Agroökológia és agrometeorológia

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Agroökológia és agrometeorológia"

Átírás

1 DEBRECENI EGYETEM - ATK Agrometeorológiai és Agroökológiai Monitoring Központ Agroökológia és agrometeorológia Mezőgazdasági mérnök BSc. II. évfolyam Levelező tagozat - Partium

2 Meteorológiai sugárzástan

3 A sugárzástan alapjai Az éghajlati rendszer energiaforrása: a Napban lejátszódó termonukleáris reakció: - elektromágneses - korpuszkuláris sugárzás Testek sugárzása: minden 0 K-nél magasabb hőmérsékletű test energiát bocsát ki és nyel el Sugárzás meteorológiai értelemben: - napsugárzás: csak a Napból érkező elektromágneses sugárzás - földi felszínek sugárzása: elnyelés és emittancia

4 Az elektromágneses sugárzás jellemzői az elektromágneses mező rezgése az energiaszállítást az elektromágneses hullámok végzik a hőenergiává alakuláshoz anyag szükséges elnyelődésekor a sugárzási energia hőenergiává alakul minden irányban terjed a forrásából, közvetítő közeg nélkül is anyagi- és hullámtermészete is van

5 A napsugárzás jellemzői Spektruma, hullámhossza: 10-9 µm-től 10 9 µm-ig terjed (1 µm=10-6 m) Meteorológiai szempontból lényeges tartomány: µm között (ultraibolya, látható fény, infravörös)

6 Rövidhullámú sugárzás: a Napból jövő (szoláris) sugárzás Hosszúhullámú sugárzás: a földi (terresztriális) sugárzás A napsugárzás a légkörön való áthaladáskor számos módosulást, veszteséget szenved: elnyelődés (abszorpció), szóródás (diffúzió), visszaverődés (reflexió) 1: direkt 2: diffúz 3: visszavert napsugárzás

7

8 A felszín sugárzási egyenlege A rövidhullámú sugárzás a légkörben közvetlen (direkt) és szórt (diffúz) sugárzás formájában éri el a felszínt Globálsugárzás (S) összetevői: közvetlen és szórt sugárzás összege A beérkező és visszavert rövidhullámú sugárzás hányadosa az albedó. Az albedó (a) 0 és 1 közötti értéket vehet fel. (0 maradéktalan elnyelést jelent) Rövidhullámú sugárzási egyenleg: a besugárzásból kivonjuk a felszín által visszavert sugárzás mennyiségét. R rh = R g - R refl Hosszúhullámú sugárzási egyenleg: a légköri visszasugárzás és a kisugárzás különbsége. R hh = R lv - E ki

9 Sugárzás mérés Napsugárzás intenzitás mérés Napfénytartam mérés a) Direkt sugárzás a) Campbell-Stokes Pirheliométer - direkt (Abbot-féle, Angström-féle) Aktinométer relatív (Michelson-Martin, Linke-Feussner) b) Rövidhullámú sugárzás Piranométer (Kipp&Zonen, Moll-Gorczynski) c) Hosszúhullámú sugárzás Pirgeométer d) Teljes sugárzás Pirradiométer b) intenzitás mérésekből

10 A napfénytartam Napos órák száma függ: Csillagászati tényezők: földrajzi szélesség nappal hossza Orográfiai tényezők: horizontkorlátozás Meteorológiai tényezők: Mérése: felhőzet, légkör áteresztőképessége Campbell-Stokes-féle napfénytartammérő Intenzitásmérések alapján (napos óra: 120 W/m 2 <)

11 A levegő és a felszín hőmérséklete, hőgazdálkodása

12 A hőmérséklet mint fizikai mennyiség az anyag részecskéinek hőmozgásával arányos állapothatározó intenzitást jelölő mennyiség nagysága a testek/anyagok közötti hőközlési folyamatok egyenlege: - Hősugárzás (radiáció, pl. a Nap rövidhullámú sugárzása) - Hőáramlás (konvekció, pl. tengeráramlások, szél) - Hővezetés (kondukció, pl. talaj hőátadása a levegőnek) A hőközlés hatásfokának alapja a hőkapacitás, mely függ: - az anyag fajhőjétől - az anyag sűrűségétől

13 A hőmérséklet mint fizikai mennyiség Néhány anyag hőtani paraméterei:

14 A hőmérséklet mint fizikai mennyiség Számszerűsítésének fontosabb alapegységei: Kelvin (T [ K], abszolút hőmérséklet): T = t+273,15 C Alappontja (0 K): abszolút 0 fok, azaz -273,15 C 1 K = 1 C Celsius (t [ C]): alappontja: a víz olvadáspontja 1 C: a víz olvadás és forráspontja közötti különbség 1/100-része Fahrenheit (f [ F]): f = t*9/5+32 alappontja: a szalmiákszesz-keverék olvadáspontja (-17,78 C) 1 F: fenti keverék o.p.-jának és az emberi test hőmérséklete közötti különbség 1/96-része

15 Hőmérséklet a talaj-légkör rendszerben A Föld hőforgalmát meghatározó tényezők: gömb forma

16 Hőmérséklet a talaj-légkör rendszerben A Föld hőforgalmát meghatározó tényezők: tengelyferdeség

17 Hőmérséklet a talaj-légkör rendszerben A Föld hőforgalmát befolyásoló tényezők: felszíni heterogenitás ~ albedó felhőzet, légköri hatások -víz/talajfelszín - domborzat - kőzet -talajtípus -talajállapot - növényzet -beépítettség foka

18 Hőmérséklet a talaj-légkör rendszerben Földi hőcsere-mechanizmusok: lokális légkörzés

19 Hőmérséklet a talaj-légkör rendszerben Földi hőcsere-mechanizmusok: globális légkörzés globális vízkörzés

20 A hőmérséklet mérése Az agrometeorológiában használt hőmérsékleti kategóriák: (tér-dimenzió szerint) Talajhőmérséklet: tipikus mérési szintjei: - Felszíni talajhőm.: -0,02 m -0,25 m - Mélységi talajhőm.: -0,5 m -2,0 m Felszíni hőmérséklet: - talajfelszín hőmérséklete - növényi felszínek hőmérséklete - állati testfelület hőmérséklete Léghőmérséklet Árnyékolt: - fűszinti ~ (0,05 m) - talajközeli ~ (0,5 m) - állomási ~ (nedves ill. száraz, 2,0 m) - magassági ~ (2,0 m<) Árnyékolatlan: - Radiációs minimum ~ (0,05 m) távérzékelt, infra-, illetve kata-hőmérséklet

21 A hőmérséklet mérése Az agrometeorológiában használt hőmérsékleti kategóriák: (idő-dimenzió szerint) Pillanatnyi hőmérséklet Átlaghőmérséklet ( valódi azaz 24 adatos, ill. 2, 3, 4 adatos) Szélső értékek: minimum és maximum Hőingás Hőátlagok vonatkoztatási időszakai: 10 perces, 1 órás átlaghőmérséklet 1 napos, pentád-, dekád-, havi ~ éves, sokéves ~ (jelenlegi referencia időszak: )

22 A hőmérséklet mérése A hőmérséklet mérésének eszközei, műszerei: Hőmérők csoportosítása Kontakt hőmérők Nem kontakt hőmérők -Mechanikus - gázhőmérők - folyadékhőmérők - fém (bimetall) hőmérők -Elektromos - termoelem hőmérők - ellenállás hőmérők - termisztorok IR (infra) hőmérők - hagyományos infra hőmérők - infra kamerák

23 A hőmérséklet mérése A hőmérséklet mérésének eszközei, műszerei: Az agrometeorológiában használt mérőeszközök Állomási hőmérő:

24 A hőmérséklet mérése A hőmérséklet mérésének eszközei, műszerei: Az agrometeorológiában használt mérőeszközök Hőmérséklet-regiszterek: Termográf (hőmérséklet-író) Elektromos hőmérőelem + adatgyűjtő

25 A hőmérséklet mérése A hőmérséklet mérésének eszközei, műszerei: Az agrometeorológiában használt mérőeszközök Minimum-maximum hőmérő: Six-féle Fuess-féle

26 A hőmérséklet mérése A hőmérséklet mérésének eszközei, műszerei: Az agrometeorológiában használt mérőeszközök Talajhőmérő:

27 A hőmérséklet mérése A hőmérséklet mérésének eszközei, műszerei: Az agrometeorológiában használt mérőeszközök Infra hőmérő: Infra kamera:

28 A hőmérséklet mérése A hőmérséklet mérésének eszközei, műszerei: A hőmérséklet mérésének kiegészítő eszközei Árnyékolók: Stevenson-féle hőmérőház előny: tágas, sokféle műszer elhelyezhető hátrány: tömege, hőtehetetlensége nagy Tányéros árnyékoló előny: könnyű, kis hőtehetetlenségű, kis méretű, olcsó, könnyen szerelhető, mozgatható

29 A hőmérséklet változása időben és térben A hőmérséklet jellemző napi menete

30 A hőmérséklet változása időben és térben A hőmérséklet jellemző éves menete (adatok: Debrecen-Repülőtér)

31 A hőmérséklet változása időben és térben A hőmérséklet változása a magassággal: a troposzférában átlagosan 0,65 C/100 m

32 A hőmérséklet változása időben és térben A hőmérsékleti inverzió agrometeorológiai jelentősége: Típusai kialakulás szerint: kisugárzási (tavasszal és ősszel) zsugorodási (téli hidegpárnás helyzet) Gyakorlati jelentősége: Fagylefolyás: - passzív fagyvédekezés - termőterület helyes megválasztása (hegylábi, dombvidéki termőterületeken) - aktív fagyvédelem - légterelés, melioráció - termőhelyi adottságok módosítása Köd-, inverziós záróréteg képződés - aktív fagyvédelem ( helyi ködképzés, füstölés) - vegetációban növényvédelmi vonatkozások

33 A hőmérséklet változása időben és térben A klímájára jellemző kardinális hőmérsékleti értékek Agronómiai (termeszthetőségi, illetve hőstressz) szempontból lényeges hőmérsékleti jelzőszámok: t min = napi minimumhőmérséklet t max = napi maximumhőmérséklet Zord nap: t min <=-10 C Téli nap: t max <=0 C Fagyos nap: t min <0 C Nyári nap: t max >=25 C Hőségnap: t max >=30 C Forró nap: t max >=35 C

34 A hőmérséklet változása időben és térben *USDA-ekvivalens plant hardiness zónatérkép

35 A levegő mozgása: a légnyomás és a szél

36 A száraz levegő termodinamikája - nyomás Egységnyi felületre ható nyomóerő (N/m 2 ) A légkör nyomásával a tengerszinten 760 Hgmm tart egyensúlyt = N/m 2 = 10 5 Pa = 1013,25 mbar

37 Légköri nyomás A légkör tömegének 90% alsó 15 km rétegben van

38 A légkörben ható erők Külső erők (légkör nélkül is hat) Belső erők (légkör jelenlétéből következnek) A Föld tömegéből következő gravitációs erő A Föld forgásából származó Coriolis erő Egyenlőtlen légnyomás eloszlásból származó nyomási gradiens erő Belső és külső súrlódásból származó súrlódási erő Görbült mozgások miatt fellépő centrifugális erő

39 A szél kialakulásának okai Föld gömbölyű Ráeső sugárzás különböző mértékben hasznosul nyomás különbségek Forog a tengelye körül Hőszállítás

40 Globális áramlási rendszer

41 Légmozgás a talajmenti térben A talaj menti térben a levegő mozgása irányítja az érezhető (szenzibilis) hőenergia és a különböző anyagok (pl. CO 2, víz, pollen, szennyezőanyagok, stb.) terjedésének sebességét is. A szélsebesség alakulása a függőleges mentén: A szélsebesség alakulása a függőleges mentén: A felszíni súrlódás mértékét meghatározza: - a felszín érdessége - a felszínnel érintkező gáz sűrűsége - az áramlás sebessége.

