Egyenletek és egyenletrendszerek megoldása a Z n halmazon Az a x = b egyenlet megoldása a Z n halmazon

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Egyenletek és egyenletrendszerek megoldása a Z n halmazon Az a x = b egyenlet megoldása a Z n halmazon"

Átírás

1 Az érettségi vizsgára előkészülő taulók figyelmébe! Egyeletek és egyeletreszerek megolása a Z halmazo Az a x = b egyelet megolása a Z halmazo Az utóbbi iőbe mit a XII. osztályos alteratív taköyvekbe, mit az érettségivagy felvételi vizsgáko egyre gyakrabba találkozuk olya felaatokkal, amelyek lieáris egyeletek vagy egyeletreszerekek a Z halmazo törtéő megolását kérik, a megoláshoz szükséges elméleti háttérről agyo keveset olvashatuk. Éppe ezért, az elkövetkező cikksorozatot amolya hiáypótlókét írjuk, és főleg azt szereték eléri, hogy a taulók sokkal átfogóbb képet, és megalapozott elméleti és gyakorlati alapot alkothassaak erről a témáról, mit amilyet alkothatak úgy, ha csupá a pélákat és felaatokat olják meg a taköyvekből, pélatárakból. Miamellett, hogy a kiválasztott témakör kezetbe agyo egyszerűek tűhet mégis kihagsúlyozuk éháy olya olgot, amiek a tuatosítása és megértése sikeresebb és ereméyesebb tauláshoz vezet. Már a kisosztályokba, többé vagy kevésbé álcázotta miutala előforulak az mx+=p úgyevezett elsőfokú egyismeretlees (rövie lieáris) egyeletek. A kisosztályokba a megolásukat eleite yitott moatok, maj a mérlegelv segítségével kezik törtéi, aztá lassa-lassa már a jártaság és készség szitjé ayira előybe kerülek az automatizmusok, hogy az egyelet megolására már ilye megfogalmazásokat haszálak, mit pélául: átvisszük a másik olalra, vagy mikét olalt elosztjuk, stb. És így ezek a megevezések meghoosoak a mieapi taulásba, e közbe elvész a tartalma, hogy vajo eze megevezések alatt mit is kell értei? Eek következtébe a XII. osztályos taulók gyakra eheze tuják kezeli ezt a válsághelyzetet akkor, amikor a Z halmazo egyeleteket és egyeletreszereket kell megoljaak, ugyais a Z halmazo csak az összeaás és a szorzási művelet értelmezett, és mit értsük az előző iézőjeles megfogalmazások alatt? Eek tisztázása végett pillatsuk vissza arra az iőszakra, amikor az egyeletek megolását taították, és vizsgáljuk meg a mx+q=p egyelet megolási lépéseit az R-e. (1) Az mx+q=p egyelet eseté mikét olalhoz hozzáajuk a q szám elletettjét, és így aóik, hogy mx=p+(-q) vagyis mx=p-q, amire azt mojuk, hogy átvittük a másik olalra (2) Ezutá az mx=p-q egyelet mikét olalát beszorozzuk a q szám iverzével, és így aóik, hogy x= (p-q) 1 m = p q, amire azt mojuk, hogy átosztottuk m-el vagy m másvalami ehhez hasoló megfogalmazást. Ameyibe miutala szemelőtt tartjuk az előbb kihagsúlyozottakat, úgy az egyeletekek és egyelet reszerekek a Z halmazo törtéő megolása sem fog ehézséget jeletei, oha mit láti fogjuk ez a témakör messziről sem olya egyszerű mit amilyeek tűik. A cikksorozatak ebbe a részébe az a x = b egyeletek a Z halmazo törtéő megolásával foglalkozuk és erre alapozva a következő részbe az a x + b y = c egyeletek a Z halmazo törtéő megolását taulmáyozzuk, amire szükségük va a harmaik a1 x + b1 y = c1 részbe tárgyalásra kerülő elsőfokú kétismeretlees egyeletreszer a2 x + b2 y = c2 megolásáak taulmáyozásakor is.

