Fuzzy Rendszerek és Genetikus Algoritmusok

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Fuzzy Rendszerek és Genetikus Algoritmusok"

Átírás

1 Fuzzy endszere és Genetus lgortmuso Előadás vázlat előadás Felhasznált Irodalom: Összeállította: armat István Ph.D., egyetem adjuntus ózsa Pál: neárs algebra és alalmazása. Budapest, 99.

2 [] Sajátérté-eladat megoldása transzormácóval Cél: Valós elemű mátrxo sajátérté-eladatána megoldása általános esetben Kulcsszerep: essenberg-éle mátrx. (Csöen a számítás gény, ha lyen alaon végezzü -t) [De.] essenberg matrx. Egy mátrxot essenberg éle mátrxna nevezün, ha az j +, j,, K, n (n a matrx mérete) egyenlőtlenséggel jellemzett ndexpár által meghatározott eleme nullá: F M 3, n, n 3, n M n, n n n 3n M nn z eljárás lépése:. transzormácó bemutatása ényege: Egy adott ( ) mátrxot ortogonáls transzormácó (F-) sorozatával első háromszögmátrxra (FM) transzormálun, amelyne őátlójában megjelenne a sajátértée. Megmutatju, hogy a essenberg matrx alaja a transzormácóra nvaráns.. ranszormácó essenberg alara. Eljárást adun arra, hogy bármely matrx egy alsó háromszögmátrxszal végzett hasonlóság F-val első essenberg éle alara hozható. 3. essenberg-éle mátrxra alalmazva transzormácót, terácós módszert apun sajátétée meghatározására. (alalmas eltolás transzormácóval a onvergenca sebessége növelhető) 4. Sajátvetoro meghatározása reurzív éplettel és a. pontban szereplő alsó háromszögmátrx (M) segítségével.

3 [].. transzormácó []... elbontás étel.. Bármely valós mátrx elírható alaban, ahol ortogonáls mátrx, pedg FM. Bzonyítás. Elöször bebzonyítju, hogy létez olyan Sortogonáls mátrx, hogy S első oszlopána őátló alatt eleme nullá. entsü elöször a övetező ortogonáls mátrxot: S n cosϑn M snϑn snϑ M cosϑ n n (Ez egy síbel orgatás) egyen a, snϑ an π tgϑ (a a, aor ϑ a n n : cosϑn n ) Szorzással belátható, hogy egyenletét adja.) M S n szorzat első oszlopána utolsó eleme, (mvel épp tgϑ n n

4 j asonlóan, az eredményül apott ( m elemeből álló) mátrx első oszlopána. sora s nullázható S cosϑ snϑ snϑ cosϑ m tg ϑ π (a m, aor ϑ m ) eurzívan olytatva eljutun M mátrxg, amelyne első oszlopa a őátló alatt zérus: M SS3 Sn ahol S SS3 Sn ortogonáls z eljárás lépéset a másod oszlop dagonáls alatt eleme nullázására alalmazva szntén egy ortogonáls mátrxot apun: S S S S, így az M 3 4 n S S mátrxna már első és másod oszlopában s a dagonáls eleme alatt nullá szerepelne. ( S mátrxszal való szorzás nem rontja el az első oszlopban már meglévő nulláat)

5 Általánosan, az n n S j j + S j cosϑ j snϑ j snϑ cosϑ j j rtogonáls transzormácóal végzett szorzat első háromszög mátrxot ad, és az mátrx n n j + S szorzója egy ortogonáls mátrx. zaz j (.E.D.)

6 []... transzormácó előállítása Képezzü a övetező mátrxsorozatot: : Szorozzu meg a omponenseet ordított sorrendben: } Képezzü az elbontását: Megsmételve az eljárást,,, K(/6-) z és (/6-) elírást behelyettesítve (/6-) egyenletbe: z összes mátrx hasonló, tehát sajátértée megegyezne. egyen P (FM) és (/6-3) N (ortogonáls) (/6-4) Ezeet alalmazva a (/6-) reurzív összeüggéssel együtt: + N N P P. (/6-5)

7 (/6-), (/6-), (/6-4) alapján: ( ) ( ) ( ) P N (/7) z hatvány tehát az ortogonáls és első háromszög matrx szorzatára bontható! N P [De] transzormácó. z matrx (/6-) szernt reurzós atorzácó-sorozata az matrx transzormácója K,,