42 Felszín érdessége

43

44 Szél a növényállományban

45 A levegő mozgásának főbb mérési elvei és eszközei

46 A szélsebességgel kapcsolatos definíciók Nagysággal és iránnyal rendelkező vektormennyiség Szélút: az a távolság, amelyet vízszintesen egy képzeletbeli pont egységnyi idő alatt a légáramlás segítségével megtesz. A választott átlagolási időegységen belül mért legnagyobb szélsebesség a széllökés, amely a felszín közeli légmozgások turbulens jellegéből adódik. A szélnyomás nagysága a szélsebesség négyzetével arányos. Hatását magas, nagy légellenállású építmények tervezésénél is számításba kell venni.

47 Mértékegysége A szélsebesség mértékegysége : m/s, km/h, csomó(knots)/h, mérföld/óra. Érdemes tudni, hogy: 1m/s = 3,6 km/h = mérföld/óra = 1,944 csomó.

48 Szélrózsa

49 Megfigyelt szélsebesség 5 csomóra kerekítve Alkalmazott szimbólum Megfigyelt szélsebesség 5 csomóra kerekítve Alkalmazott szimbólum 0-2 csomó 0-2 mérföld 0 csomó csomó (44-48 mérföld) 40 csomó 20 m/s 3-7 csomó (3-8 mérföld) 5 csomó csomó (50-54 mérföld) 45 csomó 8-12 csomó (9-14 mérföld) 10 csomó 5 m/s csomó (55-60 mérföld) 50 csomó 25 m/s csomó (15-20 mérföld) 15 csomó csomó (61-66 mérföld) 55 csomó csomó (21-25 mérföld) 20 csomó 10 m/s csomó (67-71 mérföld) 60 csomó 30 m/s csomó (26-31 mérföld) 25 csomó csomó (73-77 mérföld) 65 csomó csomó (32-37 mérföld) 30 csomó 15 m/s csomó ( mérföld) 100 csomó 50 m/s csomó (38-43 mérföld) 35 csomó csomó ( mérföld) 105 csomó

50 Beaufort kategória Szélsebesség kt km/h mph m/s Átlagos szélsebesség (kt / km/h / mph) Leírás Hullámmagasság m Tengeri viszonyok Szárazföldi viszonyok / 0 / 0 Szélcsend 0 Sima tenger. Szélcsend. A füst függőlegesen felszáll / 4 / 2 Gyenge légmozgás 0.1 Fodrozódik hab nélkül. A szélmozgás látható a füstön / 9 / 6 Könnyű szellő 0.2 Kis hullámok. A tarajok üvegesek, de nem buknak át. A szél érezhető a bőrön, a levelek suhognak / 17 / 11 Szelíd szél 0.6 Nagy hullámok. A hullámtarajok kezdenek átbukni, elszórtan fehér a teteje. Levelek és kisebb gallyak állandóan mozognak / 24 / 15 Mérséklet szél 1 A hullámok alacsonyak, de egyre hosszabbak. A füst és lebegő papír emelkedik. A kisebb ágak mozogni kezdenek / 35 / 22 Élénk szél 2 Mérsékleten (1.2m) hosszú hullámok Néhány taraja habzik és tajtékzik. Kisebb fák billegnek / 44 / 27 Erős szél 3 Nagy hullámok átbukó tarajjal, amelyek néha tajtékzanak. Nagyobb ágak mozognak Drótok felett fütyül a szél. Nehéz használni az esernyőt / 56 / 35 Nagyon erős szél 4 Viharos tenger. A tajtékzó hab csíkokba rendeződik Az egész fa mozog. Erőfeszítés kell a széllel szemben haladni / 68 / 42 Szélvihar 5.5 Mérsékleten magas, hosszú tarajú hullámhegyek, a tajtékzó hab egyértelműen csíkokba rendeződik Gallyak törnek le a fáról. Autók irányt változtatnak az úton / 81 / 50 Erős szélvihar 7 Magas hullámok (2.75 m) sűrűn tajtékkal. A hullámok teteje átfordulnak. A víz jelentősen szóródik és habzik. Enyhe veszély az épületekre / 96 / 60 Vihar 9 Nagyon magas hullámok. A tengerfelszín fehér és állandóan hánykolódik. A látótávolság csökken. A fák gyökerestől kifordulnak. Jelentékeny veszély az építményekre / 111 / 69 Heves vihar 11.5 Szokatlanul magas hullámok Minden építményre veszélyt jelent. 12 >63 >117 >72 >32.7 N/A Orkán, hurrikán 14+ Óriási hullámok. A levegő tele van tajtékzó vízzel és habbal. A tenger teljesen fehér. A látótávolság jelentősen csökken. Súlyos veszély minden építményre

51 Szélmérés elvei Szélsebesség és irány mérése: -külön -együttesen (kombinált műszerek) További lehetőség: az u, v, és w szélvektorok közvetlen mérése, majd ebből szélirány és sebesség számolása. Direkt és indirekt szélmérés lehetséges

52 Szélzászló Kiegyensúlyozott aszimmetrikus fémlap Szél nyomóereje fordítja irányba

53 Szélzsák- anemoszkóp igen olcsón teszi szemléletessé az áramló levegő tulajdonságait (lökésességét) repülőtereken, utak mellett (oldalszél jelzésére)

54 Wild-féle nyomólapos szélzászló 150x300mm méretű és 200g súlyú fémlap kilendül 7 fokozatú Beaufort skála Szélzászló aszimmetrikus fémlap fordul a szél irányába

55 Szélirányjelző 360 vagy 540 beosztású potenciométerek, mindegyik irányhoz más más elektromos ellenállás tartozik, így ellenállásmérésre vezetjük vissza a széliránymérést. 2 pontosságúak pontos tájolás szükséges

56 Anemométerek 1. Közvetlen mérés - Rotációs anemométerek Kanalas Lapátkerekes Propelleres

57 Szónikus anemométer A hang terjedési sebessége nyugalomban lévő levegőben a tér minden irányába azonos a talajfelszínhez viszonyítva. A levegő földfelszínhez viszonyított relatív A levegő földfelszínhez viszonyított relatív elmozdulása a Doppler-effektus miatt módosítja ezt a paramétert.

58 SODAR (SOund Detection And Ranging) A SODAR által kiadott hallható rövid hangimpulzusok a légkör magasságban áramló levegőrétegeiről eltérő időtartam alatt verődnek vissza. Az 1875Hz frekvenciájú, 340 m/s terjedési sebességű hanghullámok

59 Szélvektorok különböző magasságokban

60 A víz a légkörben; A légnedvesség, felhőzet, csapadék és a párolgás

61 A víz a légkörben A talaj-légkör rendszer egyszerűsített vízmérlege: P + ET ± D = 0 P= csapadék ET= párolgás D= a talaj által raktározott víz

62 A víz a légkörben A talaj-légkör rendszer vízmérlege:

63 A víz a légkörben A vízgőz a légkör változó részarányú, de állandó összetevője, nagy hatású üvegházgáz. Mindhárom halmazállapotában jelen lehet. A légnedvesség számszerűsítése: Páranyomás: a vízgőz parciális nyomása [mbar, kpa] Abszolút páratartalom: a légkör egységnyi térfogatában jelen lévő víz tömege [g/m 3 ] Relatív páratartalom: a levegő aktuális víztartalmának aránya a telített állapothoz viszonyítva [%] Telítési nedvességtartalom: egységnyi térfogat által maximálisan elnyelhető vízgőz tömege, illetve parciális nyomása [g/m 3 ; mbar, kpa]

64 A víz a légkörben A telítési páranyomás és a relatív nedvesség függése a hőmérséklettől: A hőmérséklettel nő a levegő lehetséges legmagasabb abszolút páratartalma (azaz párabefogadó képessége telítési páranyomása). A telítési (E) és az aktuális (e) páranyomás különbsége a telítési hiány, a levegő páraéhsége. Azonos páranyomás mellett a hőmérséklet növelésével csökken, csökkentésével nő a relatív páratartalom (RN).

65 A víz a légkörben A telítési páranyomás és a relatív nedvesség függése a hőmérséklettől: Azt a hőmérsékletet, ahol adott páranyomású (páratartalmú) levegő telítetté válik, harmatpontnak nevezzük. Az aktuális t és a harmatpont (τ) különbsége a harmatpontdepresszió. Minél kisebb a harmatpontdepresszió, annál nagyobb a telítési arány, vagyis a páranyomás és a telítési páranyomás hányadosa (e/e). Ugyanez egyúttal nagyobb nedvességtartalmat is jelent azonos t mellett.