2 Mieek előtt foglaljuk össze a legszükségesebb, fotosabb fogalmakat, ereméyeket amiket haszáli foguk. (1) Aott N * eseté legye R ={,1,2,,-1} a természetes számokak, az aott természetes számmal való osztási maraékaiak halmazát. Értelmezhetők a, : R R R műveletek: a) Bármely x, y R eseté x y= az (x+y) számak az -el való osztási maraéka. Pélául: 3,4 R 5 eseté =5 ezért 3 4=2 mert 3+4=7=1 5+2 b) Bármely x, y R eseté x y= az (x y) számak az -el való osztási maraéka. Pélául: 3,4 R 5 eseté =5 ezért 3 4=2 mert 3 4=12=2 5+2 (2) Az összes olya egész számok halmazát, amelyekek az -el való osztási maraéka az r szám,jelölje r. Az így kapott halmaz eve: az r maraékosztály moulo. Pélául: a 2 maraékosztály moulo 5 halmaz a következő: 2 ={ -12, -7, -2, 2, 7, 12, } (3) Aott pozitív egész szám eseté jelölje Z az összes maraékosztály moulo halmazt, vagyis Z ={, 1, 2,, 1}. Pélául: Z 5 ={, 1, 2, 3, 4 } eseté 3 ={ -13, -8, 8, 13, 18, } Értelmezhetők a +, : Z Z Z műveletek: a) Bármely x, y Z eseté x + y = x + y móo értelmezett (vagyis a ereméy az x+y összegek az számmal való osztási maraékáak az osztálya). Pélául: 6, 4 Z 8 eseté = 1 = 2 hisze 1=1 8+2 b) Bármely x, y Z eseté x y = x y móo értelmezett (vagyis a ereméy az x y szorzatak az számmal való osztási maraékáak az osztálya). Az x y szorzatot gyakra x y móo jelölik, a továbbiakba ezt a jelölést haszáljuk. Pélául: 6, 4 Z 8 eseté 6 4 = 24 = hisze 24=3 8+ A gyakorlatba kokrét Z eseté szokás úgyevezett összeaási és szorzási művelettáblázatot készítei, ellebe az iőigéyessége miatt, jártasság szitjé ezt már mellőzzük, és ikább a fogalmak és műveletek értelmezését haszáljuk. A továbbiakba aott pozitív egész szám eseté, a ( Z, +, ) kétműveletes struktúráak éháy fotosabb tulajoságát említjük meg, ezek bizoyítása megtalálható a legtöbb XII. osztályos taköybe és felaatgyűjteméybe (v.ö. [1], [3], [4], [5]). (1) Általába a ( Z, +, ) struktúra egységelemes kommutatív gyűrű, amit moulo maraékosztályok gyűrűjéek evezük (2) A ( Z, +, ) struktúra akkor és csakis akkor zérusosztó metes gyűrű, ha = prímszám (Emlékeztetük: x, y Z zérusosztók a Z -be, ha x, y e x y =. A feti pélákba pl. 6, 4 Z 8 zérusosztók, hisze 6 4 = ) (3) A ( Z, +, ) struktúra akkor és csakis akkor kommutatív test, ha = prímszám (4) Ha a Z, akkor a következő két állítás egyeértékű: a) Az a elem ivertálható (a szorzásra ézve) a Z -be b) (a,)=1 vagyis az a és számok relatív prímek

3 Következméy: Ha p pozitív prímszám, akkor a ( Z, +, ) kommutatív test mie eleme ivertálható, tehát em létezek zérusosztók. A továbbiakba rátérük az m x + q = p egyeletek a Z halmazo törtéő megolására. Mivel a Z -be mie q számak va elletettje (a továbbiakba a elletettjét jelölje - a ), ezért az egyelet mikét olalához hozzáava a q szám elletettjét, a - q számot, az m x = p q egyeletet kapjuk, ami a x = b alakú, és a továbbiakba csak az ilye típusú egyelet megolásával foglalkozuk. Az előbbiekbe bemutatott (4)-es tulajoság yomós érv arra, hogy az a x = b egyelet megolása eseté megkülöböztessük az (a,)=1 és (a,) 1. vegyük tehát sorra. I.eset: (a,)=1 Ekkor az a Z szám ivertálható (még úgy is moják, hogy szimmetrizálható a szorzásra ézve) vagyis va iverze a p Z -be, a továbbiakba jelöljük ezt a -el. Az a x = b egyelet mikét olalát megszorozva az a számak az a iverzével, a szorzási művelet értelmezése ' alapjá kapjuk, hogy x = b a. Ez az egyeletek az egyetle megolása. (vagyis ebbe az esetbe úgy mova kifejezhettük az x változót). Pélául: Oljuk meg a Z5 halmazo a 2 x = 3 egyeletet. Mivel (2,5)=1 ezért 2 ivertálható a Z5 halmazo és 2 = 3, ugyais 2 3 = 6 = 1. Így az egyelet mikét olalát beszorozva a 3 számmal, x = 3 3 = 9 = 4 egyetle megolást kapjuk. Mielőtt rátérük a másoik eset elemzésére vegyük észre, hogy az a x=b egyeletek az R-e potosa 1 megolása (zérushelye) va, és az a x = b egyeletek is potosa 1 megolása va, mie olya pozitív egész számra, amelyre (a,)=1. Mit láti fogjuk, a következő esetbe ez már em érvéyes, és ekkor merül fel a megolhatóság feltétele valamit a megolások számáak a meghatározása. II. eset : ( a, ) = 1 1) Ha feltételezzük, hogy em osztja a b szaba tagot és mégis léteze x= X Z amelyre a x = b, akkor a X=b+k lee (k N * ) tehát a X-k =b és mivel a, és ezért (a X-k )=b vagyis b ami elletmoás lee. Tehát ( a, ) = 1 és em osztja b esetbe, az a x = b egyeletek ics megolása a Z halmazo. Pélául: Oljuk meg a Z6 halmazo a 2 x = 3 egyeletet. Látható, hogy a=2, b=3, =6 és (a,)=2 ami em osztja a b=3 számot, vagyis az egyeletek ics megolása a Z6 halmazo. Gyakorlatba ezt még röviebbe is megmutathatjuk: a 2 x = 3 egyelet mikét olalát beszorozzuk 3 -mal és kapjuk, hogy = 3 ami elletmoás,

