Két példa lineárisan változó keresztmetszetű rúd húzása

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Két példa lineárisan változó keresztmetszetű rúd húzása"

Átírás

1 Két péda ineárisan vátozó keresztmetszetű rúd húzása Eőző dogozatnkban meynek címe: Hámos rúd húzása szintén egy vátozó keresztmetszetű, egyenes tengeyű, végein P nagyságú erőve húzott rúd esetét vizs - gátk Most két oyan esetet részetezünk, meyekben ismert, zárt aakú képetekke is, majd nmeriksan is kiszámítjk a rdak megnyúását Ettő azt várjk, hogy nö - vekszik a nmeriks integráásba vetett bizaom, i csökken az ettő vaó ódzkodás Ehhez tekintsük az ábrát is! Péda: Csonkakúp aakú rúd húzása [ ] ábra Az ábra jeöéseive a kör keresztmetszet sgara az x koordináta függvényében: r r rx r ( x) = r + x ( ) A megfeeő keresztmetszeti terüet: A x = π r x ; ( ) ( ) ( ) most ( ) és ( ) - ve: r r A( x) = π r A húzófeszütség nagyságának aakása a rúd hossza mentén: N ( x) P σ ( x) = = A( x) r r π r ( 3 ) ( 4 ) A rúd megnyúása:

2 0 0 0 ( x) dx σ = dx = ε dx = dx = dx E ( ) P dx ( ) E A( x) N x = = dx = E A x 0 0 P P dx = dx E = A 0 ( x) E π 0 r r r, tehát: = I 0 r E r π ( 5 ) r + x P dx P = E π Az integráás: r r d r x dx + I = = ; r 0 r r r 0 r r ( 6 ) r r most az r r = r heyettesítésse: I d r r = = r r r r, = = = = = = ( 7 ) majd ( 6 ) és ( 7 ) - te: r r I = = r r r r r r eztán ( 5 ) és ( 8 ) - ca:, ( 8 )

3 3 = P E π r r ( 9 ) Az r = r = r 0 speciáis esetben azt kapjk, hogy P P = =, E π r E A 0 0 ( 9*) ami az áandó keresztmetszetű húzott rúd megnyúásának ismert képete Most fevesszük az acé anyagú rúdra az aábbi adatokat: ~ P = 0 kn, ~ E =, 0 /, ~ = 00, ( A ) ~ r =, ~ r = Majd ( 9 ) és ( A ) - gye: P 0000 N 00 = = = 0,0076, E π r r, 0 π 0, π tehát: 0,076 mm ( E ) Most gyanezekke az adatokka evégezzük a nmeriks integráást ábra ábra

4 4 Ennek eredménye: I = 50 ( / ) ( 8 / ) A megnyúás ( 5 ) és ( 8 / ) - gye: P 0000 N = I = 50 = 0, ,076 mm, E π, 0 π megegyezésben ( E ) - gye A húzófeszütségek nagyságának aakása ( 4 ) aapján 3 ábra: Megjegyzések: ábra M A rúdban az x = 0 koordinátájú végkeresztmetszetben ébred a egnagyobb húzófeszütség, meynek nagysága 3,83 kn /, ami ényegesen kisebb az acé anyagú rúdra megadott 8 kn / nagyságú arányossági határná, így számításnk érvényes M Enné a feadatná cészerű az x koordinátát a szabad végtő mérni, mert ekkor kényemesebb a számoás

5 5 Péda: Vátozó széességű tégaap keresztmetszetű rúd központos húzása [ ] Ehhez tekintsük a 4 ábrát is! 4 ábra A keskenyedő derékszögű négyszög keresztmetszetű, t = konst vastagságú rdat egy P erő terhei, a 4 ábra szerint A rúd széessége ineáris törvény szerint vátozik a b szabad végi mérettő a b befogott végi méretig Meghatározandó a rúd δ megnyúása Az ábrához hasonóan az x koordinátát a rúd szabad végétő mérve a keresztmetszet széessége az x koordináta függvényében: b b b( x) = b + x ( 0 ) A keresztmetszeti terüet függvénye: b b A( x) = t b( x) = t b ( ) A húzófeszütség függvénye: N ( x) P σ ( x) = = A( x) b b t b ( ) A megnyúás kifejezése: N ( x) P dx P δ = dx = = J, E A 0 ( x) E t b 0 b b E t + x ( 3 ) aho:

6 6 J b b d b x = = = dx + J ; b 0 b b b b 0 b b b b x + b + x ( 4 ) bevezetve a v új vátozót: b b v b x = + ; ( 5 ) ezze és ( 4 ) - gye: v dv v b = = n n = n = n ; v v v b J v v ( 6 ) most ( 4 ) és ( 6 ) - ta: b J = n, b b b ( 7 ) majd ( 3 ) és ( 7 ) - te: P b δ = n, E t b b b ( 8 ) egyezésben a [ ] - ben megadott végeredménnye Adatok: ~ P = 50 kn, ~ E =, 0 /, ~ t = ; ~ = 00, ( A ) ~ b = 0, ~ b = 5 Az aábbiakban eőször ( ) aapján a húzófeszütség ábráját áítjk eő 5 ábra A rúdban a egnagyobb húzófeszütség az x = 0 koordinátájú keresztmetszetben ébred, meynek nagysága 0 kn /, ami kisebb, mint a rúd anyagára megadott 8 kn / arányossági határ Eztán meghatározzk a megnyúást, eőször ( 8 ) aapján, ( A ) - ve is:

