Sztérikus stabilizálás. Bányai István 2014/2.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Sztérikus stabilizálás. Bányai István 2014/2."

Átírás

1 Sztérikus stabilizálás Bányai István 2014/2.

2 Kolloid stabilitáshoz taszítás kell. Elektrosztatikus stabilizálás V R V S

3 Két töltött gömb közötti eredő kölcsönhatás A kölcsönhatási potenciál az elektrosztatikus taszítás és a vonzás eredője a DLVO elmélet szerint: V T [J] V T = V A + V R H V A H Aa 12H Az elektrosztatikusan stabilizált rendszer érzékeny a felszíni potenciál értékére (ζ~ψ~ ph, saját ion) és az ionerősségre (κ, z). R ( ) exp V H a kt z H ze St exp 1 2kT ze St exp 1 2kT Figyeljünk a szélső értékekre!

4 A koaguláció sebessége, a stabilitási arány A Smoluchowski egyenlet szerint a koaguláció sebessége a részecske szám, N p csökkenéséből: dn dt p kn d 2 p k d a diffúzió kontrolált gyors koaguláció sebességi állandója k s a lassú gátolt diffúzió sebességi állandója A stabilitási arány: k Ha nincs energia gát akkor az ütközés d az ütközések száma W gyakoriságát, a koaguláció sebességét k s az eredményesütközések száma a diffúzió és a koncentráció szabja meg: Egy diszperzió stabilitása nő: ha a méret nő, ha a zéta dn p 2 8 Da N potenciál nő(ζ >25mV), csökken a Hamaker állandó, p vgyors dt csökken az ionerősség, csökken a hőmérséklet.

5 Eredő kölcsönhatás Kinetikailag stabilis a szol, ha V max >>kt azaz V max /kt>>0 Minél magasabb a gát annál kevesebb részecske jut át rajta, potenciál gátolt koaguláció. [J] Az elektrosztatikusan stabilizált rendszer érzékeny a felszíni potenciál értékére (ζ~ψ~ ph, saját ion) és az ionerősségre (κ, z). H [m] szol Gél csapadék Szol-gél átalakulás: Időben egyre több részecske ütközik, és kerül a másodlagos minimumba, a gyenge vonzóerő hatására az adott távolságban marad, azaz kapcsolódik. Ha ezek a kötéspontok az egész térfogatra kiterjednek, akkor a rendszer gélesedik. A gél egy kvázi szilárd rendszer, alakállandó, amit ebben az esetben fizikai térhálósodás okoz, de könnyen (a másodlagos minimum mélysége kicsi ~1-2kT) átmegy folyékonnyá.

6 [J] Koaguláció (c.c.c) 1 2 Mi az a só koncentráció ( vagy n 0 ) amelynél éppen eltűnik a taszítás (potenciálgát)? Ekkor minden ütköző részecske összetapad, csapadék válik ki.

7 Kritikus koaguláltató koncentráció Mi az a só koncentráció (κ vagy n 0 ) amelynél éppen eltűnik a taszítás (potenciálgát)? Ekkor minden ütköző részecske összetapad. Ha a potenciál gát V max (J) ( sokkal nagyobb mint a kinetikus energia kt akkor a rendszer stabilis. Amikor nincs energiagát, akkor minden ütköző részecske összetapad: gyors koaguláció. A koaguláció valószínűsége ütközéskor P=1

8 A kritikus koagulálsi koncentráció vegyértékszabálya c. c. c 1/ z 1: 0,0156 : 0, Schulze Hardy szabály: a kritikus koaguláltató érték a vegyérték reciprok hatodik hatványával arányos.

9 A koaguláció sebessége, a A Smoluchowski egyenlet szerint a koaguláció sebessége a részecske szám, N p csökkenéséből: stabilitási arány dn dt p kn d 2 p k d a diffúzió kontrolált gyors koaguláció sebességi állandója k s a lassú gátolt diffúzió sebességi állandója A stabilitási arány: Ha nincs energia gát akkor az ütközés gyakoriságát, a koaguláció sebességét a diffúzió és a koncentráció szabja meg: k az ütközések száma d W k s az eredményesütközések száma dn p 2 8 Da N p dt v gyors Egy diszperzió stabilitása nő: ha a méret nő, ha a zéta potenciál nő(ζ >25mV), csökken a Hamaker állandó, csökken az ionerősség, csökken a hőmérséklet.

10 W elektrolit koncentráció függése W k / k rapid slow A c.c.c amelynél éppen eltűnik a taszítás (potenciálgát). Ekkor minden ütköző részecske összetapad. A sebesség nem nő tovább. A stabilitás nem csökken tovább.

11 Kolloid rendszerek (szerkezet alapján) diszperziós k. szolok inkoherens rendszerek önálló részecskék makromol. kolloid oldatok asszociációs koherens (kohézív) rendszerek Diszperziós, makromolekulás, asszociációs kolloidokból kialakuló porodin (pórusos) Retikuláris (hálós) Spongoid (szivacsszerű) szerkezetű, gélek, halmazok és pórusos testek diszperziós makromolekulás asszociációs liofób liofil liofil (IUPAC ajánlás) korpuszkuláris fibrillás lamellás izodimenziós szálas hajtogatott hártya, lemezes 11

12 Szol-gél átalakulás: Időben egyre több részecske ütközik, és kerül a másodlagos minimumba, a gyenge vonzóerő hatására az adott távolságban marad, azaz kapcsolódik. Ha ezek a kötéspontok az egész térfogatra kiterjednek, akkor a rendszer gélesedik. A gél egy kvázi szilárd rendszer, alakállandó, amit ebben az esetben fizikai térhálósodás okoz, de könnyen (a másodlagos minimum mélysége kicsi ~1-2kT) átmegy folyékonnyá. Eredő kölcsönhatás [J] Kinetikailag stabil a szol, ha V max >>kt azaz V max /kt>>0 Minél magasabb a gát annál kevesebb részecske jut át rajta, potenciál gátolt koaguláció. Az elektrosztatikusan stabilizált rendszer érzékeny a felszíni potenciál értékére (ζ~ψ~ ph, saját ion) és az ionerősségre (κ, z). H [m] szol Gél csapadék