66 A víz a légkörben A légnedvesség jellemző értékei, változékonysága A relatív páratartalom napi menete

67 A víz a légkörben A légnedvesség jellemző értékei, változékonysága A páranyomás napi menete

68 A légnedvesség mérése A víz a légkörben Eszközei: higrométerek Abszorpciós higrométerek: - Higroszkópos vegyületet tartalmazó ~ (CaCl 2, H 2 SO 4, P 2 O 5 ) Hajszálas ~ (Fuess-állomáshigrométer, poliméter, higrográfok) - Membrános ~ - Ellenállás- és kapacitív ~ Pszichrométerek (August- és Assmann-féle pszichrométer) Kondenzációs vagy harmatpont higrométerek

69 A légnedvesség mérése A víz a légkörben Higroszkópos vegyületet tartalmazó higrométer

70 A légnedvesség mérése A víz a légkörben Hajszálas higrométer

71 A légnedvesség mérése A víz a légkörben Higrográf (légnedvesség-író)

72 A légnedvesség mérése A víz a légkörben Ellenállás- és kapacitív higrométerek, termohigrométerek

73 A légnedvesség mérése A víz a légkörben Nedves-száraz hőmérőpár (August-féle pszichrométer)

74 A légnedvesség mérése A víz a légkörben Assmann-féle aspirált pszichrométer (szellőztetett nedves-száraz hőmérőpár

75 A víz a légkörben A légnedvesség időbeli és térbeli változása által meghatározott jelenségek: Felhőképződés: telített állapotban a magasabb szintek levegőjének nedvességtartalma kicsapódik, páracseppek keletkeznek Ködképződés: a felhőképződés folyamata a talaj közeli légrétegben zajlik le Csapadékképződés: felhőben vagy ködben az igen apró páracseppek kondenzációs magokra kicsapódva felhőelemeket hoznak létre Párolgás, párologtatás: a párolgó felületek, illetve a növényzet körüli levegő telítési hiánya megszabja a párolgási, párologtatási folyamat intenzitását

76 A víz a légkörben A felhő- és ködképződés: A levegőnek telített állapotot (relatív nedvesség=100%) kell elérnie: - t csökkentése - abszolút nedvességtartalom növelése Lehetséges módjai: Nedvesség-advekció, konvergencia (időjárási frontokhoz kapcsolódnak) Lehűlés - hideg advekció - emelkedés (frontok mentén, konvektív úton vagy orografikusan) - kisugárzás által (talaj közelében ködképződés)

77 Advekció, frontális emelés A víz a légkörben

78 Orografikus (domborzati) emelés A víz a légkörben

79 Konvektív emelés A víz a légkörben

80 A víz a légkörben Köd képződésének módjai Kisugárzási Advektív

81 A víz a légkörben Csapadékképződés Feltétele: felhőelemek létrejötte - a felhő kétfázisúból (folyékony-légnemű) három fázisúvá válása (jégcsírák) - kicsapódási (kondenzációs) magvak jelenléte - kellő további nedvességtartalom a felhőelemek növekedéséhez A közbenső részfolyamatok: - ütközés - szétválás - kondenzáció - átpárolgás - párolgás - szublimáció Csapadék hullásának feltétele: Felfelé irányuló légmozgás Gravitáció

82 A víz a légkörben Csapadékformák osztályzása Halmazállapot Szilárd Átmeneti Folyékony havas eső Képződés szintje Magassági Talaj közeli hó jégeső dér zúzmara hódara ónos eső fagyott eső eső harmat

83 A víz a légkörben A csapadék jellemzésére szolgáló mutatók: Csapadékösszeg (leggyakrabban napi, havi, éves, sokéves) Intenzitás (mm/h) Gyakoriság (időszak csapadékos napjainak száma) Eloszlás: - térbeli (érintett területek nagysága, egybefüggősége) - időbeli (csapadékos és csapadékmentes időszakok aránya, egyenletessége) A csapadékmennyiség értelmezése: 1 mm csapadék elfolyás, elszivárgás nélkül a talajt 1 mm vastagságban borítaná be 1 mm csapadék = 1l víz/m 2 Hócsapadék vízegyenértéke: 1 cm friss hó kb. 0,3-1,5 mm csapadékvíznek felel meg

84 Hulló csapadék mérése: Csapadékmérő gyűjtőedények - Hellmann-féle csapadékgyűjtő - Mougin-féle csapadékgyűjtő (totalizatőr) A csapadék mérése Csapadékíró műszerek(ombrográfok) - Hellmann-féle úszóhengeres csapadékíró - Anderkó-Bogdánffy-féle mérleges csapadékíró Automata csapadékmérők -Billenőcsészés csapadékregisztráló - Súlymérés elvén működő csapadékregisztráló - Elektromos csapadékjelző Mikrocsapadék mérésére szolgáló műszerek: Harmatmérlegek Zúzmaramérők

85 Hellmann-rendszerű csapadékmérő A csapadék mérése

86 Hellmann-féle úszóhengeres csapadékíró A csapadék mérése

87 Billenőcsészés csapadékmérő automata A csapadék mérése

88 A csapadék mérése Súlymérés elvén működő csapadékregisztráló + elektromos csapadékindikátor

89 Zúzmaramérő A csapadék mérése

90 A párolgás, párologtatás Párolgás (evaporáció, E): a talaj, vizek, növényzet felületéről pusztán fizikai folyamatok által meghatározott módon levegőbe jutó vízpára Párologtatás (transpiráció, T): a növények szöveteiből a sztómákon át élettani folyamatok által szabályozott módon a levegőbe jutó vízpára Evapotranspiráció (ET): a növényzettel borított természetes felszínek párolgásának összessége; az evaporáció és a transpiráció összege Jellemző értékei: - potenciális evapotranspiráció(pet) - tényleges evapotranspiráció(tet)

91 A potenciális evapotranspiráció mérésének eszközei Referenciafelület a szabad vízfelület: Párolgásmérő kádak: - A-típusú - G-típusú - U-típusú

92 A potenciális evapotranspiráció mérésének eszközei Referenciafelület a csupasz, vagy növényzettel borított talaj felülete: Evaporiméter: edényben álló csupasz felületű talajmonolit vízbevételét és veszteségét mérve vízmérleg számolható Liziméterek: növényzettel borított talajszelvény párolgásának mérésére szolgálnak súlyliziméterek: a vízmérleg alapja súlymérés - mechanikus - elektronikus - hidraulikus - úszó térfogati liziméterek: a vízbevétel és vízveszteség térfogatának méréséből számítható a PET nagysága

93 A potenciális evapotranspiráció mérésének eszközei Thornthwaite-rendszerű kompenzációs evapotranspirométer

94 A párolgás jellemző értékei, változékonysága A potenciális párolgás évi menete

95 A párolgás jellemző értékei, változékonysága Az tényleges és a potenciális párolgás éven belüli alakulásának viszonya

96 A talaj agrometeorológiája: talajnedvesség és a talajok hőháztartása

97 A talajnedvesség szerepe közvetlen kapcsolat a talaj szilárd és légnemű fázisával, a növényzet gyökérrendszerével mennyisége, mozgékonysága és mennyisége, mozgékonysága és kémiai összetétele befolyásolja a talaj termékenységét

98 Nedvességformák a talajban I. Kötött víz II. Kapilláris víz 1. Szerkezeti víz (kémiailag kötött ) 2. Adszorbeált víz (fizikailag kötött) a) Erősen kötött víz b) Lazán kötött víz 1. Támaszkodó kapilláris víz 2. Függő kapilláris víz 3. Elkülönült (izolált) kapilláris víz III. Szabad víz 1. Kapillárisgravitációs víz 2. Gravitációs víz 3. Talajvíz 4. Vízgőz Talaj-víz-növény kapcsolatrendszerben 1. Holtvíz (HV) (növények számára nem hasznosítható, gyökér szívóerejénél erősebben kötött) 2. Hasznosítható (diszponibilis) víz (DV) (növények számára hozzáférhető)

99 Talajnedvesség mérése a) Szárítószekrényes (gravimetrikus) N t% = G n G G sz sz *100 N t% G n t% = nedvességtartalom tömeg %-ban = nedves talajminta tömeget G sz = száraz talajminta tömege. b) Tenziométeres A nyomásmérés mechanikus úton történik. Mérési tartomány: 0-99 cbar. A standard tenziométerek cm hosszúságban kaphatók. Jet-fill tenziométerek

100 c) TDR (Time Domain Reflectometry) talaj-nedvesség mérők 12 cm-es vagy 20 cm-es szonda rudak volumetrikus víztartalom és öntözési menedzsment mód Elve: elektromágneses impulzusok visszatérési ideje függ a víztartalomtól d) Neutronszóródásos (γ-sugár-gyengítéses) Rendkívül pontos talajnedvesség mérés gyorsneutronok H atomokon ütköznek érzékelő a talajban A visszavert lassú neutronok száma arányos a vízmolekulák számával, vagyis a talajnedvességgel.

101 e) Dielektromos állandó mérése a kondenzátor lemezek közötti vezetőképesség a lemezek közötti talaj nedvességtartalmával szorosan összefügg + egyszerű és gyors eljárás - nagy sótartalmú pl. szikes talajokon a mérés megbízhatatlan AQUATERR talajnedvesség mérő kézi működtetésű nyomószonda a mérendő talajnedvességgel arányosan a dielektromos állandó mérhető

102 A talaj vízkapacitása Vízkapacitás: az a vízmennyiség, amit a talaj különböző körülmények között befogadni és/vagy visszatartani képes Szabadföldi (VK sz ) Maximális (VK max ) Minimális (VK min ) VK sz VK min Kapilláris (VK kap ) (10 cm magas oszlopban)

103 A talajok nedvességforgalma 1. Beszivárgás Szakaszai: 1. Felületi beázás, a talajfelszín benedvesedése, a víz összegyülekezése a felszíni egyenlőtlenségekben. 2. Gravitációs beszivárgás a nagy pórusok, repedések, a gyökér- és állatjáratok feltöltődését jelenti. Ezzel egy időben, esetleg időben kissé eltolódva történik a kapilláris beszivárgás a kisebb járatokba. 3. Beszivárgás a réteg teljes telítődése esetén, amikor a beszivárgás minimumra csökken, lassan megállapodik és gyakorlatilag egy állandó értéket vesz fel. A Horton féle beszivárgási modell

104 Vízbefogadás szakaszai: 1) Vízelnyelés 2) Áteresztés-vezetés Beázási profilok

105 A nedvesség eloszlása a talaj profilban 1=eredeti nedvességprofil, 2= közvetlenül a vízadagolás megszüntetése után, 3=a víz szétoszlása után (24 óra múlva) 4= 3nappal a beázás után; A = vályog; B = homokos vályogtalaj

106 2. Száradás Oka: evaporáció (talaj párolgása) transzspiráció (növények párologtatása) növényzettel borított területen - evapotranszspiráció Befolyásolja: talaj mozgékony vízkészlete és kapilláris vezetőképessége légmozgás (szél) felszínt érő hősugárzás intenzitása és időtartama növényzet (faj-fajta, fejlettségi állapot, állománysűrűség)