7 7 5 ábra N n , 0 δ = n = n = 0, 033,, 0 tehát: δ 0,33 mm ( E ) Majd ( 4 ) szerint kiszámítjk a J integrát 6 ábra: 6 ábra

8 8 Az áráró eovashatóan: J = 3,869 ( 4 / ) Most ( 3 ) és ( 4 / ) - gye: P N δ = J = 3,869 = 0, 033, E t, 0 tehát: P N δ = J = 3,869 = 0,033 = 0,33 mm, E t, 0 megegyezésben ( E ) - ve Ezze kitűzött feadatainkat megodottk átjk, hogy a nmeriks integráás mindkét esetben könnyen és gyorsan szogátatta a számszerűen pontos eredményt A részetesen tárgyat két feadat közös vonása, hogy ismeretes a zárt aakú képette adott megnyúás - végeredmény Azt kívántk megmtatni, hogy a számtaan, sokka bonyotabb integrandszhoz tartozó eseteg zárt aakban meg sem adható vég - eredmények keresésének erőtetése heyett nagyon ajánható a nmeriks integráás akamazása, akár a mindennapi mnka szintjén is Ezt a ehetőséget már az eőző dogozat feadatáva kapcsoatban is kihasznátk Igaz, ennek eőfetétee egy köny - nyen hasznáható szoftver megéte Az átank évek óta hasznát Graph - ró e - mondhatjk, hogy hasznáata viszonyag egyszerűen megtanható, és korábban reményteennek tartott feadatok sorát odottk meg vee Errő az érdekődő Ovasó saját maga is meggyőződhet, honapnk böngészéséve Irodaom: [ ] J P Den Hartog: Strength of Materias Dover Pbication, Inc, New York, 977, 5 ~ 6 o [ ] S P Timoshenko ~ James M Gere: Mechanics of Materias orosz kiadás: MIR, Moszkva, 976, 53 o Sződiget, 04 febrár 4 Összeáította: Gagóczi Gya mérnöktanár

Az egyszeres függesztőmű erőjátékáról

Az egyszeres függesztőmű erőjátékáról Az eyszeres üesztőmű erőjátékáró A címbei szerkezet az 1 ábrán szeméhető részeteive is 1 ábra orrása: [ 1 ] A szerkezet működésének jeemzése: ~ a vízszintes kötőerenda a két véén szabadon eekszik a közepén

Részletesebben

Parabola - közelítés. A megoszló terhelés intenzitásának felvételéről. 1. ábra

Parabola - közelítés. A megoszló terhelés intenzitásának felvételéről. 1. ábra Paraboa - közeítés A kötéstatikáva aktívan fogakozó Ovasónak az aábbiak ismétésnek tűnhetnek vagy nem Hosszabb tanakoás után úgy öntöttem, hogy a nem tejesen nyivánvaó ogokró éremes ehet szót ejteni Iyennek

Részletesebben

Vontatás I. 1. ábra. A feladat

Vontatás I. 1. ábra. A feladat Vontatás I. Érdekes, de a mechanikai szakirodaom tanumányozásának évtizedei során aig taákoztam vontatássa kapcsoatos munkákka. Persze, egynéhánnya igen [ 1 ], hiszen ez ekerüheteten pédáu a pótkocsis

Részletesebben

Gerendák lehajlása: hibás-e a szilárdságtanon tanult összefüggés? Tudományos Diákköri Konferencia. Készítette: Miklós Zita Trombitás Dóra

Gerendák lehajlása: hibás-e a szilárdságtanon tanult összefüggés? Tudományos Diákköri Konferencia. Készítette: Miklós Zita Trombitás Dóra Gerendák ehajása: hibás-e a sziárdságtanon tanut összefüggés? Tudományos Diákköri Konferenia Készítette: Mikós Zita Trombitás Dóra Konzuensek: Dr. Puzsik Anikó Dr. Koár Lászó Péter Budapesti Műszaki és

Részletesebben

A szimmetrikus, külpontosan aláfeszített gerendatartóról

A szimmetrikus, külpontosan aláfeszített gerendatartóról A szimmetrikus, küpontosan aáfeszített gerendatartóró Bevezetés Koráan már tö, hasonó témájú dogozatunk szüetett, meyek az aáiak: ~ Az egyszeres feszítőmű erőjátékáró KD / ; ~ Az egyszeresen aufeszített

Részletesebben

Ismét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ]

Ismét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ] 1 Ismét a fahengeres keresztmetszetű gerenda témájáról Az 1. ábrával már korábban is találkozhatott az Olvasó. 1. ábra forrása: [ 1 ] Ezen azt láthatjuk, hogy bizonyos esetekben a fűrészelt fagerenda a

Részletesebben

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04. .feladat A derékszögű koordinátarendszer origójába elhelyezünk egy q töltést. Mekkora ennek a töltésnek a 4,32 0 nagysága, ha a töltés a koordinátarendszer P(0,03;0,04)[m] pontjában E(r ) = 5,76 0 nagyságú

Részletesebben

Navier-formula. Frissítve: Egyenes hajlítás

Navier-formula. Frissítve: Egyenes hajlítás Navier-formula Akkor beszélünk egyenes hajlításról, ha a nyomatékvektor egybeesik valamelyik fő-másodrendű nyomatéki tengellyel. A hajlítást mindig súlyponti koordinátarendszerben értelmezzük. Ez még a