4 vagyis ics megolás. Ezt em csak ebbe a sajátos esetbe tehetjük meg, haem mie ( a, ) = 1 esetbe beszorzuk k= -vel, és elletmoásra jutuk. 2) Vizsgáljuk most azt az esetet amikor igaz, hogy b. Az ( a, ) = 1és b feltételek alapjá a= a 1, = 1 és b= b 1, ahol (a 1, 1 )=1 (*) Az (a,)= alapjá u,v Z úgy, hogy u a+v = ahoa u a b 1 +v b 1 = b 1 =b így a ( ub1 ) + ( vb1 ) = b a ( ub1 ) b Z -be = ami éppe azt jeleti, hogy x = ub 1 egy megolása az a x = b egyeletek. A továbbiakba megézzük, hogya kapható meg az egyelet összes megolása! Legye x= X Z megolása az a x = b egyeletek. Ezért ax = b ahoa, a X=b+k lee (k N * ), és a (*) feltételek mellett a1x b1 = k1 vagyis a1 X b1 = k1 (i) De mivel (a 1, 1 )=1, ezért u,v Z úgy, hogy a 1 u+ 1 v=1 (ii) Az (i) és (ii) alapjá kapjuk, hogy a1( X ub1 ) = 1 ( vb + k) és mivel (a 1, 1 )=1 ezért a 1 ( X ub1 ) b vagyis X ub1 = m1 (m Z) ahoa X = ub1 + m1 vagyis x = x + m 1 (***) Észrevehető, hogy ha m= akkor m1 = =, vagyis a (***) összefüggés külöböző m megolást származtat. És mivel = 1 továbbá =(a,), ezért 1 = így m1 = m =. m Tehát x = x + ahol x = ub 1 egy partikuláris megolás és m {, 1, 2,, 1}. Gyakorlatba, em túl agy eseté a megolások megkeresésére alkalmas az úgyevezett értéktábla mószere is, ellebe - mit láti fogjuk a kapott ereméy alapjá is köyűszerrel megkaphatók az x értékek, és azok potos számát is előre lehet tui. Pélául: Oljuk meg a Z12 halmazo a 3 x = 6egyeletet. 1. Megolás: elkészítjük a következő értéktáblázatot x x A táblázatból kiolvasható, hogy az egyelet megolásai x { 2, 6, 1 } 2. Megolás: alkalmazzuk az előbbiekbe megállapított ereméyeket. Esetükbe a=3, b=6, =12, =(a,)=3 és 3 6=b. Mivel =3 ezért az egyeletükek 3 m megolása lesz. A megolások: x = x + ahol x a 3 x = 6 egyeletek egy partikuláris megolása esetükbe azoba köye látható, hogy x =2 egy megolás, és mivel m 12m = = 4m, ezért a megolások x= m m + = + ahol m {,1,2}, így x { 2, 6, 1 }. Megjegyzés:Ha a 3 x = 6 egyelet mikét olalát megszorozzuk 4 -el, akkor a = azoossághoz jutuk, és így hajlamosak leék azt hii, hogy mie x Z 12 megolás lee, ellebe a bizoyítottak alapjá mivel (a, )= (3, 12)= 3 és 3 6 ezért az egyeletek

