33. MIKOLA SÁNDOR ORSZÁGOS KÖZÉPISKOLAI TEHETSÉGKUTATÓ FIZIKAVERSENY HARMADIK FORDULÓ 9. osztály Gyöngyös, május 4-6. Megoldások.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "33. MIKOLA SÁNDOR ORSZÁGOS KÖZÉPISKOLAI TEHETSÉGKUTATÓ FIZIKAVERSENY HARMADIK FORDULÓ 9. osztály Gyöngyös, május 4-6. Megoldások."

Átírás

1 33. MIKOLA SÁNDOR ORSZÁGOS KÖZÉPISKOLAI TEHETSÉGKUTATÓ FIZIKAVERSENY HARMADIK FORDULÓ 9. osztály Gyöngyös, 4. ájus 4-6. Megoldások Gináziu. Egy adott pillanatban két őhold halad el egyás ellett. Az elhaladás pillanatában sebességük erıleges a Földet a őholdakkal összekötı egyenesre. A találkozás pillanatában táolságuk a Földtıl 5 k. Az egyik őhold keringési ideje 5 nap, a ásiké 8 nap. a) Mekkora a őholdaknak a aiális és a iniális táolsága a Földtıl? b) Milyen táol annak a Földtıl, aikor sebességük éppen párhuzaos azzal az egyenessel, aely a találkozás pillanatában összekötötte a őholdakat a Földdel. c) Leghaarabb ennyi idı úla lesz a két őhold a legtáolabb egyástól? Mekkora ez a táolság? (A őholdak töege jelentéktelen. A Hold 7,3 nap alatt kerüli eg a Földet, átlagos táolsága a Földtıl k.) (Kiss Miklós) Megoldás: A kis töegő őholdak Kepler elsı törénye szerint ellipszis pályán keringenek a Föld körül. A Hold a Föld- Hold rendszer töegközéppontja körül kering ellipszis pályán. Becslésként úgy esszük, intha a Hold Föld körül keringene. Ezzel a hiba kisebb, int,3% (/8 rész). Az ellipszis adatai közötti összefüggések: din a c, ebbıl c a din a d a + c, ebbıl és az elızıbıl d d c, illete a in d + d a a in A egadott keringési idıkbıl és a Hold pálya adatai alapján a őholdak pályájának nagytengelye Kepler III. törényébıl száolható: a 3 T 3 ah T 3 3 T a a H H TH Ezt alkalaza a két őholdra és a Holdra adódnak a nagytengelyek értékei: a I 3 95 k, illete a II k. a) Ebbıl és a kiindulási táolságból ( R 5 k ) látható, hogy találkozásukkor, az elsı őhold pályáján Földtáolban, a ásodik pályáján Földközelben an. Ezek alapján az elsı őhold aiális táolsága d a a + c 5 k, a iniális táolsága d a c a R 978 k. in

2 A ásodik őhold iniális táolsága d in a c 5 k, a aiális táolság d a a + c a R k. (Az ábra ne éretarányos!) b) A táolságok egegyeznek a pályák fél nagytengelyének hosszáal, azaz az átlagos táolsággal, tehát az elsı őhold 3 95 k, a ásodik k táol lesz a Földtıl. c) A két őhold legközelebb 4 nap úla halad el egyás ellet. Legtáolabb akkor lesznek, aikor az elsı őhold isszatér a találkozás helyére, íg a ásodik éppen pályája ellentétes pontjában lesz (indkettı Földtáolban). Ez húsz nap úla fog beköetkezni. Ugyanis az elsı őhold 5 naponta isszatér, a ásodik őhold a találkozás után négy nappal az ellentétes pontban lesz, aztán találkozástól száíta nap úla, nap úla stb. lesz az ellentétes pontban. Ekkor a táolságuk: d d I + d 8689 k. Az adatok és eredények táblázata: a II a Alap T a d in d a c b Hold 7, I. 5, II. 8, a. tá Egy r sugarú, rögzített félgöbfelület peree felett h agasságban egy kisérető testet tartottunk, ajd elengedtük. Ezt köetıen a félgöb aljában centrálisan és tökéletesen rugalasan ütközött egy ásik kisérető testtel. Ezután indkét test a félgöb pereéig eelkedett. (A súrlódást és a közegellenállást hagyjuk figyelen kíül!) Mekkora olt h értéke? (Suhajda János) Megoldás. Az ütközést egelızı folyaatra felírható: g ( h + r), innen g ( h + r) () A rugalas ütközésre felírható a lendület-egaradás és a echanikai energia-egaradás törénye: u + u () + u + u, (3) ugyanis, ha a félgöb aljáról indkét test a félgöb pereéig csúszik, szétpattanáskor az ütközés utáni kezdısebességüknek eg kell egyezniük.

3 A () és (3) egyenletekbıl eghatározható a két test töegének aránya, ahonnan: 3. (4) Osszuk el ui. a () és (3) egyenleteket -gyel, ajd jelöljük az / arányt k-al: u + ku u + ku. Az elsıt négyzetre eele és a sebességnégyzet két kifejezését tée: u ku + u u + ku. Minden tagot u -tel oszta: k + k + k, ahonnan k 3. A echanikai energia egaradásának törényét ost a kezdı- és égállapotra írjuk fel, indegyikben pillanatnyi nyugaloban annak a testek, azaz a ozgási energia zérus. A helyzeti energia -szintjét együk a félgöb aljánál: ( ) g h + r gr + gr (5) Felhasznála (4)-et ez (g-el aló egyszerősítés után) így írható: h + r r + 3 r, ahonnan a félgöb pereétıl száított indítási agasság Ilyen agasból kellett leejteni a testet. h 3r. 3. Egy kilöı szerkezetbıl függılegesen felfelé 6 /s sebességgel kilıtt 8 kg töegő robbanó löedék pályájának felszálló ága félagasságában két darabra robbant szét. Ennek köetkeztében az M kg-os darab a pálya egyenesére erıleges, I Ns nagyságú ipulzust (lendületet) kapott. Milyen táol lesznek egyástól a darabok, aikor indkét rész a talajba csapódik? (A légellenállástól tekintsünk el.) (Holics László) Megoldás. A jelenség akkor írható le a legkönnyebben, ha beülünk a löedék töegközéppontjáal együtt ozgó koordinátarendszerbe. Ekkor szétrobbanás után is áltozatlanul függıleges hajításnak egfelelı ozgást égez rendszerünk, ert ízszintes erı hiányában a rendszer töegközéppontja úgy ozog, intha ne robbant olna szét a löedék. Miel a robbanáskor ízszintes lendületet kapott az M töegő rész a ásik, töegő résztıl (és ugyanekkora, ellentétes irányút az töegő M töegőtıl), indkét repesz és a töegközéppont is egyaránt azonos g gyorsulással eelkedik, ajd esik (szabad ozgást égeznek a graitációs ezıben), ezért egyáshoz képest ne gyorsulnak, azaz ebben a koordinátarendszerben egyenes onalú egyenletes ozgást égeznek. A talajról néze a függıleges hajítás csak annyiban érdekes, hogy a pálya agasságát és az idıadatokat eg tudjuk határozni belıle. A lendület egaradása a (pillanatszerő) robbanás után: MV I, innen egyrészt a nagyobbik darab sebessége: I Ns MV I V, M kg s ásrészt a kisebbik repesz sebessége: M kg V. 8 kg kg s s 3