Részletesebben

A késdobálásról. Bevezetés

A késdobálásról. Bevezetés A késdobáásró Beezetés Már sok ée annak, hogy kést dobátunk, több - keesebb sikerre. Ez tisztán tapasztaati úton működött. Femerütek bizonyos kérdések, ameyekre nem kaptunk áaszt sehon - nan. Ezek pédáu

Részletesebben

Hőtágulás (Vázlat) 1. Szilárd halmazállapotú anyagok hőtágulása a) Lineáris hőtágulás b) Térfogati hőtágulás c) Felületi hőtágulás

Hőtágulás (Vázlat) 1. Szilárd halmazállapotú anyagok hőtágulása a) Lineáris hőtágulás b) Térfogati hőtágulás c) Felületi hőtágulás Hőáguás (Váza). Sziárd hamazáapoú anyagok hőáguása a) Lineáris hőáguás b) érfogai hőáguás c) Feüei hőáguás 2. Foyékony hamazáapoú anyagok hőáguása. A víz rendeenes visekedése hőáguáskor 4. Gázok hőáguása

Részletesebben

+ - kondenzátor. Elektromos áram

+ - kondenzátor. Elektromos áram Tóth : Eektromos áram/1 1 Eektromos áram tapasztaat szernt az eektromos tötések az anyagokban ksebb vagy nagyobb mértékben hosszú távú mozgásra képesek tötések egyrányú, hosszútávú mozgását eektromos áramnak

Részletesebben

Kábel-membrán szerkezetek

Kábel-membrán szerkezetek Kábe-membrán szerkezetek Szereési aak meghatározása Definíció: Egy geometriai aak meghatározása adott peremfetéte és eőfeszítés esetén ameyné a beső erők egyensúyban vannak. Numerikus módszerek: Geometriai

Részletesebben

Harmonikus rezgőmozgás

Harmonikus rezgőmozgás Haronikus rezgőozgás (Vázat). A rezgőozgás fogaa. Rezgőozgás eírását segítő ennyiségek 3. Kapcsoat az egyenetes körozgás és a haronikus rezgőozgás között 4. A haronikus rezgőozgás kineatikai egyenetei

Részletesebben

Ellipszis átszelése. 1. ábra

Ellipszis átszelése. 1. ábra 1 Ellipszis átszelése Adott egy a és b féltengely - adatokkal bíró ellipszis, melyet a befoglaló téglalapjának bal alsó sarkában csuklósan rögzítettnek képzelünk. Az ellipszist e C csukló körül forgatva

Részletesebben

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát!

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1 Fiók ferde betolása A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1. ábra Itt azt látjuk, hogy egy a x b méretű kis kék téglalapot

Részletesebben

Nagyteljesítményű elektrolízis berendezések www.prominent.com

Nagyteljesítményű elektrolízis berendezések www.prominent.com Biztonságos és hatékony vízfertőtenítés konyhasóva Nagytejesítményű eektroízis berendezések www.prominent.com Környezetbarát vízfertőtenítés Az eektroízis gazdaságiag böcs, műszakiag érett aternatíva a

Részletesebben

Bepattanó kötés kisfeladat

Bepattanó kötés kisfeladat Bepattanó kötés kisfeadat Hagató nee: Neptun kód: Bepattanó kötés kisfeadat FELADAT: Végzezze e az ADATTÁBLÁZAT (II. oda) megfeeő sorszámú adataia a tégaap keresztmetszetű egyensziárdságú, karos bepattanó

Részletesebben

Gyakorlat 03 Keresztmetszetek II.

Gyakorlat 03 Keresztmetszetek II. Gyakorlat 03 Keresztmetszetek II. 1. Feladat Keresztmetszetek osztályzása Végezzük el a keresztmetszet osztályzását tiszta nyomás és hajlítás esetére! Monoszimmetrikus, hegesztett I szelvény (GY02 1. példája)

Részletesebben

Gyakorlat 04 Keresztmetszetek III.

Gyakorlat 04 Keresztmetszetek III. Gyakorlat 04 Keresztmetszetek III. 1. Feladat Hajlítás és nyírás Végezzük el az alábbi gerenda keresztmetszeti vizsgálatait (tiszta esetek és lehetséges kölcsönhatások) kétféle anyaggal: S235; S355! (1)

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek középszint 1221 ÉRETTSÉGI VIZSGA 2013. május 23. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos

Részletesebben

Egy kinematikai feladat

Egy kinematikai feladat 1 Egy kinematikai feladat Valami geometriai dologról ötlött eszembe az alábbi feladat 1. ábra. 1. ábra Adott az a és b egyenes, melyek α szöget zárnak be egymással. A b egyenesre ráfektetünk egy d hosszúságú

Részletesebben

Indítómotor behúzótekercsének szimulációs vizsgálata Investigation of the Solenoid Switch of an Electric Starter Motor with Simulation

Indítómotor behúzótekercsének szimulációs vizsgálata Investigation of the Solenoid Switch of an Electric Starter Motor with Simulation Indítómotor behúzótekercsének szimuációs vizsgáata Investigation of the Soenoid Switch of an Eectric Starter Motor with Simuation KOVÁCS Ernı, FÜVESI Viktor, SZALONTAI Levente 3 Ph.D., egyetemi docens;

