VII. Keretalapú ismeretábrázolás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "VII. Keretalapú ismeretábrázolás"

Átírás

1 Collins és Quillian kísérlete VII. Keretalapú ismeretábrázolás Tud-e a kanári énekelni? 1.3 mp Képes-e a kanári? 1.4 mp Van-e a kanárinak bőre? 1.5 mp A kanári egy kanári? 1.0 mp A kanári egy madár? 1.2 mp A kanári egy állat? 1.3 mp Tud-e a kanári? 1.4 mp Tud-e a strucc? 1.3 mp 1 2 Az emberi információtárolás hierarchikus és objektumalapú Szemantikus háló énekelni sárga Állat van Madár van Kanári lélegezni bőre szárnya mérete nagy Egy olyan irányított gráf, amelynek csúcsai és élei címkézettek. Csúcs: objektum a világ egy egyede (elem, példány) egyedek csoportja (halmaz, osztály) Él: kapcsolat objektum eleme-e ill. része-e egy csoportnak objektum tulajdonsága 3 4 frame <név> slot 1 : <value 11 > <value 12 > ; slot 2 : <value 21 > <value 22 > ; end; Keret Általánosabb leíró eszköz, mint a szemantikus háló. Üres frame (értékek nélküli), primitív frame (slot-ok nélküli) Tevékenységeket is tárolhat (procedurális) Meta-információk (ki, mikor töltötte ki a keretet, melyek egy slot lehetséges értékei, ki és mikor adott értékeket hozzá) A szerkezetet kialakító kapcsolatokat (pl. is_a) külön frame-ek írják le. Objektumok kapcsolatai Egyszerű kapcsolatok A és B között : R(A,B) Speciális egyszerű kapcsolatok: a részhalmaza illetve az eleme ( kapcsolat) Magasabb rendű kapcsolatok A és B között R A:R(,B) élőhely Barát fóka R A y B:R(,y) Gömbi száma 350 őrzi Földközitenger Természetvédő 5 6 1

2 Predikátum alapú reprezentációtól az objektum alapú reprezentációig A szemantikus háló képes kifejezni konstans-szimbólumokat objektum egy arg. predikátumokat objektum két arg. predikátumokat kapcsolat a több arg. predikátumokat két arg. predikátumokkal helyettesítik logikai műveleteket: a konjunkció, az implikáció és az univerzális kvantor természetes módon van jelen. lehetséges a diszjunkció és a tagadás ábrázolása, sőt az eplicit módon leírt implikáció (szabály) kifejezése is. Implikáció, konjunkció, univerzális kvantor implicit módú ábrázolása szemantikus hálóban Minden elefánt emlős és minden emlős gerinces (() ()) (() Gerinces()) Gerinces 7 8 egy elefánt. gazdája. Minden elefánt. Az elefántok élőhelye Afrika. Tagadás lehetséges változatai () (,) élőhely (() (,)) Afrika Alternatív ábrázolás: (() ()) Túlmutat az elsőrendű logikán: Az elefántok élőhelye Afrika. (() Repül()) Repül-e 9 10 Három vagy több argumentumú predikátumok Szemantikus hálóval leírható feladatok János egy könyvet adott Máriának AD(János, Mária, könyv) = ( Átadás_esemény() Átadó(,János) Átvevő(,Mária) Tárgy(,könyv) Átadás esemény A 1 Az univerzum szerkezetére valamilyen taonómikus hierarchia jellemző, azaz az objektumok egymásba ágyazott halmazok rendszerében helyezkednek el. Az univerzum objektumai között kiterjedt, de logikailag egyszerű kapcsolatrendszer áll fenn. Skolemizálás: A 1 egy átadás esemény átadó átvevő tárgy János Mária könyv

3 aiómák célállítás Azt, hogy aiómák célállítás Következtetés úgy bizonyítjuk, hogy megpróbáljuk a t ráhelyezni, beleilleszteni a ba Közvetlen illesztés A célállítás (változó behelyettesítés mellett) szerepel az aiómák között, azaz a közvetlenül illeszthető a ba: ha a nak van olyan részhálója, amelynek szerkezete megfelel a nak, a részháló objektumai valamint kapcsolatai ellentmondásmentesen egyesíthetőek a megfelelő objektumaival és kapcsolataival Jumbo -e? Ki gazdája? Mire való az emlősök a tüdeje? A logikai következtetés alapvető tulajdonsága. Öröklődés Ha (() ()) (() Lába(,4)) () akkor (Jumbo) hiszen () () Lába(Jumbo,4) hiszen () () Lába(,4 ) Öröklődés a szemantikus hálókban Nem örökölhető egyszerű kapcsolatok A magasabb rendű kapcsolatok öröklődnek az lába kapcsolatok mentén. 4 Az kapcsolatlánc egyetlen kapcsolatként is felfogható A magasabb rendű kapcsolatok mindig örökölhetők, de az egyszerű kapcsolatok ritkán. élőhely Afrika