8 []..3. transzormácó mátrxsorozatána onvergencája étel. a az matrx transzormácójával meghatározott mátrxsorozat onvergens, aor anna határértée első háromszögmátrx. Bzonyítás: eltétel alapján az mátrxsorozat onvergens létez N N lm + (/6-4) lm + N + N + lm N N + I (Konvergenca esetén nagy -ra N egyre evesebbet változ) Másrészt (/6-5) és (/6-) alapján: + N N + + N N N N + N + N lm + lm N + N lm + lm + + ( / 8) Vagys, ha onvergens, aor határértée valóban FM..E.D. Követezmény.. Mvel mátrxo hasonlóa az sorozat határértéeént adodó őátlójána eleme az matrx sajátértée. FM

9 étel.3 essenberg éle mátrxo alaja -transzormácóval szemben nvaráns. Bzonyítás: egyen F egy első essenberg-éle mátrx, amelyre a transzormácó: F F. z FM. Egy FM ( ) nverze s FM ( adj / det, FM adjungáltjában a dagonáls alatt elemehez tartozó mnormátrxo dagonáls elemeben lesz nulla, gy nullát ad azon a helyen az nvez s.) - F azaz mvel FM, így j. oszlopa az F mátrx első j oszlopána lneárs ombnácója s essenberg mátrx. (/9-B) F

10 transzormácó alapján: F Mvel az FM és essenberg mátrx (/9-B), az mátrx. sora a mátrx F n,,, K + sorána lneárs ombnácója essenberg mátrx F F essenberg mátrxo alaja a transzormácóra nvaráns F.E.D.

11 [].. ranszormácó essenberg alara lgortmus: z n -edrendű mátrxot alalmas Z alsó háromszögmátrxszal végzett hasonlóság transzormácóval hozun első essenberg alara:. Kndulás: etszőleges z vetor (Megjegyzés: z,,, ndulás jelentősen csöent az gényelt számítás apactást. ) ( ) K. Képezzü: z : z z hol értéét abból a eltételből határozzu meg, hogy z első eleme legyen. 3. z eljárást olytatva: z+ : z z z z (/-) ahol (,, K, ) együttható megválasztása úgy történ, hogy z + első eleme legyen [ ] Z z matrx alsó háromszögmátrx. z n (/-) ala elírható mátrxormában: Z ZF z z z M Z F M M zn zn z M nn zaz F első essenberg mátrx alaú! 3 3 n, n n n n, n M nn

12 4. essenberg ala előállítása: F Z Z [].3. essenberg-éle mátrx sajátértéene meghatározása transzormácóval.3. étel alapján a essenberg éle matrx sajátértée a transzormácóra nvaráns. z mátrxot essenberg alara hozzu []. ejezet alapján. lalmazzu a [].. ejezetben smertet ett transzormácót (mátrxsorozatot) 3 ( n nagyságrendű műveletgény helyett csa n ell essenberg alanál) mátrxsorozat egy FM-hez tart (Követezmény..), amne dagonáls eleme adjá a sajátértéet. Konvergenca sebessége: ( ), λ λ ( ) hol, a mátrxsorozat előállításában a. essenberg mátrx λ az. sajátérté. onvergenca nem elég nagy, ha ét sajátérté özött nncs nagy ülönbség. Kon vergenca gyorsítása: helyett si mátrxszal dolgozun, amne a sajátértée λ s számo leszne és a onvergenca sebességére jelemző λ s λ s csöenthető alalmas s választással.

13 [].4. essenberg-éle mátrx sajátvetorana meghatározása Sajátvetor: v Sajátvetoro meghatározása: ( I F) v λ algebra egyenletet ell megoldan. Megjegyzés: essenberg ala az egyenlet megoldásához szüséges számításoat csöent, így előnyösen használható.

14 [SVD] Szngulárs érté szernt elbontás (SVD) [De.] Szngulárs értée. a az omplex elemű, (,, K, n) jelöl a poztív szemdent matrx sajátértéet, aor a σ σ σ r > σ r+ σ n számoat a szngulárs értéene nevezzü. n -edrendű és r -edrangú négyzetes matrx és σ étel SVD.. egyen tetszőleges m n típusú omplex elemű mátrx, és tegyü el, hogy m n. Eor létez olyan m -edrendű U és n -edrendű V mátrx, hogy UDV (SVD/4-) hol UU I (U untér mátrx) VV I (V untér mátrx) D σ σ n σ σ σ n σ,,, K, n számo az mátrx szngulárs értée, V az mátrx modálmátrxa mátrx modálmátrxa, U pedg az Bzonyítás:

15 Jelölje az n -edrendű poztív szemdent mátrx modálmátrxát V (sajátérté-sajátvetorelbontásból jön, megoldáshoz: ), vagys: V V ~ D hol D ~ a nemnegatív szngulárs értéeből alotott mátrx ~ D σ σ n egyen F : V. or: ~ F F D am dagonáls, vagys (SVD/5-) ha ρ ( ) r n σ és ;,, K, n ha ρ ( ) r < n F mátrx r +, K, n oszlopvetora zérusvetor. Képezzü az U [ u ] r u r σ untér vetorendszert és egészítsü az [, ] u, K, r (SVD/5-) u K,u m teljes untér vetorrendszerré ( U r U r I r és I n U mátrxot hermetus dádora elbontva I U U WW ahol W oszlopa adjá a hányzó vetoroat) n r r r U r egyen U [ u ] u m (SVD/5-),(SVD/5-) U U E F V UD UDV

16 Végül megmutatju, hogy U oszlopvetora az sajátvetora. z (SVD/4-)-ből: VD U ~ D U U azaz u σ u Vagys U oszlopvetora valóban az sajátvetora..e.d. Követezmény SVD.: UDV v σ u u σ v

17 [MPI] Moore-Penrose éle nverz (pszeudo nverz) étel MPI.. a az r -edrangú pszeudonverz előállítható m n ( m n ) típusú mátrx SVD elbontása UDV, aor az + + VD + U laban, ahol D + σ σ r ( m n típusú) Mert teljesül: ( ) ( )

Mechanizmusok vegyes dinamikájának elemzése

Mechanizmusok vegyes dinamikájának elemzése echanzmuso vegyes dnamáána elemzése ntonya Csaba ranslvana Egyetem, nyagsmeret Kar, Brassó. Bevezetés Komple mechanzmuso nemata és dnama mozgásvszonyana elemzése nélülözhetetlen a termétervezés első szaaszaban.

Részletesebben

A CSOPORT 4 PONTOS: 1. A

A CSOPORT 4 PONTOS: 1. A A CSOPORT 4 PONTOS:. A szám: pí= 3,459265, becslése: 3,4626 abszolút hiba: A szám és a becslés özti ülönbség abszolút értée Pl.: 0.000033 Relatív hiba: Az abszolút hiba osztva a szám abszolút értéével

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007)

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) A Fibonacci-sorozat általános tagjára vontozó éplet máséppen is levezethető A 149 Feladatbeli eljárás alalmas az x n+1 ax n + bx, n 1 másodrendű állandó együtthatós lineáris reurzióal adott sorozato n-edi

Részletesebben

Legfontosabb bizonyítandó tételek

Legfontosabb bizonyítandó tételek Legfontosabb bizonyítandó tétele 1. A binomiális tétel Tetszőleges éttagú ifejezés (binom) bármely nem negatív itevőj ű hatványa polinommá alaítható a övetez ő módon: Az nem más, mint egy olyan n tényezős

Részletesebben

Függvények hatványsorba fejtése, Maclaurin-sor, konvergenciatartomány

Függvények hatványsorba fejtése, Maclaurin-sor, konvergenciatartomány Függvénye hatványsorba fejtése, Maclaurin-sor, onvergenciatartomány Taylor-sor, ) Állítsu elő az alábbi függvénye x helyhez tartozó hatványsorát esetleg ülönféle módszereel) éa állapítsu meg a hatványsor

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL

2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL 01/2008:20236 javított 8.3 2.2.36. AZ IONKONCENRÁCIÓ POENCIOMERIÁ MEGHAÁROZÁA IONZELEKÍ ELEKRÓDOK ALKALMAZÁÁAL Az onszeletív eletród potencálja (E) és a megfelelő on atvtásána (a ) logartmusa özött deáls

Részletesebben

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként.

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként. A szta formula és alalmazása. Gyaran találozun az alább érdéssel, soszor egy összetett feladat részfeladataént. Tentsün bzonyos A 1,...,A n eseményeet, és számítsu anna a valószínűségét, hogy legalább

Részletesebben

Speciális függvénysorok: Taylor-sorok

Speciális függvénysorok: Taylor-sorok Speciális függvénysoro: Taylor-soro Állítsu elő az alábbi függvénye x 0 0 helyhez tartozó hatványsorát esetleg ülönféle módszereel és állapítsu meg a hatványsor onvergenciatartományát! A cos 5x függvény