4 Együtt ozgó koordinátarendszerünkben tehát egyenes onalú egyenletes ozgással táolodnak egyástól a darabok, és t idı úla ( ) d + V t esszire kerülnek. Meghatározandó tehát a t idı. Itt ár a talajhoz rögzített rendszerbıl kaphatjuk eg a szükséges adatokat. A töegközéppont és a szilánkok hajítási ideje egegyezik. (Ez utóbbiak ferde hajítást égeznek, ez azonban ne érint inket.) A függıleges hajítás teljes ideje: 6 s Thaj s. g s A szétrobbanásig (a pálya félagasságáig) eltelt idıt egadó egyenlet: ha t gt, ahol az eelkedés agassága: h a. g Ezzel egyenletünk az idıre: Rendeze: Nuerikusan: dienziók nélkül: Ennek egoldása: t gt. 4g gt. t + gt t 4g + g 36 t 6 t + s, s s s t t + 8. ± 4 8,4 s t.,757 s A nagyobbik adat a leszálló ág félagasságáig eltelt idıt, a kisebbik a felszálló ágét jelenti. A robbanástól a talajra érkezésig eltelt idı tehát: t T haj t s,747 s,4 s. A robbanástól száíta ennyi idı alatt érnek (egyszerre) a részek a talajra, ennyi idı alatt egyástól táolságra kerültek. d ( + V ) t +,4 s s s 37, A tényleges ozgás a talajról néze 4

5 A égeredényt sokkal egyszerőbben is egkaphatjuk! Az eelkedési agasság eghatározása is feleslegessé álik, ha észreesszük, hogy a függıleges hajítás agasságának az idı függényében egrajzolt képe szietrikus! A legutolsó ásodfokú egyenlet két egoldása közül a nagyobbik közetlenül egadja a robbanástól a talajra érésig eltelt idıt! Ui., int az ábra utatja, a kilöéstıl a leszálló ág félagasságáig eltelt idı (a egoldás nagyobbik értéke) éppen a robbanástól a földet érésig eltelt idıel egyenlı, tehát az egyenlet nagyobbik értékő egoldása az a keresett idı, aiel a relatí sebességet szoroznunk kell, hogy a repeszek közti táolságot egkapjuk! 4. Valaely, ízszintes síkon nyugó M töegő, könnyen gördülı kiskocsi platójára sebességgel rácsúszik egy töegő, elhanyagolható érető test az ábra szerint. A két test között µ tényezıjő súrlódás lép fel. Miniálisan ekkora legyen a kiskocsi L hossza, hogy a test azon ég egálljon? (Adatok: M 5 kg; kg; 6 /s; µ,7.) (Dr. Wiedeann László) Megoldás. Felírjuk a rendszerre a unkatételt a kezdı- és égállapot közötti szakaszra, alaint az ipulzus egaradását, iel külsı erık eredıje nulla. A unkatétel: µ g ( ) ( ) M µ g L M + M k, () ahol k a kis test kocsihoz iszonyított egállásakor felett, a kocsial közös sebessége. Az ipulzus (lendület) egaradása: M () ( ) + k k. ( + M ) ()-t ()-be íra: Rendeze: Adatainkkal: µ g µ g L M M + M + ( ) ( ) ( + M ) M L µg M. ( + ) 6 L 5 kg,7 ( kg 5 kg) + s s,4.. 5

6 33. MIKOLA SÁNDOR ORSZÁGOS KÖZÉPISKOLAI TEHETSÉGKUTATÓ FIZIKAVERSENY HARMADIK FORDULÓ 9-ik osztály Gyöngyös, 4. ájus 4-6. Szakközépiskola. Egy 3 c, és egy 4 c hosszú fonal egy-egy égét a ennyezeten rögzítjük, egyástól 5 c táolságban. Mindkét fonál ásik égét egy pici, dkg töegő testhez erısítjük. a) Mekkora erık ébrednek a fonalakban? b) A hosszabb fonalat elégetjük. Mekkora erı ébred a ásik fonálban abban a pillanatban, aikor az éppen függıleges. (Sion Péter) Megoldás: Adatok: l 3 c, l 4 c, l 5 c,, kg. a) A fonalak egy derékszögő hároszöget határoznak eg, iel a hosszak (3, 4, 5) pitagorászi száhárast alkotnak. A nyugaloban léı testre ható erık eredıje nulla, tehát az erık (F, F, g) is egy derékszögő hároszöget határoznak eg. A két hároszög hasonló, ezért a egfelelı oldalaik aránya egyenlı. Így 4 F : N 4:5 F N,8 N, 5 és 3 F : N 3 :5 F N,6 N. 5 b) Aikor az l hosszú fonalat égetjük el, a test h 4 c-rel an a plafon alatt. (A derékszögő hároszög területét kétféleképen is felírhatjuk: l h l l l l h 4 c.) l Az energiaérleg segítségéel ki tudjuk fejezni a test sebességének négyzetét, aikor a fonál éppen függıleges: g ( l h) g ( l h) A testre írjuk fel a dinaika alapegyenletét, aikor a fonál függıleges: 6

