1. ZH X A rendelkezésre álló munkaidő 90 perc.

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. ZH X A rendelkezésre álló munkaidő 90 perc."

Átírás

1 1. ZH 011. X Kérjük, minden résztvevő nevét, NEPTUN kódját, gyakorlatvezetője nevét és a gyakorlatának időpontját a dolgozat minden lapjának jobb felső sarkában olvashatóan és helyesen tüntesse fel, mert ennek hiányában a dolgozatot nem értékeljük. Írószeren és összetűzött papírokon kívül semmilyen segédeszköz használata sem megengedett, így tilos az írott vagy nyomtatott jegyzet, a számoló- és számítógép ill. mobiltelefon használata, továbbá a dolgozatírás közbeni együttműködés. Minden egyes feladat helyes megoldása pontot ér. A dolgozatok értékelése: 0- pont: 1, - pont:, -1 pont:, -0 pont:, 1-0 pont:. A puszta (indoklás nélküli) eredményközlést nem értékeljük. A megindokolt részeredményért arányos pontszám jár. Az évvégi jegy kiszámításakor a két (legalább elégséges) zh összesített pontszámát 1. A Mikulás öt pendrive-ot hozott, amik egyenként 1,,, és gigabájtosak. Öcsénkkel kell ezeken megosztoznunk. Hányféleképp tehetjük ezt meg, ha a mi memóriáink kapacitásainak összegének testvérünkéiéiénél mindenképpen nagyobbnak kell lennie, és tökéletesen igazságosnak érezzük azt is, ha az összes eszköz nekünk jut?. Rajzoljuk le azt a G gráfot (pontosabban annak egy diagramját), aminek szomszédossági mátrixa A(G) = Legkevesebb hány élt kell G-be behúzni az egyszerűség megtartásával úgy, hogy reguláris gráfot kapjunk?. Tekintsük az (1,,,,,,, ), (,,,,,,, 8) és (1,,, 8, 1,,, 8) Prüferkódú fákat. Alkossák a G gráf élhalmazát ezen fák élei azzal, hogy ha két csúcs k fában szomszédos, akkor G-ben az adott élnek k párhuzamos példánya található. Van-e G-nek Euler-köre?. Az ábrán látható G gráfnak megjelöltük egy F feszítőfáját és a feszítőfa éleinek súlyait. Határozzuk meg, mennyi lehet a G gráf feszítőfán kívüli éleinek minimális összsúlya akkor, ha F minimális súlyú feszítőfája G-nek. a f b c e 1. Az F fa Prüfer kódja (1,,,,,,,,, ). Hány éle van F komplementerének?. Tegyük fel, hogy a 1 pontú K 1 teljes gráf éleit -féle színnel színeztük ki úgy, hogy minden egyes színre az adott színnel színezett élek reguláris gráfot alkotnak K 1 csúcsain. Igazoljuk, hogy kiválasztható két szín a közül úgy, hogy az e két színnel színezett élekből található K 1 -nak Hamilton köre. d Gyakorlatvezetők és gyakorlatok Ács Bernadett (K IB 18, Bérczi Kristóf (K, E 0), Csákány Rita (K-Cs, IB 1), Drótos Márton (K, IB 18, J 0), Faller Beáta (K, IB 1), Göbölös-Szabó Julianna (K-Cs, IB 10), Kőrösi Attila (Cs, IB 11), Mihálka Éva Zsuzsanna (Cs, IB 18), Recski András (K, IE 1.1), Salánki Ágnes (K, E 0), Soltész Dániel (Cs, IB 1), Szolnoki Lénárd (Cs, IB 1), Varga Kitti (K, IB 10)