13 Kritikus koaguláltató koncentráció Mi az a só koncentráció ( vagy n 0 ) amelynél éppen eltűnik a taszítás (potenciálgát)? Ekkor minden ütköző részecske összetapad. Ha a potenciál gát V max (J) ( sokkal nagyobb mint a kinetikus energia kt akkor a rendszer stabil. Amikor nincs energiagát, akkor minden ütköző részecske összetapad: gyors koaguláció. A koaguláció valószínűsége ütközéskor W=1

14 A koaguláció sebessége, a stabilitási A Smoluchowski egyenlet szerint a koaguláció sebessége a részecske szám, N p csökkenéséből: arány dn dt p kn d 2 p k d a diffúzió kontrolált gyors koaguláció sebességi állandója k s a lassú gátolt diffúzió sebességi állandója A stabilitási arány: k Ha nincs energia gát akkor az ütközés d az ütközések száma W gyakoriságát, a koaguláció sebességét k s az eredményesütközések száma a diffúzió és a koncentráció szabja meg: Egy diszperzió stabilitása nő: ha a méret nő, ha a zéta dn p 2 8 Da N potenciál nő(ζ >25mV), csökken a Hamaker állandó, p vgyors dt csökken az ionerősség, csökken a hőmérséklet.

15 W elektrolit koncentráció függése W k / k rapid slow A c.c.c amelynél éppen eltűnik a taszítás (potenciálgát). Ekkor minden ütköző részecske összetapad. A sebesség nem nő tovább. A stabilitás nem csökken tovább.

16 Kolloid stabilitáshoz taszítás kell. Sztérikus stabilizálás V R V S Elektrosztatikus stabilizálás Sztérikus stabilizálás A kolloidok természetesen vonzzák egymást, az elektromos töltés ezt a vonzó hatást ellensúlyozza

17 Sztérikus stabilizálás (V s ) Védőhatás (taszítás) adszorpció révén (természetes mesterséges makromolekulák, vagy amfifilek), amelyek a közeggel is kölcsönhatásba kerülnek, pl. hidratálódnak. Három összetevője van - entrópia hatás (konformációs S) - ozmotikus hatás - entalpia hatás polimer réteg vastagsága A stabilizációs hatás azon alapszik, hogy munka kell a részecskék közelebb viteléhez, a polimerek által meghatározott távolságon belülre. Azon kívül nem lép fel. Jelentősége: Élelmiszeripar, főzés (halászlé, pörkölt) rostos gyümölcslevek, kakaó

18 A hatások részletezése Entrópia-hatás az adszorbeált molekuláknak csökken a mozgási szabadsági fokuk, ha átfednek ( S<0) stabilizál hatótávolság H <2r mértéke nő ha nő a lánchossz, ha nő az adszorbeált mennyiség van vonzó komponense is: a térfogatkizárás A térfogat, amit az oldószermolekulák elfoglalhatnak megnő

19 Az ozmotikus hatás solvent RT ln c c zárt tömb A két részecskén szorbeálódott kolloidok (makromolekulák, amfifil molekulák) egymás szférájába hatolva oldószert szorítanak ki. Ennek kémiai potenciálja kisebb lesz a két részecske közötti térben, tehát oldószer áramlik be a két részecske közé taszítva azokat egymástól. Stabilizálás

20 Entalpia hatás Ha jó oldószer van jelen, akkor a távozó vízmolekulák energetikailag kevésbé stabilisabb állapotba kerülnek. Ez taszító potenciált eredményez.

21 Sztérikus stabilizálás, (ha más vonzó hatás a Van der Waals hatáson kívül nincs) Felületi polimer kötődés: 1. nem érzékeny a sókoncentrációra 2. nem vizes közegben is működik 3. koncentrált diszperz rendszerekben is működik nehezen tervezhető és kivitelezhető Ha ez a vonzás gyengébb mint a hőmozgás energiája nem koagulál, ha erősebb akkor igen.

22 Ismétlés: Hamaker-hatás A van der Waals vonzás részecskék között vákuumban Atomok vagy molekulák közötti vonzás vákumban: r E r J 6 A ~ 11, A diszperziós kölcsönhatás additivitása miatt a vonzás nagyobb részecskék között is működik, függ a geometriától. Két a sugarú gömb esetében H távolságban a vonzó kölcsönhatás V A, J: Téglatesteknél: V A H A H 2 H A Hamaker állandó, J a V A H Aa 12H

23 A térbeli stabilitás feltétele A diszperzió akkor stabil, ha a kinetikus energia nagyobb, mint a részecskék közötti vonzás ütközéskor. Ez a kritérium akkor teljesül, ha elég messze vannak egymástól, ahol már a vonzás kicsi. Azaz az energiamérleg (A 121 részecske-polimer-részecske) kt >A 121 d/ (48t). Tehát a polimer vastagságnak a részecske körül t, az átmérőtől d függően nagyobb kell, hogy legyen mint: t > A 121 d / (48kT) Aa VA H 12H A 121 ( ), J A 121 /48kT, nm Olaj -viz Polisztirol-viz Szén-viz TiO 2 -viz

24 Titania gömbök (hidroxi-propil cellulózzal)

25 Sztérikus + elektrosztatikus stabilizáció Polielektrolitok (pl. fehérjék, zselatin) szorpciója - Semleges polimerekkel stabilizált töltött kolloid V Teljes = V A + V R V Teljes = V A + V R + V S Bizonyos esetekben kis koncentrációkban nem véd hanem érzékenyit a polimer

26 Érzékenyítés A következő kombináció hosszú polimer, kis koncentrációban jó oldószerben, erős adszorpció alkalmazás víztisztítás (Fe y (OH) (x-3y) x ) Néhány ppm-nyi kationos polielektrolit flokkuláltatja a kolloidot.

27 Liofil kolloidok stabilitása Amint kitűnt a makromolekulás oldatoknál az elektromos kettősréteg kölcsönhatás mellett, a szolvatációnak is jelentős szerepe van. Mindkettő gyengíthető. Izostabilis fehérje, az izoelektromos ph-nál is stabilis (nem csapódik ki, pl. zselatin), bár itt a ζ=0, de a hidratáció elég erős, hogy oldatban tartsa. A kisózásukra, a vízelvonáshoz sokkal több só kell, (más oldószerrel is lehet pl. aceton, alkohol). Izolabilis fehérjéknél a szolvatáció kisebb, kevésbé liofil az izoelektromos ph-nál kicsapódik (kazein).