7 F a cp K g l ( l h) g K g + g 3 l K 4 N.. Egy kilöı szerkezetbıl függılegesen felfelé 6 /s sebességgel kilıtt 8 kg töegő robbanó löedék pályájának felszálló ága félagasságában két darabra robbant szét. Ennek köetkeztében az M kg-os darab a pálya egyenesére erıleges, I Ns nagyságú ipulzust (lendületet) kapott. Milyen táol lesznek egyástól a darabok, aikor indkét rész a talajba csapódik? (A légellenállástól tekintsünk el.) (Holics László) Megoldás. A jelenség akkor írható le a legkönnyebben, ha beülünk a löedék töegközéppontjáal együtt ozgó koordinátarendszerbe. Ekkor szétrobbanás után is áltozatlanul függıleges hajításnak egfelelı ozgást égez rendszerünk, ert ízszintes erı hiányában a rendszer töegközéppontja úgy ozog, intha ne robbant olna szét a löedék. Miel a robbanáskor ízszintes lendületet kapott az M töegő rész a ásik, töegő résztıl (és ugyanekkora, ellentétes irányút az töegő M töegőtıl), indkét repesz és a töegközéppont is egyaránt azonos g gyorsulással eelkedik, ajd esik (szabad ozgást égeznek a graitációs ezıben), ezért egyáshoz képest ne gyorsulnak, azaz ebben a koordinátarendszerben egyenes onalú egyenletes ozgást égeznek. A talajról néze a függıleges hajítás csak annyiban érdekes, hogy a pálya agasságát és az idıadatokat eg tudjuk határozni belıle. A lendület egaradása a (pillanatszerő) robbanás után: MV I, innen egyrészt a nagyobbik darab sebessége: I Ns MV I V, M kg s ásrészt a kisebbik repesz sebessége: h l M kg V. 8 kg kg s s Együttozgó koordinátarendszerünkben tehát egyenes onalú egyenletes ozgással táolodnak egyástól a darabok, és t idı úla ( ) d + V t esszire kerülnek. Meghatározandó tehát a t idı. Itt ár a talajhoz rögzített rendszerbıl kaphatjuk eg a szükséges adatokat. A töegközéppont és a szilánkok hajítási ideje egegyezik. (Ez utóbbiak ferde hajítást égeznek, ez azonban ne érint inket.) A függıleges hajítás teljes ideje: 6 s Thaj s. g s A szétrobbanásig (a pálya félagasságáig) eltelt idıt egadó egyenlet: ha t gt, 7

8 ahol az eelkedés agassága: Ezzel egyenletünk az idıre: Rendeze: Nuerikusan: dienziók nélkül: Ennek egoldása: h a. g t gt. 4g gt. t + gt t 4g + g 36 t 6 t + s, s s s t t + 8. ± 4 8,4 s t.,757 s A nagyobbik adat a leszálló ág félagasságáig eltelt idıt, a kisebbik a felszálló ágét jelenti. A robbanástól a talajra érkezésig eltelt idı tehát: t T haj t s,747 s,4 s. A robbanástól száíta ennyi idı alatt érnek (egyszerre) a részek a talajra, ennyi idı alatt egyástól táolságra kerültek. d ( + V ) t +,4 s s s 37, A tényleges ozgás a talajról néze 3. Az ábra szerint egy fél-kapón, l,6 hosszú, igen ékony fonálon függı asgolyót kitérítünk, ajd kezdısebesség nélkül elengedünk. Aikor a fonál függılegessé álik, elhagyja a kapót. A asgolyó ettıl a helyzettıl h,5 élyen leı szinten, ízszintes irányban d táolságban elhelyezett kosárlabda-hálóba esik. Mekkora szöggel térítettük ki a fonalat? 8 (Holics László)

9 Megoldás. Meg kell határozni a ízszintes hajítás kezdısebességét. Ez a ozgás ízszintes etületének izsgálatáal kezdıdik: ekkora állandó sebessége legyen a golyónak, hogy adott idı alatt eljusson a d táolságra leı kosárig. Ennek nagysága: d, t ahol t az az idı, aely alatt a függıleges ozgásetületben a golyó (függıleges kezdısebesség nélkül) h élységre süllyed: h,5 t.,5 s g s Ezzel a ízszintes hajítási kezdısebesség: d g d. s 4 h h,5 s g Ekkora sebességre kell szert tennie a asgolyónak, ait a kitérítés után kapott helyzeti energia nöekedésébıl szerez. Kitérítés utáni helyzeti energianöekedés: Eh gh. Innen a kitérítés során létrejöı eelkedés agassága: h d g d 4,8. g g h 4h 4,5 Miel a fonál hossza,6 olt (kétszerese a kapott eelkedésagasságnak), az ábra szerint is látható, hogy egyszabályos hároszög α 6 o -os szögének egfelelı kitérítés a egfelelı, aellyel a asgolyó a kosárba jut. l h h,8 (Paraéteresen: cosα,5,5, α arccos,5 6. ) l l,6 4. Vékony leezbıl az ábrán láthatóhoz hasonló, negyed- és félköríbıl összeillesztett pályát készítünk, ajd függıleges síkban rögzítjük. Az R sugarú í felsı égénél egy a felülethez illesztett apró testet kezdısebesség nélkül agára hagyunk, aely gyakorlatilag súrlódásentesen csúszhat a kényszerpályán. a) Mekkora legyen a R/r arány, hogy a test égighaladjon a kényszerpályán? b) A pálya aljától ére a kezdeti agasság hányad részéig jut a test, ha R/r? c) Milyen R/r arány esetén esik issza a test a kényszerpályára az O ponttal egy agasságban, iután égighaladt rajta? R O (Szkladányi András) Megoldás: a) A test akkor halad égig a pályán, ha indégig hat rá kényszererı, illete az legfeljebb a pálya égénél csökken nullára. Ekkor a nehézségi erı éppen elegendı a test körpályán tartásához: A echanikai energia egaradása iatt: 9 O r

10 A két egyenletbıl: A keresett arány: 5 b) R/r esetén is izsgáljuk azt a pillanatot, aikor a kényszererı egszőnik. Jelölje a test agasságát a pálya aljától h, sebességét. A echanikai energia egaradása iatt: R O A körozgás dinaikai feltétele (és hasonló hároszögek) alapján: Behelyettesítés után: Egyszerősíte és felhasznála a sugarak arányát: h-r O r G A keresett arány: 5 6 c) A pályától aló elálás után a test ízszintes hajítással ozog. Jelölje ennek kezdısebességét 3, a becsapódás helyét P. O Az idıt kiküszöböle: Az O O P hároszög derékszögő, ezért:. P R r O A két egyenletbıl: A echanikai energia egaradása iatt: Behelyettesítés után: Átalakítások után a keresett arány: R r 7. Ez az eredény teljesíti az a) pontban kapott R/r >,5 feltételt.

a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A

a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A A 37. Mikola Sándor Fizikaverseny feladatainak egoldása Döntő - Gináziu 0. osztály Pécs 08. feladat: a) Az első esetben eelési és súrlódási unkát kell végeznünk: d W = gd + μg cos sin + μgd, A B d d C

Részletesebben

35. Mikola Sándor Országos Tehetségkutató Fizikaverseny. III. forduló május 1. Gyöngyös, 9. évfolyam. Szakközépiskola

35. Mikola Sándor Országos Tehetségkutató Fizikaverseny. III. forduló május 1. Gyöngyös, 9. évfolyam. Szakközépiskola 5 Mikola Sándor Országos Tehetségkutató Fizikaerseny III forduló 06 ájus Gyöngyös, 9 éfolya Szakközépiskola feladat Soa, aikor a d = 50 széles folyón a partra erőlegesen eez, akkor d/ táolsággal sodródik

