kulcsolt hashing nem teljesíti az egyirányúság követelményét egy a k kulcsot ismerő fél számára, azaz tetszőleges MAC ellenőrzőösszeghez

Részletesebben

TANÚSÍTVÁNY. tanúsítja, hogy a. Giesecke & Devrient GmbH, Germany által előállított és forgalmazott

TANÚSÍTVÁNY. tanúsítja, hogy a. Giesecke & Devrient GmbH, Germany által előállított és forgalmazott TANÚSÍTVÁNY A HUNGUARD Számítástechnikai-, informatikai kutató-fejlesztő és általános szolgáltató Kft. a 15/2001.(VIII. 27.) MeHVM rendelet alapján, mint a Magyar Köztársaság Informatikai és Hírközlési

Részletesebben

Információs társadalom alapismeretek

Információs társadalom alapismeretek Információs társadalom alapismeretek Szabó Péter Gábor Titkosítás és számítástechnika Titkosítás alapfogalmai A Colossus Kriptográfia A rejtjelezés két fı lépésbıl áll: 1) az üzenet titkosítása (kódolás)

Részletesebben

Prímtesztelés, Nyilvános kulcsú titkosítás

Prímtesztelés, Nyilvános kulcsú titkosítás Prímtesztelés, Nyilvános kulcsú titkosítás Papp László BME December 8, 2018 Prímtesztelés Feladat: Adott egy nagyon nagy n szám, döntsük el, hogy prímszám-e! Naív kísérletek: 1. Nézzük meg minden nála

Részletesebben

Adja meg, hogy ebben az esetben mely handshake üzenetek kerülnek átvitelre, és vázlatosan adja meg azok tartalmát! (8p)

Adja meg, hogy ebben az esetben mely handshake üzenetek kerülnek átvitelre, és vázlatosan adja meg azok tartalmát! (8p) Adatbiztonság a gazdaságinformatikában PZH 2013. december 9. 1. Tekintsük a következő rejtjelező kódolást: nyílt üzenetek halmaza {a,b}, kulcsok halmaza {K1,K2,K3,K4,K5}, rejtett üzenetek halmaza {1,2,3,4,5}.

Részletesebben

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak... Biztos, hogy titkos? Szabó István előadása Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...) Története Az ókortól kezdve rengeteg feltört titkosírás létezik. Monoalfabetikus

Részletesebben

2018, Diszkre t matematika. 10. elo ada s

2018, Diszkre t matematika. 10. elo ada s Diszkre t matematika 10. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,

Részletesebben

Sapientia Egyetem, Matematika-Informatika Tanszék.

Sapientia Egyetem, Matematika-Informatika Tanszék. Kriptográfia és Információbiztonság 7. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? Kriptográfiai

Részletesebben

Az elektronikus aláírás és gyakorlati alkalmazása

Az elektronikus aláírás és gyakorlati alkalmazása Az elektronikus aláírás és gyakorlati alkalmazása Dr. Berta István Zsolt Microsec Kft. http://www.microsec.hu Elektronikus aláírás (e-szignó) Az elektronikus aláírás a kódolás

Részletesebben

Az SSH működése 1.Az alapok SSH SSH2 SSH1 SSH1 SSH2 RSA/DSA SSH SSH1 SSH2 SSH2 SSH SSH1 SSH2 A kapcsolódás menete Man-In-The-Middle 3DES Blowfish

Az SSH működése 1.Az alapok SSH SSH2 SSH1 SSH1 SSH2 RSA/DSA SSH SSH1 SSH2 SSH2 SSH SSH1 SSH2 A kapcsolódás menete Man-In-The-Middle 3DES Blowfish Alapok Az SSH működése 1.Az alapok Manapság az SSH egyike a legfontosabb biztonsági eszközöknek. Leggyakrabban távoli shell eléréshez használják, de alkalmas fájlok átvitelére, távoli X alkalmazások helyi

Részletesebben

Data Security: Access Control

Data Security: Access Control Data Security 1. Alapelvek 2. Titkos kulcsú rejtjelezés 3. Nyilvános kulcsú rejtjelezés 4. Kriptográfiai alapprotokollok I. 5. Kriptográfiai alapprotokollok II. Data Security: Access Control A Rossz talált