5 potosa 3 megolása va. A helyzete azért em kell csoálkozuk, mert a 4 -el való beszorzással mivel (12, 4) 1 iege gyököket hoztuk be! A továbbiakba foglaljuk össze az a x = b egyelet megolására voatkozó ereméyeiek: 1. Tétel: Az a x = b egyeletek a Z halmazo való megolásairól ezt mohatjuk: ' 1) Ha (a,)=1 egyetle megolás va, ez x = b a, ahol a az a iverze (a szorzásra ézve) 2) Ha ( a, ) = 1és b hamis az egyeletek ics megolása 3) Ha ( a, ) = 1és b igaz az egyeletek számú külöböző megolása va: m x = x + ahol =(a,) és m {, 1, 2,, 1}, x peig az egyeletek egy sajátos megolása. Következméy: Legye pozitív természetes szám és k= (, e) 1 Ekkor az e z = egyeletek a Z halmazo k számú megolása va, és ezeket így kapjuk m meg: z = ahol k= (e,) és m {, 1, 2,, k 1} k Természetese ez a következméy az 1.Tétel-ek egy sajátos esete, ellebe a következő részbe agyo sokszor fogjuk haszáli, így erre foguk hivatkozi. Megjegyzések: 1) Az a x+b y=c (a, b, c Z) iofatikus egyelet egész megolásait keresve, az előző 1.Tétel fotos megállapításokhoz vezet. Ha az egyeletbe mikét olalo rátérük a moulo c maraékosztályra, akkor az a x = b egyelet megolásához jutuk, amiről éppe az 1.Tételbe olvashatuk. 2) Az =p=prím sajátos esetbe, az a x = 1 egyeletek a Z p -be mie a egész szám eseté az 1.Tétel értelmébe potosa 1 megolása va, vagyis mie x ivertálható, ami azt jeleti, hogy ( Z, +, ) test struktúra. p 3) Köye észrevehető, hogy ha x= X az a x = b egyelet megolása a Z halmazo, akkor ax = b vagyis ax=b+k (k N) ax-b= k ami kogrueciával felírva az ax b(mo ) kogruecia-egyeletet jeleti. Tehát az egész témakört a kogrueciákkal is bemutathattuk vola, ellebe ekkor értelmezéseket, tulajoságokat, ereméyeket mi át kellett vola íruk a kogruecia yelvezetére, így ikább az oszthatóság yelvezetéél maratuk. Az eigiekbe bizoyítottak alapjá, a következő részbe az a x + b y = c egyeletek a Z halmazo való megolását vizsgáljuk, ami rákövetkező részbe, az egyeletreszerek megolásáál is szükséges lesz. Az 1.Tétel elmélyítése céljából taulságosak látjuk a következő felaatot: Oljuk meg Z8 -ba és tárgyaljuk az a x = b egyeletet és a megolásaiak a számát! (v.ö. [3]) Az 1.Tétel alapjá járuk el, és a következő eseteket kell megkülöböztetük: 1) Ha a=, akkor csak a b= esetbe va megolás, és ez x Z 8. 2) Ha a, akkor több esetet külöböztetük meg: a)ha a {1,3,5,7} akkor (a, )= (a, 8)=1, ezért az egyeletek miegyik

6 ' esetbe potosa 1-1 megolása va, és ez képletese: x = b a, ahol a az a számak a szorzásra voatkozó szimmetrikusa (iverze). b) Ha a {2, 6} akkor (a, )= (a, 8)= 2 1 alapjá, ameyibe b em osztható 2-vel, vagyis b {1,3,5,7}, úgy az egyeletek ics megolása, ellebe ha b {,2,4,6} akkor az egyeletek miegyikesetbe potosa 2-2 megolása va, és ez képletese: 8m = + = + 4 ahol x x x m x az egyelet egy sajátos megolása, és m {, 1 }. 2 c) Ha a=4, akkor (a, )= (4, 8)= 4 1 alapjá, ameyibe b em osztható 4-el, vagyis b {1,2,3,5,6,7}, úgy az egyeletek ics megolása, ellebe ha b {,4} akkor az egyeletek miegyikesetbe potosa 4-4 megolása va, és ez képletese: 8m = + = + 2 ahol x x x m 4 x az egyelet egy sajátos megolása, és m {, 1, 2, 3 }. Szakiroalom: [1] C. Nita, T. Spircu: Probleme e structuri algebrice, Eitura Techica, Bucuresti 1974., olalak. [2] Floreti Smaraache: Iteger algorithms to solve liear eguatios as systems, E. Scietifique, Casablaca, (Ugyaez megjelet a Gamma XXIX-XXX, X. évfolyam, 1987 Októbet 1-2 számába is). [3] Arás Szilár és szerzőtársai: Megolások a XII. osztályos taköyv felaataihoz, Státus Kiaó, Csíkszerea, 25, 188. ; olalak. [4] Farkas Miklós: Algebra, taköyv a XII. osztályok számára M1, Erélyi Taköyvtaács. [5] Io D. Io és szerzőtársai: Matematika: Taköyv a XII. osztály számára M1, Ábel Kiaó (a Sigma kiaóál megjelet taköyv forítása).