Részletesebben

XL. Felvidéki Magyar Matematikaverseny Oláh György Emlékverseny Galánta 2016 Megoldások 1. évfolyam. + x = x x 12

XL. Felvidéki Magyar Matematikaverseny Oláh György Emlékverseny Galánta 2016 Megoldások 1. évfolyam. + x = x x 12 XL. Felvidéi Magyar Matematiaverseny Oláh György Emléverseny Galánta 016 Megoldáso 1. évfolyam 1. Oldju meg az egész számo halmazán az egyenletet. x 005 11 + x 004 1 = x 11 005 + x 1 004 Az egyenlet mindét

Részletesebben

Szinguláris érték felbontás Singular Value Decomposition

Szinguláris érték felbontás Singular Value Decomposition Szinguláris érték felbontás Singular Value Decomposition Borbély Gábor 7. április... Tétel (teljes SVD. Legyen A C m n mátrix (valósra is jó, ekkor léteznek U C m m és V C n n unitér mátrixok (valósban

Részletesebben

6. Bizonyítási módszerek

6. Bizonyítási módszerek 6. Bizonyítási módszere I. Feladato. Egy 00 00 -as táblázat minden mezőjébe beírju az,, 3 számo valamelyiét és iszámítju soronént is, oszloponént is, és a ét átlóban is az ott lévő 00-00 szám öszszegét.

Részletesebben

Zh-k összpontszáma Vizsga Zh+vizsga Jegy

Zh-k összpontszáma Vizsga Zh+vizsga Jegy Zh- összpontszáma 1 4 5 6 7 8 9 Vizsga Zh+vizsga Jeg Matematia A vizsga megoldása Név: 1 június 18, 9-11, Építőmérnöi BSc sza Neptun ód: Az utolsó három feladatból összesen el ell érni %-ot! 1 (a ( pont

Részletesebben

A gyors Fourier-transzformáció (FFT)

A gyors Fourier-transzformáció (FFT) A gyors Fourier-transzformáció (FFT) Egy analóg jel spetrumát az esete döntő többségében számítástechniai eszözöel határozzu meg. A jelet mintavételezzü és elvégezzü a mintasorozat diszrét Fouriertranszformációját.

Részletesebben

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1 Drótos G.: Fejezete az elméleti mechaniából 4. rész 4. Kis rezgése 4.. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan r pontoat nevezzü valamely oordináta-rendszerben, ahol a vizsgált tömegpont gyorsulása

Részletesebben

BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK

BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK MÉRNÖKI MATAMATIKA Segédlet a Bessel-függvények témaköréhez a Közlekedésmérnök

Részletesebben

Komplex számok. 6. fejezet. A komplex szám algebrai alakja. Feladatok. alábbi komplex számokat és helyvektorukat:

Komplex számok. 6. fejezet. A komplex szám algebrai alakja. Feladatok. alábbi komplex számokat és helyvektorukat: 6 fejezet Komplex számo A omplex szám algebrai alaja D 61 Komplex száma evezü mide olya a+bi alaú ifejezést amelybe a és b valós szám i pedig az összes valós számtól ülöböz épzetes egysége evezett szimbólum

Részletesebben

1. Egyensúlyi pont, stabilitás

1. Egyensúlyi pont, stabilitás lméleti fizia. elméleti összefoglaló. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan pontoat nevezzü, ahol a tömegpont gyorsulása 0. Ha a tömegpont egy ilyen pontban tartózodi, és nincs sebessége,

Részletesebben

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18 Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök

Részletesebben

ORTOGONÁLIS GÖRBEVONALÚ KOORDINÁTAHÁLÓZAT LÉTREHOZÁSA TETSZŐLEGES PEREMPONTOKKAL ADOTT MERIDIÁNCSATORNÁK ESETÉN. Könözsy László Ph.D.

ORTOGONÁLIS GÖRBEVONALÚ KOORDINÁTAHÁLÓZAT LÉTREHOZÁSA TETSZŐLEGES PEREMPONTOKKAL ADOTT MERIDIÁNCSATORNÁK ESETÉN. Könözsy László Ph.D. ORTOGONÁLIS GÖRBEVONALÚ KOORDINÁTAHÁLÓZAT LÉTREHOZÁSA TETSZŐLEGES PEREMPONTOKKAL ADOTT MERIDIÁNCSATORNÁK ESETÉN. BEVEZTÉS Könözsy László Ph.D. hallgató Msolc Egyetem, Áramlás- És Hőtechna Gépe Tanszée

Részletesebben

Tanítóval történ ellenrzött tanulás (Supervised Learning)

Tanítóval történ ellenrzött tanulás (Supervised Learning) anítóval történ ellenrzött tanulás (Supervsed Learnng Bevezetés Az ellenrzött tanulás esetén mndg van nformácón a rendszer ívánt válaszáról A tanítóval történ tanításnál összetartozó be- és menet mntapáro