Részletesebben

Adott egy szervezet, és annak ügyfelei. Nevezzük a szervezetet bank -nak. Az ügyfelek az Interneten keresztül érzékeny információkat, utasításokat

Adott egy szervezet, és annak ügyfelei. Nevezzük a szervezetet bank -nak. Az ügyfelek az Interneten keresztül érzékeny információkat, utasításokat ! # $%&'() Adott egy szervezet, és annak ügyfelei. Nevezzük a szervezetet bank -nak. Az ügyfelek az Interneten keresztül érzékeny információkat, utasításokat küldenek a banknak. A bank valahogy meggyzdik

Részletesebben

Adatbázis kezelő szoftverek biztonsága. Vasi Sándor G-3S

Adatbázis kezelő szoftverek biztonsága. Vasi Sándor G-3S Adatbázis kezelő szoftverek biztonsága Vasi Sándor sanyi@halivud.com G-3S8 2006. Egy kis ismétlés... Adatbázis(DB): integrált adatrendszer több különböző egyed előfordulásainak adatait adatmodell szerinti

Részletesebben

E mail titkosítás az üzleti életben ma már követelmény! Ön szerint ki tudja elolvasni bizalmas email leveleinket?

E mail titkosítás az üzleti életben ma már követelmény! Ön szerint ki tudja elolvasni bizalmas email leveleinket? E mail titkosítás az üzleti életben ma már követelmény! Ön szerint ki tudja elolvasni bizalmas email leveleinket? Egy email szövegében elhelyezet információ annyira biztonságos, mintha ugyanazt az információt

Részletesebben

Réti Kornél, Microsec Zrt. 1

Réti Kornél, Microsec Zrt. 1 2016.12.15. Réti Kornél, Microsec Zrt. 1 Bemutatkozás MICROSEC Zrt: Legkorszerűbb PKI alapú technológiák és megoldások szállítója 1984-ben alakult magyar tulajdonú cég 1998-tól foglalkozunk elektronikus

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Kriptográfia I. Kriptorendszerek

Kriptográfia I. Kriptorendszerek Kriptográfia I Szimmetrikus kulcsú titkosítás Kriptorendszerek Nyíltszöveg üzenettér: M Titkosított üzenettér: C Kulcs tér: K, K Kulcsgeneráló algoritmus: Titkosító algoritmus: Visszafejt algoritmus: Titkosítás

Részletesebben

Data Security: Public key

Data Security: Public key Nyilvános kulcsú rejtjelezés RSA rejtjelező El-Gamal rejtjelező : Elliptikus görbe kriptográfia RSA 1. Véletlenszerűen választunk két "nagy" prímszámot: p1, p2 2. m= p1p2 φ ( ) = ( p -1)( p -1) m 1 2 3.

Részletesebben

Kriptoprotokollok. alapjai. Protokoll

Kriptoprotokollok. alapjai. Protokoll Kriptoprotokollok alapjai Támadások és kivédésük Protokoll Kommunikációs szabály gyjtemény Üzenetek formája Kommunikáló felek viselkedése Leírás üzenet formátumok szekvencia diagramok állapotgépek Pénz

Részletesebben

Waldhauser Tamás december 1.

Waldhauser Tamás december 1. Algebra és számelmélet előadás Waldhauser Tamás 2016. december 1. Tizedik házi feladat az előadásra Hányféleképpen lehet kiszínezni az X-pentominót n színnel, ha a forgatással vagy tükrözéssel egymásba

Részletesebben

Digitális aláírás és kriptográfiai hash függvények. 1. az aláírás generálása (az X üzenetet küldő A fél végzi): A B: X, D A (X)

Digitális aláírás és kriptográfiai hash függvények. 1. az aláírás generálása (az X üzenetet küldő A fél végzi): A B: X, D A (X) Digitális aláírás és kriptográfiai hash függvények A digitális aláírás protokollok feladatai: 1. az aláírás generálása (az X üzenetet küldő A fél végzi): A B: X, D A (X) 2. az aláírás ellenőrzése (B címzett

Részletesebben

KÓDOLÁSTECHNIKA PZH. 2006. december 18.