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Z

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Z Az érettségi vizsgára előkészülő taulók figyelmébe! EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a x + b y c 5. Az egyeletredszer megoldása a Z halmazo (3. rész) a x + b y c A hivatkozások köyítése

Részletesebben

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Az érettségi vizsgára előkészülő taulók figyelmébe! 4. Az EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a1 x + b1 y = c1 egyeletredszer megoldása a a x + b y = c Z halmazo (. rész) Ebbe a részbe

Részletesebben

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!!

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!! 4. Test feletti egyhatározatlaú poliomok Klasszikus algebra előadás Waldhauser Tamás 2013 április 11. Eddig a poliomokkal mit formális kifejezésekkel számoltuk, em éltük azzal a lehetőséggel, hogy x helyébe

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak Számelméleti alapfogalma A maradéos osztás tétele Legye a és b ét természetes szám, b, és a>b Aor egyértelme léteze q és r természetes számo, amelyere igaz: a b q r, r b Megevezés: a osztadó b osztó q

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

Feladatok megoldása. Diszkrét matematika I. Beadandó feladatok. Bujtás Ferenc (CZU7KZ) December 14, feladat: (A B A A \ C = B)

Feladatok megoldása. Diszkrét matematika I. Beadandó feladatok. Bujtás Ferenc (CZU7KZ) December 14, feladat: (A B A A \ C = B) Diszkrét matematika I. Beadadó feladatok Bujtás Ferec (CZU7KZ) December 14 014 Feladatok megoldása 1..1-6. feladat: (A B A A \ C = B) A B A = A \ C = B igazolása: A B A = B \A = Ø = B = A B (Mivel a B-ek

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

MAGASABBFOKÚ MÁTRIXEGYENLETEK MEGOLDÁSA

MAGASABBFOKÚ MÁTRIXEGYENLETEK MEGOLDÁSA 1 MAGASABBFOKÚ MÁTRIXEGYENLETEK MEGOLDÁSA Tuzso Zoltá Akár a régebbi, akár az alteratív XI. osztályos algebra taköyveket lapozva, akár példatárakba vagy matematikai verseyeke gyakra találkozuk egyél magasabb

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló . Számelmélet I. Feladatok 1. Háy égyzetszám osztója va a 7 5 5 7 számak?. Az pozitív egész számak potosa két pozitív osztója va, az + 1-ek pedig potosa három. Háy pozitív osztója va az + 01 számak? OKTV

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

Bevezetés az algebrába komplex számok

Bevezetés az algebrába komplex számok Bevezetés az algebrába komplex számok Wettl Ferec Algebra Taszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2015. december 6.

Részletesebben

2.5. A lineáris kongruencia egyenlet.

2.5. A lineáris kongruencia egyenlet. 2.5. A lieáris kogruecia egyelet. Defiíció: Kogruecia Az a és b egész számokat kogruesek modjuk az modulus szerit, ha az szeriti osztás utái maradékaik megegyezek, vagy ami ugyaaz: ha. Jelölésbe: a bmod.