Részletesebben

Oktatási Hivatal. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

Oktatási Hivatal. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 05/06. tanévi Országos Középiskolai Tanulányi Verseny ásodik forduló FIZIKA I. KATEGÓRIA Javítási-értékelési útutató. feladat: Vékony, nyújthatatlan fonálra M töegű, R sugarú karikát

Részletesebben

3. Egy repülőgép tömege 60 tonna. Induláskor 20 s alatt gyorsul fel 225 km/h sebességre. Mekkora eredő erő hat rá? N

3. Egy repülőgép tömege 60 tonna. Induláskor 20 s alatt gyorsul fel 225 km/h sebességre. Mekkora eredő erő hat rá? N Dinaika feladatok Dinaika alapegyenlete 1. Mekkora eredő erő hat a 2,5 kg töegű testre, ha az indulástól száított 1,5 úton 3 /s sebességet ér el? 2. Mekkora állandó erő hat a 2 kg töegű testre, ha 5 s

Részletesebben

körsugár kapcsolata: 4 s R 8 m. Az egyenletből a B test pályakörének sugara:

körsugár kapcsolata: 4 s R 8 m. Az egyenletből a B test pályakörének sugara: 8 évi Mikola forduló egoldásai: 9 gináziu ) Megoldás Mivel azonos és állandó nagyságú sebességgel történik a ozgás a egtett utak egyenlők: sa sb vat vbt 4 π s 4π 57 s Ha a B testnek ne nulla a gyorsulása

Részletesebben

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika Bevezető fizika (infó),. feladatsor Dinaika. és Statika 04. október 5., 4:50 A ai órához szükséges eléleti anyag: ipulzus, ipulzusegaradás forgatónyoaték egyensúly és feltétele Órai feladatok:.5. feladat:

Részletesebben

Gimnázium 9. évfolyam

Gimnázium 9. évfolyam 4 MIKOLA SÁNDOR FIZIKAVERSENY ásodik fordulójának egoldása 5 árcius 7 Gináziu 9 éfolya ) Egy test ízszintes talajon csúszik A test és a talaj közötti csúszási súrlódási együttható µ Egy ásik test α o -os

Részletesebben

36. Mikola verseny 2. fordulójának megoldásai I. kategória, Gimnázium 9. évfolyam

36. Mikola verseny 2. fordulójának megoldásai I. kategória, Gimnázium 9. évfolyam 6 Mikola verseny fordulójának egoldásai I kategória Gináziu 9 évfolya ) Adatok: = 45 L = 5 r = M = 00 kg a) Vizsgáljuk a axiális fordulatszáú esetet! r F L f g R Az egyenletes körozgás dinaikai alapegyenletét

Részletesebben

M13/II. javítási-értékelési útmutatója. Fizika II. kategóriában. A 2006/2007. tanévi. Országos Középiskolai Tanulmányi Verseny

M13/II. javítási-értékelési útmutatója. Fizika II. kategóriában. A 2006/2007. tanévi. Országos Középiskolai Tanulmányi Verseny M3/II. A 006/007. tanévi Országos Középiskolai Tanulányi Verseny első (iskolai) fordulójának javítási-értékelési útutatója Fizika II. kategóriában A 006/007. tanévi Országos Középiskolai Tanulányi Verseny

Részletesebben

XXXI. Mikola Sándor fizikaverseny 2012 Döntı Gyöngyös 9. évfolyam Feladatmegoldások Gimnázium

XXXI. Mikola Sándor fizikaverseny 2012 Döntı Gyöngyös 9. évfolyam Feladatmegoldások Gimnázium XXXI. ikola Sándor fizikaereny 0 Döntı Gyöngyö 9. éfolya eladategoldáok Gináziu. gy autó ozgáa két zakazra bontható. Az elı zakazhoz tartozó átlagebeége 96 k/h, a áodikhoz 50 k/h. A telje útra onatkozó

Részletesebben

Az egyenes vonalú egyenletes mozgás

Az egyenes vonalú egyenletes mozgás Az egyenes vonalú egyenletes ozgás Az egyenes vonalú ozgások egy egyenes entén ennek végbe. (Ki hitte volna?) Ha a ozgás egyenesét választjuk az egyik koordináta- tengelynek, akkor a hely egadásához elég

Részletesebben

A 32. Mikola Sándor Fizikaverseny feladatainak megoldása Döntı - Gimnázium 10. osztály Pécs 2013. 1 pont

A 32. Mikola Sándor Fizikaverseny feladatainak megoldása Döntı - Gimnázium 10. osztály Pécs 2013. 1 pont A Mikola Sándor Fizikavereny feladatainak egoldáa Döntı - Gináziu oztály Péc feladat: a) Az elı eetben a koci é a ágne azono a lauláát a dinaika alaegyenlete felhaználáával záolhatjuk: Ma Dy Dy a 6 M ont

Részletesebben

Oktatási Hivatal. A 2007/2008. tanévi. Országos Középiskolai Tanulmányi Verseny. első (iskolai) fordulójának. javítási-értékelési útmutatója

Oktatási Hivatal. A 2007/2008. tanévi. Országos Középiskolai Tanulmányi Verseny. első (iskolai) fordulójának. javítási-értékelési útmutatója Oktatási Hivatal A 007/008. tanévi Országos özépiskolai Tanulányi Verseny első (iskolai) fordulójának javítási-értékelési útutatója FIZIÁBÓ I. kategóriában A 007/008. tanévi Országos özépiskolai Tanulányi

Részletesebben

Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítmény

Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítmény Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítény 4. október 6., : A ai óráoz szükséges eléleti anyag: K unka W F s F s cos α skalárszorzat (száít az irány!). [W ] J F szakaszokra bontás,

Részletesebben

Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló. Javítási-értékelési útmutató

Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló. Javítási-értékelési útmutató Oktatási Hivatal A 13/14. tanévi Országos Középiskolai Tanulányi Verseny ásodik forduló FIZIKA I. KATEGÓRIA Javítási-értékelési útutató 1.) Hőszigetelt tartályban légüres tér (vákuu) van, a tartályon kívüli

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű

Részletesebben

1. Kinematika feladatok

1. Kinematika feladatok 1. Kineatika feladatok 1.1. Egyenes vonalú, egyenletes ozgások 1. A kézilabdacsapat átlövője 60 k/h sebességgel lövi kapura a labdát a hatéteresvonal előtt állva. Mennyi ideje van a kapusnak a labda elkapására?

Részletesebben

38. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló március óra A verseny hivatalos támogatói

38. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló március óra A verseny hivatalos támogatói 38. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2019. március 19. 14-17 óra A verseny hivatalos támogatói Oktatási Hivatal, Pedagógiai Oktatási Központok I. kategória, Gimnázium 9.