2 . ZH 011. XI Kérjük, minden résztvevő nevét, NEPTUN kódját és gyakorlatvezetője nevéta dolgozat minden lapjának jobb felső sarkában olvashatóan és helyesen tüntesse fel, mert ennek hiányában a dolgozatot nem értékeljük. Minden egyes feladat helyes megoldása pontot ér. A dolgozatok értékelése: 0- pont: 1, - pont:, -1 pont:, -0 pont:, 1-0 pont:. A puszta (indoklás nélküli) eredményközlést nem értékeljük. A megindokolt részeredményért 1. Legyen a G = (V, E) gráf csúcshalmaza V = {, 8,..., }, él pedig akkor fusson két csúcs között, ha indexeik relatív prímek: E = {ij : (i, j) = 1}. Rajzoljuk le G diagramját, indítsunk a csúcsból szélességi bejárást, valamint határozzuk meg a bejáráshoz tartozó fát és a többi csúcsnak a csúcstól való távolságát.. Az alábbi ábrán látható G gráfban az élekre írt számok az egyes élek kapacitását jelentik. Határozzunk meg az összes irányított st utat lefogó élhalmazok közül egy minimális összkapacitásút.. A villamosmérnök-hallgatók számára beüzemeltek néhány számítógépet. Minden hallgatónak legalább gépre van belépési jogosultsága, minden gépen pedig legfeljebb hallgatónak van felhasználói fiókja. Igaz-e, hogy ekkor bizonyosan leültethetünk minden villamosmérnökhallgatót egy-egy különböző számítógéphez úgy, hogy mindenki olyan géphez üljön, amire be tud lépni?. Tegyük fel, hogy G olyan gráf, amire (G) és G-nek legfeljebb a harmadfokú csúcsa van. Bizonyítsuk be, hogy 1 t G síkbarajzolható. b. Határozzuk meg a fenti ábrán látható PERT probléma legrövidebb végrehajtási idejét, és állapítsuk meg, mik a kritikus tevékenységek. 1 s c d 8 1 e 8 1 f g h. Tegyük fel, hogy az n > egész szám pozitív osztóinak összege σ(n) = n + 1. Mutassuk meg, hogy n szomszédainak pozitív osztói összegére σ(n 1) + σ(n + 1) n + teljesül. Gyakorlatvezetők és gyakorlatok Ács Bernadett (K IB 18, Bérczi Kristóf (K, E 0), Csákány Rita (K-Cs, IB 1), Drótos Márton (K, IB 18, J 0), Faller Beáta (K, IB 1), Göbölös-Szabó Julianna (K-Cs, IB 10), Kőrösi Attila (Cs, IB 11), Mihálka Éva Zsuzsanna (Cs, IB 18), Recski András (K, IE 1.1), Salánki Ágnes (K, E 0), Soltész Dániel (Cs, IB 1), Szolnoki Lénárd (Cs, IB 1), Varga Kitti (K, IB 10)

3 ELSŐ pótzh 011. XII Kérjük, minden résztvevő nevét, NEPTUN kódját és gyakorlatvezetője nevéta dolgozat minden lapjának jobb felső sarkában olvashatóan és helyesen tüntesse fel, mert ennek hiányában a dolgozatot nem értékeljük. Minden egyes feladat helyes megoldása pontot ér. A dolgozatok értékelése: 0- pont: 1, - pont:, -1 pont:, -0 pont:, 1-0 pont:. A puszta (indoklás nélküli) eredményközlést nem értékeljük. A megindokolt részeredményért 1. Hányféleképpen lehet tombolán kisorsolni különböző nyereményt részvevő között? Hány olyan sorsolás van, ahol minden részvevő legalább egy nyereményt kap? (Két sorsolás akkor különbözik, ha van olyan nyereménytárgy, amit a két sorsoláson nem ugyanaz nyer meg.). A tankör hallgatójából összesen -en nem írták meg az első ZH-t SzA ill. Analízis tárgyak valamelyikéből. Míg SzA-ból 1, addig Analízisből 1 hallgató nem írt dolgozatot. Az érintett hallgatóból hányféleképpen választhatnak olyan -tagú panaszbizottságot, hogy abban olyan hallgató legyen aki nem írta meg az egyes ZH-kat?. Az egyszerű, irányítatlan, -reguláris G gráf szomszédossági mátrixának bizonyos elemei kitörlődtek, csupán az alábbi maradt meg: A(G) =? 1????????? 1? 1? 1 0??? 1 0 1?????? 1??? 1 1? Rajzoljuk le a G gráfot (pontosabban annak egy diagramját).. Tegyük fel, hogy az F fának csak első- és hatodfokú csúcsai vannak, szám szerint n 1 ill. n. Igazoljuk, hogy n 1 = n +.. Keressük meg a fenti mátrix melletti ábrán látható gráf egy minimális súlyú feszítőfáját és adjuk meg a Prüfer-kódját.. Tudjuk, hogy a csúcsú, egyszerű G gráf maximális fokszáma (G) = 0, másrészt G-nek van Euler-köre. Mutassuk meg, hogy a G komplementergráfnak is van Euler-köre. 8