107 A vízháztartás típusát a talajszelvényre ható input és output elemek számszerű értéke és egymáshoz viszonyított mennyisége (a vízmérlegek) alapján lehet megállapítani. Egy terület egyszerűsített vízmérlege a következő elemekből áll: [P M + P m +RO + +RO u+ + CR+I] [ET+ RO - + RO u- + DP +In] = ΔR M m + u+ - u- P M = hulló csapadék P m = felszín közelében képződő csap. RO + = felszíni hozzáfolyás RO u+ = felszín alatti hozzáfolyás CR= kapilláris vízemelés I= öntözővíz ET= párolgás RO - = felszíni elfolyás RO u- = felszín alatti elfolyás DP= mély leszivárgás In= növények által felfogott víz (intercepció) ΔR= a talaj /levegő rendszer vízkészletében beállt változás

108 A talaj vízforgalmának és vízmérlegének elemei

109 A talajok vízforgalmának alaptípusai: Erős felszíni lefolyás típusa Kilúgozásos típus Egyensúlyi vízmérleg típusa Párologtató vízforgalmi típus

110 A talajok vízgazdálkodása Vízgazdálkodás Talajtermékenység Termesztett növények víz- és levegőellátottsága Talaj biológiai aktivitása Agrotechnikai módszerek meghatározása (cél: termékenység fokozása) Pl. talajművelés, öntözés, vízelvezetés, talajjavítás

111 Szerepe: A talajok hőháztartása növények csírázása, növekedése, légzése, tápanyagfelvétele mikrobiológiai folyamatok intenzitása tápanyagfeltáródás üteme talajképződés folyamatainak sebessége A talaj hőmérsékletét befolyásolja: beérkező és távozó hő egyensúlya talaj hőtani jellemzőit kialakító tulajdonságok

112 Érkező energia forrása: a) napsugárzás intenzitása függ: - földrajzi helyzet - tengerszint feletti magasság - lejtős területen kitettség befolyásolja: - növényi fedettség - talajfelszín színe és szerkezete b) talajban lejátszódó kémiai és biológiai folyamatok c) kéreg mélyebb rétegeiből hővezetéssel érkező geotermikus energia (geotermikus gradiens) átlagban 33 m-ként 1 C nálunk m-ként 1 C

113 Hőveszteség: - atmoszférába történő hosszú hullámhosszú sugárzás - talajfelszínről történő párolgás - mélyebb rétegekbe történő hővezetés Hőfelvevő képesség függ: Hőfelvevő képesség függ: - víz- és levegőtartalom - hővezető képesség száraz talaj: C cm -1 min -1 nedves talaj: C cm -1 min -1 - talajt borító élő és élettelen anyagok (növényzet, avar, hó) - kitettség, lejtőszög

114 A talajhőmérséklet napi és éves menete A talajhőmérséklet időbeli fáziseltolódása és mélységi profilja az év folyamán

115 Talajhőmérséklet mérése - Talajhőmérők Cél: talajhőmérséklet különböző mélységekben való meghatározása Elhelyezési mélység alapján: A) Felszíni talajhőmérők leolvasás naponta UTC

116 B) Mélységi talajhőmérők leolvasás naponta 12 UTC

117 A talajok hőgazdálkodása Befolyásolja: talaj szerkezete talaj víztartalma talaj levegőzöttsége Laza szerkezetű, levegős talaj gyorsan felmelegszik, de gátolja az alsóbb rétegek felmelegedését és lehűlését nagy, de kis mélységig terjedő hőmérsékletingadozás Aprómorzsás felszín csökkenti a talaj felmelegedését gátolja a gyors hőmérsékletváltozást

118 Különböző talajtípusok hőgazdálkodása Homoktalajok Vályogtalajok Agyagtalajok Kis belső felület Kis vízmennyiséget ( mm/m) képesek visszatartani mm/m víz visszatartása a nehézségi erővel szemben Nagy az abszorbeáló felület mm/m víz visszatartása Kicsi hővezető képesség és hőkapacitás Szélsőséges hőmérsékletek kialakulása a felső talajrétegben Harmonikus hővezető képesség és hőkapacitás Kiegyenlített hőmérsékletek Leghosszabb tenyészidőszak Magas hővezető képesség és hőkapacitás Hideg talajok Legrövidebb tenyészidőszak

119 A növényállományok és a klíma kölcsönhatásai; Fenológia, fenometria

120 A hőmérséklet hatása az élő szervezetekre A biológiai aktivitás jeles hőmérsékleti értékei: Minimum: az élőlény számára elviselhető legalacsonyabb hőmérséklet Maximum: az élőlény számára elviselhető legmagasabb hőmérséklet Optimum: tágabb értelemben a két fenti érték közötti intervallum (mind erősen életszakasz-, sőt szervfüggő érték, értelmezhető életben maradásra, vagy aktivitásra) Hőstresszek: Negatív hőstressz: -Hűlés : 0 C feletti alacsony hőmérséklet okozza, lehet reverzibilis, vagy letális -Megfagyás: visszafordíthatatlan szöveti károsodás 0 C alatt -Felfagyás: a talaj térfogatváltozása a gyökereket károsítja, a növényt a talajból kiemeli -Fulladás: tartós hó, vagy jégréteg alatti oxigénhiányos állapot kártétele -Élettani szárazság: télen is párologtató növények fagyott talajból történő vízfelvétele gátolt Pozitív hőstressz: - Sejtfehérjék, membránok károsodása: hőhalál, többnyire erős napsugárzás is súlyosbítja - Kiszáradás: a vízfelvétel nem fedezi párolgást, lankadás, majd hervadás lép fel

121 A hőmérséklet hatása az élő szervezetekre Hőegység-rendszerek: a hőmérséklet és a növényi növekedés összefüggésének, azaz a növényi hőigénynek a számszerűsítésére szolgálnak Tenyészidő hossz: a keléstől (kihajtástól) betakarításig (lombhullásig) tartó hasznos periódus alapján történő termőhely értékelés Hőösszegek: a bázishőmérsékletet meghaladó napi hőmérsékletek összege bázishőmérséklet: fajra, fajtára jellemző vitális aktivitási zéruspont Hőhatékonysági indexek: a hőösszegzési eljárások módosított változatai, a különböző termőtájak,éghajlati körzetek adott növényre szabott értékelésére szolgálnak Élettani indexek: a növény életszakaszainak változó hőigényét számszerűsítik, a klasszikus hőösszeg számításnál pontosabb hasznos hőösszeg értéket adnak

122 A vízellátottság hatása az élő szervezetekre A növényi vízellátottságot jellemző mutatók, fogalmak Vízigény: élettani értelemben a zavartalan életműködéshez szükséges, egységnyi idő alatt felvett vízmennyiség, melynek mértéke időben változó A hőmérséklethez hasonlóan minimum, optimum és maximum jellemzi. A vízigény, -ellátottság és többlet fogalmainak kapcsolata

123 Vízstresszek: A vízellátottság hatása az élő szervezetekre Negatív vízstressz (vízhiány): -Lankadás: átmeneti és/vagy kis mértékű vízhiány, hatása visszafordítható -Hervadás: tartós, súlyos vízhiány következtében irreverzibilis szöveti károsodások lépnek fel Pozitív vízstressz: - növényeknél közvetve károsít, a levegő relatív hiányát okozva fulladás léphet fel A növények alkalmazkodása a nedvességviszonyokhoz Vízigény szempontjából megkülönböztethető növénycsoportok: Hidrofitonok: vízigényesek, rossz szárazságtűrők Mezofitonok: közepes vízigényűek Xerofitonok: kifejezetten szárazságtűrők

124 A növényállományok mikroklímája Állományklíma fogalma: A növényállomány energia- és anyagforgalmát meghatározó folyamatok rendszere Jellemzésének paraméterei: A főbb meteorológiai elemek napi menete az állomány egyes rétegeiben A főbb meteorológiai elemek függőleges profilja az állományban A főbb meteorológiai elemek közötti különbség a növényzet nélküli környezethez képest Az energiamérleg alakulása az állomány szintjén A fotoszintetikus aktivitást meghatározó meteorológiai paraméterek alakulása, a fotoszintézis intenzitása

125 A növényállományok mikroklímája Az állományklímát kialakító tényezők: Meteorológiai tényezők - Sugárzási viszonyok - Szélviszonyok - Csapadékviszonyok -Párolgási viszonyok Biológiai tényezők - A növény faja, fajtája - Fejlettségi állapot - Egészségi állapot -Az állomány egybefüggő területe Termőhelyi tényezők - Talaj fizikai félesége - Talaj vízforgalmi helyzete - Talaj termőképessége -Az állomány területének kitettsége, domborzata Termesztési (agrotechnikai) tényezők - Állománysűrűség - Tápanyagellátottság - Öntözés

126 A növényállományok hőmérsékleti viszonyai A növényi szervek felszíni hőmérséklete radiációs hőmérsékletnek felel meg. Nappal: a levegőnél melegebb Éjjel: a levegőnél hidegebb Jelentősége: káros hőstressz (vízstressz) esetén gátolt transpiráció fagyveszély esetén ugyanakkor a károsodási küszöb nem feltétlenül esik egybe a fagyponttal

127 Fagy a növényállományokban A növényállomány éjszakai minimum hőmérsékletét meghatározó tényezők: állományt körülvevő léghőmérséklet kisugárzás erőssége (légnedvesség, felhőzet) lejtőviszonyok a talaj nedvességi állapota felszíni talajhőmérséklet a talaj borítottsága állománysűrűség állománystruktúra

128 Fagy a növényállományokban Fagyvédelem módjai: Passzív: termőhely, fajta megválasztása légterelés, fagylefolyás javítása késleltetett metszés Aktív: takarás fűtés füstölés fagyvédő öntözés szélkeltés (átkeverő ill. fagylevezető) A fagyok kialakulásának aerodinamikai alapjelenségei

129 A hőeloszlás az állományban nappal.és az éjszaka folyamán Gyümölcsfajok hőküszöb értékei fagykár szempontjából

130 A növényállományok hőmérsékleti viszonyai Növényállományok mikroklíma-típusai hőmérsékleti rétegződés szerint A B fiatal, fejletlen állományok, gabona, zöldségfélék jól fejlett gabona, kukorica, C erdők, zárt szántóföldi állományok (cukorrépa, burgonya) A hőm. anomáliák idő- és térbeli alakulása különböző szerkezetű állományokban