Részletesebben

Méréselmélet: 5. előadás,

Méréselmélet: 5. előadás, 5. Modellllesztés (folyt.) Méréselmélet: 5. előadás, 03.03.3. Út az adaptív elárásokhoz: (85) és (88) alapán: W P, ( ( P). Ez utóbb mndkét oldalát megszorozva az mátrxszal: W W ( ( n ). (9) Feltételezve,

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján

6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei

Részletesebben

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1 Állapottér modelle tulajdonságai 28..22. PTE PMMK MI BSc Kalman-féle rendszer definíció Σ (T, X, U, Y, Ω, Γ, ϕ, η) T az időhalmaz X a lehetséges belső állapoto halmaza U a lehetséges bemeneti értée halmaza

Részletesebben

Hálózat gazdaságtan. Kiss Károly Miklós, Badics Judit, Nagy Dávid Krisztián. Pannon Egyetem Közgazdaságtan Tanszék 2011. jegyzet

Hálózat gazdaságtan. Kiss Károly Miklós, Badics Judit, Nagy Dávid Krisztián. Pannon Egyetem Közgazdaságtan Tanszék 2011. jegyzet Hálózat gazdaságtan jegyzet Kss Károly Mlós, adcs Judt, Nagy Dávd Krsztán Pannon Egyetem Közgazdaságtan Tanszé 0. EVEZETÉS... 3 I. HÁLÓZTOS JVK KERESLETOLDLI JELLEMZŐI HÁLÓZTI EXTERNÁLIÁK ÉS KÖVETKEZMÉNYEIK...

Részletesebben

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek 3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

7. gyakorlat megoldásai

7. gyakorlat megoldásai 7. gyakorlat megoldásai Komple számok, sajátértékek, sajátvektorok F1. Legyen z 1 = + i és z = 1 i. Számoljuk ki az alábbiakat: z 1 z 1 + z, z 1 z, z 1 z,, z 1, z 1. z M1. A szorzásnál használjuk, hogy

Részletesebben

Tuzson Zoltán A Sturm-módszer és alkalmazása

Tuzson Zoltán A Sturm-módszer és alkalmazása Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta

Részletesebben

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. ( FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.

Részletesebben

Egy negyedrendű rekurzív sorozatcsaládról

Egy negyedrendű rekurzív sorozatcsaládról Egy negyedrendű rekurzív sorozatcsaládról Pethő Attla Emlékül Kss Péternek, a rekurzív sorozatok fáradhatatlan kutatójának. 1. Bevezetés Legyenek a, b Z és {1, 1} olyanok, hogy a 2 4b 2) 0, b 2 és ha 1,

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

Keresztmetszet másodrendű nyomatékainak meghatározása

Keresztmetszet másodrendű nyomatékainak meghatározása BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra

Részletesebben

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0 Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon

Részletesebben

k n k, k n 2 C n k k=[ n+1 2 ] 1.1. ábra. Pascal háromszög

k n k, k n 2 C n k k=[ n+1 2 ] 1.1. ábra. Pascal háromszög Alapfeladato Megoldás A ombináció értelmezése alapján felírhatju, hogy n, n Ha n páros, aor n és n özött veszi fel értéeit Ha n páratlan, aor n, vagyis > n n+, ami azt jelenti, hogy és n özött veszi fel

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Otatási Hivatal A 015/016 tanévi Országos Középisolai Tanulmányi Verseny másodi forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értéelési útmutató 1 Egy adott földterület felásását három munás

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma?

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma? Dr Tóth László, Kombiatoria (PTE TTK, 7 5 Kombiáció 5 Feladat Az,, 3, 4 számo özül válasszu i ettőt (ét ülöbözőt és írju fel ezeet úgy, hogy em vagyu teitettel a iválasztott eleme sorredjére Meyi a lehetősége

Részletesebben

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 +

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 + . Fourier-soro. Bevezet definíció Enne a fejezetne a célja, hogy egy szerint periodius függvényt felírjun mint trigonometrius függvényeből épzett függvénysorént. Nyilván a cos x a sin x függvénye szerint

Részletesebben

DUNAI KATALIN *, CSELÉNYI JÓZSEF ** Kiépítendő, nem konvertálható logisztikai erőforrások kapacitásának optimalizálása egy speciális esetben