KÓDOLÁSTECHNIKA PZH. 2006. december 18. KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)

Részletesebben

CAS implementálása MPEG-2 TS-alapú

CAS implementálása MPEG-2 TS-alapú CAS implementálása MPEG-2 TS-alapú hálózatokon Unger Tamás István ungert@maxwell.sze.hu 2014. április 16. Tartalom 1 Az MPEG-2 TS rövid áttekintése 2 Rendszeradminisztráció 3 A kiválasztott program felépítése

Részletesebben

ADATBIZTONSÁG: TITKOSÍTÁS, HITELESÍTÉS, DIGITÁLIS ALÁÍRÁS

ADATBIZTONSÁG: TITKOSÍTÁS, HITELESÍTÉS, DIGITÁLIS ALÁÍRÁS ADATBIZTONSÁG: TITKOSÍTÁS, HITELESÍTÉS, DIGITÁLIS ALÁÍRÁS B uttyán Levente PhD, egyetemi adjunktus, BME Híradástechnikai Tanszék buttyan@hit.bme.hu G yörfi László az MTA rendes tagja, egyetemi tanár BME

Részletesebben

Elektronikus rendszerek a közigazgatásban elektronikus aláírás és archiválás elméletben

Elektronikus rendszerek a közigazgatásban elektronikus aláírás és archiválás elméletben Elektronikus rendszerek a közigazgatásban elektronikus aláírás és archiválás elméletben Előadó: Erdősi Péter Máté, CISA elektronikus aláírással kapcsolatos szolgáltatási szakértő BDO Magyarország IT Megoldások

Részletesebben

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,... RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk

Részletesebben

Elektronikus rendszerek a közigazgatásban elektronikus aláírás és archiválás elméletben

Elektronikus rendszerek a közigazgatásban elektronikus aláírás és archiválás elméletben Copyright 2011 FUJITSU LIMITED Elektronikus rendszerek a közigazgatásban elektronikus aláírás és archiválás elméletben Előadó: Erdősi Péter Máté, CISA elektronikus aláírással kapcsolatos szolgáltatási

Részletesebben

4. Előadás Titkosítás, RSA algoritmus

4. Előadás Titkosítás, RSA algoritmus 4. Előadás Titkosítás, RSA algoritmus Dr. Kallós Gábor 2014 2015 1 Tartalom A kriptográfia meghatározása, alaphelyzete Szimmetrikus (titkos) kulcsú titkosítás A Caesar-eljárás Aszimmetrikus (nyilvános)

Részletesebben

A nyilvános kulcsú algoritmusokról. Hálózati biztonság II. A nyilvános kulcsú algoritmusokról (folyt.) Az RSA. Más nyilvános kulcsú algoritmusok

A nyilvános kulcsú algoritmusokról. Hálózati biztonság II. A nyilvános kulcsú algoritmusokról (folyt.) Az RSA. Más nyilvános kulcsú algoritmusok Hálózati biztonság II. Mihalik Gáspár D(E(P))=P A nyilvános kulcsú algoritmusokról A két mővelet (D és E) ezeknél az algoritmusoknál ugyanaz: D(E(P))=P=E(D(P)), viszont más kulcsokkal végzik(!), ami azt

Részletesebben

Adatbiztonság az okos fogyasztásmérésben. Mit nyújthat a szabványosítás?

Adatbiztonság az okos fogyasztásmérésben. Mit nyújthat a szabványosítás? Adatbiztonság az okos fogyasztásmérésben Mit nyújthat a szabványosítás? Kmethy Győző - Gnarus Mérnökiroda DLMS User Association elnök IEC TC13 titkár CENELEC TC13 WG02 vezető Budapest 2012. szeptember

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

A JGrid rendszer biztonsági architektúrája. Magyaródi Márk Juhász Zoltán Veszprémi Egyetem

A JGrid rendszer biztonsági architektúrája. Magyaródi Márk Juhász Zoltán Veszprémi Egyetem A JGrid rendszer biztonsági architektúrája Magyaródi Márk Juhász Zoltán Veszprémi Egyetem A JGrid projekt Java és Jini alapú szolgáltatás orientált Grid infrastruktúra IKTA-5 089/2002 (2003-2004) Konzorcium:

Részletesebben

Gyakran ismétlődő kérdések az elektronikus aláírásról

Gyakran ismétlődő kérdések az elektronikus aláírásról Gyakran ismétlődő kérdések az elektronikus aláírásról Mi az elektronikus aláírás és mi a célja? A jövő gazdaságában meghatározó szerepet kapnak a papíralapú iratokat, számlákat, megrendeléseket, dokumentumokat

Részletesebben

Webalkalmazás-biztonság. Kriptográfiai alapok

Webalkalmazás-biztonság. Kriptográfiai alapok Webalkalmazás-biztonság Kriptográfiai alapok Alapfogalmak, áttekintés üzenet (message): bizalmas információhalmaz nyílt szöveg (plain text): a titkosítatlan üzenet (bemenet) kriptoszöveg (ciphertext):

Részletesebben

Számítógépes Hálózatok. 4. gyakorlat

Számítógépes Hálózatok. 4. gyakorlat Számítógépes Hálózatok 4. gyakorlat Feladat 0 Számolja ki a CRC kontrollösszeget az 11011011001101000111 üzenetre, ha a generátor polinom x 4 +x 3 +x+1! Mi lesz a 4 bites kontrollösszeg? A fenti üzenet

Részletesebben

Kriptográfia 0. A biztonság alapja. Számítás-komplexitási kérdések

Kriptográfia 0. A biztonság alapja. Számítás-komplexitási kérdések Kriptográfia 0 Számítás-komplexitási kérdések A biztonság alapja Komplexitás elméleti modellek független, egyenletes eloszlású véletlen változó értéke számítással nem hozható kapcsolatba más információval

Részletesebben

TANÚSÍTVÁNY. tanúsítja, hogy a Utimaco Safeware AG által kifejlesztett és forgalmazott

TANÚSÍTVÁNY. tanúsítja, hogy a Utimaco Safeware AG által kifejlesztett és forgalmazott TANÚSÍTVÁNY A HUNGUARD Számítástechnikai-, informatikai kutató-fejlesztő és általános szolgáltató Kft. a 15/2001.(VIII. 27.) MeHVM rendelet alapján, mint a Magyar Köztársaság Informatikai és Hírközlési

Részletesebben

Informatikai biztonság alapjai

Informatikai biztonság alapjai Informatikai biztonság alapjai 4. Algoritmikus adatvédelem Pethő Attila 2008/9 II. félév A digitális aláírás felfedezői Dr. Whitfield Diffie és Martin E. Hellman (1976) a nyilvános kulcsú titkosítás elvének

Részletesebben

Algoritmuselmélet 6. előadás

Algoritmuselmélet 6. előadás Algoritmuselmélet 6. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 4. ALGORITMUSELMÉLET 6. ELŐADÁS 1 Hash-elés

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. A szakirány 11. előadás Ligeti Péter turul@cs.elte.hu www.cs.elte.hu/ turul Nagy hálózatok Nagy hálózatok jellemzése Internet, kapcsolati hálók, biológiai hálózatok,... globális

Részletesebben

Szabó Zoltán PKI termékmenedzser szabo.zoltan@netlock.hu

Szabó Zoltán PKI termékmenedzser szabo.zoltan@netlock.hu Elektronikus számlázás Szabó Zoltán PKI termékmenedzser szabo.zoltan@netlock.hu TARTALOM A NetLock-ról röviden Magyarország első hitelesítés-szolgáltatója Az ealáírásról általában Hogyan, mivel, mit lehet

Részletesebben

Hitelesítés elektronikus aláírással BME TMIT

Hitelesítés elektronikus aláírással BME TMIT Hitelesítés elektronikus aláírással BME TMIT Generátor VIP aláíró Internet Visszavont publikus kulcsok PC Hitelesítő központ Hitelesített publikus kulcsok Aláíró Publikus kulcs és személyes adatok hitelesített

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 10. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Vizsgatematika 1 Klasszikus kriptográfiai rendszerek

Részletesebben

Hadamard-mátrixok Előadó: Hajnal Péter február 23.