131 Fenológiai alapfogalmak: Fenológia, fenometria Fenológia: a növények életfolyamatainak vizsgálata a növekedés, fejlődés fenotípusos változásainak megfigyelése alapján. Fenológiai (feno-)fázis: a növény életfolyamatának morfológiai jegyek alapján megkülönböztetett pontja, szakasza. Pl. új szervek megjelenése, a szervek számának változása, stb. Vegetációs időszak: a fenológiai szakaszok összessége a vetés/kiültetés/rügyfakadás idejétől a betakarításig/lombhullásig. technológiai érettségig: nem teljes vegetációs időszak biológiai érettségig: teljes vegetációs időszak

132 Fenológia, fenometria A meteorológiai tényezők szerepe a fenológiában: A fenofázisok időpontja és tartama függ: -a meteorológiai elemek értékeinek alakulásától - a növényi igényektől, tűrőképességtől (minimum/optimum/maximum) Optimum: adott tényezőnek a fejlődés szempontjából legkedvezőbb intervalluma Alsó ekvivalens: adott tényező legkisebb/alacsonyabb kritikus értéke (minimum) Felső ekvivalens: adott tényező legnagyobb/magasabb kritikus értéke (maximum) A fenológiában alapvető fontossága a hőmérsékleti ekvivalenseknek van. Alsó ekvivalens Bázishőmérséklet

133 Fenológia, fenometria A meteorológiai tényezők szerepe a fenológiában: Bázishőmérséklet (T b ): a vegetációs zéruspont fajspecifikus hőmérsékleti értéke. Az effektív hőösszegszámítás alapja: n ( T T ) Tb = i A bázishőmérséklet: - ugyanazon növényfaj, -fajta esetében is függ a termőtájtól - a tenyészidőszak alatt nem állandó - függ a megelőző időszak hőmérsékletétől i b

134 Fenológia, fenometria A meteorológiai tényezők szerepe a fenológiában: A fejlődés elsődleges meghatározója az effektív hőösszeg. Korlátozó, módosító tényezők: - vízellátottság (közvetve a közeg hőmérsékletére is hat!) - sugárzási egyenleg (megszabja a szárazanyag termelés ütemét) - tápanyagellátottság - stresszorok A fenológiai fázistartam kiszámítása: N= fázistartam T 0 = napi középhőmérsékletek átlaga a fenofázisban T b = bázishőmérséklet N = T = T T 0 0 T b 0 T b 0 b= növény- és fázis-specifikus állandó

135 Fenológia, fenometria A meteorológiai tényezők szerepe a fenológiában: A fenológiai adatok szemléltetése: Időbeli eloszlás szerint: Fenológiai naptár Fenogram Térbeli eloszlás szerint Fenológiai térkép (izokrón, izoflór) A kukorica virágzásának kezdete

136 Fenometriai alapfogalmak: Fenológia, fenometria Fenometria: az élő szervezet fejlődését jellemző tulajdonságok mérőszámok alapján történő vizsgálata, a fejlődés folyamatának ezek alapján történő leírása Célja: a mérhető állapotváltozás objektív meghatározása. Gyakran alkalmazott mérhető (modellezhető) paraméterei: Növénymagasság Biomassza (szárazanyag) tömeg Levélfelület (LAI levélfelületi index)

137 Fenológia, fenometria A növénymagasság Tenyészidőszak alatti változásának leírása: növekedési görbe (logisztikus trendfüggvény)

138 Fenológia, fenometria A levélfelületi index (LAI) [m 2 /m 2 ] Kifejezi 1 m 2 tenyészterületre eső (aktív vagy összes) levélfelület nagyságát. Meghatározásának módszerei: Planimetrikus módszer: a levél körvonalát papírra átrajzolva, planiméterrel megállapítható a terület. Az eredményt a befoglaló négyszög területéhez viszonyítva a levélállandót (alaki tényező) kapjuk meg. Számítás Montgomery-képlettel: S max = a levél maximális szélessége h max = a levél maximális hossza K= levélállandó (osztótényező) LA = S max h K max = k ( S h ) max max k= levélállandó (szorzótényező) (k=1/k) LA-t 1 m 2 tenyészterületre vonatkoztatva kapjuk a LAI [m 2 /m 2 ] értékét.

139 A különböző levéltípusok alaki tényezőinek értékei Fenológia, fenometria

140 Fenológia, fenometria A kukorica növénymagassága és LAI értékei közötti kapcsolat

141 Ajánlott irodalom: Szász G.-Tőkei L. szerk. (1997.): Agrometeorológia mezőgazdáknak, kertészeknek, erdészeknek Mezőgazda Kiadó Budapest. Filep Gy. (1999.): Talajtani alapismeretek I-II. DATE-MTK Debrecen. Baros Z.-Kircsi A.-Szegedi S.-Tóth T. (2006.) Meteorológiai műszerek. szerk: Szegedi S.-Tóth T. Kossuth Egyetemi Kiadó, Debrecen

142 Kapcsolat: DEBRECENI EGYETEM AGRÁRTUDOMÁNYI KÖZPONT Agrometeorológiai és Agroökológiai Monitoring Központ DE-ATK - Böszörményi úti Campus MAG-Ház - III. emelet Dr. Dobos Attila Csaba tudományos főmunkatárs III./308 dobosa@gmail.com Rácz Csaba tudományos segédmunkatárs III./306 raczcs@agr.unideb.hu, racz.csab@gmail.com

Agroökológiaés agrometeorológia

Agroökológiaés agrometeorológia DEBRECENI EGYETEM Földhasznosítási, Műszaki és Területfejlesztési Intézet Agroökológiaés agrometeorológia Mezőgazdasági mérnök BSc alapszak (nappali és levelező képzés, partiumi levelező képzés) A talaj

Részletesebben

Agroökológia és agrometeorológia

Agroökológia és agrometeorológia DEBRECENI EGYETEM Földhasznosítási, Műszaki és Területfejlesztési Intézet Agroökológia és agrometeorológia Mezőgazdasági mérnök BSc alapszak (nappali és levelező képzés, partiumi levelező képzés) A levegő

Részletesebben

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK Földtudomány BSc Mészáros Róbert Eötvös Loránd Tudományegyetem Meteorológiai Tanszék MIÉRT MÉRÜNK? A meteorológiai mérések célja: 1. A légkör pillanatnyi állapotának

Részletesebben

TGBL1116 Meteorológiai műszerek. A levegő mozgásának mérési elvei és eszközei. A szél definíciója. A szél definíciója. Mértékegysége.

TGBL1116 Meteorológiai műszerek. A levegő mozgásának mérési elvei és eszközei. A szél definíciója. A szél definíciója. Mértékegysége. TGBL1116 Meteorológiai műszerek A levegő mozgásának mérési elvei és eszközei Bíróné Kircsi Andrea Egyetemi tanársegéd DE Meteorológiai Tanszék Debrecen, 2008/2009 II. félév A szél definíciója A levegő

Részletesebben

óra 1 3 5 7 9 11 13 15 17 19 21 23 24 C 6 5 3 3 9 14 12 11 10 8 7 6 6

óra 1 3 5 7 9 11 13 15 17 19 21 23 24 C 6 5 3 3 9 14 12 11 10 8 7 6 6 Időjárási-éghajlati elemek: a hőmérséklet, a szél, a nedvességtartalom, a csapadék 2010.12.14. FÖLDRAJZ 1 Az időjárás és éghajlat elemei: hőmérséklet légnyomás szél vízgőztartalom (nedvességtartalom) csapadék

Részletesebben

A felhőzet megfigyelése

A felhőzet megfigyelése TGBL1116 Meteorológiai műszerek Bíróné Kircsi Andrea Egyetemi tanársegéd DE Meteorológiai Tanszék Debrecen, 2008/2009 II. félév A felhőzet megfigyelése Felhőzet megfigyelése Levegő vízgőztartalma kondenzációs

Részletesebben

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK Földtudomány BSc Mészáros Róbert Eötvös Loránd Tudományegyetem Meteorológiai Tanszék MIÉRT MÉRÜNK? A meteorológiai mérések célja: 1. A légkör pillanatnyi állapotának

Részletesebben

Agroökológia és agrometeorológia

Agroökológia és agrometeorológia DEBRECENI EGYETEM Földhasznosítási, Műszaki és Területfejlesztési Intézet Agroökológia és agrometeorológia Mezőgazdasági mérnök BSc alapszak (levelező képzés) Meteorológiai sugárzástan Agroökológia és

Részletesebben

Szakmai törzsanyag Alkalmazott földtudományi modul

Szakmai törzsanyag Alkalmazott földtudományi modul FÖLDTUDOMÁNYI BSC METEOROLÓGUS SZAKIRÁNY Szakmai törzsanyag Alkalmazott földtudományi modul MAGYARORSZÁG ÉGHAJLATA Óraszám: 3+0 Kredit: 4 Tantárgyfelelős: Dr habil Tar Károly tanszékvezető egyetemi docens

Részletesebben

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK Földtudomány BSc Mészáros Róbert Eötvös Loránd Tudományegyetem Meteorológiai Tanszék MIÉRT MÉRÜNK? A meteorológiai mérések célja: 1. A légkör pillanatnyi állapotának

Részletesebben

Agroökológia és agrometeorológia

Agroökológia és agrometeorológia DEBRECENI EGYETEM - ATK Agrometeorológiai és Agroökológiai Monitoring Központ Agroökológia és agrometeorológia Mezőgazdasági mérnök BSc. II. évfolyam Nappali és levelező tagozat Meteorológiai sugárzástan

Részletesebben

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK Földtudományi BSc METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK Mészáros Róbert Eötvös Loránd Tudományegyetem Meteorológiai Tanszék MIÉRT MÉRÜNK? A meteorológiai mérések céljai: 1. A légkör pillanatnyi állapotának

Részletesebben

Vízgazdálkodástan Párolgás

Vízgazdálkodástan Párolgás Vízgazdálkodástan Párolgás SZIE Mezőgazdaság- és Környezettudományi Kar Talajtani és Agrokémiai Tanszék, Vízgazdálkodási és Meteorológiai Csoport 2012/2013. tanév 1. félév A párolgás A párolgás fizikai

Részletesebben

ÁLTALÁNOS METEOROLÓGIA 2.

ÁLTALÁNOS METEOROLÓGIA 2. ÁLTALÁNOS METEOROLÓGIA 2. METEOROLÓGIAI MÉRÉSEK ÉS MEGFIGYELÉSEK 06 Víz a légkörben világóceán A HIDROSZFÉRA krioszféra 1338 10 6 km 3 ~3 000 év ~12 000 év szárazföldi vizek légkör 24,6 10 6 km 3 0,013

Részletesebben

A légkör víztartalmának 99%- a troposzféra földközeli részében található.