4 MÁSODIK pótzh 011. XII Kérjük, minden résztvevő nevét, NEPTUN kódját és gyakorlatvezetője nevéta dolgozat minden lapjának jobb felső sarkában olvashatóan és helyesen tüntesse fel, mert ennek hiányában a dolgozatot nem értékeljük. Minden egyes feladat helyes megoldása pontot ér. A dolgozatok értékelése: 0- pont: 1, - pont:, -1 pont:, -0 pont:, 1-0 pont:. A puszta (indoklás nélküli) eredményközlést nem értékeljük. A megindokolt részeredményért 1. Legyen G teljes gráf a {v, v, v, v, v 8 } ponthalmazon és a v i v j él hossza legyen l(v i v j ) = (i,j). Határozzuk meg a v csúcs távolságát G többi csúcsától. Megváltoztatható-e a v v 8 él hossza úgy, hogy v és v távolsága legyen?. A G = (V, E) irányított gráf csúcshalmaza V = {v 1, v 1, v 1, v 1, v 1 } és i < j esetén a v i v j él kapacitása c(v i v j ) = (i, j), más éle G-nek nincs. Ha a v 1 v 1 él kapacitását tetszés szerint megváltoztathatjuk, mennyi lehet a v 1 -ből v 1 -ba vezető maximális folyam nagysága? Mekkora az a legkisebb kapacitás a v 1 v 1 élen, amire ez a maximális folyamnagyság elérhető?. Tekintsük a k-szorosan pontösszefüggő G gráf két diszjunkt példányát és kössük össze a két példányban az egymásnak megfelelő pontokat. Bizonyítsuk be, hogy az így kapott G gráf (k+1)-szeresen összefüggő.. Tegyük fel hogy iskolás levelez egymással úgy, hogy mindegyiküknek pontosan 8 levelezőpartnere van. Megvalósítható-e, hogy a levelezéshez 8-féle színű borítékot használnak úgy, hogy mindenki különböző színű borítékot használjon az egyes levelezőpartnereihez, és bármely két levelezőtárs között mindkét irányú levélforgalomhoz azonos színű borítékot használjanak?. Síkbarajzolható-e az ábrán látható gráf?. Számítsuk ki a! + és! + számok legnagyobb közös osztóját. Gyakorlatvezetők és gyakorlatok Ács Bernadett (K IB 18, Bérczi Kristóf (K, E 0), Csákány Rita (K-Cs, IB 1), Drótos Márton (K, IB 18, J 0), Faller Beáta (K, IB 1), Göbölös-Szabó Julianna (K-Cs, IB 10), Kőrösi Attila (Cs, IB 11), Mihálka Éva Zsuzsanna (Cs, IB 18), Recski András (K, IE 1.1), Salánki Ágnes (K, E 0), Soltész Dániel (Cs, IB 1), Szolnoki Lénárd (Cs, IB 1), Varga Kitti (K, IB 10)

5 ELSŐ ZH pótlása 011. XII Kérjük, minden résztvevő nevét, NEPTUN kódját a dolgozat minden lapjának jobb felső sarkában olvashatóan és helyesen tüntesse fel, mert ennek hiányában a dolgozatot nem értékeljük. Minden egyes feladat helyes megoldása pontot ér. A dolgozatok értékelése: 0- pont: 1, - pont:, -1 pont:, -0 pont:, 1-0 pont:. A puszta (indoklás nélküli) eredményközlést nem értékeljük. A megindokolt részeredményért 1. A 1 fős villamosmérnök-évfolyam hallgatói -féle tárgyat hallgatnak, mindegyiket ugyanannyian vették fel, minden hallgató felvett legalább egy tárgyat. Senki sincs, aki mind a négy tárgyat felvette, de bármely három tárgyhoz pontosan egy olyan hallgató van, aki azok mindegyikére jár. Ezen kívül bárhogyan is választunk két tárgyat a négyből, pontosan olyan hallgató van, aki mindkettőt felvette. Hány villamosmérnök-hallgató jár az egyes kurzusokra?. Hét villamosmérnök-hallgatóról tudjuk, hogy közülük bármely kettőnek van közös beszédtémája, mégpedig lehetséges téma (táplálkozás, hardware, ellentétes nem) valamelyike. (Lehetséges pl, hogy a és b ill. a és c témája megegyezik, de különbözik b és c közös témájától.) Igazoljuk, hogy kiválasztható a hallgató közül néhány (de legalább ) olyan, akik körbeülhetnek úgy egy kerek asztalt, hogy az egymás mellett ülőknek ugyanaz legyen a közös témájuk.. Összefüggő-e az a G gráf, aminek a szomszédossági mátrixa az alábbi? A(G) = Legyen F az ábrán látható G gráf egy minimális súlyú feszítőfájának élhalmaza. Van-e a G F gráfnak Euler-köre?. Legyen G olyan véges gráf, aminek C egy Hamilton köre. Tegyük fel, hogy a G C gráfnak van Euler-köre. Mutassuk meg, hogy ekkor a G gráfnak is van Euler-köre.. Legyen G a (,,,,,,, ) Prüfer-kódú F fa komplementere. Vane G-nek Hamilton-köre?