4 János apja(családi név) Örökölhető egyszerű kapcsolatok Speciális öröklődést biztosító kapcsolatoknál meg lehet adni, mely tulajdonságok öröklődhetnek. Szabó bélyeggyűjtés Mi családi neve? Mi hobbija? Szabó? Öröklődést biztosító kapcsolatok Az általános öröklődést biztosító kapcsolat. Összekapcsolódó öröklődést biztosító élek egy öröklődést biztosító láncot alkotnak. Bevezethetünk olyan speciális kapcsolatokat is, amelyek mentén csak bizonyos tulajdonságok öröklődhetnek Jumbo -e? Jumbo Mit? Mire való tüdeje? Kivételek kezelése Prioritás vagy alapértelmezés Madár Pingvin repül repül igen fehér Albínók Repül-e? Milyen színű Jumbo?

5 Bizonytalanság kezelés Procedurális hozzárendelés Semmi akadálya bizonytalansági mértékek feltűntetésének: Szorzás Színe 98% Sz1 szorzandó szorzó szorzat y *y démon Értékelés Keretalapú rendszer A szemantikus hálók kifejező ereje korlátozott az első rendű logikához képest, de érthetőbb (emberi gondolkodáshoz közelebb áll, modulárisan fogja meg az öröklődést) a vele végzett következtetés általánosabb, hiszen tartalmazza az alternatív következtetési technikákat Megvalósítás: keret alapú nyelvek Keret alapú nyelvet biztosít az ismeretek szimbolikus leírására Biztosítja az öröklődés eszközével egy hatékony illesztését, beleértve a deduktív illesztést is a kivételkezeléssel és a démon-kezeléssel együtt. Támogatja a célvezérelt és adatvezérelt szabályvégrehajtást (hibrid rendszer), az ismeretek egy része szabályként is megadható, metaszabályok fogalmazhatók meg, kezeli a bizonytalanságot

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 94/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák

Részletesebben

A matematika nyelvér l bevezetés

A matematika nyelvér l bevezetés A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint

Részletesebben

Intelligens Rendszerek I. Tudásábrázolás szemantikus hálókkal, keretekkel és forgatókönyvvel

Intelligens Rendszerek I. Tudásábrázolás szemantikus hálókkal, keretekkel és forgatókönyvvel Intelligens Rendszerek I. Tudásábrázolás szemantikus hálókkal, keretekkel és forgatókönyvvel 2007/2008. tanév, I. félév Dr. Kovács Szilveszter E-mail: szkovacs@iit.uni-miskolc.hu Miskolci Egyetem Informatikai

Részletesebben

A matematika nyelvéről bevezetés

A matematika nyelvéről bevezetés A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések

Részletesebben

III. Szabályalapú logikai következtetés

III. Szabályalapú logikai következtetés Speciális szabályalapú következtetés III. Szabályalapú logikai következtetés Ismeretek (tények, szabályok, cél) elsőrendű logikai formulák. Ezek az állítások eredeti formájukat megőrzik, ami másodlagos

Részletesebben

Ismeretalapú modellezés XI. Leíró logikák

Ismeretalapú modellezés XI. Leíró logikák XI. Leíró logikák 1 eddig volt nyílt internetes rendszerekben miért van szükség ismeretalapú re ontológia készítés kérdései ontológiák jellemzői milyen ontológiák vannak most jön mai internetes ontológiák

Részletesebben

A logikai következmény

A logikai következmény Logika 3 A logikai következmény A logika egyik feladata: helyes következtetési sémák kialakítása. Példa következtetésekre : Minden veréb madár. Minden madár gerinces. Minden veréb gerinces 1.Feltétel 2.Feltétel

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Tudásbázis építése Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade A tudásbázis építése

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

Termék modell. Definíció:

Termék modell. Definíció: Definíció: Termék modell Összetett, többfunkciós, integrált modell (számítógépes reprezentáció) amely leír egy műszaki objektumot annak különböző életfázis szakaszaiban: tervezés, gyártás, szerelés, szervízelés,

Részletesebben

LOGIKA ÉS ÉRVELÉSTECHNIKA

LOGIKA ÉS ÉRVELÉSTECHNIKA LOGIKA ÉS ÉRVELÉSTECHNIKA Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA

Részletesebben

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR MATEMATIK A 9. évfolyam 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 2. modul: LOGIKA Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Mit tanultunk eddig? Mit tanultunk eddig? Mit tanultunk eddig? Mit tanultunk eddig? 4/14/2014. propozicionális logikát

Mit tanultunk eddig? Mit tanultunk eddig? Mit tanultunk eddig? Mit tanultunk eddig? 4/14/2014. propozicionális logikát roozicionális logikát roozicionális logikát Legfontosabb logikai konnektívumok: roozíció=állítás nem néztünk a tagmondatok belsejébe, csak a logikai kacsolatuk érdekelt minket Legfontosabb logikai konnektívumok:

Részletesebben

Bizonyossági tényező az M1-ben bizonyossági faktor cf [0,100] cf=100 teljes bizonyosság cf=20 a hihetőség alsó küszöbe cf=0 teljesen elvetve

Bizonyossági tényező az M1-ben bizonyossági faktor cf [0,100] cf=100 teljes bizonyosság cf=20 a hihetőség alsó küszöbe cf=0 teljesen elvetve 1. HOGYAN ALKALMAZHATÓ SZABÁLY ALAPÚ RENDSZEREKBEN A BIZONYTALANSÁGKEZELÉS HEURISZTIKUS MODELLJE? Szabályalapú rendszerekben az ismeretek HA feltétel AKKOR következmény alakúak Bizonytalanság kezelése

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Knoch László: Információelmélet LOGIKA

Knoch László: Információelmélet LOGIKA Mi az ítélet? Az ítélet olyan mondat, amely vagy igaz, vagy hamis. Azt, hogy az adott ítélet igaz vagy hamis, az ítélet logikai értékének nevezzük. Jelölése: i igaz h hamis A 2 páros és prím. Logikai értéke

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

Contents. 1 Bevezetés 11

Contents. 1 Bevezetés 11 2 Contents I Fogalmi háttér 9 1 Bevezetés 11 2 Mesterséges Intelligencia háttér 15 2.1 Intelligencia és intelligens viselkedés............ 15 2.2 Turing teszt......................... 16 2.3 Az emberi

Részletesebben

Adatbázisok MSc. 12. téma. Ontológia és SPARQL

Adatbázisok MSc. 12. téma. Ontológia és SPARQL Adatbázisok MSc 12. téma Ontológia és SPARQL Igény az automatikus tudáskezelése Az adat és tudáskezelés szintjei adatok összesítő adatok domain leírása következtetések tudás kontexus ismerete RDBMS OLAP

Részletesebben

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel 5. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel Axióma: Bizonyítás: olyan állítás, amelynek igazságát bizonyítás nélkül elfogadjuk.

Részletesebben

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai Logika és informatikai alkalmazásai 1. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2008 tavasz Követelmények A tárgy (ea+gyak) teljesítésének követlményeit

Részletesebben

Logikai alapok a programozáshoz. Nagy Károly 2014

Logikai alapok a programozáshoz. Nagy Károly 2014 Logikai alapok a programozáshoz előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 2014 1 1. Kijelentés logika, ítéletkalkulus 1.1. Definíció. Azokat a kijelentő mondatokat, amelyekről

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból

Részletesebben

Logika nyelvészeknek, 12. óra A típuselmélet alapjai. Lehetőség van a kvantorfogalom mellett a funktorfogalom általánosítására is.