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

10.M ALGEBRA < <

10.M ALGEBRA < < 0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal 5. Komplex számok 5.1. Bevezetés Taulmáyaik sorá többször volt szükség az addig haszált számfogalom kiterjesztésére. Először csak természetes számokat ismertük, később haszáli kezdtük a törteket, illetve

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik. Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

A Cauchy függvényegyenlet és néhány rokon probléma

A Cauchy függvényegyenlet és néhány rokon probléma A Cauchy függvéyegyelet és éháy roko probléma Tuzso Zoltá, Székelyudvarhely A függvéyegyeletek egyik alapegyelete a Cauchy függvéyegyelet, amely a következő: Melyek azok az f : R R folytoos függvéyek,

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:

Részletesebben

Prímszámok a Fibonacci sorozatban

Prímszámok a Fibonacci sorozatban www.titokta.hu D é e s T a m á s matematikus-kriptográfus e-mail: tdeest@freemail.hu Prímszámok a Fiboacci sorozatba A továbbiakba Fiboacci sorozato az alapsorozatot (u,,,3,5,...), Fiboacci számo az alapsorozat

Részletesebben

Hanka László. Fejezetek a matematikából

Hanka László. Fejezetek a matematikából Haka László Egyetemi jegyzet Budapest, 03 ÓE - BGK - 304 Szerző: Dr. Haka László adjuktus (OE BGK) Lektor: Hosszú Ferec mestertaár (OE BGK) Fiamak Boldizsárak Előszó Ez az elektroikus egyetemi jegyzet

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

A Venn-Euler- diagram és a logikai szita

A Venn-Euler- diagram és a logikai szita A Ve-Euler- diagram és a logikai szita Ebbe a részbe a Ve-Euler diagramról, a logikai szitáról, és a két témakör kapcsolatáról íruk, számos jellemző, megoldott feladattal szemléltetve a leírtakat. Az ábrákak

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes 1. Algebrai alapok: DISZKRÉT MATEMATIKA: STRUKTÚRÁK Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz

Részletesebben

Hiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai

Hiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai közzétéve a szerző egedélyével) Öfüggő szekuder-változó csoport keresése: egy bevezető példa Ez a módszer az állapothalmazo értelmezett partíció-párok elméleté alapul. E helye em lehet céluk az elmélet

Részletesebben

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy

Részletesebben

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat!

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat! megoldásvázlatok Fizika BSc I/,. feladatsor. Rajzoljuk le a számegyeese az alábbi halmazokat! a { R < 5}, b { R 4}, c { Z 4}, d { Q < 4 6}, e { N 3 }.. Igazak-e az alábbi állítások? Adjuk meg az állítások

Részletesebben

Kongruenciák. Waldhauser Tamás

Kongruenciák. Waldhauser Tamás Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek

Részletesebben

dr. CONSTANTIN NĂSTĂSESCU egyetemi tanár a Román Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi tanár

dr. CONSTANTIN NĂSTĂSESCU egyetemi tanár a Román Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi tanár dr. CONSTANTIN NĂSTĂSESCU egyetemi taár a Romá Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi taár I. VALÓS SZÁMOK. VALÓS GYÖKÖKKEL RENDELKEZŐ MÁSODFOKÚ EGYENLETEK II. A MATEMATIKAI LOGIKA ELEMEI.

Részletesebben

Szemmegoszlási jellemzők

Szemmegoszlási jellemzők Szemmegoszlási jellemzők Németül: Agolul: Charakteristike er Korgrößeverteilug Characteristics of particle size istributio Fraciául: Caractéristique e compositio graulométrique Kutatási, fejlesztési és

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

N - edik gyökvonás. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

N - edik gyökvonás. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Brósch Zoltá (Debrecei Egyetem Kossuth Lajos Gyakorló Gimáziuma) N - edik gyökvoás DEFINÍCIÓ: (Négyzetgyökvoás) Egy em egatív x valós szám égyzetgyöké azt a em egatív valós számot értjük, amelyek égyzete

Részletesebben

Hatványozás. A hatványozás azonosságai

Hatványozás. A hatványozás azonosságai Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

Variációk egy egyenlőtlenség kapcsán

Variációk egy egyenlőtlenség kapcsán Variációk egy egyelőtleség kapcsá Tuzso Zoltá, Székelyudvarhely Mit a régebbi, mit az újabb alteratív taköyvekbe valamit számos feladatgyűjteméybe, a matematikai idukció taítása fejezetbe megtalálható

Részletesebben

= λ valós megoldása van.

= λ valós megoldása van. Másodredű álladó együtthatós lieáris differeciálegyelet. Általáos alakja: y + a y + by= q Ha q = 0 Ha q 0 akkor homogé lieárisak evezzük. akkor ihomogé lieárisak evezzük. A jobb oldalo lévő q függvéyt

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból Ismétlés: Ha r,s > 0 valós, akkor r(cosα+isiα) = s(cosβ+isiβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete: ( s(cosβ+isiβ)

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel? 5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás április 28.

Klasszikus algebra előadás. Waldhauser Tamás április 28. Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot

Részletesebben

FELVÉTELI VIZSGA, július 17.