Hadamard-mátrixok Előadó: Hajnal Péter február 23. Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Hadamard-mátrixok Előadó: Hajnal Péter 2012. február 23. 1. Hadamard-mátrixok Ezen az előadáson látásra a blokkrendszerektől független kombinatorikus

Részletesebben

Előnyei. Helyi hálózatok tervezése és üzemeltetése 2

Előnyei. Helyi hálózatok tervezése és üzemeltetése 2 VPN Virtual Private Network A virtuális magánhálózat az Interneten keresztül kiépített titkosított csatorna. http://computer.howstuffworks.com/vpn.htm Helyi hálózatok tervezése és üzemeltetése 1 Előnyei

Részletesebben

Tanúsítványkérelem készítése, tanúsítvány telepítése Microsoft Internet Information szerveren

Tanúsítványkérelem készítése, tanúsítvány telepítése Microsoft Internet Information szerveren Tanúsítványkérelem készítése, tanúsítvány telepítése Microsoft Internet Information szerveren Tartalomjegyzék 1. BEVEZETÉS...3 2. A MICROSOFT IIS INDÍTÁSA...3 3. TITKOS KULCS GENERÁLÁSA...3 4. TANÚSÍTVÁNYKÉRELEM

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Az adatfeldolgozás és adatátvitel biztonsága. Az adatfeldolgozás biztonsága. Adatbiztonság. Automatikus adatazonosítás, adattovábbítás, adatbiztonság

Az adatfeldolgozás és adatátvitel biztonsága. Az adatfeldolgozás biztonsága. Adatbiztonság. Automatikus adatazonosítás, adattovábbítás, adatbiztonság Az adatfeldolgozás és adatátvitel biztonsága Automatikus adatazonosítás, adattovábbítás, adatbiztonság Az adatfeldolgozás biztonsága A védekezés célja Védelem a hamisítás és megszemélyesítés ellen Biztosított

Részletesebben

Mailvelope OpenPGP titkosítás webes levelezéshez

Mailvelope OpenPGP titkosítás webes levelezéshez 2013. november Írta: YouCanToo Ha letöltötted, a Firefox hoz úgy adod hozzá, hogy az Eszközök Kiegészítők höz mész. Ott kattints a kis csavarkulcs ikonra a kereső ablak mellett. Ezután válaszd a Kiegészítő

Részletesebben

Dr. Bakonyi Péter c.docens

Dr. Bakonyi Péter c.docens Elektronikus aláírás Dr. Bakonyi Péter c.docens Mi az aláírás? Formailag valamilyen szöveg alatt, azt jelenti, hogy valamit elfogadok valamit elismerek valamirıl kötelezettséget vállalok Azonosítja az

Részletesebben

Modern szimmetrikus kulcsú rejtjelezők kriptoanalízise

Modern szimmetrikus kulcsú rejtjelezők kriptoanalízise Modern szimmetrikus kulcsú rejtjelezők kriptoanalízise - kimerítő kulcskeresés: határa ma 64 bit számítási teljesítmény költsége feleződik 18 havonta 25 éven belül 80 bit - differenciális kriptoanalízis:

Részletesebben

Metadata specifikáció

Metadata specifikáció Metadata specifikáció Verzió: 1.1 (2011. Szeptember 14.) aai@niif.hu Biztonsági megfontolások Mivel a metadata tartalmazza a föderációban részt vevő tagok és komponensek technikai információit, ezért a

Részletesebben

Technikai tudnivalók a Saxo Trader Letöltéséhez tűzfalon vagy proxy szerveren keresztül

Technikai tudnivalók a Saxo Trader Letöltéséhez tűzfalon vagy proxy szerveren keresztül Letöltési Procedúra Fontos: Ha Ön tűzfalon vagy proxy szerveren keresztül dolgozik akkor a letöltés előtt nézze meg a Technikai tudnivalók a Saxo Trader Letöltéséhez tűzfalon vagy proxy szerveren keresztül

Részletesebben

Egyesíthető prioritási sor

Egyesíthető prioritási sor Egyesíthető prioritási sor Értékhalmaz: EPriSor = S E, E-n értelmezett a lineáris rendezési reláció. Műveletek: S,S 1,S 2 : EPriSor, x : E {Igaz} Letesit(S, ) {S = /0} {S = S} Megszuntet(S) {} {S = S}

Részletesebben

Az Outlook levelező program beállítása tanúsítványok használatához

Az Outlook levelező program beállítása tanúsítványok használatához Az Outlook levelező program beállítása tanúsítványok használatához Windows tanúsítványtárban és kriptográfia eszközökön található tanúsítványok esetén 1(10) Tartalomjegyzék 1. Bevezető... 3 2. Az Outlook

Részletesebben

Leképezések. Leképezések tulajdonságai. Számosságok.