28 Kolloid rendszerek (szerkezet alapján) diszperziós k. szolok inkoherens rendszerek önálló részecskék makromol. kolloid oldatok asszociációs koherens (kohézív) rendszerek Diszperziós, makromolekulás, asszociációs kolloidokból kialakuló porodin (pórusos) Retikuláris (hálós) Spongoid (szivacsszerű) szerkezetű, gélek, halmazok és pórusos testek diszperziós makromolekulás asszociációs liofób liofil liofil (IUPAC ajánlás) korpuszkuláris fibrillás lamellás izodimenziós szálas hajtogatott hártya, lemezes 28

29 Liofil kolloidok stabilitása: kazein A sajt és joghurt gyártásakor a kiindulási állapotban a ph 6-7 között van (tej). Savanyításra koagulál, a laktóz (tejcukor) fermentációja tejsavat erdeményez (dairy technological developments). Az izoelektromos pont ph-ja: 4,6. ome.html

30 Kazein micella A többi ( ) kazein a leg- hidrofóbabb fehérje a lánc szénhidrátokból (galaktóz-glükóz=laktóz) áll

31 A kazein micella részletei

32 A tej

33 A zsírcseppek szerkezete

34 A tej

35 Liofób kolloidok stabilitása, érdekesség: agyagok (montmorillonit) High salt conc A montmorillonit részecskék delaminációja vizes diszperzióban egyedi szilikát rétegekre alkáli ellenionok esetében kis (kb. 0.2 M) sókoncentrációnál. (Az alkáli földfémek helyett) Az éleken ph-val változó töltés, a lapokon állandó töltés az izomorf helyettesítésből. G. Lagaly, S. Ziesmer / Advances in Colloid and Interface Science (2003)

36 10 million tons of bentonites are used per year Kártyavár szerkezet, pozitív élek és negatív lapok összeállnak Ha gyengén megrázzuk gélszerű, de ha erősen rázzuk folyik. Katasztrofális lavina hatás ingovány, mocsár. Fúró iszap, kezdetben befolyik az üregekbe majd eltömi. Az agyagok nélkülözhetetlenek a papír, ragasztó, kenőcs, kozmetikumok, gumi, és szintetikus anyagok gyártásában. víztisztítás

37 Good adsorbent, good solvent, (very) low polymer density, (very) long polymers The long polymers bind the colloids together in open flocs. Application: water purification (in practice, a few ppm of cationic polyelectrolyte is added, since most natural colloid surfaces are negative) Good solvent, non-adsorbing polymers released solvent volume from overlapping surface layers Chains are expelled from surface layer with thickness ~R g.when two colloids meet in close contact, the total amount of accessible volume (for the polymer) is increased, hence the translational entropy is increased, and thus the colloidal dispersion is destabilized

Sztérikus stabilizálás. Bányai István /2.

Sztérikus stabilizálás. Bányai István /2. Sztérikus stabilizálás Bányai István 2011-12/2. Kolloid stabilitáshoz taszítás kell. Elektrosztatikus stabilizálás V R V S Két töltött gömb közötti eredő kölcsönhatás A kölcsönhatási potenciál az elektrosztatikus

Részletesebben

Kolloidok stabilizálása. Bányai István 2015/1.

Kolloidok stabilizálása. Bányai István 2015/1. Kolloidok stabilizálása Bányai István 2015/1. Kolloid stabilitáshoz taszítás kell. Elektrosztatikus stabilizálás V R V S Két töltött gömb közötti eredő kölcsönhatás A kölcsönhatási potenciál az elektrosztatikus

Részletesebben

Kolloidstabilitás. Berka Márta 2010/2011/II

Kolloidstabilitás. Berka Márta 2010/2011/II Kolloidstabilitás Berka Márta 2010/2011/II Kolloid stabilitáshoz taszítás kell. Sztérikus stabilizálás V R V S sztérikus stabilizálás: liofil kolloidok alkalmazása védőhatás adszorpció révén (természetes

Részletesebben

Elektrosztatikus és sztérikus stabilizálás. Bányai István és Novák Levente /2. félév

Elektrosztatikus és sztérikus stabilizálás. Bányai István és Novák Levente /2. félév Elektrosztatikus és sztérikus stabilizálás Bányai István és Novák Levente 2014-15/2. félév Kolloid rendszerek (szerkezet alapján) inkoherens rendszerek önálló részecskék koherens (kohézív) rendszerek Diszperziós,

Részletesebben

Kolloidstabilitás. Berka Márta 2009/2010/II

Kolloidstabilitás. Berka Márta 2009/2010/II Kolloidstabilitás Berka Márta 2009/2010/II Kolloid stabilitáshoz taszítás kell. Sztérikus stabilizálás V R V S sztérikus stabilizálás: liofil kolloidok alkalmazása védőhatás adszorpció révén (természetes

Részletesebben

Kolloidok stabilizálása. Bányai István 2016/1.

Kolloidok stabilizálása. Bányai István 2016/1. Kolloidok stabilizálása Bányai István 2016/1. www.kolloid.unideb.hu A kolloidok stabilitása (lehet ismételt ábrák) A hidrofób kolloidok elektrosztatikus stabilizálása Kolloidstabilitás DLVO elmélet (Derjaguin,

Részletesebben

Kolloidstabilitás. Berka Márta. 7. előadás 1

Kolloidstabilitás. Berka Márta. 7. előadás 1 Kolloidstabilitás Berka Márta 7. előadás 1 Liofób kolloidok stabilitása Termodinamikai és kinetikai stabilitás fogalma liofób és liofil kolloidok fogalma DLVO elmélet (Derjaguin, Landau és Verwey, Overbeek)

Részletesebben

A kromatográfia típusai

A kromatográfia típusai A kromatográfia típusai A kromatográfia típusai Az oldott anyag az álló fázis felületére kerül Az oldott anyag a felületet borító folyadékba kerül A kation kovalensen kötött a felületen az anion ionosan

Részletesebben

Elektrokinetikus jelenségek Kolloid stabilitás

Elektrokinetikus jelenségek Kolloid stabilitás Elektrokinetikus jelenségek Kolloid stabilitás Bányai István 2011-12/II. http://dragon.unideb.hu/~kolloid/ Elektrokinetikus vagy zeta potenciál A oldószer (többnyire víz) a felület közelében nem mozdul,