Részletesebben

Kinematikai alapfogalmak

Kinematikai alapfogalmak Kineatikai alapfogalak a ozgások leíásáal foglalkozik töegpont, onatkoztatási endsze, pálya, pályagöbe, elozdulás ekto a sebesség, a gyosulás Egyenes Vonalú Egyenletes Mozgás áll. 35 3 5 5 5 4 a s [] 5

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 08 ÉRESÉGI VIZSGA 008. ájus 4. FIZIKA KÖZÉPSZINŰ ÍRÁSBELI ÉRESÉGI VIZSGA JAVÍÁSI-ÉRÉKELÉSI ÚMUAÓ OKAÁSI ÉS KULURÁLIS MINISZÉRIUM A dolgozatokat az útutató utasításai szerint, jól követhetően

Részletesebben

EGYENÁRAM. 1. Mit mutat meg az áramerısség? 2. Mitıl függ egy vezeték ellenállása?

EGYENÁRAM. 1. Mit mutat meg az áramerısség? 2. Mitıl függ egy vezeték ellenállása? EGYENÁRAM 1. Mit utat eg az áraerısség? 2. Mitıl függ egy vezeték ellenállása? Ω 2 3. Mit jelent az, hogy a vas fajlagos ellenállása 0,04? 4. Írd le Oh törvényét! 5. Milyen félvezetı eszközöket isersz?

Részletesebben

MEGOLDÁSOK ÉS PONTOZÁSI ÚTMUTATÓ

MEGOLDÁSOK ÉS PONTOZÁSI ÚTMUTATÓ MEGOLDÁSOK ÉS PONTOZÁSI ÚTMUTATÓ. Egy kerékpáro zakazonként egyene vonalú egyenlete ozgát végez. Megtett útjának elő k hatodát 6 nagyágú ebeéggel, útjának további kétötödét 6 nagyágú ebeéggel, az h útjának

Részletesebben

Klasszikus Fizika Laboratórium V.mérés. Fajhő mérése. Mérést végezte: Vanó Lilla VALTAAT.ELTE. Mérés időpontja:

Klasszikus Fizika Laboratórium V.mérés. Fajhő mérése. Mérést végezte: Vanó Lilla VALTAAT.ELTE. Mérés időpontja: Klasszikus Fizika Laboratóriu V.érés Fajhő érése Mérést égezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.11. 1. Mérés röid leírása A érés során egy inta fajhőjét kellett eghatározno. Ezt legkönnyebben

Részletesebben

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti

Részletesebben

t [s] 4 pont Az út a grafikon alapján: ρ 10 Pa 1000 Pa 1400 Pa 1, 024 10 Pa Voldat = = 8,373 10 m, r h Vösszfolyadék = 7,326 10 m

t [s] 4 pont Az út a grafikon alapján: ρ 10 Pa 1000 Pa 1400 Pa 1, 024 10 Pa Voldat = = 8,373 10 m, r h Vösszfolyadék = 7,326 10 m XVIII. TORNYAI SÁNDOR ORSZÁGOS FIZIAI FELADATMEGOLDÓ VERSENY Hódezőásáhely, 04. ácius 8-0. 9. éfolya 9/. feladat: Adatok: a /s, t 6 s, a 0, t 5 s, a - /s, édések: s?, t?, átl?, a átl? [/s] 0 0 0 40 Az

Részletesebben

Néhány mozgás kvantummechanikai tárgyalása

Néhány mozgás kvantummechanikai tárgyalása Néhány ozgás kvantuechanikai tárgyalása Mozzanatok: A Schrödinger-egyenlet felírása ĤΨ EΨ Hailton-operátor egállapítása a kinetikus energiaoperátor felírása, vagy 3 dienziós ozgásra, Descartes-féle koordinátarendszerben

Részletesebben

Fluidizált halmaz jellemzőinek mérése

Fluidizált halmaz jellemzőinek mérése 1. Gyakorlat célja Fluidizált halaz jellezőinek érése A szecsés halaz tulajdonságainak eghatározása, a légsebesség-nyoásesés görbe és a luidizációs határsebesseg eghatározása. A érésekböl eghatározott

Részletesebben

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. II.

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. II. Oktatási Hivatal A 010/011. tanévi FIZIKA Országos Középiskolai Tanulányi Verseny első fordulójának feladatai és egoldásai fizikából II. kategória A dolgozatok elkészítéséhez inden segédeszköz használható.

Részletesebben

Feladatok a zárthelyi előtt

Feladatok a zárthelyi előtt Feladatok a zárthelyi előtt 05. október 6. Tartalojegyzék. ineatika Utolsó ódosítás 05. október 6. 0:46. ineatika.. Egyenes vonalú ozgások.......... Egyenletes ozgás.......... Gyorsuló ozgás..........

Részletesebben

Szökőkút - feladat. 1. ábra. A fotók forrása:

Szökőkút - feladat. 1. ábra. A fotók forrása: Szökőkút - feladat Nemrégen Gyulán jártunk, ahol sok szép szökőkutat láttunk. Az egyik különösen megtetszett, ezért elhatároztam, hogy megpróbálom elemi módon leírni a ízsugarak, illete az általuk leírt

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!)

2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!) 1 A XXII. Öveges József fizika tanulányi verseny első fordulójának feladatai és azok egoldásának pontozása 2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!) 1. Egy odellvasút ozdonya egyenletesen

Részletesebben

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben

Kísérleti fizika 1. gyakorlat Zárthelyi dolgozatok

Kísérleti fizika 1. gyakorlat Zárthelyi dolgozatok A dolgozatok egoldási ideje 15-20 perc. Kísérleti fizika 1. gyakorlat Zárthelyi dolgozatok 1/A Egy R sugarú henger vízszintes talajon csúszásentesen gördül, tengelyének sebessége v. a) Add eg a henger

Részletesebben

Tömegvonzás, bolygómozgás

Tömegvonzás, bolygómozgás Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test

Részletesebben

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?