Részletesebben

Vasbeton tartók méretezése hajlításra

Vasbeton tartók méretezése hajlításra Vasbeton tartók méretezése hajlításra Képlékenység-tani méretezés: A vasbeton keresztmetszet teherbírásának számításánál a III. feszültségi állapotot vesszük alapul, amelyre az jellemző, hogy a hajlításból

Részletesebben

Mágneses jelenségek. 1. A mágneses tér fogalma, jellemzői

Mágneses jelenségek. 1. A mágneses tér fogalma, jellemzői . mágneses tér fogama, jeemző Mágneses jeenségek mágneses tér jeenségenek vzsgáatakor a mozgó vamos tötések okozta jeenségekke fogakozunk mozgó vamos tötések (áram) a körüöttük évő teret küöneges áapotba

Részletesebben

Lindab Z/C 200 ECO gerendák statikai méretezése. Tervezési útmutató

Lindab Z/C 200 ECO gerendák statikai méretezése. Tervezési útmutató Lindab Z/C 200 ECO gerendák statikai méretezése Tervezési útmutató Készítette: Dr. Ádány Sándor Lindab Kft 2007. február ZC200ECO / 1 1. Bevezetés Jelen útmutató a Lindab Kft. által 1998-ban kiadott Lindab

Részletesebben

perforált lemezek gyártás geometria

perforált lemezek gyártás geometria erforát emezek A erforát emezek egymástó azonos távoságra eheyezkedő, azonos méretű és formájú ykakka rendekező fémemezek. A ykasztási tísok sokféesége az akamazások és formák szinte korátan fehasznáását

Részletesebben

ó Ü ő É ó ó ő Ó Ó í ő ó ő Ö É ó ő ú Ü í ó Ú ő Ó Ó í ó ő ó É ó É ó ö ö ű Ö ő Ó ő ó ó Éó Ó É Ó Ó Ő ó É ó ó Ó É Ó ó ö í Ó ö í ű Ó í í ö Ü ű ó í ó ö ű Ó Ö Ö ó Ö Ó í ö ü ű ú ü ú ő ó í ó ó Ú ú í í í ó Ö ü ő

Részletesebben

Á Á Á Á Á ö ő ü Ü ö ő ú ű ő ü ü ő ű ö ű ő ö ö ő ö ő ő ő ő ő ő ő ő ő ű ő ő ű ö ö ö ő ő Ü ő ő ű ö ő ő Ü ű ö ö ö ö ö ö ö ü ö ö ú ü ő ü ű ö ö ü ű ő ö ő ö ő ű ő ö ő ü ö ű ő ö ö Ü ö ö ő ő ö ő ű ő ő ü ö ő ő ú

Részletesebben

É ö í ö í í ű ö ö ú í í ú í ó Ó ö ú í ö ú í ű ö ü ó ü ó í ó ó ű ü í ű ö ó ó í ö Ü Ó í ó ű ó í ó ö ü ó í í ö ö í ó ö ú í ó ó í ó Ü ó í ü ű ö ü ó ó ö ö ö ö í ö ú Ó í í í ü ó ö ü í ó í Á Ó í ó ó ó ú Á ö í

Részletesebben

ű ü ű ű ű ű ö Á ö ö ú ú ö ö ö ü ö ö ö ű ö ú ú ű ö ö ü ö ö ú ö ü ü ö ü ö ű ö ö ü ö ö ü ö ü ü ü ö ö ö ö ű ö ű ü ö ö ü ű ö ü ö ű ü ű ö ö ú ű ö ú ö ö ü ű ű ö ű ü ö ű ö ö ö ú ö ü ö ö ö ö ú ü ü ö ö ü ö ö ö ö

Részletesebben

É á á á ö á á á á á á á á á ű á á á á á á á ű á á á ö á á á á á á á á á á á á á á á ű á ű á á á ö á á ú á á á á á ö ű á ű á á ü á á á É É ú É ü É ü Ú Á É ú Ú Á É Ü É Ú É Ú ű á ű á á ü Í Ú ü Á á É É ű á

Részletesebben

= M T. M max. q T T =

= M T. M max. q T T = artók statikája II. SZIE-YMM BSc Építőmérnöki szak IV. évfoyam 3. eőadás: Határozatan tartók képékeny számítása Mechanika II M R rugamas határnyomték M K képékeny határnyomaték másképp: M törőnyomaték

Részletesebben

Gazdaságos kapcsolat: kondenzációs technika és napenergia-hasznosítás

Gazdaságos kapcsolat: kondenzációs technika és napenergia-hasznosítás 28 GÁZBERENDEZÉSEK, GÁZFELHASZNÁLÁS 2006 Gazdaságos kapcsoat: kondenzációs technika és napenergia-hasznosítás Miyen feadatokra haszná(hat)juk a napsugárzást? Miért nevezhetõ kataizátornak a szoáris fûtésrásegítéses

Részletesebben

A szabályos sokszögek közelítő szerkesztéséhez

A szabályos sokszögek közelítő szerkesztéséhez 1 A szabályos sokszögek közelítő szerkesztéséhez A síkmértani szerkesztések között van egy kedvencünk: a szabályos n - szög közelítő szerkesztése. Azért vívta ki nálunk ezt az előkelő helyet, mert nagyon