6 MÁSODIK ZH pótlása 011. XII Kérjük, minden résztvevő nevét, NEPTUN kódját a dolgozat minden lapjának jobb felső sarkában olvashatóan és helyesen tüntesse fel, mert ennek hiányában a dolgozatot nem értékeljük. Minden egyes feladat helyes megoldása pontot ér. A dolgozatok értékelése: 0- pont: 1, - pont:, -1 pont:, -0 pont:, 1-0 pont:. A puszta (indoklás nélküli) eredményközlést nem értékeljük. A megindokolt részeredményért 1. Legyen G = (V, E) gráf csúcshalmaza V = {11, 1, 1,, }, él pedig akkor fusson két csúcs között, ha azok relatív prímek: E = {ij : (i, j) = 1}. Határozzuk meg G-nek egy a 1 csúcsból indított szélességi bejárásához tartozó fáját! A G gráfot úgy kaptuk, hogy G-hez hozzávettünk egy új v csúcsot, amit G bizonyos csúcsaival összekötöttünk. Tudjuk, hogy G -ben a 1 és v csúcsok távolsága. Határozzuk meg G -t!. Határozzuk meg a mellékelt ábrán látható hálózatban a maximális stfolyam nagyságát.. Legyen a G = (V, E) gráf csúcshalmaza V = {v 1, v, v, v, v, v }, élei pedig E = {v i v j : (i+j) (i j) Z}. Határozzuk meg a ν(g), τ(g), α(g), ρ(g) paramétereket.. Határozzuk meg a mellékelt ábrán látható PERT probléma legrövidebb végrehajtási idejét, és állapítsuk meg, mik a kritikus tevékenységek. 1 s b 1 s t 1 0 a 1 t c d 1 e f g h. Tegyük fel, hogy a G egyszerű gráfnak 11 csúcsa van és síkbarajzolható. Igazoljuk, hogy a G komplementergráf nem síkbarajzolható.. Határozzuk meg, hogy a szám kettes számrendszerben felírt alakjának mi az utolsó hat jegye!

SzA X/XI. gyakorlat, november 14/19.

SzA X/XI. gyakorlat, november 14/19. SzA X/XI. gyakorlat, 2013. november 14/19. Színezünk és rajzolunk Drótos Márton drotos@cs.bme.hu 1. Mennyi a következő gráfok kromatikus száma: C 4, C 5, K 2,4, alábbi 2 gráf χ(c 4 ) = 2, páros hosszú

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2010.03.2. 1. Jelölje B n azt a gráfot, melynek csúcsai az n hosszúságú 0 1 sorozatok, két sorozat akkor és csak akkor van összekötve éllel, ha pontosan egy vagy két helyen különböznek. Adjuk

Részletesebben

SzA II. gyakorlat, szeptember 18.

SzA II. gyakorlat, szeptember 18. SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz

Részletesebben

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3 Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó

Részletesebben

Gráfelméleti alapfogalmak

Gráfelméleti alapfogalmak 1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont

Részletesebben

Feladatok. 7. Tíz rabló a kincseit egy több lakattal lezárható ládában gyűjti. Az egyes lakatokat egy-egy

Feladatok. 7. Tíz rabló a kincseit egy több lakattal lezárható ládában gyűjti. Az egyes lakatokat egy-egy Feladatok 1. Hányféleképpen állhat sorba n fiú és n lány úgy, hogy azonos neműek ne álljanak egymás mellett?. Hány olyan hétszámjegyű telefonszám készíthető, amiben pontosan két különböző számjegy szerepel,

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

Diszkrét matematika II. feladatok

Diszkrét matematika II. feladatok Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden

Részletesebben

A számítástudomány alapjai

A számítástudomány alapjai A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Gráfelméleti feladatok

Gráfelméleti feladatok Gráfelméleti feladatok Az informatika elmélete A sorozat kötetei: Rónyai Ivanyos Szabó: Algoritmusok Bach Iván: Formális nyelvek Katona Recski Szabó: A számítástudomány alapjai Buttyán Vajda: Kriptográfia

Részletesebben

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára 3. Feladatsor Gyakorlatvezetõ: Hajnal Péter 2011. november 2-ától 1. Párosítások gráfokban 1.1. Alapok 1. Feladat. (i) Bizonyítsuk be, hogy

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 12. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! 2. Írjuk fel gyökjelekkel a következő hatványokat! 3. Az ötnek hányadik hatványa a következő kifejezés?