Részletesebben

Fizika 1 Mechanika órai feladatok megoldása 3. hét

Fizika 1 Mechanika órai feladatok megoldása 3. hét Fizika 1 Mechanika órai feladatok egoldása 3. hét 3/1. Egy traktor két pótkocsit vontat nyújthatatlan drótkötelekkel. Mekkora erő feszíti a köteleket, ha indításnál a traktor 1 perc alatt gyorsít fel 40

Részletesebben

Fizika példák a döntőben

Fizika példák a döntőben Fizika példák a döntőben F. 1. Legyen két villamosmegálló közötti távolság 500 m, a villamos gyorsulása pedig 0,5 m/s! A villamos 0 s időtartamig gyorsuljon, majd állandó sebességgel megy, végül szintén

Részletesebben

FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint 171 ÉRETTSÉGI VIZSGA 017. október 7. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útutató utasításai szerint, jól

Részletesebben

A 2008/2009. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai. II. kategória

A 2008/2009. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai. II. kategória Oktatási Hivatal A 008/009. tanévi IZIKA Országos Középiskolai Tanulányi Verseny első fordulójának feladatai és egoldásai II. kategória A dolgozatok elkészítéséez inden segédeszköz asználató. Megoldandó

Részletesebben

Fizika feladatok - 2. gyakorlat

Fizika feladatok - 2. gyakorlat Fizika feladatok - 2. gyakorlat 2014. szeptember 18. 0.1. Feladat: Órai kidolgozásra: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel s 1 utat, második szakaszában

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint Jaítási-értékelési útutató 0623 ÉRETTSÉGI VIZSGA 2007. ájus 14. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Jaítási-értékelési

Részletesebben

32. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló 2013. február 12. (kedd), 14-17 óra Gimnázium 9. évfolyam

32. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló 2013. február 12. (kedd), 14-17 óra Gimnázium 9. évfolyam 2013. február 12. Gimnázium 9. évfolyam Gimnázium 9. évfolyam 1. Encsi nyáron minden nap 8:40-kor indul otthonról a 2 km távol lévı strandra, ahol pontosan 3 órát tölt el, és fél 1-kor már haza is ér.

Részletesebben

Bevezető fizika (VBK) zh1 tesztkérdések Mi az erő mértékegysége? NY) kg m 2 s 1 GY) Js LY) kg m 2 s 2 TY) kg m s 2

Bevezető fizika (VBK) zh1 tesztkérdések Mi az erő mértékegysége? NY) kg m 2 s 1 GY) Js LY) kg m 2 s 2 TY) kg m s 2 Mi az erő mértékegysége? NY) kg m 2 s 1 GY) Js LY) kg m 2 s 2 TY) kg m s 2 Mi a csúszási súrlódási együttható mértékegysége? NY) kg TY) N GY) N/kg LY) Egyik sem. Mi a csúszási súrlódási együttható mértékegysége?

Részletesebben

A 2004/2005 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai f i z i k á b ó l III.

A 2004/2005 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai f i z i k á b ó l III. A 004/005 tanévi Országos Középiskolai Tanulányi Verseny első forulójának felaatai és egolásai f i z i k á b ó l III kategória A olgozatok elkészítéséhez inen segéeszköz használható Megolanó az első háro

Részletesebben

Az egyenletes körmozgás

Az egyenletes körmozgás Az egyenlete körozgá A gépeknek é a otoroknak ok forgó alkatréze an, ezért a körozgáoknak i fonto zerepe an az életünkben. Figyeljük eg egy odellonat ozgáát a körpályán. A tápegyéget ne babráld! A onat

Részletesebben

MUNKAANYAG. Szabó László. Áramlástani alaptörvények. A követelménymodul megnevezése:

MUNKAANYAG. Szabó László. Áramlástani alaptörvények. A követelménymodul megnevezése: Szabó László Áralástani alaptörények A köetelényodul egneezése: Kőolaj- és egyipari géprendszer üzeeltetője és egyipari technikus feladatok A köetelényodul száa: 07-06 A tartaloele azonosító száa és célcsoportja:

Részletesebben

A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei

A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei A rezgések dinaikai vizsgálata a rezgések kialakulásának feltételei F e F Rezgés kialakulásához szükséges: Mozgásegyenlet: & F( & t kezdeti feltételek: ( v t & v( t & ( t Ha F F( akkor az erőtér konzervatív.

Részletesebben

Általános Kémia. Dr. Csonka Gábor 1. Gázok. Gázok. 2-1 Gáznyomás. Barométer. 6-2 Egyszerű gáztörvények. Manométer

Általános Kémia. Dr. Csonka Gábor 1. Gázok. Gázok. 2-1 Gáznyomás. Barométer. 6-2 Egyszerű gáztörvények. Manométer Gázok -1 Gáznyoás - Egyszerű gáztörvények -3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet -4 tökéletes gáz egyenlet alkalazása -5 Gáz halazállapotú reakciók -6 Gázkeverékek

Részletesebben

Harmonikus rezgőmozgás

Harmonikus rezgőmozgás Haronikus rezgőozgás (Vázat). A rezgőozgás fogaa. Rezgőozgás eírását segítő ennyiségek 3. Kapcsoat az egyenetes körozgás és a haronikus rezgőozgás között 4. A haronikus rezgőozgás kineatikai egyenetei

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

Mechanikai munka, energia, teljesítmény (Vázlat)

Mechanikai munka, energia, teljesítmény (Vázlat) Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai

Részletesebben

ÜTKÖZÉSEK. v Ütközési normális:az ütközés

ÜTKÖZÉSEK. v Ütközési normális:az ütközés ÜTKÖZÉSK A egaadási tételek alkalazásának legjobb példái Definíciók ütközési sík n n Ütközési noális:az ütközés síkjáa eőleges Töegközépponti sebességek Centális ütközés: az ütközési noális átegy a két

Részletesebben

34. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2015. március 17. 14-17 óra. A verseny hivatalos támogatói

34. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2015. március 17. 14-17 óra. A verseny hivatalos támogatói 34. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2015. március 17. 14-17 óra A verseny hivatalos támogatói Gimnázium 9. évfolyam 1.) Egy test vízszintes talajon csúszik. A test és a

Részletesebben

Rugalmas megtámasztású merev test támaszreakcióinak meghatározása I. rész

Rugalmas megtámasztású merev test támaszreakcióinak meghatározása I. rész Rugalas egtáasztású erev test táaszreakióinak eghatározása I. rész Bevezetés A következő, több dolgozatban beutatott vizsgálataink tárgya a statikai / szilárdságtani szakirodalo egyik kedvene. Ugyanis

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése . Rugalas állandók érése PÁPICS PÉTER ISTVÁN csillagász, 3. évfolya 00.10.7. Beadva: 00.1.1. 1. A -ES, AZAZ AZ ABLAK FELLI MÉRHELYEN MÉRTEM. Ezen a laboron a férudak Young-oduluszát értük, pontosabban

Részletesebben

Mechanika. Kinematika

Mechanika. Kinematika Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 4 ÉRETTSÉGI VIZSGA 04. október 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útutató utasításai szerint,

Részletesebben

A 36. Mikola Sándor Fizikaverseny feladatainak megoldása Döntő - Gimnázium 10. osztály Pécs 2017

A 36. Mikola Sándor Fizikaverseny feladatainak megoldása Döntő - Gimnázium 10. osztály Pécs 2017 A 6 Mikola Sándor Fizikaereny feladatainak egoldáa Döntő - Gináziu 0 oztály Péc 07 feladat: a) A ki tet felcúzik a körlejtőn közben a koci gyorula ozog íg a tet a lejtő tetejére ér Ekkor indkét tet ízzinte

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

2007/2008. tanév. Szakács Jenő Megyei Fizika Verseny I. forduló. 2007. november 9. MEGOLDÁSOK

2007/2008. tanév. Szakács Jenő Megyei Fizika Verseny I. forduló. 2007. november 9. MEGOLDÁSOK 007/008. tané Szakác Jenő Megyei Fizika Vereny I. forduló 007. noeber 9. MEGOLDÁSOK 007-008. tané - Szakác Jenő Megyei Fizika Vereny I. forduló Megoldáok. d = 50 = 4,4 k/h = 4 / a) t =? b) r =? c) =?,

Részletesebben

Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein.

Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein. Fzka I. Dr. Gugolya Zoltán egyete adjunktus Pannon Egyete Fzka Intézet N. ép. II. e. 39. szoba E-al: gug006@alos.ven.hu Tel: 88/64-783 Fzka I. Ajánlott rodalo: Vondervszt-Néeth-Szala: Fzka I. Veszpré Egyete

Részletesebben

2010/2011. tanév Szakács Jenő Megyei Fizika Verseny II. forduló. 2011. január 31.

2010/2011. tanév Szakács Jenő Megyei Fizika Verseny II. forduló. 2011. január 31. 2010/2011. tanév Szakác enő Megyei Fizika Vereny II. forduló 2011. január 31. Minden verenyzőnek a záára kijelölt négy feladatot kell egoldania. A zakközépikoláoknak az A vagy a B feladatort kell egoldani

Részletesebben

A testek mozgása. Név:... osztály:...

A testek mozgása. Név:... osztály:... A testek ozgása A) változat Név:... osztály:... 1. Milyen ozgást végez a test akkor, ha a) egyenlő időközök alatt egyenlő utakat tesz eg?... b) egyenlő időközök alatt egyre nagyobb utakat tesz eg?... F

Részletesebben

Hatvani István Fizikaverseny forduló megoldások. 1. kategória

Hatvani István Fizikaverseny forduló megoldások. 1. kategória 1. kategória 1.2.1. 1. Newton 2. amplitúdó 3. Arkhimédész 4. Kepler 5. domború 6. áram A megfejtés: ATOMKI 7. emelő 8. hang 9. hősugárzás 10. túlhűtés 11. reerzibilis 1.2.2. Irányok: - x: ízszintes - y:

Részletesebben

FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint 74 ÉESÉGI VIZSGA 07. ájus. FIZIKA EMEL SZINŰ ÍÁSBELI VIZSGA JAVÍÁSI-ÉÉKELÉSI ÚMUAÓ EMBEI EŐFOÁSOK MINISZÉIUMA A dolgozatokat az útutató utasításai szerint, jól követhetően kell javítani

Részletesebben

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p Jedlik 9-10. o. reg feladat és megoldás 1) Egy 5 m hosszú libikókán hintázik Évi és Peti. A gyerekek tömege 30 kg és 50 kg. Egyikük a hinta végére ült. Milyen messze ült a másik gyerek a forgástengelytől,

Részletesebben

IMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N

IMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N IPULZUS OENTU Impulzusnyomaték, perdület, jele: N Definíció: Az (I) impulzussal rendelkező test impulzusmomentuma egy tetszőleges O pontra vonatkoztatva: O I r m Az impulzus momentum vektormennyiség: két

Részletesebben

Mechanika - Versenyfeladatok

Mechanika - Versenyfeladatok Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az

Részletesebben

EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA

EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA 1. A kinematika és a dinamika tárgya. Egyenes onalú egyenletes mozgás a) Kísérlet és a belőle leont köetkeztetés b) A mozgás jellemző grafikonjai

Részletesebben

Hajtástechnika. F=kv. Határozza meg a kocsi sebességének v(t) idıfüggvényét, ha a motorra u(t)=5 1(t) [V] kapocsfeszültséget kapcsolunk!

Hajtástechnika. F=kv. Határozza meg a kocsi sebességének v(t) idıfüggvényét, ha a motorra u(t)=5 1(t) [V] kapocsfeszültséget kapcsolunk! Hajtástechnika Példa Az ábán egy nyotató odellje látható, ely két azonos szíjtácsából, alaint töegő kocsiból áll. A szíj tökéletesen hajlékony, nyújthatatlan és elhanyagolható töegő. A kocsia sebességaányos

Részletesebben

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =

Részletesebben

Mágneses momentum, mágneses szuszceptibilitás

Mágneses momentum, mágneses szuszceptibilitás Mágneses oentu, ágneses szuszceptibilitás A olekuláknak (atooknak, ionoknak) elektronszerkezetüktől függően lehet állandóan eglévő, azaz peranens ágneses oentua (ha van bennük párosítatlan elektron, azaz

Részletesebben

A diszkrimináns, paraméteres feladatok a gyökök számával kapcsolatosan

A diszkrimináns, paraméteres feladatok a gyökök számával kapcsolatosan MÁSODFOKÚ MINDEN A egoldókéle alkalazása Oldd eg a kövekező egyenleeke!... 9 A diszkriináns, araéeres feladaok a gyökök száával kacsolaosan. Az valós araéer ely érékei eseén van a 0 egyenlenek ké egyenlő

Részletesebben

DÖNTİ április évfolyam

DÖNTİ április évfolyam Bor Pál Fizikaverseny 20010/2011-es tanév DÖNTİ 2011. április 9. 7. évfolyam Versenyzı neve:.. Figyelj arra, hogy ezen kívül még két helyen (a bels ı lapokon erre kijelölt téglalapokban) fel kell írnod

Részletesebben

Newton törvények, lendület, sűrűség

Newton törvények, lendület, sűrűség Newton törvények, lendület, sűrűség Newton I. törvénye: Minden tárgy megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja

Részletesebben

2.3 Newton törvények, mozgás lejtőn, pontrendszerek

2.3 Newton törvények, mozgás lejtőn, pontrendszerek Keresés (http://wwwtankonyvtarhu/hu) NVDA (http://wwwnvda-projectorg/) W3C (http://wwww3org/wai/intro/people-use-web/) A- (#) A (#) A+ (#) (#) English (/en/tartalom/tamop425/0027_fiz2/ch01s03html) Kapcsolat

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3 Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy

Részletesebben

Felső végükön egymásra támaszkodó szarugerendák egyensúlya

Felső végükön egymásra támaszkodó szarugerendák egyensúlya 1 Felső végükön egymásra támaszkodó szarugerendák egyensúlya Az [ 1 ] példatárban találtunk egy érdekes feladatot, melynek egy változatát vizsgáljuk meg itt. A feladat Ehhez tekintsük az 1. ábrát! 1. ábra

Részletesebben

XXXIV. Mikola Sándor fizikaverseny Döntı Gyöngyös, 9. évfolyam Megoldások. Szakközépiskola

XXXIV. Mikola Sándor fizikaverseny Döntı Gyöngyös, 9. évfolyam Megoldások. Szakközépiskola XXXIV Mikola Sándor fizikavereny 05 Döntı Gyöngyö, 9 évfolya Megoldáok Szakközépikola Egy elegendıen hozú, M = 4 kg töegő dezka jégpályán nyugzik Erre a dezkára egy = kg töegő haábot helyeztünk az ábra

Részletesebben

Milyen erőtörvénnyel vehető figyelembe a folyadék belsejében a súrlódás?