Részletesebben

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban

Részletesebben

Anyagmozgatás Gyakorlati segédlet. Gyakorlatvezetı: Dr. Németh Gábor Ph.D. egyetemi adjunktus. Sopron, 2009

Anyagmozgatás Gyakorlati segédlet. Gyakorlatvezetı: Dr. Németh Gábor Ph.D. egyetemi adjunktus. Sopron, 2009 Nyugat-Magyarországi Egyetem Faipari Mérnöki Kar Gépészeti Intézet Anyagmozgatás Gyakorati segédet Gyakoratvezetı: Dr. Németh Gábor Ph.D. egyetemi adjunktus Sopron, 009 Lánctranszportır Mőszaki adatok:

Részletesebben

Salgótarján Megyei Jogú Város Polgárm estere. Javaslat stratégiai együttműködési megállapodás megkötésére

Salgótarján Megyei Jogú Város Polgárm estere. Javaslat stratégiai együttműködési megállapodás megkötésére Sagótarján Megyei Jogú Város Pogárm estere Szám:12382/2014. Javasat stratégiai együttműködési megáapodás megkötésére A szabad váakozási zónák kedvező fetéteeket és kedvezményeket biztosítanak a gazdasági

Részletesebben

Statikailag határozatlan tartó vizsgálata

Statikailag határozatlan tartó vizsgálata Statikailag határozatlan tartó vizsgálata Készítette: Hénap Gábor henapg@mm.bme.hu E E P MT A y F D E E d B MT p C x a b c Adatok: a = m, p = 1 N, b = 3 m, F = 5 N, c = 4 m, d = 5 mm. m A kés bbikekben

Részletesebben

ELMIB ZRT. FÖLDGÁZKERESKEDELMIÜZLETSZABÁLYZATA. l l I I BUDAPEST, 2009. SZEPTEMBER 1.

ELMIB ZRT. FÖLDGÁZKERESKEDELMIÜZLETSZABÁLYZATA. l l I I BUDAPEST, 2009. SZEPTEMBER 1. ELMB ZRT. FÖLDGÁZKERESKEDELMÜZLETSZABÁLYZATA BUDAPEST, 2009. SZEPTEMBER 1. i r L L ELMB Zrt. Födgáz- kereskedemi Üzetszabáyzata TARTALOMJEGYZÉK BEVEZETÉS.................................. 3 1. ÁLTALÁNOS

Részletesebben

Teletöltött álló hordó abroncs - feszültségeiről

Teletöltött álló hordó abroncs - feszültségeiről 1 Teletöltött álló hordó abroncs - feszültségeiről Korábban már többször nekifutottunk a fa hordók szilárdsági problémáinak, ám még messze nem válaszoltunk meg minden kérdést e témakörben. Az [ 1 ] munkában

Részletesebben

között 2008. december 16. napján kötött Támogatási Szerződés közös megegyezéssel történő megszüntetéséről

között 2008. december 16. napján kötött Támogatási Szerződés közös megegyezéssel történő megszüntetéséről Budapest Főváros X. kerüet Kőbányai Önkormányzat Pogármestere,, c,,.:_j,j számú eőterjesztés Eőterjesztés a Képviseő-testüet részére a Budapest Főváros X. kerüet Kőbányai Önkormányzat és a Budapesti Rendőrfőkapitányság

Részletesebben

Kérelmezök vállalják a helyiségrész teljes felújítását, amennyiben azt kedvezményes 4 OOO Ft/m2/év bérleti díj megállapításával vehetik igénybe.

Kérelmezök vállalják a helyiségrész teljes felújítását, amennyiben azt kedvezményes 4 OOO Ft/m2/év bérleti díj megállapításával vehetik igénybe. Budapest Főváros X. kerüet Kőbányai Önkormányzat Apogármestere y. ',. sz. napirendi pont Tárgy: Javasat a Budapest X. kerüet Újhegyi sétány 12. szám aatti heyiség egy részének bérbeadására Tisztet Gazdasági

Részletesebben

merevségének oldódásával és az mtézrnél!1yl

merevségének oldódásával és az mtézrnél!1yl I az 991192-es tan.év Komárom-Eszterszabáyozás merevségének odódásáva és az mtézrné!1y gom, A egfontosabb cékitűzés az tantárgy- és tanórarendszert érintő térnyeréséve- eindutak az intézményekben, és ma

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek középszint 1621 ÉRETTSÉGI VIZSGA 2016. október 17. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐORRÁSOK MINISZTÉRIUMA ontos

Részletesebben

Fizika Országos Középiskolai Tanulmányi Verseny Harmadik fordulója a harmadik kategória részére 2006.