Részletesebben

Kolloidkémia 8. Előadás Kolloidstabilitás. Szőri Milán: Kolloidkémia

Kolloidkémia 8. Előadás Kolloidstabilitás. Szőri Milán: Kolloidkémia Kolloidkémia 8. Előadás Kolloidstabilitás Szőri Milán: Kolloidkémia 1 Kolloidok stabilitása Termodinamikailag lehetnek stabilisak (valódi oldatok) Liofil kolloidok G oldat

Részletesebben

Kolloidkémia 5. Előadás Kolloidstabilitás. Szőri Milán: Kolloidkémia

Kolloidkémia 5. Előadás Kolloidstabilitás. Szőri Milán: Kolloidkémia Kolloidkémia 5. Előadás Kolloidstabilitás Szőri Milán: Kolloidkémia 1 Kolloidok stabilitása Termodinamikailag lehetnek stabilisak (valódi oldatok) Liofil kolloidok G oldat

Részletesebben

A kolloidika tárgya, a kolloidok osztályozása rendszerezése. Bányai István www.kolloid.unideb.hu

A kolloidika tárgya, a kolloidok osztályozása rendszerezése. Bányai István www.kolloid.unideb.hu A kolloidika tárgya, a kolloidok osztályozása rendszerezése Bányai István www.kolloid.unideb.hu A mindennapi élet: anyagok, eljárások Ipar élelmiszerek: levesek, zselék, élelmiszer színezés, habok építőipar:

Részletesebben

Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása.

Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása. Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása. Adszorpció oldatból szilárd felületre Adszorpció oldatból Nem-elektrolitok

Részletesebben

Liofil kolloidok stabilitása

Liofil kolloidok stabilitása Liofil kolloidok stabilitása Bányai István DE Fizikai Kémiai Tanszék 8. előadás 1 Liofil kolloidok stabilitása (termodinamikailag stabilisak) Amint kitűnt a makromolekulás oldatoknál az elektromos kettősréteg

Részletesebben

Az adszorpció néhány alkalmazása. Kromatográfia: az analitika anyag rövid összefoglalása

Az adszorpció néhány alkalmazása. Kromatográfia: az analitika anyag rövid összefoglalása Az adszorpció néhány alkalmazása Kromatográfia: az analitika anyag rövid összefoglalása A kromatográfia elve Mi a kromatográfia? Elválasztási módszer. Az elválasztani kívánt két (több) komponenst külön

Részletesebben

Ciklodextrinek alkalmazási lehetőségei kolloid diszperz rendszerekben

Ciklodextrinek alkalmazási lehetőségei kolloid diszperz rendszerekben Ciklodextrinek alkalmazási lehetőségei kolloid diszperz rendszerekben Vázlat I. Diszperziós kolloidok stabilitása általános ismérvek II. Ciklodextrinek és kolloidok kölcsönhatása - szorpció - zárványkomplex-képződés

Részletesebben

A kolloidika tárgya, a kolloidok osztályozása rendszerezése. Bányai István DE Fizikai Kémiai Tanszék Gyógyszerész

A kolloidika tárgya, a kolloidok osztályozása rendszerezése. Bányai István DE Fizikai Kémiai Tanszék   Gyógyszerész A kolloidika tárgya, a kolloidok osztályozása rendszerezése Bányai István DE Fizikai Kémiai Tanszék www.kolloid.unideb.hu Gyógyszerész 2016.09.13. A mindennapi élet: anyagok, eljárások Ipar élelmiszerek:

Részletesebben

ozmózis osmosis Egy rendszer termodinamikailag stabilis, ha képződése szabadentalpia csökkenéssel jár, állandó nyomáson és hőmérsékleten.

ozmózis osmosis Egy rendszer termodinamikailag stabilis, ha képződése szabadentalpia csökkenéssel jár, állandó nyomáson és hőmérsékleten. ozmózis osmosis termodinamikai stabilitás thermodynamic stability kinetikai stabilitás kinetic stability felületaktív anyagok surfactants, surface active materials felületinaktív anyagok surface inactive

Részletesebben

A kolloidika tárgya. Miben mások a kolloid rendszerek? A kolloid rendszerek osztályozása, jellemzése.

A kolloidika tárgya. Miben mások a kolloid rendszerek? A kolloid rendszerek osztályozása, jellemzése. A kolloidika tárgya. Miben mások a kolloid rendszerek? A kolloid rendszerek osztályozása, jellemzése. Dr. Berka Márta Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék http://dragon.unideb.hu/~kolloid/

Részletesebben

A kettős réteg speciális alakulása

A kettős réteg speciális alakulása A kettős réteg speciális alakulása Stern-modell, ionok véges mérettel zeta-layer Φ 0 ψ 0 surface potential Φ/V ψ zeta v. nyírási sík ψφ St d Stern-p. ζ potential Stern-layer x (indiv.u.) 2 a Stern rétegben

Részletesebben

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában 1 Órarend 2 Kurzussal kapcsolatos emlékeztető Kurzus: Az előadás látogatása ajánlott Gyakorlat

Részletesebben

Sztérikus stabilizálás. Bányai István 2011-12/2.

Sztérikus stabilizálás. Bányai István 2011-12/2. Sztérikus stabilizálás Bányai István 2011-12/2. Kolloid stabilitáshoz taszítás kell. Elektrosztatikus stabilizálás V R V S Ez a kép most nem jeleníthető meg. Kolloid rendszerek (szerkezet alapján) diszperziós

Részletesebben

Kémiai reakciók sebessége

Kémiai reakciók sebessége Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását

Részletesebben

Szolok (szilárd lioszolok S/L), xeroszolok (*/S szilárd közegőek), gélek II. Bányai István. http://dragon.unideb.hu/~kolloid/

Szolok (szilárd lioszolok S/L), xeroszolok (*/S szilárd közegőek), gélek II. Bányai István. http://dragon.unideb.hu/~kolloid/ Szolok (szilárd lioszolok S/L), xeroszolok (*/S szilárd közegőek), gélek II. Bányai István http://dragon.unideb.hu/~kolloid/ 1 Kolloid rendszerek (szerkezet alapján) Kolloid rendszerek inkoherens rendszerek

Részletesebben

A kolloidika tárgya, a kolloidok osztályozása rendszerezése. Bányai István

A kolloidika tárgya, a kolloidok osztályozása rendszerezése. Bányai István A kolloidika tárgya, a kolloidok osztályozása rendszerezése Bányai István Motiváció 2 (két alapprobléma) Napi tapasztalatok Szilikózis (méret), vörösziszap Smog Új ötvözetek ( mikro struktúra ) Funkcionális