Leképezések. Leképezések tulajdonságai. Számosságok. Leképezések Leképezések tulajdonságai. Számosságok. 1. Leképezések tulajdonságai A továbbiakban legyen A és B két tetszőleges halmaz. Idézzünk fel néhány definíciót. 1. Definíció (Emlékeztető). Relációknak

Részletesebben

Emlékeztet! matematikából

Emlékeztet! matematikából Kriptográfia 2 Aszimmetrikus megoldások Emlékeztet matematikából Euklidész algoritmus - legnagyobb közös osztó meghatározása INPUT Int a>b0; OUTPUT gcd(a,b). 1. if b=0 return(a); 2. return(gcd(b,a mod

Részletesebben

GSM azonosítók, hitelesítés és titkosítás a GSM rendszerben, a kommunikáció rétegei, mobil hálózatok fejlődése

GSM azonosítók, hitelesítés és titkosítás a GSM rendszerben, a kommunikáció rétegei, mobil hálózatok fejlődése Mobil Informatika Dr. Kutor László GSM azonosítók, hitelesítés és titkosítás a GSM rendszerben, a kommunikáció rétegei, mobil hálózatok fejlődése http://uni-obuda.hu/users/kutor/ Bejelentkezés a hálózatba

Részletesebben

Hálózatbiztonság Androidon. Tamas Balogh Tech AutSoft

Hálózatbiztonság Androidon. Tamas Balogh Tech AutSoft Tamas Balogh Tech lead @ AutSoft Key Reinstallation AttaCK 2017 őszi sérülékenység Biztonsági rés a WPA2 (Wi-Fi Protected Access) protokollban Nem csak Androidon - más platform is Minden Android eszköz,

Részletesebben

RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem

RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem RSA algoritmus Smidla József Rendszer- és Számítástudományi Tanszék Pannon Egyetem 2012. 3. 27. Smidla József (RSZT) RSA algoritmus 2012. 3. 27. 1 / 29 Tartalom 1 Aszimmetrikus kódolók 2 Matematikai alapok

Részletesebben

TANÚSÍTVÁNY. tanúsítja, hogy a E-Group Magyarország Rt. által kifejlesztett és forgalmazott. Signed Document expert (SDX) Professional 1.

TANÚSÍTVÁNY. tanúsítja, hogy a E-Group Magyarország Rt. által kifejlesztett és forgalmazott. Signed Document expert (SDX) Professional 1. TANÚSÍTVÁNY A HUNGUARD Számítástechnikai-, informatikai kutató-fejlesztő és általános szolgáltató Kft. a 15/2001.(VIII. 27.) MeHVM rendelet alapján, mint a Magyar Köztársaság Informatikai és Hírközlési

Részletesebben

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha ALAPFOGALMAK 1 Á l l a p o t t é r Legyen I egy véges halmaz és legyenek A i, i I tetszőleges véges vagy megszámlálható, nem üres halmazok Ekkor az A= A i halmazt állapottérnek, az A i halmazokat pedig

Részletesebben

Elektronikus rendszerek a közigazgatásban

Elektronikus rendszerek a közigazgatásban Copyright 2011 FUJITSU LIMITED Elektronikus rendszerek a közigazgatásban Előadó: Erdősi Péter Máté, CISA elektronikus aláírással kapcsolatos szolgáltatási szakértő Fujitsu Akadémia 1 Copyright 2011 FUJITSU

Részletesebben

TANÚSÍTVÁNY HUNGUARD tanúsítja, SafeNet Inc. ProtectServer Gold

TANÚSÍTVÁNY HUNGUARD tanúsítja, SafeNet Inc. ProtectServer Gold TANÚSÍTVÁNY A HUNGUARD Számítástechnikai-, informatikai kutató-fejlesztő és általános szolgáltató Kft. a 9/2005. (VII.21.) IHM rendelet alapján, mint a Magyar Köztársaság Miniszterelnöki Hivatalt Vezető