Fizika Országos Középiskolai Tanulmányi Verseny Harmadik fordulója a harmadik kategória részére 2006. Fizika Országos Középiskoai Tanumányi Verseny Harmadik forduója a harmadik kategória részére 2006. Bevezetés A feadat megodásához aapvető ismeretekke ke rendekeznie a forgómozgássa kapcsoatban és a ferromágneses

Részletesebben

Fogorvosi anyagtan fizikai alapjai 7. Mechanikai tulajdonságok 1. Tesztelés. Tankönyv fejezetei: HF: 4. fej.: 1, 2, 4-6, 9, 11,

Fogorvosi anyagtan fizikai alapjai 7. Mechanikai tulajdonságok 1. Tesztelés. Tankönyv fejezetei: HF: 4. fej.: 1, 2, 4-6, 9, 11, rugamas B mn 1. A rá ható erő következtében megvátozott aakját a hatás megszűntéve visszanyerő. Vmihez hozzáütődve róa visszapattanó. merev B mn 1. Nem rugamas, nem hajékony . Rugamasságát,

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy

Részletesebben

Jármű- és hajtáselemek I. (KOJHA 156) Hegesztés kisfeladat (A típus) Járműelemek és Hajtások Tanszék

Jármű- és hajtáselemek I. (KOJHA 156) Hegesztés kisfeladat (A típus) Járműelemek és Hajtások Tanszék BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki Kar Jármű- és hajtáselemek I. (KOJHA 156) Hegesztés kisfeladat (A típus) Járműelemek és Hajtások Tanszék Ssz.: A/... Név:.........................................

Részletesebben

Külpontosan nyomott keresztmetszet számítása

Külpontosan nyomott keresztmetszet számítása Külpontosan nyomott keresztmetszet számítása A TELJES TEHERBÍRÁSI VONAL SZÁMÍTÁSA Az alábbi példa egy asszimmetrikus vasalású keresztmetszet teherbírási görbéjének 9 pontját mutatja be. Az első részben

Részletesebben

CAD-CAM-CAE Példatár

CAD-CAM-CAE Példatár CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: VEM Rúdszerkezet sajátfrekvenciája ÓE-A05 alap közepes haladó

Részletesebben

Az élszarufa és a szelemenek kapcsolódásáról

Az élszarufa és a szelemenek kapcsolódásáról Az élszarufa és a szelemenek kapcsolódásáról A következőkben a címbeli viszonylag nehéz anyagrész megvilágítását szeretnénk elősegíteni főként szép és jó ábrákkal.. ábra forrása: http://www.dikraus.at/ingenieurbau/baustatik/baustatikflyer/s6_0.pdf.

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

Egy sík és a koordinátasíkok metszésvonalainak meghatározása

Egy sík és a koordinátasíkok metszésvonalainak meghatározása 1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk

Részletesebben

MECHANIKA I. rész: Szilárd testek mechanikája

MECHANIKA I. rész: Szilárd testek mechanikája Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre

Részletesebben

Egy másik érdekes feladat. A feladat

Egy másik érdekes feladat. A feladat Egy másik érdekes feladat Az előző dolgozatban melynek címe: Egy érdekes feladat az itteninek egy speciális esetét vizsgáltuk. Az általánosabb feladat az alábbi [ 1 ]. A feladat Adott: az ABCD zárt négyszög

Részletesebben

A ferde tartó megoszló terheléseiről

A ferde tartó megoszló terheléseiről A ferde tartó megoszló terheléseiről Úgy vettem észre az idők során, hogy nem nagyon magyarázták agyon azt a kérdést, amivel itt fogunk foglalkozni. Biztos azt mondják majd megint, hogy De hisz ezt mindenki

Részletesebben

Az elforgatott ellipszisbe írható legnagyobb területű téglalapról

Az elforgatott ellipszisbe írható legnagyobb területű téglalapról 1 Az elforgatott ellipszisbe írható legnagyobb területű téglalapról Előző dolgozatunkban melynek címe: Az ellipszisbe írható legnagyobb területű négyszögről már beharangoztuk, hogy találtunk valami érdekeset

Részletesebben

Ajánlott szakmai jellegű feladatok

Ajánlott szakmai jellegű feladatok Ajánlott szakmai jellegű feladatok A feladatok szakmai jellegűek, alkalmazásuk mindenképpen a tanulók motiválását szolgálja. Segít abban, hogy a tanulók a tanultak alkalmazhatóságát meglássák. Értsék meg,

Részletesebben

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) (11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)

Részletesebben

HOGYAN IS MOZOG EGY TÖMEGES RUGÓ? I.

HOGYAN IS MOZOG EGY TÖMEGES RUGÓ? I. bi eredmények aapján ezze együtt is egfejebb néhány ezred naptömeget kapnánk a por mennyiségére, ami továbbra is jóva kisebb az eméeti tanumányokban prognosztizát tömegekné Tanumányunk összességében azt

Részletesebben

Kizárólag oktatási célra használható fel!

Kizárólag oktatási célra használható fel! DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II III. Előadás Vékonyfalú keresztmetszetek nyírófeszültségei - Nyírófolyam - Nyírási középpont - Shear lag hatás - Csavarás Összeállította:

Részletesebben

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK REZGÉSTAN GYAKORLAT Kdogozt: r. Ngy Zotán egyetem djunktus 4. fedt: Mndkét végén efzott rúd ongtudnás rezgése (kontnuum mode) A, ρ, E Adott: mndkét

Részletesebben

Épület- és építménybádogos Épület- és építménybádogos

Épület- és építménybádogos Épület- és építménybádogos Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus Tartalom Méretezés az Eurocode szabványrendszer szerint áttekintés Teherbírási határállapotok Húzás Nyomás

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek középszint 0911 ÉRETTSÉGI VIZSGA 009. október 19. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Összefüggések a marótárcsás kotrógépek elméleti és tényleges

Összefüggések a marótárcsás kotrógépek elméleti és tényleges Összefüggések a marótárcsás kotrógépek eméeti és tényeges tejesítménye között BREUER JÁNOS ok. bányamérnök, DR.DAÓ GYÖRGY ok. bányagépészmérnök, ok. küfejtési szakmérnök A küfejtésnek a viág bányászatában