Logika nyelvészeknek, 12. óra A típuselmélet alapjai. Lehetőség van a kvantorfogalom mellett a funktorfogalom általánosítására is. Logika nyelvészeknek, 12. óra A típuselmélet alapjai Lehetőség van a kvantorfogalom mellett a funktorfogalom általánosítására is. Az L 1 elsőrendű nyelvben csak bizonyos típusú funktoraink voltak: ami

Részletesebben

Interaktív, grafikus környezet. Magasszintû alkalmazási nyelv (KAL) Integrált grafikus interface könyvtár. Intelligens kapcsolat más szoftverekkel

Interaktív, grafikus környezet. Magasszintû alkalmazási nyelv (KAL) Integrált grafikus interface könyvtár. Intelligens kapcsolat más szoftverekkel Készítette: Szabó Gábor, 1996 Az Az IntelliCorp IntelliCorp stratégiája: stratégiája: Kifinomult, Kifinomult, objektum-orientált objektum-orientált környezetet környezetet biztosít biztosít tervezéséhez,

Részletesebben

Példa 1. A majom és banán problémája

Példa 1. A majom és banán problémája Példa 1. A majom és banán problémája Egy majom ketrecében mennyezetről egy banánt lógatnak. Kézzel elérni lehetetlen, viszont egy faládát be is tesznek. Eléri-e a majom a banánt? Mit tudunk a majom képességeirõl?

Részletesebben

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria

Részletesebben

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul

Részletesebben

Cselekvési tervek generálása. Máté Annamária

Cselekvési tervek generálása. Máté Annamária Cselekvési tervek generálása Máté Annamária Tartalom Általánosan a cselekvés tervezésről Értelmezés, megközelítés Klasszikus modellek Mint keresés Mint logikai következtetés Alapvető feltevések és fogalmak

Részletesebben

Házi feladatok megoldása. Nyelvek használata adatszerkezetek, képek leírására

Házi feladatok megoldása. Nyelvek használata adatszerkezetek, képek leírására Nyelvek használata adatszerkezetek, képek leírására Formális nyelvek, 2. gyakorlat 1. feladat Módosított : belsejében lehet _ jel is. Kezdődhet, de nem végződhet vele, két aláhúzás nem lehet egymás mellett.

Részletesebben

3. OSZTÁLY A TANANYAG ELRENDEZÉSE

3. OSZTÁLY A TANANYAG ELRENDEZÉSE Jelölések: 3. OSZTÁLY A TANANYAG ELRENDEZÉSE Piros főtéma Citromsárga segítő, eszköz Narancssárga előkészítő Kék önálló melléktéma Hét Gondolkodási és megismerési módszerek Problémamegoldások, modellek

Részletesebben

Bizonytalanság. Mesterséges intelligencia április 4.

Bizonytalanság. Mesterséges intelligencia április 4. Bizonytalanság Mesterséges intelligencia 2014. április 4. Bevezetés Eddig: logika, igaz/hamis Ha nem teljes a tudás A világ nem figyelhető meg közvetlenül Részleges tudás nem reprezentálható logikai eszközökkel

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

Összeállította Horváth László egyetemi tanár

Összeállította Horváth László egyetemi tanár Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Intelligens Mérnöki Rendszerek Szakirány a Mérnök informatikus alapszakon Összeállította Horváth László Budapest, 2011

Részletesebben

A digitális korszak kihívásai és módszerei az egyetemi oktatásban

A digitális korszak kihívásai és módszerei az egyetemi oktatásban Csapó Benő http://www.staff.u-szeged.hu/~csapo A digitális korszak kihívásai és módszerei az egyetemi oktatásban Interdiszciplináris és komplex megközelítésű digitális tananyagfejlesztés a természettudományi

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Temporális logikák és modell ellenırzés

Temporális logikák és modell ellenırzés Temporális logikák és modell ellenırzés Temporális logikák Modális logika: kijelentések különböző módjainak tanulmányozására vezették be (eredetileg filozófusok). Ilyen módok: esetleg, mindig, szükségszerűen,

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Mindenki tud úszni. Nincs olyan, aki ne tudna úszni.

Mindenki tud úszni. Nincs olyan, aki ne tudna úszni. Mindenki tud úszni. Nincs olyan, aki ne tudna úszni. Kvantoros logikai ekvivalenciák Mindenki tud úszni. Nincs olyan, aki ne tudna úszni. x(úx) ~ x(~úx) Kvantoros logikai ekvivalenciák Mindenki tud úszni.