DUNAI KATALIN *, CSELÉNYI JÓZSEF ** Kiépítendő, nem konvertálható logisztikai erőforrások kapacitásának optimalizálása egy speciális esetben Bevezetés DUNAI KATALIN *, SELÉNYI JÓZSEF ** Képítendő, nem onvertálható logszta erőforráso apactásána optmalzálása egy specáls esetben apacty optmsaton of non-convertble logstc sources to be developed

Részletesebben

Lineáris algebra (10A103)

Lineáris algebra (10A103) Lineáris algebra (10A103 Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli (beugróval, feltétele a Lineáris algebra gyakorlat

Részletesebben

Az előadás kvaternió alapú dárumtranszformációs analitikus megoldást ismertet Bemutatja

Az előadás kvaternió alapú dárumtranszformációs analitikus megoldást ismertet Bemutatja A dátumtranszformácó a geodézában alkalmazott számítás módszer számos, különböző algortmuson alauló megoldása smert A megoldások többsége ks szögelfordulásokat feltételez lnearzálás szükséges a transzformácós

Részletesebben

Saj at ert ek-probl em ak febru ar 26.

Saj at ert ek-probl em ak febru ar 26. Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre

Részletesebben

ELEKTROKÉMIA GALVÁNCELLÁK ELEKTRÓDOK

ELEKTROKÉMIA GALVÁNCELLÁK ELEKTRÓDOK LKTOKÉMIA GALVÁNCLLÁK LKTÓDOK GALVÁNCLLÁK - olyan rendszere, amelyeben éma folyamat (vagy oncentrácó egyenlítdés) eletromos áramot termelhet vagy áramforrásból rajtu áramot átbocsátva éma folyamat játszódhat

Részletesebben

Példák ekvivalencia relációra (TÉTELként kell tudni ezeket zárthelyin, vizsgán):

Példák ekvivalencia relációra (TÉTELként kell tudni ezeket zárthelyin, vizsgán): F NIK INÁRIS RLÁIÓK INÁRIS RLÁIÓK (és hasonló mátrxok s tt!) Defnícó: z R bnárs relácó, ha R {( a, b) a, b } nárs relácók lehetséges tuladonsága:. Reflexív ha ( x,.(a). Szmmetrkus ha ( x, y) ( y,.(b).

Részletesebben

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 ) Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Gyaorló feladato Eponenciális és logaritmusos ifejezése, egyenlete. Hatványozási azonosságo. Számítsd i a övetező hatványo pontos értéét! g) b) c) d) 7 e) f) 9 0, 9 h) 0, 6 i) 0,7 j), 6 ), l). A övetező

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés Nagyon könnyen megfigyelhetjük, hogy akármilyen két számmal elindítunk egy Fibonacci sorozatot, a sorozat egymást követő tagjainak

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

) ( s 2 2. ^t = (n x 1)s n (s x+s y ) x +(n y 1)s y n x+n y. +n y 2 n x. n y df = n x + n y 2. n x. s x. + s 2. df = d kritikus.

) ( s 2 2. ^t = (n x 1)s n (s x+s y ) x +(n y 1)s y n x+n y. +n y 2 n x. n y df = n x + n y 2. n x. s x. + s 2. df = d kritikus. Kétmtás t-próba ^t ȳ ( s +( s + + df + vag ha, aor ^t ȳ (s +s Welch-próba ^d ȳ s + s ( s + s df ( s ( s + d rtus t s (α, +t s (α, s + s Kofdecatervallum ét mta átlagáa ülöbségére SE s ( + s ( ±t (α,df

Részletesebben

A Sturm-módszer és alkalmazása

A Sturm-módszer és alkalmazása A turm-módszer és alalmazása Tuzso Zoltá, zéelyudvarhely zámtala szélsőérté probléma megoldása, vagy egyelőtleség bzoyítása agyo gyara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölderféle

Részletesebben

Diszkrét matematika I. középszint Alapfogalmakhoz tartozó feladatok kidolgozása

Diszkrét matematika I. középszint Alapfogalmakhoz tartozó feladatok kidolgozása Diszrét matematia I. özépszint Alapfogalmahoz tartozó feladato idolgozása A doumentum a övetező címen elérhető alapfogalmahoz tartozó példafeladato lehetséges megoldásait tartalmazza: http://compalg.inf.elte.hu/~merai/edu/dm1/alapfogalma.pdf

Részletesebben

1. ábra ábra

1. ábra ábra A kifejtési tétel A kifejtési tétel kimondásához először meg kell ismerkedni az előjeles aldetermináns fogalmával. Ha az n n-es A mátrix i-edik sorának és j-edik oszlopának kereszteződésében az elem áll,