Részletesebben

Az elektromos kettős réteg és speciális alakulásai. Bányai István DE Fizikai Kémiai Tanszék

Az elektromos kettős réteg és speciális alakulásai. Bányai István DE Fizikai Kémiai Tanszék Az elektromos kettős réteg és speciális alakulásai Bányai István DE Fizikai Kémiai Tanszék A felületi töltés F( ) 0 A felületi töltés szerepe a liofób kolloidok stabilitásában DLVO elmélet. A hidrofób

Részletesebben

Adszorpció erős elektrolitok vizes oldataiból

Adszorpció erős elektrolitok vizes oldataiból Adszorpció erős elektrolitok vizes oldataiból Berka Márta Bányai István 1 Adszorpció erős elektrolitok vizes oldataiból Erős elektrolit adszorpció Molekuláris vagy ekvivalens Nem-ekvivalens vagy ioncsere

Részletesebben

A kolloidika tárgya, a kolloidok osztályozása rendszerezése. Bányai István

A kolloidika tárgya, a kolloidok osztályozása rendszerezése. Bányai István A kolloidika tárgya, a kolloidok osztályozása rendszerezése Bányai István Motiváció 1 Motiváció 2 (két alapprobléma) Napi tapasztalatok Szilikózis (méret), vörösziszap Smog Új ötvözetek ( mikro struktúra

Részletesebben

Szolok (szilárd lioszolok S/L), xeroszolok (*/S szilárd közegűek), gélek II. Bányai István. http://dragon.unideb.hu/~kolloid/

Szolok (szilárd lioszolok S/L), xeroszolok (*/S szilárd közegűek), gélek II. Bányai István. http://dragon.unideb.hu/~kolloid/ Szolok (szilárd lioszolok S/L), xeroszolok (*/S szilárd közegűek), gélek II. Bányai István http://dragon.unideb.hu/~kolloid/ 1 Kolloid rendszerek (szerkezet alapján) Kolloid rendszerek inkoherens rendszerek

Részletesebben

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o ) Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív

Részletesebben

A kolloidika tárgya. Miben mások a kolloid rendszerek? A kolloid rendszerek osztályozása, jellemzése. Berka Márta

A kolloidika tárgya. Miben mások a kolloid rendszerek? A kolloid rendszerek osztályozása, jellemzése. Berka Márta A kolloidika tárgya. Miben mások a kolloid rendszerek? A kolloid rendszerek osztályozása, jellemzése. Berka Márta egyetemi docens Kolloid- és Környezetkémiai Tanszék http://dragon.unideb.hu/~kolloid/ 1.óra

Részletesebben

Kolloidkémia előadás vizsgakérdések

Kolloidkémia előadás vizsgakérdések Kolloidkémia előadás vizsgakérdések Egyenletek, képletek esetén minden esetben adja meg a szimbólumok jelentését, és azok mértékegységét!!! Ábrák esetén jelölje melyik tengelyen mit ábrázol, milyen egységben

Részletesebben

Kolloidkémia előadás vizsgakérdések

Kolloidkémia előadás vizsgakérdések Kolloidkémia előadás vizsgakérdések Egyenletek, képletek esetén minden esetben adja meg a szimbólumok jelentését, és azok mértékegységét!!! Ábrák esetén jelölje melyik tengelyen mit ábrázol, milyen egységben

Részletesebben

A borok tisztulása (kolloid tulajdonságok)

A borok tisztulása (kolloid tulajdonságok) A borok tisztulása (kolloid tulajdonságok) Tisztasági problémák a borban Áttetszőség fogyasztói elvárás, különösen a fehérborok esetében Zavarosságok: 1. bor felületén (pl. hártya); 2. borban szétszórtan

Részletesebben

Többkomponensű rendszerek. Diszperz rendszerek. Kolloid rendszerek tulajdonságai. Folytonos közegben eloszlatott részecskék - diszperz rendszerek

Többkomponensű rendszerek. Diszperz rendszerek. Kolloid rendszerek tulajdonságai. Folytonos közegben eloszlatott részecskék - diszperz rendszerek Többkomponensű rendszerek 7. hét Folytonos közegben eloszlatott részecskék - diszperz rendszerek homogén - kolloid - heterogén rendszerek - a részecskék mérete alapján Diszperz rendszerek Homogén rendszerek

Részletesebben

Bevezetés a talajtanba VIII. Talajkolloidok

Bevezetés a talajtanba VIII. Talajkolloidok Bevezetés a talajtanba VIII. Talajkolloidok Kolloid rendszerek (kolloid mérető részecskékbıl felépült anyagok): Olyan két- vagy többfázisú rendszer, amelyben valamely anyag mérete a tér valamely irányában

Részletesebben

Speciális fluoreszcencia spektroszkópiai módszerek

Speciális fluoreszcencia spektroszkópiai módszerek Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon

Részletesebben

Kolloid kémia Anyagmérnök mesterképzés (MSc) Vegyipari technológiai szakirány MAKKEM 274M

Kolloid kémia Anyagmérnök mesterképzés (MSc) Vegyipari technológiai szakirány MAKKEM 274M Kolloid kémia Anyagmérnök mesterképzés (MSc) Vegyipari technológiai szakirány MAKKEM 274M Tantárgyi kommunikációs dosszié (TKD) Miskolci Egyetem Műszaki Anyagtudományi Kar Kémiai Tanszék Miskolc, 2014

Részletesebben

Az anyagi rendszer fogalma, csoportosítása

Az anyagi rendszer fogalma, csoportosítása Az anyagi rendszer fogalma, csoportosítása A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 1 A rendszer fogalma A körülöttünk levő anyagi világot atomok, ionok, molekulák építik

Részletesebben

Adszorpció folyadék-szilárd határfelületen. 2011-12/II Bányai István

Adszorpció folyadék-szilárd határfelületen. 2011-12/II Bányai István Adszorpció folyadék-szilárd határfelületen 2011-12/II Bányai István 1 Közönséges Jelentősége bibliai példa keserű víz (ioncsere) kromatográfia (papíron, oszlopon) elektródok, kozmetikumok, hajápolás Kevésbé

Részletesebben

Reakciókinetika és katalízis

Reakciókinetika és katalízis Reakciókinetika és katalízis k 4. előadás: 1/14 Különbségek a gázfázisú és az oldatreakciók között: 1 Reaktáns molekulák által betöltött térfogat az oldatreakciónál jóval nagyobb. Nincs akadálytalan mozgás.