Részletesebben

Tartalomjegyzék. Pragmatikai és logikai alapok. Első rész A könyv célja, használata 1.2 Elméleti keretek: pragmatika és logika

Tartalomjegyzék. Pragmatikai és logikai alapok. Első rész A könyv célja, használata 1.2 Elméleti keretek: pragmatika és logika Tartalomjegyzék ELSŐ FEJEZET Bevezetés 1.1. A könyv célja, használata 1.2 Elméleti keretek: pragmatika és logika 15 15 17 Első rész Pragmatikai és logikai alapok MÁSODIK FEJEZET A vita 2.1 A vita: megközelítési

Részletesebben

Programozástanítási célok teljesítése a Logóval és a Scratch-csel

Programozástanítási célok teljesítése a Logóval és a Scratch-csel Programozástanítási célok teljesítése a Logóval és a Scratch-csel Bernát Péter Készült az "Országos koordinációval a pedagógusképzés megújításáért című TÁMOP- 1. Problémamegoldás 1/a. Problémamegoldás

Részletesebben

Programfejlesztési Modellek

Programfejlesztési Modellek Programfejlesztési Modellek Programfejlesztési fázisok: Követelmények leírása (megvalósíthatósági tanulmány, funkcionális specifikáció) Specifikáció elkészítése Tervezés (vázlatos és finom) Implementáció

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések 1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével

Részletesebben

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c

Részletesebben

2016/2017. Matematika 9.Kny

2016/2017. Matematika 9.Kny 2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 4. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal

Részletesebben

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1 3. fejezet Matematikai logika Logikai m veletek, kvantorok D 3.1 A P és Q elemi ítéletekre vonatkozó logikai alapm veleteket (konjunkció ( ), diszjunkció ( ), implikáció ( ), ekvivalencia ( ), negáció

Részletesebben

Intelligens Rendszerek I. Tudásábrázolás formális logikával

Intelligens Rendszerek I. Tudásábrázolás formális logikával Intelligens Rendszerek I. Tudásábrázolás formális logikával 2007/2008. tanév, I. félév Dr. Kovács Szilveszter E-mail: szkovacs@iit.uni-miskolc.hu Miskolci Egyetem Informatikai Intézet 106. sz. szoba Tel:

Részletesebben

Gráfkeresések A globális munkaterületén a startcsúcsból kiinduló már feltárt utak találhatók (ez az ún. kereső gráf), külön megjelölve az utak azon

Gráfkeresések A globális munkaterületén a startcsúcsból kiinduló már feltárt utak találhatók (ez az ún. kereső gráf), külön megjelölve az utak azon ÖSSZEFOGLALÁS Az MI az intelligens gondolkodás számítógépes reprodukálása szempontjából hasznos elveket, módszereket, technikákat kutatja, fejleszti, rendszerezi. Miről ismerhető fel az MI? Megoldandó

Részletesebben

Parametrikus tervezés

Parametrikus tervezés 2012.03.31. Statikus modell Dinamikus modell Parametrikus tervezés Módosítások a tervezés folyamán Konstrukciós variánsok (termékcsaládok) Parametrikus Modell Parametrikus tervezés Paraméterek (változók

Részletesebben

5. SOR. Üres: S Sorba: S E S Sorból: S S E Első: S E

5. SOR. Üres: S Sorba: S E S Sorból: S S E Első: S E 5. SOR A sor adatszerkezet is ismerős a mindennapokból, például a várakozási sornak számos előfordulásával van dolgunk, akár emberekről akár tárgyakról (pl. munkadarabokról) legyen szó. A sor adattípus

Részletesebben

Dunaújvárosi Főiskola Informatikai Intézet

Dunaújvárosi Főiskola Informatikai Intézet Dunaújvárosi Főiskola Informatikai Intézet Tudásalapú rendszerek Dr. Seebauer Márta főiskolai tanár seebauer.marta@szgti.bmf.hu Tudás fogalma Tudás a valós világ tükröződése az emberi tudatban, amelynek

Részletesebben

Ontológiák, 1. Kooperáció és intelligencia, BME-MIT

Ontológiák, 1. Kooperáció és intelligencia, BME-MIT Ontológiák, 1. Elmélet Mechanizmusfeltáró elmélet prediktív (jósló) modell Tartalomelmélet deskriptív (leíró) modell - ontológia objektumok, objektumok tulajdonságai objektumok közötti relációk Arisztotelész

Részletesebben

MAGYAR NYELVÉSZETI TÁRGYAK ISMERTETÉSE BA NYELVTECHNOLÓGIAI SZAKIRÁNY

MAGYAR NYELVÉSZETI TÁRGYAK ISMERTETÉSE BA NYELVTECHNOLÓGIAI SZAKIRÁNY MAGYAR NYELVÉSZETI TÁRGYAK ISMERTETÉSE BA NYELVTECHNOLÓGIAI SZAKIRÁNY Tantárgy neve: BBNMT00300 Fonetika 3 A tantárgy célja, hogy az egyetemi tanulmányaik kezdetén levő magyar szakos hallgatókat megismertesse

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt. Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:

Részletesebben

Algoritmuselmélet 2. előadás

Algoritmuselmélet 2. előadás Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Logikai ágens ügyesebben Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Mit tudunk már?