Részletesebben

Digitális Fourier-analizátorok (DFT - FFT)

Digitális Fourier-analizátorok (DFT - FFT) 6 Digitális Fourier-analizátoro (DFT - FFT) Eze az analizátoro digitális műödésűe és a Fourier-transzformálás elvén alapulna. A digitális Fourier analizátoro a folytonos időfüggvény mintavételezett jeleit

Részletesebben

d(f(x), f(y)) q d(x, y), ahol 0 q < 1.

d(f(x), f(y)) q d(x, y), ahol 0 q < 1. Fxponttétel Már a hétköznap életben s gyakran tapasztaltuk, hogy két pont között a távolságot nem feltétlenül a " kettő között egyenes szakasz hossza" adja Pl két település között a távolságot közlekedés

Részletesebben

Permutációegyenletekről

Permutációegyenletekről Permutációegyenleteről Tuzson Zoltán tanár, Széelyudvarhely Az elemi ombinatoriában n elem egy ermutációján az n darab elem egy meghatározott sorrendjét (sorbarendezését) értjü. Legyen az n darab elem

Részletesebben

Robotmechanizmusok. I. rész. Budapest, 2014

Robotmechanizmusok. I. rész. Budapest, 2014 Equaton Chapter Secton Robotmechanzmuso I. rész Buda Csaba Budapest, 4 Tartalomjegyzé Tartalomjegyzé... Bevezetés... 3 A roboto fontosabb részegysége és feladata... 3 A robotrányítás mechana alapja...

Részletesebben

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R n vektortér Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. R n vektortér/1 Vektorok Rendezett szám n-esek: a = (a 1, a 2,, a n ) sorvektor a1 a = a2 oszlopvektor... a n a 1, a 2,,

Részletesebben

Függvények növekedési korlátainak jellemzése

Függvények növekedési korlátainak jellemzése 17 Függvények növekedési korlátainak jellemzése A jellemzés jól bevált eszközei az Ω, O, Θ, o és ω jelölések. Mivel az igények általában nemnegatívak, ezért az alábbi meghatározásokban mindenütt feltesszük,

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

3. előadás Reaktorfizika szakmérnököknek TARTALOMJEGYZÉK. Az a bomlás:

3. előadás Reaktorfizika szakmérnököknek TARTALOMJEGYZÉK. Az a bomlás: beütésszám. előadás TARTALOMJEGYZÉK Az alfa-bomlás Az exponenciális bomlástörvény Felezési idő és ativitás Poisson-eloszlás Bomlási sémá értelmezése Bomlási soro, radioatív egyensúly Az a bomlás: A Z X

Részletesebben

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL A primitív függvény és a határozatlan integrál 5 I A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL Gyaorlato és feladato ( oldal) I Vizsgáld meg, hogy a övetező függvényene milyen halmazon van primitív

Részletesebben

Megoldott feladatok IX. osztály 7 MEGOLDOTT FELADATOK A IX. OSZTÁLY SZÁMÁRA

Megoldott feladatok IX. osztály 7 MEGOLDOTT FELADATOK A IX. OSZTÁLY SZÁMÁRA Megoldott eladatok IX. osztály 7 MEGOLDOTT FELADATOK A IX. OSZTÁLY SZÁMÁRA. Az : R R üggvény teljesíti az ( + y) = ( a y) + ( y) ( a ) összeüggést bármely,y R esetén (a egy rögzített valós szám). Bizonyítsd

Részletesebben

5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39

5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39 5. Előadás (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 1 / 39 AX = B (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 2 / 39 AX = B Probléma. Legyen A (m n)-es és B (m l)-es

Részletesebben

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz 2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

Néhány szó a mátrixokról

Néhány szó a mátrixokról VE 1 Az Néhány szó mátrixokról A : 11 1 m1 1 : m......... 1n n : mn tábláztot, hol ij H (i1,,m, j1,,n) H elemeiből képzett m n típusú vlós mátrixnk nevezzük. Továbbá zt mondjuk, hogy A-nk m sor és n oszlop

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás 2. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 204 205 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

Differenciaegyenletek

Differenciaegyenletek Differenciaegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2009/10 tanév, I. félév Losonczi László (DE) Differenciaegyenletek 2009/10 tanév, I. félév 1 / 11

Részletesebben

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

Gauss elimináció, LU felbontás

Gauss elimináció, LU felbontás Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 3. előadás: Mátrixok LU-felbontása Lócsi Levente ELTE IK 2013. szeptember 23. Tartalomjegyzék 1 Alsó háromszögmátrixok és Gauss-elimináció 2 Háromszögmátrixokról 3 LU-felbontás Gauss-eliminációval

Részletesebben

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA 9. LINÁRIS TRANSZFORMÁCIÓK NORMÁLALAKA Az 5. fejezetbe már megmeredtü a leár trazformácóal mt a leár leépezée egy ülölege típuával a 6. fejezetbe pedg megvzgáltu a leár trazformácó mátr-reprezetácóját.