Részletesebben

Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd

Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd Anyagszerkezettan és anyagvizsgálat 5/6 Diffúzió Dr. Szabó Péter János szpj@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd

Részletesebben

Oldatok - elegyek. Többkomponensű homogén (egyfázisú) rendszerek. Elegyek: komponensek mennyisége azonos nagyságrendű

Oldatok - elegyek. Többkomponensű homogén (egyfázisú) rendszerek. Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok - elegyek Többkomponensű homogén (egyfázisú) rendszerek Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok: egyik komponens mennyisége nagy (oldószer) a másik, vagy a többihez (oldott

Részletesebben

Molekulák mozgásban a kémiai kinetika a környezetben

Molekulák mozgásban a kémiai kinetika a környezetben Energiatartalék Molekulák mozgásban a kémiai kinetika a környezetben A termodinamika és a kinetika A termodinamika a lehetőség θ θ θ G = H T S A kinetika a valóság: 1. A fizikai rész: - a reaktánsoknak

Részletesebben

Szilárd-folyadék határfelület Erős elektrolit adszorpció. Berka Márta és Bányai István 2010/2011/II

Szilárd-folyadék határfelület Erős elektrolit adszorpció. Berka Márta és Bányai István 2010/2011/II Szilárd-folyadék határfelület Erős elektrolit adszorpció Berka Márta és Bányai István 2010/2011/II 1 Adszorpció erős elektrolitok vizes oldataiból Erős elektrolit adszorpció Molekuláris vagy ekvivalens

Részletesebben

Kolloid állapotjelzők. Molekuláris kölcsönhatások. Határfelületi jelenségek: fluid határfelületek

Kolloid állapotjelzők. Molekuláris kölcsönhatások. Határfelületi jelenségek: fluid határfelületek Kolloid állapotjelzők. Molekuláris kölcsönhatások. Határfelületi jelenségek: fluid határfelületek Dr. Berka Márta Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék http://dragon.unideb.hu/~kolloid/

Részletesebben

Katalízis. Tungler Antal Emeritus professzor 2017

Katalízis. Tungler Antal Emeritus professzor 2017 Katalízis Tungler Antal Emeritus professzor 2017 Fontosabb időpontok: sósav oxidáció, Deacon process 1860 kéndioxid oxidáció 1875 ammónia oxidáció 1902 ammónia szintézis 1905-1912 metanol szintézis 1923

Részletesebben

A kolloid rendszer fogalma, felosztása. A felületi energia és a belső energia viszonya. Kolloid rendszer mikroheterogén rendszer fajtája.

A kolloid rendszer fogalma, felosztása. A felületi energia és a belső energia viszonya. Kolloid rendszer mikroheterogén rendszer fajtája. A kolloid rendszer fogalma, felosztása Anyagi rendszerek: homogén heterogén A felületi energia és a belső energia viszonya. Mikroheterogén rendszer: felület-térfogat aránya felületi energia Kolloid rendszer

Részletesebben

Diffúzió 2003 március 28

Diffúzió 2003 március 28 Diffúzió 3 március 8 Diffúzió: különféle anyagi részecskék (szilárd, folyékony, gáznemű) anyagon belüli helyváltozása. Szilárd anyagban való mozgás Öndiffúzió: a rácsot felépítő saját atomok energiaszint-különbség

Részletesebben

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol Kémiai kötések A természetben az anyagokat felépítő atomok nem önmagukban, hanem gyakran egymáshoz kapcsolódva léteznek. Ezeket a kötéseket összefoglaló néven kémiai kötéseknek nevezzük. Kémiai kötések

Részletesebben

Szakértesítő 1 Interkerám szakmai füzetek A folyósító szerek viselkedése a kerámia anyagokban

Szakértesítő 1 Interkerám szakmai füzetek A folyósító szerek viselkedése a kerámia anyagokban Szakértesítő 1 Interkerám szakmai füzetek A folyósító szerek viselkedése a kerámia anyagokban A folyósító szerek viselkedése a kerámia anyagokban Bevezetés A kerámia masszák folyósításkor fő cél az anyag

Részletesebben

Határfelületi elektromos tulajdonságok ( tétel) Előadás: március 11

Határfelületi elektromos tulajdonságok ( tétel) Előadás: március 11 Határfelületi elektromos tulajdonságok (1113. tétel) Előadás: március 11 FELÜLETI TÖLTÉSEK KIALAKULÁSA S/L HATÁRFELÜLETEN ioncserélő gyanták (állandó töltés): kation cserélő anion cserélő _ SO 3 H CH 2

Részletesebben

Oldatok - elegyek. Elegyek: komponensek mennyisége azonos nagyságrendű

Oldatok - elegyek. Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok - elegyek Többkomponensű homogén (egyfázisú) rendszerek Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok: egyik komponens mennyisége nagy (oldószer) a másik, vagy a többihez (oldott

Részletesebben

Reológia Mérési technikák

Reológia Mérési technikák Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test

Részletesebben

MTA DOKTORI ÉRTEKEZÉS TÉZISEI

MTA DOKTORI ÉRTEKEZÉS TÉZISEI MTA DOKTORI ÉRTEKEZÉS TÉZISEI ELLENTÉTES TÖLTÉSŐ POLIELEKTROLITOK ÉS TENZIDEK ASSZOCIÁCIÓJA Mészáros Róbert Eötvös Loránd Tudományegyetem Kémiai Intézet Budapest, 2009. december I. Bevezetés Az ellentétes

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

Energiaminimum- elve

Energiaminimum- elve Energiaminimum- elve Minden rendszer arra törekszi, hogy stabil állapotba kerüljön. Milyen kapcsolat van a stabil állapot, és az adott állapot energiája között? Energiaminimum elve Energiaminimum- elve

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek

Részletesebben

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53 Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika

Részletesebben

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek. N m J 2

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek. N m J 2 Határelületi jelenségek 1. Felületi eszültség Fogorvosi anyagtan izikai alapjai 3. Általános anyagszerkezeti ismeretek Határelületi jelenségek Kiemelt témák: elületi eszültség adhézió nedvesítés ázis ázisdiagramm

Részletesebben

Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió

Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió Anyagismeret 6/7 Diffúzió Dr. Mészáros István meszaros@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd Diffúzió Diffúzió -

Részletesebben

3. A kémiai kötés. Kémiai kölcsönhatás

3. A kémiai kötés. Kémiai kölcsönhatás 3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes

Részletesebben

Membránszerkezet Nyugalmi membránpotenciál

Membránszerkezet Nyugalmi membránpotenciál Membránszerkezet Nyugalmi membránpotenciál 2011.11.15. A biológiai membránok fő komponense. Foszfolipidek foszfolipid = diglicerid + foszfát csoport + szerves molekula (pl. kolin). Poláros fej (hidrofil)

Részletesebben

Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel).

Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel). Mire kell? A mindennapi gyakorlatban előforduló jelenségek (például fázisátalakulások, olvadás, dermedés, párolgás) értelmezéséhez, kvantitatív leírásához. Szerkezeti anyagok tulajdonságainak változása

Részletesebben

Biofizika szeminárium. Diffúzió, ozmózis

Biofizika szeminárium. Diffúzió, ozmózis Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:

Részletesebben

Transzportfolyamatok

Transzportfolyamatok Transzportfolyamatok Boda Dezső 2009. május 21. 1. Diffúzió elektromos tér hiányában Fizikai kémiából tanultuk, hogy valamely anyagban az i komponens áramsűrűségére fluxus) egy dimenzióban a következő

Részletesebben

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően

Részletesebben

Doktori értekezés KATIONOS POLIELEKTROLITOK ÉS ANIONOS TENZIDEK KÖZÖTTI KÖLCSÖNHATÁS

Doktori értekezés KATIONOS POLIELEKTROLITOK ÉS ANIONOS TENZIDEK KÖZÖTTI KÖLCSÖNHATÁS Doktori értekezés KATIONOS POLIELEKTROLITOK ÉS ANIONOS TENZIDEK KÖZÖTTI KÖLCSÖNHATÁS Készítette: MEZEI AMÁLIA Eötvös Loránd Tudományegyetem Kémiai Intézet, Fizikai Kémiai Tanszék Határfelületi- és Nanoszerkezetek

Részletesebben

AZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK. Rausch Péter kémia-környezettan

AZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK. Rausch Péter kémia-környezettan AZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK Rausch Péter kémia-környezettan Hogy viselkedik az ember egyedül? A kémiában ritkán tudunk egyetlen részecskét vizsgálni! - az anyagi részecske tudja hogy kell

Részletesebben

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje)

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje) lvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDE (A ragasztás ereje) A ragasztás egyre gyakrabban alkalmazott kötéstechnológia az ipari gyakorlatban. Ennek oka,

Részletesebben

BIOFIZIKA I OZMÓZIS Bugyi Beáta (PTE ÁOK Biofizikai Intézet) OZMÓZIS

BIOFIZIKA I OZMÓZIS Bugyi Beáta (PTE ÁOK Biofizikai Intézet) OZMÓZIS BIOFIZIKA I OZMÓZIS - 2010. 10. 26. Bugyi Beáta (PTE ÁOK Biofizikai Intézet) OZMÓZIS BIOFIZIKA I - DIFFÚZIÓ DIFFÚZIÓ - ÁTTEKINTÉS TRANSZPORTFOLYAMATOK ÁLTALÁNOS LEÍRÁSA ONSAGER EGYENLET lineáris, irreverzibilis

Részletesebben

Mucilago / Mucilagines

Mucilago / Mucilagines KOLLOID DISZPERZ RENDSZEREK NYÁK / NYÁKOK Mucilago / Mucilagines PTE, GYTK Gyógyszertechnológiai és Biofarmáciai Intézet 1 A NYÁKOK nagy molekulájú anyagok viszkózus, vizes kolloid oldatai (viszkózus hidroszolok).

Részletesebben

Kolloidkémia. 2. előadás. Szőri Milán: Kolloid Kémia

Kolloidkémia. 2. előadás. Szőri Milán: Kolloid Kémia Kolloidkémia 2. előadás Szőri Milán: Kolloid Kémia 1 A kolloidika tárgya Azok diszperz rendszerek, amelyekben a méret legalább egy térdimenzióban kb. 1nm és 500 nm között van. Azok a rendszerek, amelyekben

Részletesebben

Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet

Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS 2013. Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet DIFFÚZIÓ 1. KÍSÉRLET Fizika-Biofizika I. - DIFFÚZIÓ 1. kísérlet: cseppentsünk tintát egy üveg vízbe 1. megfigyelés:

Részletesebben

A kémiai kötés. Kémiai kölcsönhatás

A kémiai kötés. Kémiai kölcsönhatás A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS KOVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Ionos kötés Na Cl Ionpár képződése e - Na + Cl - Na:

Részletesebben

Válasz Prof. Dr. Tombácz Etelka Ellentétes töltésű polielektrolitok és tenzidek asszociációja című MTA doktori értekezésre adott bírálatára

Válasz Prof. Dr. Tombácz Etelka Ellentétes töltésű polielektrolitok és tenzidek asszociációja című MTA doktori értekezésre adott bírálatára Válasz Prof. Dr. Tombácz Etelka Ellentétes töltésű polielektrolitok és tenzidek asszociációja című MTA doktori értekezésre adott bírálatára Mindenekelőtt szeretném megköszönni Prof. Dr. Tombácz Etelkának

Részletesebben

Felületi jelenségek. Gáz folyadék határfelület. γ V 2/3 = k E (T kr -T) Általános és szervetlen kémia 8. hét. Elızı héten elsajátítottuk, hogy

Felületi jelenségek. Gáz folyadék határfelület. γ V 2/3 = k E (T kr -T) Általános és szervetlen kémia 8. hét. Elızı héten elsajátítottuk, hogy Általános és szervetlen kémia 8. hét Elızı héten elsajátítottuk, hogy a többkomponenső homogén rendszereknek milyen csoportjai lehetségesek milyen sajátságai vannak az oldatoknak Mai témakörök határfelületi

Részletesebben

Folyadékok és szilárd anyagok

Folyadékok és szilárd anyagok Folyadékok és szilárd anyagok 7-1 Intermolekuláris erők, folyadékok tulajdonságai 7-2 Folyadékok gőztenziója 7-3 Szilárd anyagok néhány tulajdonsága 7-4 Fázisdiagram 7-5 Van der Waals kölcsönhatások 7-6