Részletesebben

Adatszerkezetek 1. előadás

Adatszerkezetek 1. előadás Adatszerkezetek 1. előadás Irodalom: Lipschutz: Adatszerkezetek Morvay, Sebők: Számítógépes adatkezelés Cormen, Leiserson, Rives, Stein: Új algoritmusok http://it.inf.unideb.hu/~halasz http://it.inf.unideb.hu/adatszerk

Részletesebben

1. Jogosultsági viszonyok mind az elektronikus rendszer mind hatósági jogviszony tekintetében Szerepkör és jogosultság tervezés

1. Jogosultsági viszonyok mind az elektronikus rendszer mind hatósági jogviszony tekintetében Szerepkör és jogosultság tervezés 1. Jogosultsági viszonyok mind az elektronikus rendszer mind hatósági jogviszony tekintetében... 2 1.1. Szerepkör és jogosultság tervezés... 3 1.2. Munkafolyamat modell forgatókönyv felfogásban... 4 1.3.

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logika

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logika Logika Indukció: A fogalomalkotásnak azt a módját, amikor a konkrét tapasztalatokra támaszkodva jutunk el az általános fogalomhoz, indukciónak nevezzük. Dedukció: A fogalomalkotásnak azt a módját, amikor

Részletesebben

MATEMATIKA tanterv emelt szint 11-12. évfolyam

MATEMATIKA tanterv emelt szint 11-12. évfolyam MATEMATIKA tanterv emelt szint 11-12. évfolyam Batthyány Kázmér Gimnázium, 2004. 1 TARTALOM 11.osztály (222 óra)... 3 1. Gondolkodási műveletek (35 óra)... 3 2. Számelmélet, algebra (64 óra)... 3 3. Függvények,

Részletesebben

Bizonytalanságok melletti következtetés

Bizonytalanságok melletti következtetés Bizonytalanságok melletti következtetés Mesterséges Intelligencia I. Valószínűségi alapfogalmak (ismétlés) A, B,C események esetén a priori valószínűség: feltételes (a posteiori) valószínűség: Bayes-formula

Részletesebben

BEVEZETÉS A PSZICHOLÓGIÁBA

BEVEZETÉS A PSZICHOLÓGIÁBA BEVEZETÉS A PSZICHOLÓGIÁBA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

Hozzárendelés, lineáris függvény

Hozzárendelés, lineáris függvény Hozzárendelés, lineáris függvény Feladat 1 A ménesben a lovak száma és a lábaik száma közötti összefüggést vizsgáljuk. Hány lába van 0; 1; 2; 3; 5; 7... lónak? Készíts értéktáblázatot, és ábrázold derékszögű

Részletesebben

Absztrakció a szoftvertervezésben az Alloy specifikációs nyelv segítségével

Absztrakció a szoftvertervezésben az Alloy specifikációs nyelv segítségével Absztrakció a szoftvertervezésben az Alloy specifikációs nyelv segítségével Németh L. Zoltán Számítástudomány Alapjai Tanszék SZTE, Informatikai Tanszékcsoport 2009. szeptember 15. Tartalom Röviden a formális

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

Mérés és modellezés 1

Mérés és modellezés 1 Mérés és modellezés 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni kell

Részletesebben

Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel. Az objektumok áthaladnak a többi objektumon

Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel. Az objektumok áthaladnak a többi objektumon Bevezetés Ütközés detektálás Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel Az objektumok áthaladnak a többi objektumon A valósághű megjelenítés része Nem tisztán

Részletesebben

Ésik Zoltán (SZTE Informatikai Tanszékcsoport) Logika a számtastudományban Logika és informatikai alkalmazásai Varterész Magdolna, Uni-Deb

Ésik Zoltán (SZTE Informatikai Tanszékcsoport) Logika a számtastudományban Logika és informatikai alkalmazásai Varterész Magdolna, Uni-Deb Logika, 5. Az előadásfóliák ÉsikZoltén (SZTE InformatikaiTanszékcsoport) Logikaa szamtastudomanyban Logikaes informatikaialkalmazasai Előadásai alapján készültek Ésik Zoltán (SZTE Informatikai Tanszékcsoport)