A légkör víztartalmának 99%- a troposzféra földközeli részében található. VÍZ A LÉGKÖRBEN A légkör víztartalmának 99%- a troposzféra földközeli részében található. A víz körforgása a napsugárzás hatására indul meg amikor a Nap felmelegíti az óceánok, tengerek vizét; majd a felmelegedő

Részletesebben

A NAPSUGÁRZÁS MÉRÉSE

A NAPSUGÁRZÁS MÉRÉSE A NAPSUGÁRZÁS MÉRÉSE A Napból érkező elektromágneses sugárzás Ø Terjedéséhez nincs szükség közvetítő közegre. ØHőenergiává anyagi részecskék jelenlétében alakul pl. a légkörön keresztül haladva. Ø Időben

Részletesebben

Légköri vízzel kapcsolatos mérések TGBL1116 Meteorológiai műszerek

Légköri vízzel kapcsolatos mérések TGBL1116 Meteorológiai műszerek Légköri vízzel kapcsolatos mérések TGBL1116 Meteorológiai műszerek Bíróné Dr. Kircsi Andrea Egyetemi adjunktus DE Meteorológiai Tanszék Debrecen, 2009/2010 I. félév Levegő vízgőztartalma légnedvesség Kondenzálódott

Részletesebben

Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Az öntözési rend mennyiségi, minőségi és időrendi kérdései. 38.lecke Az öntözés gyakorlati

Részletesebben

DEBRECENI EGYETEM AGRÁR- ÉS GAZDÁLKODÁSTUDOMÁNYOK CENTRUMA FÖLDHASZNOSÍTÁSI-, MŰSZAKI ÉS TERÜLETFEJLESZTÉSI INTÉZET Meteorológiai mérések hasznosítása döntéstámogató rendszerekben Rácz Csaba Nagy János

Részletesebben

Sugárzásos hőtranszport

Sugárzásos hőtranszport Sugárzásos hőtranszport Minden test bocsát ki sugárzást. Ennek hullámhossz szerinti megoszlása a felület hőmérsékletétől függ (spektrum, spektrális eloszlás). Jelen esetben kérdés a Nap és a földi felszínek

Részletesebben

A debreceni alapéghajlati állomás, az OMSZ háttérklíma hálózatának bővített mérési programmal rendelkező mérőállomása

A debreceni alapéghajlati állomás, az OMSZ háttérklíma hálózatának bővített mérési programmal rendelkező mérőállomása 1 A debreceni alapéghajlati állomás, az OMSZ háttérklíma hálózatának bővített mérési programmal rendelkező mérőállomása Nagy Zoltán Dr. Szász Gábor Debreceni Brúnó OMSZ Megfigyelési Főosztály Debreceni

Részletesebben

ÁLATALÁNOS METEOROLÓGIA 2. 01: METEOROLÓGIAI MÉRÉSEK ÉS MEGFIGYELÉSEK

ÁLATALÁNOS METEOROLÓGIA 2. 01: METEOROLÓGIAI MÉRÉSEK ÉS MEGFIGYELÉSEK ÁLATALÁNOS METEOROLÓGIA 2. 01: METEOROLÓGIAI MÉRÉSEK ÉS MEGFIGYELÉSEK Célok, módszerek, követelmények CÉLOK, MÓDSZEREK Meteorológiai megfigyelések (Miért?) A meteorológiai mérések célja: Minőségi, szabvány

Részletesebben

GYAKORLATI ÉPÜLETFIZIKA

GYAKORLATI ÉPÜLETFIZIKA GYAKORLATI ÉPÜLETFIZIKA Az építés egyik célja olyan terek létrehozása, amelyekben a külső környezettől eltérő állapotok ésszerű ráfordítások mellett biztosíthatók. Adott földrajzi helyen uralkodó éghajlati

Részletesebben

Erdészeti meteorológiai monitoring a Soproni-hegyvidéken

Erdészeti meteorológiai monitoring a Soproni-hegyvidéken Erdészeti meteorológiai monitoring a Soproni-hegyvidéken Vig Péter, Drüszler Áron, Eredics Attila Nyugat-magyarországi Egyetem Környezet- és Földtudományi Intézet A kutatások célja A faállományok ökológiai

Részletesebben

A domborzat mikroklimatikus hatásai Mérési eredmények és mezőgazdasági vonatkozások

A domborzat mikroklimatikus hatásai Mérési eredmények és mezőgazdasági vonatkozások A domborzat mikroklimatikus hatásai Mérési eredmények és mezőgazdasági vonatkozások Dr. Gombos Béla SZENT ISTVÁN EGYETEM Agrár- és Gazdaságtudományi Kar MMT Agro- és Biometeorológiai Szakosztályának ülése

Részletesebben

FDO1105, Éghajlattan II. gyak. jegy szerző dolgozatok: 2015. október 20, december 8 Javítási lehetőség: 2016. január Ajánlott irodalom:

FDO1105, Éghajlattan II. gyak. jegy szerző dolgozatok: 2015. október 20, december 8 Javítási lehetőség: 2016. január Ajánlott irodalom: Tantárgyi követelmények 2015-16 I. félév BSc: Kollokviummal záródó tárgy: Nappali tagozat: FDB1302, Éghajlattan II. jegymegajánló dolgozatok: 2015. október 20, december 8 kollokvium: 2016. január és február.

Részletesebben

A légköri sugárzás. Sugárzási törvények, légköri veszteségek, energiaháztartás

A légköri sugárzás. Sugárzási törvények, légköri veszteségek, energiaháztartás A légköri sugárzás Sugárzási törvények, légköri veszteségek, energiaháztartás Sugárzási törvények I. 0. Minden T>0 K hőmérsékletű test sugároz 1. Planck törvény: minden testre megadható egy hőmérséklettől

Részletesebben

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha

Részletesebben

Debrecen-Kismacs és Debrecen-Látókép mérőállomás talajnedvesség adatsorainak elemzése

Debrecen-Kismacs és Debrecen-Látókép mérőállomás talajnedvesség adatsorainak elemzése Debrecen-Kismacs és Debrecen-Látókép mérőállomás talajnedvesség adatsorainak elemzése Nagy Zoltán 1, Dobos Attila 2, Rácz Csaba 2, Weidinger Tamás, 3 Merényi László 4, Dövényi Nagy Tamás 2, Molnár Krisztina

Részletesebben

Az állományon belüli és kívüli hőmérséklet különbség alakulása a nappali órákban a koronatér fölötti térben május és október közötti időszak során

Az állományon belüli és kívüli hőmérséklet különbség alakulása a nappali órákban a koronatér fölötti térben május és október közötti időszak során Eredmények Részletes jelentésünkben a 2005-ös év adatait dolgoztuk fel. Természetesen a korábbi évek adatait is feldolgoztuk, de a terjedelmi korlátok miatt csak egy évet részletezünk. A tárgyévben az

Részletesebben

FELADATOK A DINAMIKUS METEOROLÓGIÁBÓL 1. A 2 m-es szinten végzett standard meteorológiai mérések szerint a Földön valaha mért második legmagasabb hőmérséklet 57,8 C. Ezt San Luis-ban (Mexikó) 1933 augusztus

Részletesebben

Szabadentalpia nyomásfüggése

Szabadentalpia nyomásfüggése Égéselmélet Szabadentalpia nyomásfüggése G( p, T ) G( p Θ, T ) = p p Θ Vdp = p p Θ nrt p dp = nrt ln p p Θ Mi az a tűzoltó autó? A tűz helye a világban Égés, tűz Égés: kémiai jelenség a levegő oxigénjével

Részletesebben

Agroökológia és agrometeorológia

Agroökológia és agrometeorológia DEBRECENI EGYETEM Földhasznosítási, Műszaki és Területfejlesztési Intézet Agroökológia és agrometeorológia Mezőgazdasági mérnök BSc alapszak (nappali és levelező képzés, partiumi levelező képzés) Meteorológiai

Részletesebben

Környezeti klimatológia I. Növényzettel borított felszínek éghajlata II.

Környezeti klimatológia I. Növényzettel borított felszínek éghajlata II. Környezeti klimatológia I. Növényzettel borított felszínek éghajlata II. Kántor Noémi PhD hallgató SZTE Éghajlattani és Tájföldrajzi Tanszék kantor.noemi@geo.u-szeged.hu Elsődleges aktív felszín: levél

Részletesebben

MÉRNÖKI METEOROLÓGIA

MÉRNÖKI METEOROLÓGIA MÉRNÖKI METEOROLÓGIA (BME GEÁT 5128) Bevezetés, alapfogalmak, a légkör jellemzői, összetétele, kapcsolat más szférákkal Budapesti Műszaki és Gazdaságtudományi Egyetem, Áramlástan Tanszék, 2008 Dr. Goricsán

Részletesebben

Függőleges mozgások a légkörben. Dr. Lakotár Katalin

Függőleges mozgások a légkörben. Dr. Lakotár Katalin Függőleges mozgások a légkörben Dr. Lakotár Katalin A függőleges légmozgások keletkezése -mozgó levegőrészecske pályája változatos görbe függőlegestől a vízszintesen át : azonos irányú közel vízszintes

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor 1. 2:29 Normál párolgás olyan halmazállapot-változás, amelynek során a folyadék légneművé válik. párolgás a folyadék felszínén megy végbe. forrás olyan halmazállapot-változás, amelynek során nemcsak a

Részletesebben

Általános klimatológia Bevezetés a klimatológiába előadás

Általános klimatológia Bevezetés a klimatológiába előadás Általános klimatológia Bevezetés a klimatológiába előadás (P) MAGYARORSZÁG ÉGHAJLATA Gál Tamás tgal@geo.u @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan szeged.hu/eghajlattan SZTE Éghajlattani és Tájföldrajzi

Részletesebben

Napsugárzás mérések az Országos Meteorológiai Szolgálatnál. Nagy Zoltán osztályvezető Légkörfizikai és Méréstechnikai Osztály

Napsugárzás mérések az Országos Meteorológiai Szolgálatnál. Nagy Zoltán osztályvezető Légkörfizikai és Méréstechnikai Osztály Napsugárzás mérések az Országos Meteorológiai Szolgálatnál Nagy Zoltán osztályvezető Légkörfizikai és Méréstechnikai Osztály Miért van szükség napsugárzás mérésekre (1)? Az éghajlati rendszer működésének,

Részletesebben

A talajok fizikai tulajdonságai II. Vízgazdálkodási jellemzık Hı- és levegıgazdálkodás

A talajok fizikai tulajdonságai II. Vízgazdálkodási jellemzık Hı- és levegıgazdálkodás A talajok fizikai tulajdonságai II. Vízgazdálkodási jellemzık Hı- és levegıgazdálkodás Vízmozgás a talajban Víz megkötése, visszatartása a talajban: Talajnedvesség egy része a szemcsék felületéhez tapadva,

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor 1. 2:24 Normál Magasabb hőmérsékleten a részecskék nagyobb tágassággal rezegnek, s így távolabb kerülnek egymástól. Magasabb hőmérsékleten a részecskék kisebb tágassággal rezegnek, s így távolabb kerülnek

Részletesebben

A hosszúhullámú sugárzás stratocumulus felhőben történő terjedésének numerikus modellezése

A hosszúhullámú sugárzás stratocumulus felhőben történő terjedésének numerikus modellezése A hosszúhullámú sugárzás stratocumulus felhőben történő terjedésének numerikus modellezése Lábó Eszter 1, Geresdi István 2 1 Országos Meteorológiai Szolgálat, 2 Pécsi Tudományegyetem, Természettudományi

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor Nézd meg a képet és jelöld az 1. igaz állításokat! 1:56 Könnyű F sak a sárga golyó fejt ki erőhatást a fehérre. Mechanikai kölcsönhatás jön létre a golyók között. Mindkét golyó mozgásállapota változik.