Részletesebben

Altalános Kémia BMEVESAA101 tavasz 2008

Altalános Kémia BMEVESAA101 tavasz 2008 Folyadékok és szilárd anayagok 3-1 Intermolekuláris erők, folyadékok tulajdonságai 3-2 Folyadékok gőztenziója 3-3 Szilárd anyagok néhány tulajdonsága 3-4 Fázisdiagram 3-5 Van der Waals kölcsönhatások 3-6

Részletesebben

HIDROFIL HÉJ KIALAKÍTÁSA

HIDROFIL HÉJ KIALAKÍTÁSA HIDROFIL HÉJ KIALAKÍTÁSA POLI(N-IZOPROPIL-AKRILAMID) MIKROGÉL RÉSZECSKÉKEN Róth Csaba Témavezető: Dr. Varga Imre Eötvös Loránd Tudományegyetem, Budapest Természettudományi Kar Kémiai Intézet 2015. december

Részletesebben

A POLIELEKTROLIT/TENZID ASSZOCIÁCIÓ SZABÁLYOZÁSA NEMIONOS TENZIDEK ÉS POLIMEREK SEGÍTSÉGÉVEL

A POLIELEKTROLIT/TENZID ASSZOCIÁCIÓ SZABÁLYOZÁSA NEMIONOS TENZIDEK ÉS POLIMEREK SEGÍTSÉGÉVEL Doktori értekezés tézisei A POLIELEKTROLIT/TENZID ASSZOCIÁCIÓ SZABÁLYOZÁSA NEMIONOS TENZIDEK ÉS POLIMEREK SEGÍTSÉGÉVEL FEGYVER EDIT Témavezető: Dr. Mészáros Róbert, egyetemi docens Kémia Doktori Iskola

Részletesebben

Kolloid állapotjelzık. Molekuláris kölcsönhatások. Határfelületi jelenségek: fluid határfelületek

Kolloid állapotjelzık. Molekuláris kölcsönhatások. Határfelületi jelenségek: fluid határfelületek Kolloid állapotjelzık. Molekuláris kölcsönhatások. Határfelületi jelenségek: fluid határfelületek Dr. Berka Márta és Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék http://dragon.unideb.hu/~kolloid/

Részletesebben

Aerogél alapú gyógyszerszállító rendszerek. Tóth Tünde Anyagtudomány MSc

Aerogél alapú gyógyszerszállító rendszerek. Tóth Tünde Anyagtudomány MSc Aerogél alapú gyógyszerszállító rendszerek Tóth Tünde Anyagtudomány MSc 2016. 04. 22. 1 A gyógyszerszállítás problémái A hatóanyag nem oldódik megfelelően Szelektivitás hiánya Nem megfelelő eloszlás A

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

KÜLÖNBÖZŐ ADALÉKOK HATÁSA AZ ELLENTÉTES TÖLTÉSŰ POLIELEKTROLITOK ÉS TENZIDEK ASSZOCIÁCIÓJÁRA

KÜLÖNBÖZŐ ADALÉKOK HATÁSA AZ ELLENTÉTES TÖLTÉSŰ POLIELEKTROLITOK ÉS TENZIDEK ASSZOCIÁCIÓJÁRA SZAKDOLGOZAT BERTALANITS EDIT KÜLÖNBÖZŐ ADALÉKOK HATÁSA AZ ELLENTÉTES TÖLTÉSŰ POLIELEKTROLITOK ÉS TENZIDEK ASSZOCIÁCIÓJÁRA Témavezető: Dr. Mészáros Róbert egyetemi docens Eötvös Loránd Tudományegyetem

Részletesebben

gait k, rozzák k meg solják szembeni viselkedését, szerkezetét és a talajba került anyagok (tápanyagok, szennyezıanyagok, stb.

gait k, rozzák k meg solják szembeni viselkedését, szerkezetét és a talajba került anyagok (tápanyagok, szennyezıanyagok, stb. TALAJ KÉMIAI K TULAJDONSÁGAI A talaj kémiai k tulajdonságai gait a vízben v oldható sók k mennyisége és s minısége, a kolloidkémiai reakciók, k, a kémhatk mhatás s határozz rozzák k meg ezek befolyásolj

Részletesebben

Számítógépek és modellezés a kémiai kutatásokban

Számítógépek és modellezés a kémiai kutatásokban Számítógépek és modellezés a kémiai kutatásokban Jedlovszky Pál Határfelületek és nanorendszerek laboratóriuma Alkímia ma 214 április 3. VALÓDI RENDSZEREK MODELL- ALKOTÁS MODELL- RENDSZEREK KÍSÉRLETEK

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

Dr. Berka Márta és Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék

Dr. Berka Márta és Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék A kolloidika tárgya. Miben mások a kolloid rendszerek? A kolloid rendszerek osztályozása, jellemzése. Dr. Berka Márta és Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék http://dragon.unideb.hu/~kolloid/

Részletesebben

Kinetika. Általános Kémia, kinetika Dia: 1 /53

Kinetika. Általános Kémia, kinetika Dia: 1 /53 Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika

Részletesebben

Kapilláris elektroforézis

Kapilláris elektroforézis Kapilláris elektroforézis Kapilláris elektroforézis. Elméleti alapok: elektroozmózis, eof meghatározása, szabályzása elválasztási hatékonyság, zónaszélesedés 1 Kapilláris elektroforézis A kapilláris elektroforézis

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)

Részletesebben

Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások Definíciók

Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások Definíciók Jelentősége szubsztrát kötődés szolvatáció ionizációs állapotok (pka) mechanizmus katalízis ioncsatornák szimulációk (szerkezet) all-atom dipolar fluid dipolar lattice continuum Definíciók töltéseloszlás

Részletesebben

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás

Részletesebben

Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László

Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László -Az anyagcsere és a transzportfolyamatok. - Makrotranszport : jelentős anyagmennyiségek transzportja : csöveken, edényeken keresztül : nagyobb

Részletesebben

Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek. Szőri Milán: Kolloidkémia

Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek. Szőri Milán: Kolloidkémia Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek 1 Határfelületi rétegek 2 Pavel Jungwirth, Nature, 2011, 474, 168 169. / határfelületi jelenségek

Részletesebben

Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek Anyagvizsgálati módszerek Elektroanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Optikai módszerek 1/ 18 Potenciometria Potenciometria olyan analitikai eljárások

Részletesebben

1. SI mértékegységrendszer

1. SI mértékegységrendszer I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség

Részletesebben