Részletesebben

Kondicionális. Konverz (retro) kondicionális. Predikátumlogika. Predikátumlogika 22/05/2014. p q

Kondicionális. Konverz (retro) kondicionális. Predikátumlogika. Predikátumlogika 22/05/2014. p q Kondicionális p q Ha esik az eső, (akkor) vizes út. Ha felhívsz holnap, (akkor) találkozunk. Ha adsz pénzt, (akkor) veszek fagyit. Akkor vizes az út, ha esik az eső. Akkor találkozunk, ha felhívsz holnap.

Részletesebben

11. fejezet A logika nyelvtana. Már az első fejezetben felmerült, hogy a logika nyelvtana nem egyezik meg a szokásos értelemben vett nyelvtannal.

11. fejezet A logika nyelvtana. Már az első fejezetben felmerült, hogy a logika nyelvtana nem egyezik meg a szokásos értelemben vett nyelvtannal. 11. fejezet A logika nyelvtana Már az első fejezetben felmerült, hogy a logika nyelvtana nem egyezik meg a szokásos értelemben vett nyelvtannal. A #11.1 Néhány lány énekel és a #11.2 Kati énekel mondatok

Részletesebben

Debreceni Egyetem Matematikai és Informatikai Intézet. 13. Védelem

Debreceni Egyetem Matematikai és Informatikai Intézet. 13. Védelem 13. Védelem A védelem célja Védelmi tartományok Hozzáférési mátrixok (access matrix, AM) A hozzáférési mátrixok implementációja A hozzáférési jogok visszavonása Képesség-alapú rendszerek Nyelvbe ágyazott

Részletesebben

A dec. 19-i vizsga jellegzetes hibái:

A dec. 19-i vizsga jellegzetes hibái: VIMM 3241 Gyakori hibák A dec. 19-i vizsga jellegzetes hibái: 1. A logikai indukció (általánosítás sok partikuláris esetről egy általános esetre) nem a matematikai indukció (általánosítás n-edik esetről

Részletesebben

Felmentések. Ha valaki tanár szakos, akkor mivel neki elvileg a hálóban nincs logika rész, felmentést kaphat a logika gyakorlat és vizsga alól.

Felmentések. Ha valaki tanár szakos, akkor mivel neki elvileg a hálóban nincs logika rész, felmentést kaphat a logika gyakorlat és vizsga alól. Felmentések Ha valaki tanár szakos, akkor mivel neki elvileg a hálóban nincs logika rész, felmentést kaphat a logika gyakorlat és vizsga alól. Az eredménye, ezek után a számításelélet részből elért eredmény

Részletesebben

Bánsághi Anna 2014 Bánsághi Anna 1 of 33

Bánsághi Anna 2014 Bánsághi Anna 1 of 33 IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 7. ELŐADÁS - ABSZTRAKT ADATTÍPUS 2014 Bánsághi Anna 1 of 33 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív

Részletesebben

Válogatott fejezetek a logikai programozásból ASP. Answer Set Programming Kelemen Attila

Válogatott fejezetek a logikai programozásból ASP. Answer Set Programming Kelemen Attila ASP 1 Kedvcsináló N királynő 3+1 sorban index(1..n). % minden sorban pontosan 1 királynő van 1{q(X,Y):index(X)}1 :- index(y). % az rossz, ha ugyanabban az oszlopban 2 királynő van :- index(x; Y1; Y2),

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók

Részletesebben

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések BLSZM-09 p. 1/17 Számítógépes döntéstámogatás Döntések fuzzy környezetben Közelítő következtetések Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8. Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás

Részletesebben

A TUDÁSÁBRÁZOLÁS TECHNIKÁI ÉS GÉPI ESZKÖZEI HERNÁDI ÁGNES BODÓ ZOLTÁN KNUTH ELŐD

A TUDÁSÁBRÁZOLÁS TECHNIKÁI ÉS GÉPI ESZKÖZEI HERNÁDI ÁGNES BODÓ ZOLTÁN KNUTH ELŐD A TUDÁSÁBRÁZOLÁS TECHNIKÁI ÉS GÉPI ESZKÖZEI F e l m é r ő t a n u l m á n y HERNÁDI ÁGNES BODÓ ZOLTÁN KNUTH ELŐD Tanulmányok 197/1987 A kiadásért felelős: REVICZKY LÁSZLÓ Készült: az OMFB-vel kötött 700325