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y. Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben

(1) (3) A dolgozatra kérjük jól olvashatóan felírni a következő adatokat: név, Neptun-kód, Neptun szerinti gyakorlatvezető

(1) (3) A dolgozatra kérjük jól olvashatóan felírni a következő adatokat: név, Neptun-kód, Neptun szerinti gyakorlatvezető evezetés a számításelméletbe II. Zárthelyi feladatok 2011. március 17. 1. Legkevesebb hány élt kell hozzávenni az alábbi gráfhoz ahhoz, hogy a kapott gráfban legyen Hamilton-kör? 2. izonyítsuk be, hogy

Részletesebben

Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése

Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése Készítette: Bognár Gergő Témavezető: Veszprémi Anna Eötvös Loránd Tudományegyetem Informatikai Kar Algoritmusok és Alkalmazásaik Tanszék Budapest,

Részletesebben

Algoritmuselmélet 18. előadás

Algoritmuselmélet 18. előadás Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

Gráfelmélet jegyzet 2. előadás

Gráfelmélet jegyzet 2. előadás Gráfelmélet jegyzet 2. előadás Készítette: Kovács Ede . Fák Tétel. : A következők ekvivalensek a T gráfra: (i) T összefüggő, e E. T e már nem összefüggő (ii) T összefüggő és körmentes. (iii) x, y V T!

Részletesebben

2. MINTAFELADATSOR KÖZÉPSZINT

2. MINTAFELADATSOR KÖZÉPSZINT Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 2. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló 1. Mennyi az eredmény 15+17 15+17 15+17=? A) 28 B) 35 C) 36 D)96 2. Melyik szám van a piramis csúcsán? 42 82 38 A) 168 B) 138

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 00/009-es tanév első (iskolai) forduló haladók II.

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen,

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen, MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc Debrecen, 2017. 01. 03. Név: Neptun kód: Megjegyzések: A feladatok megoldásánál használja a géprajz szabályait, valamint a szabványos áramköri elemeket.

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása Gráfelmélet II. Gráfok végigjárása DEFINÍCIÓ: (Séta) A G gráf egy olyan élsorozatát, amelyben a csúcsok és élek többször is szerepelhetnek, sétának nevezzük. Egy lehetséges séta: A; 1; B; 2; C; 3; D; 4;

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók

Részletesebben

8. OSZTÁLY ; ; ; 1; 3; ; ;.

8. OSZTÁLY ; ; ; 1; 3; ; ;. BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat

Részletesebben

Közösségek keresése nagy gráfokban

Közösségek keresése nagy gráfokban Közösségek keresése nagy gráfokban Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2011. április 14. Katona Gyula Y. (BME SZIT) Közösségek

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY

46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY 6. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató NEGYEDIK OSZTÁLY 1. Írd be az 1, 2, 5, 6, 7, 8, 9, 10, 11 és 12 számokat a kis körökbe úgy, hogy a szomszédos számok különbsége

Részletesebben

Kombinatorika A A B C A C A C B

Kombinatorika A A B C A C A C B . Egy ló, egy tehén, egy cica, egy nyúl és egy kakas megkéri a révészt, hogy vigye át őket a túlsó partra. Hányféle sorrendben szállíthatja át őket a révész, ha egyszerre vagy egy nagy testű állatot, vagy

Részletesebben

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,

Részletesebben

Síkba rajzolható gráfok

Síkba rajzolható gráfok Síkba rajzolható gráfok Elmélet Definíció: egy G gráfot síkba rajzolható gráfnak nevezünk, ha az felrajzolható a síkra anélkül, hogy az élei metsszék egymást. Egy ilyen felrajzolását a G gráf síkbeli reprezentációjának

Részletesebben

Minden feladat teljes megoldása 7 pont

Minden feladat teljes megoldása 7 pont Telefon: 7-8900 Fax: 7-8901 4. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. 9 kg mogyorót vásároltunk,

Részletesebben

2. csoport, 8. tétel: Gráfok

2. csoport, 8. tétel: Gráfok Utolsó javítás: 2009. február 16. Áttekintés A gráfelmélet születése 1 A gráfelmélet születése 2 Csúcsok és élek Fokszámok Komplementer Izomorfia 3 Séták, utak, körök, összefüggőség Gráfbejárások Fagráfok

Részletesebben

Hetedikesek levelező matematikaversenye IV. forduló

Hetedikesek levelező matematikaversenye IV. forduló Hetedikesek levelező matematikaversenye IV. forduló 1. Tudjuk, hogy A = 3 + és B =. Számítsd ki a következő értékeket: a) A + B b) A B c) d) A B Számítsuk ki A és B értékét, végezzük el a műveleteket:

Részletesebben

Gráfelméleti alapfogalmak-1

Gráfelméleti alapfogalmak-1 KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett

Részletesebben

Minden feladat teljes megoldása 7 pont

Minden feladat teljes megoldása 7 pont Postacím: 11 Budapest, Pf. 17. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. Hat futó: András, Bence, Csaba,

Részletesebben

Bonyolultságelmélet. Monday 10 th October, 2016, 17:44

Bonyolultságelmélet. Monday 10 th October, 2016, 17:44 Monday 10 th October, 2016, 17:44 NP-teljes gráfelméleti problémák Tétel A Hamilton-Út probléma NP-teljes. NP-teljes gráfelméleti problémák Tétel A Hamilton-Út probléma NP-teljes. Ötlet,,Értékválasztó

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek

Részletesebben

1. Gráfmodellek. 1.1 Königsbergi hidak (Euler, 1736)

1. Gráfmodellek. 1.1 Königsbergi hidak (Euler, 1736) 1. Gráfmodellek 1.1 Königsbergi hidak (Euler, 1736) Probléma: Königsberg mellett volt egy Pregel nevû folyó, két szigettel. A folyó két partját és a szigeteket hét híd kötötte össze. Bejárhatjuk-e volt

Részletesebben

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)} Mélységi keresés Ez az algoritmus a gráf pontjait járja be, eredményképpen egy mélységi feszítőerdőt ad vissza az Apa függvény által. A pontok bejártságát színekkel kezeljük, fehér= érintetlen, szürke=meg-

Részletesebben

A zsebrádiótól Turán tételéig

A zsebrádiótól Turán tételéig Jegyzetek egy matekóráról Lejegyezte és kiegészítésekkel ellátta: Meszéna Balázs A katedrán: Pataki János A gráfokat rengeteg életszagú példa megoldásában tudjuk segítségül hívni. Erre nézzünk egy példát:

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött

Részletesebben

6. Gráfok. 5. Bizonyítsuk be, hogy egy összefüggő gráfban mindig van olyan pont, amelynek elhagyása esetén is összefüggő marad a gráf.

6. Gráfok. 5. Bizonyítsuk be, hogy egy összefüggő gráfban mindig van olyan pont, amelynek elhagyása esetén is összefüggő marad a gráf. 6. Gráfok I. Feladatok 1. Egy országban minden városból legfeljebb három buszjárat indul, és bármely városból bármely városba eljuthatunk legfeljebb egy átszállással. (Ha két város között közlekedik buszjárat,

Részletesebben

Mérnök Informatikus. EHA kód: f

Mérnök Informatikus. EHA kód: f A csoport Név:... EHA kód:...2009-2010-1f 1. Az ábrán látható hálózatban a) a felvett referencia irányok figyelembevételével adja meg a hálózat irányított gráfját, a gráfhoz tartozó normál fát (10%), a

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály A mellékelt ábrán két egymás melletti mező számának összege mindig a közvetlen felettük lévő mezőben szerepel. Fejtsétek meg a hiányzó számokat! 96 23 24 17 A baloldali három mezőbe tartozó

Részletesebben

Számítógépek architektúrák. Architektúrák

Számítógépek architektúrák. Architektúrák Számítógépek architektúrák Architektúrák Bemutatkozom Dr. Kovács Szilveszter, egyetemi docens szkovacs@iit.uni-miskolc.hu http://www.iit.uni-miskolc.hu/~szkovacs Tel: +36 46 565-136 Informatikai Intézet

Részletesebben

XY_TANULÓ FELADATSOR 8. ÉVFOLYAM MATEMATIKA

XY_TANULÓ FELADATSOR 8. ÉVFOLYAM MATEMATIKA XY_TNULÓ FELTSOR 8. ÉVFOLYM MTEMTIK 1. feladat: akkumulátor mc006 Egy mobiltelefon akkumulátorának töltöttségi állapota a következőképpen változott két nap leforgása alatt. Habekapcsoljuk,denemhasználjuk,48óraalattmerülleteljesenatelefon.Folyamatoshasználatban

Részletesebben

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály IV. osztály 1. feladat. Ha leejtünk egy labdát, akkor az feleakkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödször 10 cm magasra pattant fel? 2. feladat.

Részletesebben

Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai

Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai 1. Hány olyan téglalap van, amelynek csúcsai az alábbi négyzetrács rácspontjaira esnek? A téglalapok oldalai vagy,,függőlegesek"

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 009/00-es tanév első (iskolai) forduló haladók II.