Részletesebben

Virtuális magánházlózatok / VPN

Virtuális magánházlózatok / VPN Virtuális magánházlózatok / VPN Hálózatok összekapcsolása - tunneling Virtuális magánhálózatok / Virtual Private Network (VPN) Iroda Nem tekintjük biztonságosnak WAN Internet Gyár Távmunkások 2 Virtuális

Részletesebben

DIGITÁLIS TANÚSÍTVÁNY HASZNÁLATA A REGIONÁLIS BOOKING PLATFORMON

DIGITÁLIS TANÚSÍTVÁNY HASZNÁLATA A REGIONÁLIS BOOKING PLATFORMON DIGITÁLIS TANÚSÍTVÁNY HASZNÁLATA A REGIONÁLIS BOOKING PLATFORMON 2013. 10. 09 Készítette: FGSZ Zrt. Informatika és Hírközlés Informatikai Szolgáltatások Folyamatirányítás Az FGSZ Zrt. elkötelezett az informatikai

Részletesebben

Markov-láncok stacionárius eloszlása

Markov-láncok stacionárius eloszlása Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius

Részletesebben

30 MB INFORMATIKAI PROJEKTELLENŐR KRIPTOGRÁFIAI ALKALMAZÁSOK, REJTJELEZÉSEK, DIGITÁLIS ALÁÍRÁS, DIGITÁLIS PÉNZ DR. BEINSCHRÓTH JÓZSEF

30 MB INFORMATIKAI PROJEKTELLENŐR KRIPTOGRÁFIAI ALKALMAZÁSOK, REJTJELEZÉSEK, DIGITÁLIS ALÁÍRÁS, DIGITÁLIS PÉNZ DR. BEINSCHRÓTH JÓZSEF INFORMATIKAI PROJEKTELLENŐR 30 MB DR. BEINSCHRÓTH JÓZSEF KRIPTOGRÁFIAI ALKALMAZÁSOK, REJTJELEZÉSEK, DIGITÁLIS ALÁÍRÁS, DIGITÁLIS PÉNZ 2016. 10. 31. MMK- Informatikai projektellenőr képzés Tartalom Alapvetések

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 207. tavasz. Diszkrét matematika 2.C szakirány 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 207.

Részletesebben

DIGITÁLIS TANÚSÍTVÁNY HASZNÁLATA AZ INFORMATIKAI PLATFORMON

DIGITÁLIS TANÚSÍTVÁNY HASZNÁLATA AZ INFORMATIKAI PLATFORMON DIGITÁLIS TANÚSÍTVÁNY HASZNÁLATA AZ INFORMATIKAI PLATFORMON 2013. 08. 12 Készítette: FGSZ Zrt. Informatika és Hírközlés Informatikai Szolgáltatások Folyamatirányítás Az FGSZ Zrt. elkötelezett az informatikai

Részletesebben

IV.4. FELHŐ ALAPÚ BIZTONSÁGOS ADATTÁROLÁSI MÓDSZER ÉS TESZTKÖRNYEZET KIDOLGOZÁSA

IV.4. FELHŐ ALAPÚ BIZTONSÁGOS ADATTÁROLÁSI MÓDSZER ÉS TESZTKÖRNYEZET KIDOLGOZÁSA infokommunikációs technológiák IV.4. FELHŐ ALAPÚ BIZTONSÁGOS ADATTÁROLÁSI MÓDSZER ÉS TESZTKÖRNYEZET KIDOLGOZÁSA BEVEZETÉS Mit jelent, hogy működik a felhő alapú adattárolás? Az adatainkat interneten elérhető

Részletesebben

Tanúsítványok kezelése az ibahir rendszerben

Tanúsítványok kezelése az ibahir rendszerben Tanúsítványok kezelése az ibahir rendszerben ibahir authentikáció: 1. Az ibahir szerver egy hitelesítő szolgáltató által kibocsátott tanúsítvánnyal azonosítja magát a kliensnek és titkosított csatornát

Részletesebben

A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk

A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk 1. Kódelmélet Legyen X = {x 1,..., x n } egy véges, nemüres halmaz. X-et ábécének, elemeit betűknek hívjuk. Az X elemeiből képzett v = y 1... y m sorozatokat X feletti szavaknak nevezzük; egy szó hosszán

Részletesebben