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor gázok hőtágulása függ: 1. 1:55 Normál de független az anyagi minőségtől. Függ az anyagi minőségtől. a kezdeti térfogattól, a hőmérséklet-változástól, Mlyik állítás az igaz? 2. 2:31 Normál Hőáramláskor

Részletesebben

A csapadék nyomában bevezető előadás. Múzeumok Éjszakája

A csapadék nyomában bevezető előadás. Múzeumok Éjszakája A csapadék nyomában bevezető előadás Múzeumok Éjszakája 2018.06.23. A csapadék fogalma A légkör vízgőztartalmából származó folyékony vagy szilárd halmazállapotú víz, amely a földfelszínre kerül. Fajtái:

Részletesebben

ÁLTALÁNOS METEOROLÓGIA 2.

ÁLTALÁNOS METEOROLÓGIA 2. ÁLTALÁNOS METEOROLÓGIA 2. METEOROLÓGIAI MÉRÉSEK ÉS MEGFIGYELÉSEK 07 Csapadék és párolgás Tározók (ezer km 3 ) Áramok (ezer km 3 /év) Tengerek, óceánok Krioszféra Szárazföldi víz Légkör Párolgás Csapadék

Részletesebben

Magyar név Jel Angol név jel Észak É = North N Kelet K = East E Dél D = South S Nyugat Ny = West W

Magyar név Jel Angol név jel Észak É = North N Kelet K = East E Dél D = South S Nyugat Ny = West W A szél Földünkön a légkör állandó mozgásban van, nagyon ritka est, amikor nincsenek vízszintes és/vagy függőleges áramlások. A levegő vízszintes irányú mozgását nevezzük szélnek. A szelet két tulajdonságával,

Részletesebben

Légköri termodinamika

Légköri termodinamika Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a

Részletesebben

A nyomás. IV. fejezet Összefoglalás

A nyomás. IV. fejezet Összefoglalás A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező

Részletesebben

ÉGHAJLAT. Északi oldal

ÉGHAJLAT. Északi oldal ÉGHAJLAT A Balaton területe a mérsékelten meleg éghajlati típushoz tartozik. Felszínét évente 195-2 órán, nyáron 82-83 órán keresztül süti a nap. Télen kevéssel 2 óra fölötti a napsütéses órák száma. A

Részletesebben

Méréstechnika. Hőmérséklet mérése

Méréstechnika. Hőmérséklet mérése Méréstechnika Hőmérséklet mérése Hőmérséklet: A hőmérséklet a termikus kölcsönhatáshoz tartozó állapotjelző. A hőmérséklet azt jelzi, hogy egy test hőtartalma milyen szintű. Amennyiben két eltérő hőmérsékletű

Részletesebben

ÁLTALÁNOS METEOROLÓGIA 2.

ÁLTALÁNOS METEOROLÓGIA 2. ÁLTALÁNOS METEOROLÓGIA 2. METEOROLÓGIAI MÉRSÉSEK MÉRÉSEK ÉS ÉS MEGFIGYELÉSEK 05 02 Az adatgyűjtés, A levegő áramlása adattovábbítás nemzetközi hálózatai Miért szükséges mérni? Hajózás Szélmalmok Mozgásrendszerek

Részletesebben

Agrometeorológiai mérések Debrecenben, az alapéghajlati mérıhálózat kismacsi mérıállomása

Agrometeorológiai mérések Debrecenben, az alapéghajlati mérıhálózat kismacsi mérıállomása 1 Agrometeorológiai mérések Debrecenben, az alapéghajlati mérıhálózat kismacsi mérıállomása Dr. Szász Gábor Nagy Zoltán Weidinger Tamás Debreceni Egyetem ATC OMSZ ELTE Agrometeorológiai Obszervatórium

Részletesebben

A távérzékelés és fizikai alapjai 3. Fizikai alapok

A távérzékelés és fizikai alapjai 3. Fizikai alapok A távérzékelés és fizikai alapjai 3. Fizikai alapok Csornai Gábor László István Budapest Főváros Kormányhivatala Mezőgazdasági Távérzékelési és Helyszíni Ellenőrzési Osztály Az előadás 2011-es átdolgozott

Részletesebben

A jövő éghajlatának kutatása

A jövő éghajlatának kutatása Múzeumok Éjszakája 2018.06.23. A jövő éghajlatának kutatása Zsebeházi Gabriella Klímamodellező Csoport Hogyan lehet előrejelezni a következő évtizedek csapadékváltozását, miközben a következő heti is bizonytalan?

Részletesebben

Tantárgy neve. Éghajlattan I-II.

Tantárgy neve. Éghajlattan I-II. Tantárgy neve Éghajlattan I-II. Tantárgy kódja FDB1301; FDB1302 Meghirdetés féléve 1-2 Kreditpont 3-3 Összóraszám (elm.+gyak.) 2+0 Számonkérés módja kollokvium Előfeltétel (tantárgyi kód) - Tantárgyfelelős

Részletesebben

Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc A hidrológiai körfolyamat elemei; beszivárgás 9.lecke Intercepció A lehulló csapadék

Részletesebben

A FÖLD VÍZKÉSZLETE. A felszíni vízkészlet jól ismert. Összesen 1 384 000 000 km 3 víztömeget jelent.

A FÖLD VÍZKÉSZLETE. A felszíni vízkészlet jól ismert. Összesen 1 384 000 000 km 3 víztömeget jelent. A FÖLD VÍZKÉSZLETE A felszíni vízkészlet jól ismert. Összesen 1 384 000 000 km 3 víztömeget jelent. Megoszlása a következő: óceánok és tengerek (világtenger): 97,4 %; magashegységi és sarkvidéki jégkészletek:

Részletesebben

2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,

2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat, 2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás. 2.1. Hőáramlás (konvekció) olyan folyamat, amelynek során a hő a hordozóközeg áramlásával kerül

Részletesebben

műszaki főigazgató helyettes Dátum: június 15. Helyszín: Országos Vízügyi Főigazgatóság

műszaki főigazgató helyettes Dátum: június 15. Helyszín: Országos Vízügyi Főigazgatóság Előadó: Láng István műszaki főigazgató helyettes Dátum: 2018. június 15. Helyszín: Országos Vízügyi Főigazgatóság Aszálykezelés? Futottunk az események után: utólagos aszályelemzések, az aszály számszerűsítése

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

TestLine - Fizika hőjelenségek Minta feladatsor

TestLine - Fizika hőjelenségek Minta feladatsor 1. 2:29 Normál zt a hőmérsékletet, melyen a folyadék forrni kezd, forráspontnak nevezzük. Különböző anyagok forráspontja más és más. Minden folyadék minden hőmérsékleten párolog. párolgás gyorsabb, ha

Részletesebben

Alapozó terepgyakorlat Klimatológia

Alapozó terepgyakorlat Klimatológia Alapozó terepgyakorlat Klimatológia Gál Tamás PhD hallgató tgal@geo.u-szeged.hu SZTE Éghajlattani és Tájföldrajzi Tanszék 2008. július 05. Alapozó terepgyakorlat - Klimatológia ALAPOZÓ TEREPGYAKORLAT -

Részletesebben

TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek

TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek A talajszennyezés csökkenése/csökkentése bekövetkezhet Természetes úton Mesterséges úton (kármentesítés,

Részletesebben

Zaj- és rezgés. Törvényszerűségek

Zaj- és rezgés. Törvényszerűségek Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,

Részletesebben

A debreceni városklíma mérések gyakorlati tapasztalatai

A debreceni városklíma mérések gyakorlati tapasztalatai A debreceni városklíma mérések gyakorlati tapasztalatai Bíróné Kircsi Andrea László Elemér Debreceni Egyetem UHI workshop Budapest, 2013.09.24. Mi a városklíma? Mezoléptékű klimatikus jelenség Mérhető,

Részletesebben

: Éghajlattan I., FDB1301, KVB hét: I. dolgozat

: Éghajlattan I., FDB1301, KVB hét: I. dolgozat Tantárgy megnevezése: Éghajlattan I., FDB1301, KVB2003 A tantárgy felelőse: Dr. Tar Károly Heti óraszám: 2+0 a kredit értéke: 3 A számonkérés módja: gyakorlati jegy Elsajátítandó ismeretek 1. hét A meteorológia

Részletesebben

Kircsi Andrea, Hoffmann Lilla, Izsák Beatrix, Lakatos Mónika és Bihari Zita

Kircsi Andrea, Hoffmann Lilla, Izsák Beatrix, Lakatos Mónika és Bihari Zita Országos Meteorológiai Szolgálat Éghajlati osztály MMT és a MHT együttes előadóülése Budapest, 2019. március 7. Kircsi Andrea, Hoffmann Lilla, Izsák Beatrix, Lakatos Mónika és Bihari Zita Az évi középhőmérséklet

Részletesebben

Környezeti elemek védelme II. Talajvédelem

Környezeti elemek védelme II. Talajvédelem Globális környezeti problémák és fenntartható fejlődés modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Környezeti elemek védelme II. Talajvédelem KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI

Részletesebben

ÁLTALÁNOS METEOROLÓGIA 2. METEOROLÓGIAI MÉRSÉSEK MÉRÉSEK ÉS ÉS MEGFIGYELÉSEK

ÁLTALÁNOS METEOROLÓGIA 2. METEOROLÓGIAI MÉRSÉSEK MÉRÉSEK ÉS ÉS MEGFIGYELÉSEK ÁLTALÁNOS METEOROLÓGIA 2. METEOROLÓGIAI MÉRSÉSEK MÉRÉSEK ÉS ÉS MEGFIGYELÉSEK 03 02 Termodinamika Az adatgyűjtés, állapothatározók adattovábbítás mérése nemzetközi Hőmérséklet hálózatai Alapfogalmak Hőmérséklet:

Részletesebben

Éghajlati információkkal a társadalom szolgálatában

Éghajlati információkkal a társadalom szolgálatában ORSZÁGOS METEOROLÓGIAI SZOLGÁLAT Éghajlati információkkal a társadalom szolgálatában Bihari Zita, Kovács Tamás, Lakatos Mónika, Szentimrey Tamás Országos Meteorológiai Szolgálat Éghajlati Osztály Alapítva:

Részletesebben

Az aszály, az éghajlati változékonyság és a növények vízellátottsága (Agroklimatológiai elemzés)

Az aszály, az éghajlati változékonyság és a növények vízellátottsága (Agroklimatológiai elemzés) NYUGAT-MAGYARORSZÁGI EGYETEM Mezőgazdaság- és Élelmiszertudumányi Kar Környezettudományi Intézet Agrometeorológiai Intézeti Tanszék Az aszály, az éghajlati változékonyság és a növények vízellátottsága

Részletesebben

FMO. Földfelszíni Megfigyelések Osztálya. Zárbok Zsolt osztályvezető 2015.10. 02..

FMO. Földfelszíni Megfigyelések Osztálya. Zárbok Zsolt osztályvezető 2015.10. 02.. FMO Földfelszíni Megfigyelések Osztálya Zárbok Zsolt osztályvezető 2015.10. 02.. Földfelszíni Megfigyelések Osztálya Mottó: minden meteorológiai tevékenység alapja a megfigyelés Földfelszíni Megfigyelések

Részletesebben

Trewartha-féle éghajlat-osztályozás: Köppen-féle osztályozáson alapul nedvesség index: csapadék és az evapostranpiráció aránya teljes éves

Trewartha-féle éghajlat-osztályozás: Köppen-féle osztályozáson alapul nedvesség index: csapadék és az evapostranpiráció aránya teljes éves Leíró éghajlattan_2 Trewartha-féle éghajlat-osztályozás: Köppen-féle osztályozáson alapul nedvesség index: csapadék és az evapostranpiráció aránya teljes éves potenciális evapostranpiráció csapadék évszakos

Részletesebben

1. Magyarországi INCA-CE továbbképzés

1. Magyarországi INCA-CE továbbképzés 1. Magyarországi INCA rendszer kimenetei. A meteorológiai paraméterek gyakorlati felhasználása, sa, értelmezése Simon André Országos Meteorológiai Szolgálat lat Siófok, 2011. szeptember 26. INCA kimenetek

Részletesebben

A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál

A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál Nagy Zoltán, Tóth Zoltán, Morvai Krisztián, Szintai Balázs Országos Meteorológiai Szolgálat A globálsugárzás

Részletesebben

Kutatói pályára felkészítő akadémiai ismeretek modul

Kutatói pályára felkészítő akadémiai ismeretek modul Kutatói pályára felkészítő akadémiai ismeretek modul Környezetgazdálkodás Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖK MSC Légnedvesség mérés

Részletesebben

1. A hang, mint akusztikus jel

1. A hang, mint akusztikus jel 1. A hang, mint akusztikus jel Mechanikai rezgés - csak anyagi közegben terjed. A levegő molekuláinak a hangforrástól kiinduló, egyre csillapodva tovaterjedő mechanikai rezgése. Nemcsak levegőben, hanem

Részletesebben

Aszálykárok csökkentése biobázisú talajadalék felhasználásával. Záray Gyula professor emeritus

Aszálykárok csökkentése biobázisú talajadalék felhasználásával. Záray Gyula professor emeritus Aszálykárok csökkentése biobázisú talajadalék felhasználásával Záray Gyula professor emeritus Aszály definíciója: hosszú időtartamú szárazság, csapadékhiány, amelynek következtében a növénytermesztés kárt

Részletesebben

MEZŐGAZDASÁGI ALAPISMERETEK

MEZŐGAZDASÁGI ALAPISMERETEK Mezőgazdasági alapismeretek középszint 0921 ÉRETTSÉGI VIZSGA 2010.május 14. MEZŐGAZDASÁGI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény

Részletesebben

A talajnedvesség mérés módszerei és a mérési eredmények hasznosíthatósága

A talajnedvesség mérés módszerei és a mérési eredmények hasznosíthatósága A talajnedvesség mérés módszerei és a mérési eredmények hasznosíthatósága Fiala Károly Fehérváry István Magyar Hidrológia Társaság XXXIV. Országos Vándorgyűlés Debrecen 2016.07.06. Talajnedvesség tf %

Részletesebben

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő

Részletesebben

Agroökológia és agrometeorológia

Agroökológia és agrometeorológia DEBRECENI EGYETEM Földhasznosítási, Műszaki és Területfejlesztési Intézet Agroökológia és agrometeorológia Mezőgazdasági mérnök BSc alapszak (nappali és levelező képzés, partiumi levelező képzés) A levegő

Részletesebben

Globális változások lokális veszélyek

Globális változások lokális veszélyek Globális változások lokális veszélyek Dr. Radics Kornélia ORSZÁGOS METEOROLÓGIAI SZOLGÁLAT Sivatagosodás és Aszály Elleni Küzdelem Világnapja Budapest, 2019. június 19. Globális kitekintés Éghajlatváltozás:

Részletesebben

ÚJDONSÁG Megjelent 2014-ben

ÚJDONSÁG Megjelent 2014-ben ÚJDONSÁG Megjelent 2014-ben A könyv összefoglalja a gyümölcstermő növények környezeti igényeire vonatkozó ismereteket, segítséget nyújtva evvel az adott gyümölcsfaj számára alkalmas terület kiválasztásához,

Részletesebben

A magyarországi termőhely-osztályozásról

A magyarországi termőhely-osztályozásról A magyarországi termőhely-osztályozásról dr. Bidló András 1 dr. Heil Bálint 1 Illés Gábor 2 dr. Kovács Gábor 1 1. Nyugat-Magyarországi Egyetem, Termőhelyismerettani Tanszék 2. Erdészeti Tudományos Intézet

Részletesebben

Lelovics Enikő, Környezettan BSc Témavezetők: Pongrácz Rita, Bartholy Judit Meteorológiai Tanszék;

Lelovics Enikő, Környezettan BSc Témavezetők: Pongrácz Rita, Bartholy Judit Meteorológiai Tanszék; Lelovics Enikő, Környezettan BSc Témavezetők: Pongrácz Rita, Bartholy Judit Meteorológiai Tanszék; 21.5.28. Bevezetés: a városi hősziget Vizsgálatára alkalmas módszerek bemutatása Az általunk felhasznált

Részletesebben

Művelettan 3 fejezete

Művelettan 3 fejezete Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási

Részletesebben

A debreceni alapéghajlati állomás adatfeldolgozása: profilok, sugárzási és energiamérleg komponensek

A debreceni alapéghajlati állomás adatfeldolgozása: profilok, sugárzási és energiamérleg komponensek A debreceni alapéghajlati állomás adatfeldolgozása: profilok, sugárzási és energiamérleg komponensek Weidinger Tamás, Nagy Zoltán, Szász Gábor, Kovács Eleonóra, Baranka Györgyi, Décsei Anna Borbála, Gyöngyösi

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F

100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F III. HőTAN 1. A HŐMÉSÉKLET ÉS A HŐ Látni fogjuk: a mechanika fogalmai jelennek meg mikroszkópikus szinten 1.1. A hőmérséklet Mindennapi általános tapasztalatunk van. Termikus egyensúly a résztvevők hőmérséklete

Részletesebben

TELEPHELY BIZTONSÁGI JELENTÉS

TELEPHELY BIZTONSÁGI JELENTÉS MVM Paks II. Zrt. TELEPHELY BIZTONSÁGI JELENTÉS II. KÖTET 3. FEJEZET METEOROLÓGIA 2016.10.18. TARTALOMJEGYZÉK 3. Meteorológia... 16 3.1. Körzeti éghajlati viszonyok... 16 3.2. Helyi meteorológiai viszonyok...

Részletesebben

A víz helye és szerepe a leíró éghajlat-osztályozási módszerekben*

A víz helye és szerepe a leíró éghajlat-osztályozási módszerekben* A víz helye és szerepe a leíró éghajlat-osztályozási módszerekben* Ács Ferenc ELTE, Földrajz- és Földtudományi Intézet, Meteorológiai Tanszék * Meghívott előadás az Apáczai Nyári Akadémián, Újvidék, 2017

Részletesebben

AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA ENERGETIKAI SZÁMÍTÁS A HŐMÉRSÉKLETELOSZLÁS JELENTŐSÉGE

AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA ENERGETIKAI SZÁMÍTÁS A HŐMÉRSÉKLETELOSZLÁS JELENTŐSÉGE AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA Három követelményszint: az épületek összesített energetikai jellemzője E p = összesített energetikai jellemző a geometriai viszonyok függvénye (kwh/m

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek

Részletesebben

Automata meteorológiai mérőállomások

Automata meteorológiai mérőállomások Automata meteorológiai mérőállomások Az automatizálás okai Törekvés a: Minőségre (hosszú távon megbízható műszerek) Pontosságra (minél kisebb hibaszázalék), Nagyobb sűrűségű mérésekre, Gazdaságosságra.

Részletesebben

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja

Részletesebben

Általános klimatológia gyakorlat

Általános klimatológia gyakorlat Általános klimatológia gyakorlat Gál Tamás PhD hallgató tgal@geo.u-szeged.hu SZTE Éghajlattani és Tájföldrajzi Tanszék 2009. április 2. Általános klimatológia gyakorlat III. Házi feladat. Természetes állapotban

Részletesebben

Big Data technológiai megoldások fejlesztése közvetlen mezőgazdasági tevékenységekhez

Big Data technológiai megoldások fejlesztése közvetlen mezőgazdasági tevékenységekhez Big Data technológiai megoldások fejlesztése közvetlen mezőgazdasági tevékenységekhez Szármes Péter doktorandusz hallgató Széchenyi István Egyetem, MMTDI Dr. Élő Gábor egyetemi docens, Széchenyi István

Részletesebben