Részletesebben

VALÓS SZÁMOK MEGKÖZELÍTÉSE TÖRTEKKEL

VALÓS SZÁMOK MEGKÖZELÍTÉSE TÖRTEKKEL Surányi János Farey törte mate.fazeas.u Surányi János VALÓS SZÁMOK MEGKÖZELÍTÉSE TÖRTEKKEL FAREY-TÖRTEK. Egy a alós számot racionális számoal, azaz törteel aarun megözelíteni. A törteet az alábbiaban mindig

Részletesebben

A kvantum-információelmélet alapjai

A kvantum-információelmélet alapjai Eötvös Loránd Tudományegyetem Matematka Intézet Seres István András A kvantum-nformácóelmélet alapja BSc szakdolgozat Témavezet : dr. Frenkel Péter ELTE Algebra és Számelmélet Tanszék 2014. Budapest Köszönetnylvánítás

Részletesebben

Az entrópia statisztikus értelmezése

Az entrópia statisztikus értelmezése Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok

Részletesebben

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm 5 Nevezetes egyenlôtlenségek a b 775 Legyenek a befogók: a, b Ekkor 9 + $ ab A maimális ab terület 0, 5cm, az átfogó hossza 8 cm a b a b 776 + # +, azaz a + b $ 88, tehát a keresett minimális érték: 88

Részletesebben

Fénypont a falon Feladat

Fénypont a falon Feladat Fénypont a falon 3. Dolgozat - sorozatunk. és. részében két speiális eset vizsgálatát részleteztük. Itt az általánosabb síkbeli esettel foglalkozunk, főbb vonalaiban. Ehhez tekintsük az. ábrát is! 3. Feladat.

Részletesebben

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

Alapmőveletek koncentrált erıkkel

Alapmőveletek koncentrált erıkkel Alapmőveletek koncentrált erıkkel /a. példa Az.7. ábrán feltüntetett, a,5 [m], b, [m] és c,7 [m] oldalú hasábot a bejelölt erık terhelk. A berajzolt koordnátarendszer fgyelembevételével írjuk fel komponens-alakban

Részletesebben

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

Gauss-eliminációval, Cholesky felbontás, QR felbontás

Gauss-eliminációval, Cholesky felbontás, QR felbontás Közelítő és szimbolikus számítások 4. gyakorlat Mátrix invertálás Gauss-eliminációval, Cholesky felbontás, QR felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei

Részletesebben

. feladatsor 8. Hányféleképpen lehet sorba rendezni a METALLICA szó betűit?...( pont) 9. Tamás elhatározta, hogy fából kifaragja a Kheopsz piramis kic

. feladatsor 8. Hányféleképpen lehet sorba rendezni a METALLICA szó betűit?...( pont) 9. Tamás elhatározta, hogy fából kifaragja a Kheopsz piramis kic . feladatsor. Feladatsor I. rész. Adja meg a következő halmazok elemeit, ha A= { e dit}. Egyszerűsítse a következő törtet: (! ) ; ; ;, B e; mil ; ;! = { } A B; B/ A...( pont) 4 4 + 4... (3 pont) 3. Hány

Részletesebben

Szárítás során kialakuló hővezetés számítása Excel VBA makróval

Szárítás során kialakuló hővezetés számítása Excel VBA makróval Szárítás során kalakuló hővezetés számítása Excel VBA makróval Rajkó Róbert 1 Eszes Ferenc 2 Szabó Gábor 1 1 Szeged Tudományegyetem, Szeged Élelmszerpar Főskola Kar Élelmszerpar Műveletek és Környezettechnka

Részletesebben

Lineáris algebra (10A103)

Lineáris algebra (10A103) Lineáris algebra (10A103) Kátai-Urbán Kamilla (1. előadás) Mátrixok 2019. február 6. 1 / 35 Bevezetés Előadás Tudnivalók (I.) Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Az előadáson készített

Részletesebben

Markov-láncok stacionárius eloszlása

Markov-láncok stacionárius eloszlása Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius

Részletesebben

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E

Részletesebben