Részletesebben

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. 5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan

Részletesebben

3. MINTAFELADATSOR KÖZÉPSZINT

3. MINTAFELADATSOR KÖZÉPSZINT Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató

Részletesebben

SZÁMVITEL TÁRGYAK 2005/2006 1. FÉLÉV

SZÁMVITEL TÁRGYAK 2005/2006 1. FÉLÉV Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi Kar Pénzügy és Számvitel Tanszék SZÁMVITEL TÁRGYAK 2005/2006 1. FÉLÉV - az év elején kiadott követelményrendszer módosításai

Részletesebben

SzA XIII. gyakorlat, december. 3/5.

SzA XIII. gyakorlat, december. 3/5. SzA XIII. gyakorlat, 2013. december. 3/5. Drótos Márton 3 + 2 = 1 drotos@cs.bme.hu 1. Határozzuk meg az Euklidészi algoritmussal lnko(504, 372)-t! Határozzuk meg lkkt(504, 372)-t! Hány osztója van 504-nek?

Részletesebben

KockaKobak Országos Matematikaverseny osztály

KockaKobak Országos Matematikaverseny osztály KockaKobak Országos Matematikaverseny 9-10. osztály 016. november 4. A feladatsort készítette: RÓKA SÁNDOR Lektorálta: DR. KISS GÉZA Anyanyelvi lektor: ASZÓDINÉ KOVÁCS MÁRIA A válaszlapról másold ide az

Részletesebben

Analízis. 11 12. évfolyam. Szerkesztette: Surányi László. 2015. július 5.

Analízis. 11 12. évfolyam. Szerkesztette: Surányi László. 2015. július 5. Analízis 11 12. évfolyam Szerkesztette: Surányi László 2015. július 5. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó András, Kalló

Részletesebben

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK 30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK A gráfos alkalmazások között is találkozunk olyan problémákkal, amelyeket megoldását a részekre bontott gráfon határozzuk meg, majd ezeket alkalmas módon teljes megoldássá

Részletesebben

BMF, Kandó Kálmán Villamosmérnöki Kar, Híradástechnika Intézet. Aktív Szűrő Mérése - Mérési Útmutató

BMF, Kandó Kálmán Villamosmérnöki Kar, Híradástechnika Intézet. Aktív Szűrő Mérése - Mérési Útmutató Aktív Szűrő Mérése - Mérési Útmutató A mérést végezte ( név, neptun kód ): A mérés időpontja: - 1 - A mérés célja, hogy megismerkedjenek a Tina Pro nevű simulációs szoftverrel, és elsajátítsák kezelését.

Részletesebben

Ez is Hungaricum. Kovács Vera, Palotay Dorka, Pozsonyi Enik, Szabó Csaba január 27. ELTE

Ez is Hungaricum. Kovács Vera, Palotay Dorka, Pozsonyi Enik, Szabó Csaba január 27. ELTE Ez is ELTE 2013. január 27. Motiváció Tapasztalatok és célok A középiskolából kikerül diákok nagy része nem ismeri a gráfokat Vizsgálataink: A gráfok oktatásának mai helyzete Mi ennek az oka? A gráfok

Részletesebben

szemináriumi C csoport Név: NEPTUN-kód: Szabó-Bakos Eszter

szemináriumi C csoport Név: NEPTUN-kód: Szabó-Bakos Eszter 2. szemináriumi ZH C csoport Név: NEPTUN-kód: A feladatlapra írja rá a nevét és a NEPTUN kódját! A dolgozat feladatainak megoldására maximálisan 90 perc áll rendelkezésre. A helyesnek vált válaszokat a

Részletesebben

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA 26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA Az előző két fejezetben tárgyalt feladat általánosításaként a gráfban található összes csúcspárra szeretnénk meghatározni a legkisebb költségű utat. A probléma

Részletesebben

FELADATOK 1 A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY II. FÉLÉVÉHEZ (PROGRAMTERVEZŽ ÉS INFORMATIKUS BSC SZAKON)

FELADATOK 1 A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY II. FÉLÉVÉHEZ (PROGRAMTERVEZŽ ÉS INFORMATIKUS BSC SZAKON) FELADATOK 1 A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY II. FÉLÉVÉHEZ (PROGRAMTERVEZŽ ÉS INFORMATIKUS BSC SZAKON) ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest 2007-02-04 A 2. fejezet feladatai megoldva

Részletesebben

Hibajavító kódok május 31. Hibajavító kódok 1. 1

Hibajavító kódok május 31. Hibajavító kódok 1. 1 Hibajavító kódok 2007. május 31. Hibajavító kódok 1. 1 Témavázlat Hibajavító kódolás Blokk-kódok o Hamming-távolság, Hamming-súly o csoportkód o S n -beli u középpontú t sugarú gömb o hibajelzı képesség

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 17. lecke: Kombinatorika (vegyes feladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.