Milyen erőtörvénnyel vehető figyelembe a folyadék belsejében a súrlódás? VALÓDI FOLYADÉKOK A alódi folyadékokban a belső súrlódás ne hanyagolható el. Kísérleti tapasztalat: állandó áralási keresztetszet esetén is áltozik a nyoás p csökken Az áralási sebesség az anyagegaradás

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Felvételi, 2017 július -Alapképzés, fizika vizsga-

Felvételi, 2017 július -Alapképzés, fizika vizsga- Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2017 július -Alapképzés, fizika vizsga- Minden tétel kötelező. Hivatalból 10 pont jár. Munkaidő 3 óra. I. Az alábbi kérdésekre adott

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

Ujfalussy Balázs Idegsejtek biofizikája

Ujfalussy Balázs Idegsejtek biofizikája M A TTA? Ujfalussy Balázs degsejtek biofizikája Második rész A nyugali potenciál A sorozat előző cikkében nekiláttunk egfejteni az idegrendszer alapjelenségeit. Az otivált bennünket, hogy a száítógépeink

Részletesebben

Dinamika gyakorló feladatok. Készítette: Porkoláb Tamás

Dinamika gyakorló feladatok. Készítette: Porkoláb Tamás Dinaika gyakorló feladatok Kézítette: Porkoláb Taá Elélet 1. Mit utat eg a őrőég?. Írj áro példát aelyek a teetetlenég törvéével agyarázatók! 3. Írd le a lendület-egaradá tételét pontrendzerre! 4. Mit

Részletesebben

3. 1 dimenziós mozgások, fázistér

3. 1 dimenziós mozgások, fázistér Drótos G.: Fejezetek az eléleti echanikából 3. rész 3. dienziós ozgások, fázistér 3.. Az dienziós ozgások leírása, a fázistér fogala dienziós ozgás alatt egy töegpont olyan ozgását értjük ebben a jegyzetben,

Részletesebben

A megnyúlás utáni végső hosszúság: - az anyagi minőségtől ( - lineáris hőtágulási együttható) l = l0 (1 + T)

A megnyúlás utáni végső hosszúság: - az anyagi minőségtől ( - lineáris hőtágulási együttható) l = l0 (1 + T) - 1 - FIZIKA - SEGÉDANYAG - 10. osztály I. HŐTAN 1. Lineáris és térfogati hőtágulás Alapjelenség: Ha szilárd vagy folyékony halazállapotú anyagot elegítünk, a hossza ill. a térfogata növekszik, hűtés hatására

Részletesebben

37. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló feladatainak megoldása I. kategória: gimnázium 9. évfolyam

37. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló feladatainak megoldása I. kategória: gimnázium 9. évfolyam 37. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló feladatainak megoldása I. kategória: gimnázium 9. évfolyam A feladatok helyes megoldása maximálisan 0 ot ér. A javító tanár belátása szerint

Részletesebben

Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ április évfolyam. Versenyző neve:...

Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ április évfolyam. Versenyző neve:... Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ 2017. április 22. 8. évfolya Versenyző neve:... Figyelj arra, hogy ezen kívül ég a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár neve:...

Részletesebben

Oktatási Hivatal FIZIKA. II. kategória. A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny 1. forduló. Javítási-értékelési útmutató

Oktatási Hivatal FIZIKA. II. kategória. A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny 1. forduló. Javítási-értékelési útmutató Oktatási Hivatal A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny 1. forduló FIZIKA II. kategória Javítási-értékelési útmutató 1. feladat. Az m tömeg, L hosszúságú, egyenletes keresztmetszet,

Részletesebben

VI.7. PITI PÉLDÁK. A feladatsor jellemzői

VI.7. PITI PÉLDÁK. A feladatsor jellemzői VI.7. PITI PÉLDÁK Tárgy, téa Pitagorasz tétele. Előzények A feladatsor jellezői Hároszög, téglalap, négyzet kerülete és területe, Pitagorasz-tétel, négyzetgyök fogala, irracionális száok Cél A Pitagorasz-tétel

Részletesebben

Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények

Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periódikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó

Részletesebben

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 06/07 tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I KATEGÓRIA Javítási-értékelési útmutató feladat Három azonos méretű, pontszerűnek tekinthető, m, m, m tömegű

Részletesebben

Az egyenes ellipszishenger ferde síkmetszeteiről

Az egyenes ellipszishenger ferde síkmetszeteiről 1 Az egyenes ellipszishenger ferde síkmetszeteiről Vegyünk egy a és b féltengelyekkel bíró ellipszist a vezérgörbét, majd az ellipszis O centrumában állítsunk merőlegest az ellipszis síkjára. Ez a merőleges

Részletesebben

Hálózatmérés gyakorlat: Önálló hálózat mérése és kiegyenlítése, a hálózat bekapcsolása az országos koordinátarendszerbe

Hálózatmérés gyakorlat: Önálló hálózat mérése és kiegyenlítése, a hálózat bekapcsolása az országos koordinátarendszerbe Hálózatérés gyakorlat: Önálló hálózat érése és kiegyenlítése, a hálózat bekapcsolása az országos koordinátarendszerbe A Hálózatérési gyakorlat isertetése: A Hálózatérés gyakorlat során egy 4 pontból álló

Részletesebben

Rugós mechanikai rendszerek modellezése

Rugós mechanikai rendszerek modellezése Rugós ehanikai rendszerek odellezése. feladat Adott két sorba kapsolt rugó és erevséggel valaint l és l terheletlen hosszal. A rugókat egnyújtjuk úgy, hogy együttes hosszuk l legyen >l +l ). l l? l? l

Részletesebben

32. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló feladatainak megoldása

32. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló feladatainak megoldása . Mikola Sándor Orzágo Tehetégkutató Fizikaereny I. forduló feladatainak egoldáa A feladatok helye egoldáa axiálian 0 ontot ér. A jaító tanár belátáa zerint a 0 ont az itt egadottól eltérő forában i feloztható.

Részletesebben