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Használhatósági határállapotok. Alakváltozások ellenőrzése

Használhatósági határállapotok. Alakváltozások ellenőrzése 1.GYAKORLAT Használhatósági határállapotok A használhatósági határállapotokhoz tartozó teherkombinációk: Karakterisztikus (repedésmentesség igazolása) Gyakori (feszített szerkezetek repedés korlátozása)

Részletesebben

2002. október 29. normalizáltjai eloszlásban a normális eloszláshoz konvergálnak, hanem azt is, hogy a

2002. október 29. normalizáltjai eloszlásban a normális eloszláshoz konvergálnak, hanem azt is, hogy a A Vaószínűségszámítás II. eőadássorozat hetedik eőadása. 2002. október 29. Határeoszástéteek függeten vektor értékű vaószínűségi vátozókra. Hangsúyoztuk, hogy a Lindeberg fée centráis határeoszástéte nemcsak

Részletesebben

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. Mekkora a nyomatékok hatására ébredő legnagyobb csúsztatófeszültség? Mekkora és milyen irányú az A, B és C keresztmetszet elfordulása? Számítsuk

Részletesebben

61o. l. Tartalmi összefoglaló. Budapest Főváros X. kerület. . számú előterjesztés

61o. l. Tartalmi összefoglaló. Budapest Főváros X. kerület. . számú előterjesztés Budapest Főváros X. kerüet Kőbányai Önkormányzat Apogármestere 61o. számú eőterjesztés Eőterjesztés a Képviseő-testüet részére egyes szociáis aapszogátatások megszervezésérő és forrás biztosításáró. Tartami

Részletesebben

!J i~.számú előterjesztés

!J i~.számú előterjesztés Budapest Főváros X. kerüet Kőbánya Önkormányzat Apogármestere!J ~.számú eőterjesztés Eőterjesztés a Képvseőtestüet részére a Leonardo da Vnc projekt 20112012. év beszámoójáró I. Tartam összefogaó Budapest

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek emelt szint 11 ÉRETTSÉGI VIZSGA 01. május 5. GÉPÉSZETI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Anyagvizsgálatok. Mechanikai vizsgálatok

Anyagvizsgálatok. Mechanikai vizsgálatok Anyagvizsgálatok Mechanikai vizsgálatok Szakítóvizsgálat EN 10002-1:2002 Célja: az anyagok egytengelyű húzó igénybevétellel szembeni ellenállásának meghatározása egy szabványosan kialakított próbatestet

Részletesebben

II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban)

II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban) II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban) Készítették: Dr. Kiss Rita és Klinka Katalin -1- A

Részletesebben

Minta árajánlat FluctuVent intelligens hővisszanyerős szellőzés kialakítására

Minta árajánlat FluctuVent intelligens hővisszanyerős szellőzés kialakítására Minta árajánat FuctuVent inteigens hővisszanyerős szeőzés kiaakítására Építt Heyszín Te E-mai Építész tervező Te E-mai Építő váakozó Te E-mai Tisztet Érdekődő! Debrecen 3 június 7 Árajánatunk a megkapott

Részletesebben

Általános beállítások

Általános beállítások Page 1 of 21 Átaános beáítások Nyissa meg az Opciók menü Átaános beáítások... menüpontját. Itt megvátoztathatja a Sprint-Layout összes beáítását. Aap beáítások Mértékegység Itt beáíthatja a Sprint-Layout

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az

Részletesebben

--'-'--1 számú előterjesztés

--'-'--1 számú előterjesztés Budapest Főváros X. kerüet Kőbányai Önkormányzat Apogármestere 'Í, ( - --'-'--1_ _ számú eőterjesztés Eőterjesztés a Képviseő-testüet részére a "Kőbányai Komposztáási Program- 2015" enevezéső páyázat kiírásáró

Részletesebben

rendelési kód típus leszorítás vágási magasság vágási hossz vágási kapacitás 255-9450 1 CM3206 normál 1,0 mm 320 mm

rendelési kód típus leszorítás vágási magasság vágási hossz vágási kapacitás 255-9450 1 CM3206 normál 1,0 mm 320 mm 06 Irodatechnika HSM karos papírvágógép vágógép paper trier rendeési kód típus eszorítás i magasság i hossz i 55-99 CM606 normá,0 60 55-950 CM06 normá,0 0 0 ap 0 ap Egyszerű, könnyen kezehető karos vágógép

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

DAN U ACÉLSZERKEZETEK CSAPOS KÖTÉSEINEK VIZSGÁLATA

DAN U ACÉLSZERKEZETEK CSAPOS KÖTÉSEINEK VIZSGÁLATA DAN U ACÉLSZERKEZETEK CSAPOS KÖTÉSENEK VZSGÁLATA Budape~ti Műszaki Egyetem, Közekedésmérnöki Kar Epítő- és Anyagmozgató Gépek Tanszék A Magyar Hajó- és Darugyár daru acészerkezetek nagyméretű eemeinek

Részletesebben

Ellenálláshegesztés elméleti alapjai

Ellenálláshegesztés elméleti alapjai Ellenálláshegesztés elméleti alapjai Hegesztési nyári egyetem 2013. július 6. Dr. Török Imre egyetemi docens Hegesztő eljárások csoportjai A hegesztőeljárások osztályba sorolása az MSZ ISO 4063:2000 szerint