Részletesebben

Széchenyi István Egyetem. Programozás III. Varjasi Norbert varjasin@sze.hu

Széchenyi István Egyetem. Programozás III. Varjasi Norbert varjasin@sze.hu Programozás III. Varjasi Norbert varjasin@sze.hu 1 A java virtuális gép (JVM) Képzeletbei, ideális számítógép. Szoftveresen megvalósított működési környezet. (az op. rendszer egy folyamata). Feladata:

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László

Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László MATEMATIKAI LOGIKA A gondolkodás tudománya Diszkrét matematika Arisztotelész(i.e. 384-311) Boole, De Morgan, Gödel, Cantor, Church, Herbrand, Hilbert, Kleene, Lukesiewicz, Löwenheim, Ackermann, McKinsey,

Részletesebben

Logikai ágensek. Gyenge Csilla

Logikai ágensek. Gyenge Csilla Logikai ágensek Gyenge Csilla Tartalom Bevezetés az ágensek világába Az ágens szó eredete Az ágensekről általánosan A logikai ágens Átfogó ismertetés A Wumpus világ Reprezentáció, következtetés Ítélet-logika

Részletesebben

2. Alapfogalmak, műveletek

2. Alapfogalmak, műveletek 2. Alapfogalmak, műveletek Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGIMIEM Tartalomjegyzék I Mit tudunk eddig? 2 Fuzzy halmazokkal kapcsolatos alapvető fogalmak Fuzzy halmaz tartója Fuzzy halmaz

Részletesebben

Programozási nyelvek a közoktatásban alapfogalmak I. előadás

Programozási nyelvek a közoktatásban alapfogalmak I. előadás Programozási nyelvek a közoktatásban alapfogalmak I. előadás Szempontok Programozási nyelvek osztályozása Felhasználói kör (amatőr, professzionális) Emberközelség (gépi nyelvektől a természetes nyelvekig)

Részletesebben

OOP #14 (referencia-elv)

OOP #14 (referencia-elv) OOP #14 (referencia-elv) v1.0 2003.03.19. 21:22:00 Eszterházy Károly Főiskola Információtechnológia tsz. Hernyák Zoltán adj. e-mail: aroan@ektf.hu web: http://aries.ektf.hu/~aroan OOP OOP_14-1 - E jegyzet

Részletesebben

Dr. Jelasity Márk. Mesterséges Intelligencia I. Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin

Dr. Jelasity Márk. Mesterséges Intelligencia I. Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin Dr. Jelasity Márk Mesterséges Intelligencia I Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin Elsőrendű logika -Ítéletkalkulus : Az elsőrendű logika egy speciális esete, itt csak nullad

Részletesebben

1.1 Halmazelméleti fogalmak, jelölések

1.1 Halmazelméleti fogalmak, jelölések 1.1 Halmazelméleti fogalmak, jelölések Alapfogalmak (nem definiáljuk) Halmaz x eleme az A halmaznak x nem eleme A halmaznak Jelölések A,B,C, x A x A SiUDWODQ V]iRN Halmaz megadása: Elemeinek felsorolásával:

Részletesebben

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A

Részletesebben

LOGIKA. Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László.

LOGIKA. Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László. MATEMATIKAI A gondolkodás tudománya Arisztotelész(i.e. 384-311) Boole, De Morgan, Gödel, Cantor, Church, Herbrand, Hilbert, Kleene, Lukesiewicz, Löwenheim, Ackermann, McKinsey, Tarski, Ramsey, Russel,

Részletesebben

Logikai programozás ADMINISZTRATÍV KÉRDÉSEK KÖVETELMÉNYRENDSZER FŐBB PONTOK NÉHÁNY BIZTATÓ SZÓ

Logikai programozás ADMINISZTRATÍV KÉRDÉSEK KÖVETELMÉNYRENDSZER FŐBB PONTOK NÉHÁNY BIZTATÓ SZÓ Logikai programozás ADMINISZTRATÍV KÉRDÉSEK Bármilyen kérdéssel (akár tananyag, akár nem), örömmel, bánattal: achs.agnes@gmail.com (Ha két napon belül nem válaszolok, akkor kérek egy figyelmeztető levelet.

Részletesebben