FELVÉTELI VIZSGA, július 17. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 2017. július 17. Írásbeli vizsga MATEMATIKÁBÓL I. TÉTEL (30 pont) 1) (10 pont) Igazoljuk, hogy tetszőleges m R esetén

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

Oktatási Hivatal. A döntő feladatai. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008]

Oktatási Hivatal. A döntő feladatai. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008] OKTV 7/8 A öntő felaatai. Felaat Egy kifejezést a következő képlettel efiniálunk: 3 x x 9x + 7 K = x 9 ahol [ 8;8] x és x Z. Mennyi a valószínűsége annak hogy K egész szám ha x eleget tesz a fenti feltételeknek?.

Részletesebben

Polinomok (el adásvázlat, április 15.) Maróti Miklós

Polinomok (el adásvázlat, április 15.) Maróti Miklós Polinomok (el adásvázlat, 2008 április 15) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: gy r, gy r additív csoportja, zéruseleme, és multiplikatív félcsoportja, egységelemes

Részletesebben

Algebra gyakorlat, 3. feladatsor, megoldásvázlatok

Algebra gyakorlat, 3. feladatsor, megoldásvázlatok Algebra gyakorlat, 3. feladatsor, megoldásvázlatok 1. a) Z(G), mert az egységelem yilvá felcserélhet mide G-beli elemmel. Továbbá Z(G) zárt a szorzásra, mert ha a, b Z(G), akkor tetsz leges g G-re (ab)g

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

Diszkrét matematika I. legfontosabb tételek/definíciók (II. javított verzió) 2014/2015. I. félév

Diszkrét matematika I. legfontosabb tételek/definíciók (II. javított verzió) 2014/2015. I. félév Diszkrét matematika I. legfotosabb tételek/defiíciók (II. javított verzió) 2014/2015. I. félév 1. Előszó A jegyzet a Diszkrét matematika I. (DE IK PTI, tárgykód: INDK101-K5, Dr. Burai Pál) tatárgy 2014/2015.

Részletesebben

Algebrai egyenlőtlenségek versenyeken Dr. Kiss Géza, Budapest

Algebrai egyenlőtlenségek versenyeken Dr. Kiss Géza, Budapest Magas szitű matematikai tehetséggodozás Algebrai egyelőtleségek verseyeke Dr Kiss Géza, Budapest Néháy helyettesítési módszer és a Cauchy-Schwarz-egyelőtleség speciális esetéek alkalmazása bizoyítási feladatokba

Részletesebben

Oktatási Hivatal. A döntő feladatainak megoldása. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008]

Oktatási Hivatal. A döntő feladatainak megoldása. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008] OKTV 7/8 A öntő felaatainak megolása. Felaat Egy kifejezést a következő képlettel efiniálunk: 3 x x 9x + 7 K = x 9 ahol [ 8;8] x és x Z. Mennyi a valószínűsége annak hogy K egész szám ha x eleget tesz

Részletesebben

3.4. gyakorlat. Matematika B1X február 1819.

3.4. gyakorlat. Matematika B1X február 1819. 3.4. gyakorlat Matematika B1X 2003. február 1819. 1. A harmadik el adás (II. 17.) 1.1. Számosság Egyel számosságú halmazok. Véges, megszámlálhatóa végtele és kotiuum számosságú halmazok. Hatváyhalmaz számossága

Részletesebben

Függvényhatárérték-számítás

Függvényhatárérték-számítás Függvéyhatárérték-számítás I Függvéyek véges helye vett véges határértéke I itervallumo, ha va olya k valós szám, melyre az I itervallumo, ha va olya K valós szám, melyre I itervallumo, ha alulról és felülről

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

I. rész. Valós számok

I. rész. Valós számok I. rész Valós számok Feladatok 3 4 Teljes idukció Igazolja a teljes idukcióval a következ állítások helyességét!.. k 2 = k= ( + )(2 + ). 6.2. 4 + 2 7 + + (3 + ) = ( + ) 2..3. a) b) ( + ) = +. k ( ) =

Részletesebben

2. Algebrai átalakítások

2. Algebrai átalakítások I. Nulladik ZH-ban láttuk: 2. Algebrai átalakítások 1. Mi az alábbi kifejezés legegyszerűbb alakja a változó lehetséges értékei esetén? (A) x + 1 x 1 (x 1)(x 2 + 3x + 2) (1 x 2 )(x + 2) (B) 1 (C) 2 (D)

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szit 1011 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fotos tudivalók