Részletesebben

A HŐMÉRSÉKLET MÉRÉSE

A HŐMÉRSÉKLET MÉRÉSE A HŐMÉRSÉKLET MÉRÉSE A hőmérséket az egyik eggyakrabban mért fizikai mennyiség, egyike a hét SI aapmértékegységnek. Nehezen meghatározható és kaibráható, ugyanis a hőmérséketi tartományt meghatározni és

Részletesebben

Király Zsófia, Zaupper Bence Miskolc, 2008. november 10. Élet-és nyugdíjbiztosítási ismeretek

Király Zsófia, Zaupper Bence Miskolc, 2008. november 10. Élet-és nyugdíjbiztosítási ismeretek Kiráy Zsófia, Zaupper Bence Miskoc, 2008. november 0. Éet-és nyugdíjbiztosítási ismeretek Bemutatkozás Zaupper Bence, Kiráy Zsófia Hewitt Európai Aktuáriusi Szogátató Központ (European Actuaria Services)

Részletesebben

Fa rudak forgatása II.

Fa rudak forgatása II. Fa rudak forgatása II. Dolgozatunk I. részében egy speciális esetre oldottuk meg a kitűzött feladatokat. Most egy általánosabb elrendezés vizsgálatát végezzük el. A számítás a korábbi úton halad, ügyelve

Részletesebben

ACÉLSZERKEZETEK I. LEHÓCZKI Bettina. Debreceni Egyetem Műszaki Kar, Építőmérnöki Tanszék. [1]

ACÉLSZERKEZETEK I. LEHÓCZKI Bettina. Debreceni Egyetem Műszaki Kar, Építőmérnöki Tanszék.   [1] ACÉLSZERKEZETEK I. LEHÓCZKI Bettina Debreceni Egyetem Műszaki Kar Építőmérnöki Tanszék E-mail: lehoczki.betti@gmail.com [1] ACÉLSZERKEZETEK I. Gyakorlati órák időpontjai: szeptember 25. október 16. november

Részletesebben

A csoport. Statika ZH feladat. Határozza meg az erőrendszer nyomatékát a F pontra! a = 3 m b = 4 m c = 4 m

A csoport. Statika ZH feladat. Határozza meg az erőrendszer nyomatékát a F pontra! a = 3 m b = 4 m c = 4 m Stata ZH-1. 215. 1. 14. A csoport 1. feladat Határozza meg az erőrendszer nyomatéát a F pontra! a = 3 m b = 4 m c = 4 m F 1 = 5 N F 2 = 1 N M = 5 Nm M = + 4 + 3 4 F 1 = 2 = + 12 16 + 9 + 16 3 + 4 F 2 =

Részletesebben

Radványi Gábor alpolgármester. Szabó László vezérigazgató. Tisztelt Képviselő-testület! Tárgy: Javaslat fedett jégpálya létesítésére

Radványi Gábor alpolgármester. Szabó László vezérigazgató. Tisztelt Képviselő-testület! Tárgy: Javaslat fedett jégpálya létesítésére Eőterjesztő: Eőkészítő: Radványi Gábor apogármester Kőbányai Vagyonkezeő Zrt. Szabó Lászó vezérigazgató Tárgy: Javasat fedett jégpáya étesítésére Tisztet Képviseő-testüet! A Budapest Főváros X. kerüet

Részletesebben

Tavaszi akció 2012. Április 2. május 31. Fűtésben otthon vagyunk. [ Leveg õ ] Április 18-22. Construma 2012 Buderus kiállító.

Tavaszi akció 2012. Április 2. május 31. Fűtésben otthon vagyunk. [ Leveg õ ] Április 18-22. Construma 2012 Buderus kiállító. [ Leveg õ ] [ Víz ] Ápriis 18-22. Construma 2012 Buderus kiáító [ Föd ] [ Buderus ] Termékeinkke kapcsoatos további információért keresse fe a www.buderus.hu honapunkat! Tavaszi akció 2012 Ápriis 2. május

Részletesebben

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT 2013 Feladat: Adott az ábrán látható kéttámaszú tartó, amely melegen hengerelt I idomacélokból és melegen hengerelt

Részletesebben

ÉRTESITÚJE. ./k/!í / 11 A SOPRONI MAGY. KIR. ALLAMI FOREALISKOLA HARMINCHARMADIK AZ 1907/1908-IK ISKOLAI ÉVRŐL. l v. WALLNER IGNÁC DR.

ÉRTESITÚJE. ./k/!í / 11 A SOPRONI MAGY. KIR. ALLAMI FOREALISKOLA HARMINCHARMADIK AZ 1907/1908-IK ISKOLAI ÉVRŐL. l v. WALLNER IGNÁC DR. A SOPRONI MAGY. KIR., H, ALLAMI FOREALISKOLA./k/!Í / 11 HARMINCHARMADIK ÉRTESITÚJE AZ 1907/1908-IK ISKOLAI ÉVRŐL KÖZ LI SOPRONI ALLRMI szethenyi "TVRN GIMrP ZIUM Szadetar f. n. v. WALLNER IGNÁC DR. IGAZGATÓ

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek középszint 0921 ÉRETTSÉGI VIZSGA 2010. május 14. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos

Részletesebben