Részletesebben

MEMO (Middle European Mathematical Olympiad) Szoldatics József, Dunakeszi

MEMO (Middle European Mathematical Olympiad) Szoldatics József, Dunakeszi Szoldatics József: MEMO MEMO (Middle European Mathematical Olympiad) Szoldatics József, Dunakeszi A feladatmegoldó szemináriumon első részében egy rövid beszámolót fognak hallani a 010. szeptember 9. és

Részletesebben

Megoldások 9. osztály

Megoldások 9. osztály XXV. Nemzetközi Magyar Matematikaverseny Budapest, 2016. március 1115. Megoldások 9. osztály 1. feladat Nevezzünk egy számot prímösszeg nek, ha a tízes számrendszerben felírt szám számjegyeinek összege

Részletesebben

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont 2012. január 28. 8. évfolyam TMat1 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat1 A javítókulcsban feltüntetett válaszokra a megadott

Részletesebben

NULLADIK MATEMATIKA szeptember 13.

NULLADIK MATEMATIKA szeptember 13. A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember. Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható nálható. Válaszait csak az üres mezőkbe írja! A javítók

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre

Részletesebben

Gráfokról 5-8. osztályosoknak Erdős Gábor, Nagykanizsa

Gráfokról 5-8. osztályosoknak Erdős Gábor, Nagykanizsa Kistérségi tehetséggondozás Gráfokról 5-8. osztályosoknak Erdős Gábor, Nagykanizsa Az iskolai tananyagban csak a középiskolában esik szó gráfokról, holott véleményem szerint egyszerű fogalomról van szó.

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2010. október 19. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 19. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Ismerkedj a 100 tulajdonságaival! I.) Állítsd elő a 100-at a,, b, 3, c, 4, d, 5 négyzetszám összegeként!

Részletesebben

KÖTELEZŐ PROGRAM, SZÁMONKÉRÉSEK. Részletek

KÖTELEZŐ PROGRAM, SZÁMONKÉRÉSEK. Részletek KÖTELEZŐ PROGRAM, SZÁMONKÉRÉSEK Részletek FELADATOK Két zárthelyi dolgozat Önállóan kidolgozandó feladat (adatbázis alapú mintaalkalmazás készítése) A KÖTELEZŐ FELADAT A félév során kötelező programot

Részletesebben

PPKE ITK, 2014/2015 tanév. I. félév. Tantárgyi adatok és követelmények

PPKE ITK, 2014/2015 tanév. I. félév. Tantárgyi adatok és követelmények PPKE ITK, 2014/2015 tanév I. félév Tantárgyi adatok és követelmények Tantárgy neve: Óraszám: Lineáris algebra 2 óra előadás, kedd, 8-10, Simonyi terem 2 óra gyakorlat Honlap: digitus.itk.ppke.hu/~b_novak

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

Építésikivitelezés-Vállalkozás / 2: Gráftechnikai alapfogalmak VÁLLALKOZÁS. javított háttöltés

Építésikivitelezés-Vállalkozás / 2: Gráftechnikai alapfogalmak VÁLLALKOZÁS. javított háttöltés Elõadás:Folia201.doc VÁLLALKOZÁS ( tervezés - bonyolítás - változásmenedzsment ) ideiglenes földút monolit vb.támfal javított háttöltés új földtöltés régi töltés humusz teherbíró talaj Tevékenység Sz Megnevezés

Részletesebben

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y. Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 5. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

2013. május 16. MINIVERSENY Csapatnév:

2013. május 16. MINIVERSENY Csapatnév: 1. Az ábrán látható ötszög belsejében helyezzetek el 3 pontot úgy, hogy az ötszög bármely három csúcsa által meghatározott háromszög belsejébe pontosan egy pont kerüljön! El lehet-e helyezni 4 pontot ugyanígy?

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára. Ramsey-gráfok

Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára. Ramsey-gráfok Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Ramsey-gráfok Előadó: Hajnal Péter 1.hét 1. Ramsey-számok Definíció. Legyen Ram(G) = max{ω(g), α(g)} = max{ω(g), ω(g)}, azaz a legnagyobb halmaz

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály 40 rózsát el lehet-e osztani 5 lány között úgy, hogy mindegyik lánynak páratlan számú rózsa jusson? Nem lehet.(1 pont) Öt darab páratlan szám összege páratlan, a 40 páros (1 pont). Hogyan tudnátok

Részletesebben

Azonosító jel: ÉRETTSÉGI VIZSGA május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Részletesebben