Részletesebben

1. Sajátérték és sajátvektor

1. Sajátérték és sajátvektor 1. Sajátérték és sajátvektor Leképezés diagoális mátrixa. Kérdés Mely bázisba lesz egy traszformáció mátrixa diagoális? A Hom(V) és b 1,...,b ilye bázis. Ha [A] b,b főátlójába λ 1,...,λ áll, akkor A(b

Részletesebben

Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla

Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla Számelmélet (2017 február 8) Bogya Norbert, Kátai-Urbán Kamilla 1 Oszthatóság 1 Definíció Legyen a, b Z Az a osztója b-nek, ha létezik olyan c Z egész szám, melyre ac = b Jelölése: a b 2 Példa 3 12, 2

Részletesebben

Kvantum párhuzamosság Deutsch algoritmus Deutsch-Jozsa algoritmus

Kvantum párhuzamosság Deutsch algoritmus Deutsch-Jozsa algoritmus LOGO Kvatum párhuzamosság Deutsch algoritmus Deutsch-Jozsa algoritmus Gyögyösi László BME Villamosméröki és Iormatikai Kar Bevezető Kvatum párhuzamosság Bármilye biáris üggvéyre, ahol { } { } : 0, 0,,

Részletesebben

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február II.forduló -10. osztály

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február II.forduló -10. osztály Miisterul Educaţiei Națioale și Cercetării Știițifice Subiecte petru Etapa aţioală a Cocursului de Matematică al Liceelor Maghiare di Româia XXVI. Erdélyi Magyar Matematikaversey Zilah, 016. február 11

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 5. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Számfogalom bővítése Diszkrét matematika I. középszint

Részletesebben

A primitív függvény és a határozatlan integrál 7

A primitív függvény és a határozatlan integrál 7 A primitív függvéy és a határozatla itegrál 7 I A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL Korábbi taulmáyaitok sorá láthattátok, hogy sok műveletek, függvéyek va fordított művelete, iverz függvéye

Részletesebben

I. FEJEZET BICIKLIHIÁNYBAN

I. FEJEZET BICIKLIHIÁNYBAN I FEJEZET BICIKLIHIÁNYBAN 1 Az alapfeladat 1 Feladat Két település közti távolság 40 km Két gyerekek ezt a távolságot kellee megteie a lehetőlegrövidebb időalattakövetkező feltételek mellett: Va egy biciklijük

Részletesebben

1. Írd fel hatványalakban a következõ szorzatokat!

1. Írd fel hatványalakban a következõ szorzatokat! Számok és mûveletek Hatváyozás aaaa a a darab téyezõ a a 0 0 a,ha a 0. Írd fel hatváyalakba a következõ szorzatokat! a) b),,,, c) (0,6) (0,6) d) () () () e) f) g) b b b b b b b b h) (y) (y) (y) (y) (y)

Részletesebben

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k. 8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),

Részletesebben

Függvények határértéke 69. III. Függvények határértéke

Függvények határértéke 69. III. Függvények határértéke Függvéyek határértéke 69 A határérték értelmezése III Függvéyek határértéke Ebbe a fejezetbe taulmáyozi fogjuk a függvéy határértékét egy potba A feladat így fogalmazható meg: Ha adott az f : D valós változójú

Részletesebben

Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel

Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel Orosz Gyula: Marov-láco 2. orsoláso visszatevéssel Néháy orét feladat segítségével vezetjü be a Marov-láco fogalmát és a hozzáju acsolódó megoldási módszereet, tiius eljárásoat. Ahol lehet, több megoldást

Részletesebben

3.3 Fogaskerékhajtások

3.3 Fogaskerékhajtások PTE, PMMK Stampfer M.: Gépelemek II / Mechaikus hajtások II / 7 / 3.3 Fogaskerékhajtások Jó tulajoságaikak köszöhetőe a fogaskerékhajtóművek a legelterjetebbek az összes mechaikus hajtóművek közül. A hajtás

Részletesebben

1. ALGORITMUSOK MŰVELETIGÉNYE

1. ALGORITMUSOK MŰVELETIGÉNYE 1 ALGORITMUSOK MŰVELETIGÉNYE Az ismertetésre kerülő adatszerkezeteket és algoritmusokat midig jellemezzük majd a hatékoyság szempotjából Az adatszerkezetek egyes ábrázolásairól megállapítjuk a helyfoglalásukat,

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika

Részletesebben

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és

Részletesebben

Kalkulus II., második házi feladat

Kalkulus II., második házi feladat Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,

Részletesebben